280 research outputs found

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    Generalized Property-Directed Reachability for Hybrid Systems

    Full text link
    Generalized property-directed reachability (GPDR) belongs to the family of the model-checking techniques called IC3/PDR. It has been successfully applied to software verification; for example, it is the core of Spacer, a state-of-the-art Horn-clause solver bundled with Z3. However, it has yet to be applied to hybrid systems, which involve a continuous evolution of values over time. As the first step towards GPDR- based model checking for hybrid systems, this paper formalizes HGPDR, an adaptation of GPDR to hybrid systems, and proves its soundness. We also implemented a semi-automated proof-of-concept verifier, which allows a user to provide hints to guide verification steps.Comment: To appear in VMCAI 202

    時間プッシュダウンオートマトンの表現力と到達可能性問題

    Get PDF
    筑波大学 (University of Tsukuba)201

    Input Synthesis for Sampled Data Systems by Program Logic

    Full text link
    Inspired by a concrete industry problem we consider the input synthesis problem for hybrid systems: given a hybrid system that is subject to input from outside (also called disturbance or noise), find an input sequence that steers the system to the desired postcondition. In this paper we focus on sampled data systems--systems in which a digital controller interrupts a physical plant in a periodic manner, a class commonly known in control theory--and furthermore assume that a controller is given in the form of an imperative program. We develop a structural approach to input synthesis that features forward and backward reasoning in program logic for the purpose of reducing a search space. Although the examples we cover are limited both in size and in structure, experiments with a prototype implementation suggest potential of our program logic based approach.Comment: In Proceedings HAS 2014, arXiv:1501.0540

    Bridging scales in cancer progression: Mapping genotype to phenotype using neural networks

    Full text link
    In this review we summarize our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions

    A temporal logic for micro- and macro-step-based real-time systems: Foundations and applications

    Get PDF
    Many systems include components interacting with each other that evolve at possibly very different speeds. To deal with this situation many formal models adopt the abstraction of “zero-time transitions”, which do not consume time. These, however, have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis and pairs them with the traditional “next” operator of temporal logic to introduce a notion of micro- and macro-steps; our approach is enacted in an extension of the TRIO metric temporal logic, called X-TRIO. We study the expressiveness and decidability properties of the new logic. Decidability is achieved through translation of a meaningful subset of X-TRIO into Linear Temporal Logic, a traditional way to support automated verification. We illustrate the usefulness and the generality of our approach by applying it to provide a formal semantics of timed Petri nets, which allows for their automated verification. We also give an overview of a formal semantics of Stateflow/Simulink diagrams, defined in terms of X-TRIO, which has been applied to the automated verification of a robotic cell

    Enclosing the behavior of a hybrid automaton up to and beyond a Zeno point

    Get PDF
    Even simple hybrid automata like the classic bouncing ball can exhibit Zeno behavior. The existence of this type of behavior has so far forced a large class of simulators to either ignore some events or risk looping indefinitely. This in turn forces modelers to either insert ad-hoc restrictions to circumvent Zeno behavior or to abandon hybrid automata. To address this problem, we take a fresh look at event detection and localization. A key insight that emerges from this investigation is that an enclosure for a given time interval can be valid independent of the occurrence of a given event. Such an event can then even occur an unbounded number of times. This insight makes it possible to handle some types of Zeno behavior. If the post-Zeno state is defined explicitly in the given model of the hybrid automaton, the computed enclosure covers the corresponding trajectory that starts from the Zeno point through a restarted evolution
    corecore