3,119 research outputs found

    Marvin: an Innovative Omni-Directional Robotic Assistant for Domestic Environments

    Get PDF
    Population ageing and pandemics recently demonstrate to cause isolation of elderly people in their houses, generating the need for a reliable assistive figure. Robotic assistants are the new frontier of innovation for domestic welfare, and elderly monitoring is one of the services a robot can handle for collective well-being. Despite these emerging needs, in the actual landscape of robotic assistants there are no platform which successfully combines a reliable mobility in cluttered domestic spaces, with lightweight and offline Artificial Intelligence (AI) solutions for perception and interaction. In this work, we present Marvin, a novel assistive robotic platform we developed with a modular layer-based architecture, merging a flexible mechanical design with cutting-edge AI for perception and vocal control. We focus the design of Marvin on three target service functions: monitoring of elderly and reduced-mobility subjects, remote presence and connectivity, and night assistance. Compared to previous works, we propose a tiny omnidirectional platform, which enables agile mobility and effective obstacle avoidance. Moreover, we design a controllable positioning device, which easily allows the user to access the interface for connectivity and extends the visual range of the camera sensor. Nonetheless, we delicately consider the privacy issues arising from private data collection on cloud services, a critical aspect of commercial AI-based assistants. To this end, we demonstrate how lightweight deep learning solutions for visual perception and vocal command can be adopted, completely running offline on the embedded hardware of the robot.Comment: 20 pages, 9 figures, 3 tabl

    Identifying attack surfaces in the evolving space industry using reference architectures

    Get PDF
    The space environment is currently undergoing a substantial change and many new entrants to the market are deploying devices, satellites and systems in space; this evolution has been termed as NewSpace. The change is complicated by technological developments such as deploying machine learning based autonomous space systems and the Internet of Space Things (IoST). In the IoST, space systems will rely on satellite-to-x communication and interactions with wider aspects of the ground segment to a greater degree than existing systems. Such developments will inevitably lead to a change in the cyber security threat landscape of space systems. Inevitably, there will be a greater number of attack vectors for adversaries to exploit, and previously infeasible threats can be realised, and thus require mitigation. In this paper, we present a reference architecture (RA) that can be used to abstractly model in situ applications of this new space landscape. The RA specifies high-level system components and their interactions. By instantiating the RA for two scenarios we demonstrate how to analyse the attack surface using attack trees

    Tracking and modeling focus of attention in meetings [online]

