759 research outputs found

    A fast algorithm for matrix balancing

    Get PDF
    As long as a square nonnegative matrix A contains sufficient nonzero elements, then the matrix can be balanced, that is we can find a diagonal scaling of A that is doubly stochastic. A number of algorithms have been proposed to achieve the balancing, the most well known of these being Sinkhorn-Knopp. In this paper we derive new algorithms based on inner-outer iteration schemes. We show that Sinkhorn-Knopp belongs to this family, but other members can converge much more quickly. In particular, we show that while stationary iterative methods offer little or no improvement in many cases, a scheme using a preconditioned conjugate gradient method as the inner iteration can give quadratic convergence at low cost

    Minimizing Communication for Eigenproblems and the Singular Value Decomposition

    Full text link
    Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds were presented on the amount of communication required for essentially all O(n3)O(n^3)-like algorithms for linear algebra, including eigenvalue problems and the SVD. Conventional algorithms, including those currently implemented in (Sca)LAPACK, perform asymptotically more communication than these lower bounds require. In this paper we present parallel and sequential eigenvalue algorithms (for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms that do attain these lower bounds, and analyze their convergence and communication costs.Comment: 43 pages, 11 figure

    Large-scale computation of pseudospectra using ARPACK and eigs

    Get PDF
    ARPACK and its MATLAB counterpart, eigs, are software packages that calculate some eigenvalues of a large non-symmetric matrix by Arnoldi iteration with implicit restarts. We show that at a small additional cost, which diminishes relatively as the matrix dimension increases, good estimates of pseudospectra in addition to eigenvalues can be obtained as a by-product. Thus in large-scale eigenvalue calculations it is feasible to obtain routinely not just eigenvalue approximations, but also information as to whether or not the eigenvalues are likely to be physically significant. Examples are presented for matrices with dimension up to 200,000

    Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton--Jacobi--Bellman equations

    Get PDF
    We analyse a class of nonoverlapping domain decomposition preconditioners for nonsymmetric linear systems arising from discontinuous Galerkin finite element approximation of fully nonlinear Hamilton--Jacobi--Bellman (HJB) partial differential equations. These nonsymmetric linear systems are uniformly bounded and coercive with respect to a related symmetric bilinear form, that is associated to a matrix A\mathbf{A}. In this work, we construct a nonoverlapping domain decomposition preconditioner P\mathbf{P}, that is based on A\mathbf{A}, and we then show that the effectiveness of the preconditioner for solving the} nonsymmetric problems can be studied in terms of the condition number κ(P1A)\kappa(\mathbf{P}^{-1}\mathbf{A}). In particular, we establish the bound κ(P1A)1+p6H3/q3h3\kappa(\mathbf{P}^{-1}\mathbf{A}) \lesssim 1+ p^6 H^3 /q^3 h^3, where HH and hh are respectively the coarse and fine mesh sizes, and qq and pp are respectively the coarse and fine mesh polynomial degrees. This represents the first such result for this class of methods that explicitly accounts for the dependence of the condition number on qq; our analysis is founded upon an original optimal order approximation result between fine and coarse discontinuous finite element spaces. Numerical experiments demonstrate the sharpness of this bound. Although the preconditioners are not robust with respect to the polynomial degree, our bounds quantify the effect of the coarse and fine space polynomial degrees. Furthermore, we show computationally that these methods are effective in practical applications to nonsymmetric, fully nonlinear HJB equations under hh-refinement for moderate polynomial degrees
    corecore