18 research outputs found

    Computing Nearest Gcd with Certification

    Get PDF
    International audienceA bisection method, based on exclusion and inclusion tests, is used to address the nearest univariate gcd problem formulated as a bivariate real minimization problem of a rational fraction. The paper presents an algorithm, a first implementation and a complexity analysis relying on Smale's α\alpha-theory. We report its behavior on an illustrative example

    Minimizing Rational Functions by Exact Jacobian SDP Relaxation Applicable to Finite Singularities

    Full text link
    This paper considers the optimization problem of minimizing a rational function. We reformulate this problem as polynomial optimization by the technique of homogenization. These two problems are shown to be equivalent under some generic conditions. The exact Jacobian SDP relaxation method proposed by Nie is used to solve the resulting polynomial optimization. We also prove that the assumption of nonsingularity in Nie's method can be weakened as the finiteness of singularities. Some numerical examples are given to illustrate the efficiency of our method.Comment: 23 page

    Over-constrained Weierstrass iteration and the nearest consistent system

    Full text link
    We propose a generalization of the Weierstrass iteration for over-constrained systems of equations and we prove that the proposed method is the Gauss-Newton iteration to find the nearest system which has at least kk common roots and which is obtained via a perturbation of prescribed structure. In the univariate case we show the connection of our method to the optimization problem formulated by Karmarkar and Lakshman for the nearest GCD. In the multivariate case we generalize the expressions of Karmarkar and Lakshman, and give explicitly several iteration functions to compute the optimum. The arithmetic complexity of the iterations is detailed

    GPGCD: An iterative method for calculating approximate GCD of univariate polynomials

    Full text link
    We present an iterative algorithm for calculating approximate greatest common divisor (GCD) of univariate polynomials with the real or the complex coefficients. For a given pair of polynomials and a degree, our algorithm finds a pair of polynomials which has a GCD of the given degree and whose coefficients are perturbed from those in the original inputs, making the perturbations as small as possible, along with the GCD. The problem of approximate GCD is transfered to a constrained minimization problem, then solved with the so-called modified Newton method, which is a generalization of the gradient-projection method, by searching the solution iteratively. We demonstrate that, in some test cases, our algorithm calculates approximate GCD with perturbations as small as those calculated by a method based on the structured total least norm (STLN) method and the UVGCD method, while our method runs significantly faster than theirs by approximately up to 30 or 10 times, respectively, compared with their implementation. We also show that our algorithm properly handles some ill-conditioned polynomials which have a GCD with small or large leading coefficient.Comment: Preliminary versions have been presented as doi:10.1145/1576702.1576750 and arXiv:1007.183

    Computing Nearest Gcd with Certification

    Get PDF
    International audienceA bisection method, based on exclusion and inclusion tests, is used to address the nearest univariate gcd problem formulated as a bivariate real minimization problem of a rational fraction. The paper presents an algorithm, a first implementation and a complexity analysis relying on Smale's α\alpha-theory. We report its behavior on an illustrative example

    A quadratically convergent algorithm for structured low-rank approximation

    No full text
    corecore