    Get PDF
    Abstract This thesis addresses the problem of tracking the focus of attention of people. In particular, a system to track the focus of attention of participants in meetings is developed. Obtaining knowledge about a person\u27s focus of attention is an important step towards a better understanding of what people do, how and with what or whom they interact or to what they refer. In meetings, focus of attention can be used to disambiguate the addressees of speech acts, to analyze interaction and for indexing of meeting transcripts. Tracking a user\u27s focus of attention also greatly contributes to the improvement of human­computer interfaces since it can be used to build interfaces and environments that become aware of what the user is paying attention to or with what or whom he is interacting. The direction in which people look; i.e., their gaze, is closely related to their focus of attention. In this thesis, we estimate a subject\u27s focus of attention based on his or her head orientation. While the direction in which someone looks is determined by head orientation and eye gaze, relevant literature suggests that head orientation alone is a su#cient cue for the detection of someone\u27s direction of attention during social interaction. We present experimental results from a user study and from several recorded meetings that support this hypothesis. We have developed a Bayesian approach to model at whom or what someone is look­ ing based on his or her head orientation. To estimate head orientations in meetings, the participants\u27 faces are automatically tracked in the view of a panoramic camera and neural networks are used to estimate their head orientations from pre­processed images of their faces. Using this approach, the focus of attention target of subjects could be correctly identified during 73% of the time in a number of evaluation meet­ ings with four participants. In addition, we have investigated whether a person\u27s focus of attention can be pre­dicted from other cues. Our results show that focus of attention is correlated to who is speaking in a meeting and that it is possible to predict a person\u27s focus of attention based on the information of who is talking or was talking before a given moment. We have trained neural networks to predict at whom a person is looking, based on information about who was speaking. Using this approach we were able to predict who is looking at whom with 63% accuracy on the evaluation meetings using only information about who was speaking. We show that by using both head orientation and speaker information to estimate a person\u27s focus, the accuracy of focus detection can be improved compared to just using one of the modalities for focus estimation. To demonstrate the generality of our approach, we have built a prototype system to demonstrate focus­aware interaction with a household robot and other smart appliances in a room using the developed components for focus of attention tracking. In the demonstration environment, a subject could interact with a simulated household robot, a speech­enabled VCR or with other people in the room, and the recipient of the subject\u27s speech was disambiguated based on the user\u27s direction of attention. Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit der automatischen Bestimmung und Ver­folgung des Aufmerksamkeitsfokus von Personen in Besprechungen. Die Bestimmung des Aufmerksamkeitsfokus von Personen ist zum Verständnis und zur automatischen Auswertung von Besprechungsprotokollen sehr wichtig. So kann damit beispielsweise herausgefunden werden, wer zu einem bestimmten Zeitpunkt wen angesprochen hat beziehungsweise wer wem zugehört hat. Die automatische Bestim­mung des Aufmerksamkeitsfokus kann desweiteren zur Verbesserung von Mensch-Maschine­Schnittstellen benutzt werden. Ein wichtiger Hinweis auf die Richtung, in welche eine Person ihre Aufmerksamkeit richtet, ist die Kopfstellung der Person. Daher wurde ein Verfahren zur Bestimmung der Kopfstellungen von Personen entwickelt. Hierzu wurden künstliche neuronale Netze benutzt, welche als Eingaben vorverarbeitete Bilder des Kopfes einer Person erhalten, und als Ausgabe eine Schätzung der Kopfstellung berechnen. Mit den trainierten Netzen wurde auf Bilddaten neuer Personen, also Personen, deren Bilder nicht in der Trainingsmenge enthalten waren, ein mittlerer Fehler von neun bis zehn Grad für die Bestimmung der horizontalen und vertikalen Kopfstellung erreicht. Desweiteren wird ein probabilistischer Ansatz zur Bestimmung von Aufmerksamkeits­zielen vorgestellt. Es wird hierbei ein Bayes\u27scher Ansatzes verwendet um die A­posterior iWahrscheinlichkeiten verschiedener Aufmerksamkteitsziele, gegeben beobachteter Kopfstellungen einer Person, zu bestimmen. Die entwickelten Ansätze wurden auf mehren Besprechungen mit vier bis fünf Teilnehmern evaluiert. Ein weiterer Beitrag dieser Arbeit ist die Untersuchung, inwieweit sich die Blickrich­tung der Besprechungsteilnehmer basierend darauf, wer gerade spricht, vorhersagen läßt. Es wurde ein Verfahren entwickelt um mit Hilfe von neuronalen Netzen den Fokus einer Person basierend auf einer kurzen Historie der Sprecherkonstellationen zu schätzen. Wir zeigen, dass durch Kombination der bildbasierten und der sprecherbasierten Schätzung des Aufmerksamkeitsfokus eine deutliche verbesserte Schätzung erreicht werden kann. Insgesamt wurde mit dieser Arbeit erstmals ein System vorgestellt um automatisch die Aufmerksamkeit von Personen in einem Besprechungsraum zu verfolgen. Die entwickelten Ansätze und Methoden können auch zur Bestimmung der Aufmerk­samkeit von Personen in anderen Bereichen, insbesondere zur Steuerung von comput­erisierten, interaktiven Umgebungen, verwendet werden. Dies wird an einer Beispielapplikation gezeigt

    Development of artificial neural network-based object detection algorithms for low-cost hardware devices

    Get PDF
    Finally, the fourth work was published in the “WCCI” conference in 2020 and consisted of an individuals' position estimation algorithm based on a novel neural network model for environments with forbidden regions, named “Forbidden Regions Growing Neural Gas”.The human brain is the most complex, powerful and versatile learning machine ever known. Consequently, many scientists of various disciplines are fascinated by its structures and information processing methods. Due to the quality and quantity of the information extracted from the sense of sight, image is one of the main information channels used by humans. However, the massive amount of video footage generated nowadays makes it difficult to process those data fast enough manually. Thus, computer vision systems represent a fundamental tool in the extraction of information from digital images, as well as a major challenge for scientists and engineers. This thesis' primary objective is automatic foreground object detection and classification through digital image analysis, using artificial neural network-based techniques, specifically designed and optimised to be deployed in low-cost hardware devices. This objective will be complemented by developing individuals' movement estimation methods by using unsupervised learning and artificial neural network-based models. The cited objectives have been addressed through a research work illustrated in four publications supporting this thesis. The first one was published in the “ICAE” journal in 2018 and consists of a neural network-based movement detection system for Pan-Tilt-Zoom (PTZ) cameras deployed in a Raspberry Pi board. The second one was published in the “WCCI” conference in 2018 and consists of a deep learning-based automatic video surveillance system for PTZ cameras deployed in low-cost hardware. The third one was published in the “ICAE” journal in 2020 and consists of an anomalous foreground object detection and classification system for panoramic cameras, based on deep learning and supported by low-cost hardware

    Hierarchical Bi-Directional Feature Perception Network for Person Re-Identification

    Full text link
    Previous Person Re-Identification (Re-ID) models aim to focus on the most discriminative region of an image, while its performance may be compromised when that region is missing caused by camera viewpoint changes or occlusion. To solve this issue, we propose a novel model named Hierarchical Bi-directional Feature Perception Network (HBFP-Net) to correlate multi-level information and reinforce each other. First, the correlation maps of cross-level feature-pairs are modeled via low-rank bilinear pooling. Then, based on the correlation maps, Bi-directional Feature Perception (BFP) module is employed to enrich the attention regions of high-level feature, and to learn abstract and specific information in low-level feature. And then, we propose a novel end-to-end hierarchical network which integrates multi-level augmented features and inputs the augmented low- and middle-level features to following layers to retrain a new powerful network. What's more, we propose a novel trainable generalized pooling, which can dynamically select any value of all locations in feature maps to be activated. Extensive experiments implemented on the mainstream evaluation datasets including Market-1501, CUHK03 and DukeMTMC-ReID show that our method outperforms the recent SOTA Re-ID models.Comment: Accepted by ACM MM202

    Development of new intelligent autonomous robotic assistant for hospitals

    Get PDF
    Continuous technological development in modern societies has increased the quality of life and average life-span of people. This imposes an extra burden on the current healthcare infrastructure, which also creates the opportunity for developing new, autonomous, assistive robots to help alleviate this extra workload. The research question explored the extent to which a prototypical robotic platform can be created and how it may be implemented in a hospital environment with the aim to assist the hospital staff with daily tasks, such as guiding patients and visitors, following patients to ensure safety, and making deliveries to and from rooms and workstations. In terms of major contributions, this thesis outlines five domains of the development of an actual robotic assistant prototype. Firstly, a comprehensive schematic design is presented in which mechanical, electrical, motor control and kinematics solutions have been examined in detail. Next, a new method has been proposed for assessing the intrinsic properties of different flooring-types using machine learning to classify mechanical vibrations. Thirdly, the technical challenge of enabling the robot to simultaneously map and localise itself in a dynamic environment has been addressed, whereby leg detection is introduced to ensure that, whilst mapping, the robot is able to distinguish between people and the background. The fourth contribution is geometric collision prediction into stabilised dynamic navigation methods, thus optimising the navigation ability to update real-time path planning in a dynamic environment. Lastly, the problem of detecting gaze at long distances has been addressed by means of a new eye-tracking hardware solution which combines infra-red eye tracking and depth sensing. The research serves both to provide a template for the development of comprehensive mobile assistive-robot solutions, and to address some of the inherent challenges currently present in introducing autonomous assistive robots in hospital environments.Open Acces

    Exploring the use of speech in audiology: A mixed methods study

    Get PDF
    This thesis aims to advance the understanding of how speech testing is, and can be, used for hearing device users within the audiological test battery. To address this, I engaged with clinicians and patients to understand the current role that speech testing plays in audiological testing in the UK, and developed a new listening test, which combined speech testing with localisation judgments in a dual task design. Normal hearing listeners and hearing aid users were tested, and a series of technical measurements were made to understand how advanced hearing aid settings might determine task performance. A questionnaire was completed by public and private sector hearing healthcare professionals in the UK to explore the use of speech testing. Overall, results revealed this assessment tool was underutilised by UK clinicians, but there was a significantly greater use in the private sector. Through a focus group and semi structured interviews with hearing aid users I identified a mismatch between their common listening difficulties and the assessment tools used in audiology and highlighted a lack of deaf awareness in UK adult audiology. The Spatial Speech in Noise Test (SSiN) is a dual task paradigm to simultaneously assess relative localisation and word identification performance. Testing on normal hearing listeners to investigate the impact of the dual task design found the SSiN to increase cognitive load and therefore better reflect challenging listening situations. A comparison of relative localisation and word identification performance showed that hearing aid users benefitted less from spatially separating speech and noise in the SSiN than normal hearing listeners. To investigate how the SSiN could be used to assess advanced hearing aid features, a subset of hearing aid users were fitted with the same hearing aid type and completed the SSiN once with adaptive directionality and once with omnidirectionality. The SSiN results differed between conditions but a larger sample size is needed to confirm these effects. Hearing aid technical measurements were used to quantify how hearing aid output changed in response to the SSiN paradigm
    • …
    corecore