10 research outputs found

    Autonomous navigation and multi-sensorial real-time mocalization for a mobile robot

    Get PDF
    Doutoramento em Engenharia MecânicaO principio por detrás da proposta desta tese é a navegação de ambientes utilizando uma sequência de instruções condicionadas nas observações feitas pelo robô. Esta sequência é denominada como uma 'missão de navegação'. A interacção com um robô através de missões permitirá uma interface mais eficaz com humanos e a navegação de ambientes de maior escala e duma forma mais simplificada. No entanto, esta abordagem abre problemas novos no que diz respeito à forma como os dados sensoriais devem ser representados e utilizados. Neste trabalho representações binárias foram introduzidas para facilitar a integração dos dados multi-sensoriais, a dimensionalidade da qual foi reduzida através da utilização de Misturas de Distribuições de tipo Bernoulli. Foi também aplicada a técnica de cadeias de Markov ocultas (Hidden Markov Models), que contou com o desenvolvimento e a utilização dum modelo de cadeia de Markov original, esta que consegue explorar a informação contextual da sequência da missão. Uma aplicação que surgiu da aplicação do método de localização foi a criação de representações topologicas do ambiente sem ter que previamente recorrer à criação de mapas geométricos. Outras contribuições incluem a aplicação de métodos para a extracção de propriedades locais em imagens e o desenvolvimento de propriedades extraídas a partir de varrimentos dum medidor de distancia laser.This thesis evaluates the requisites for the specification of mobile robot 'Missions' for navigation within environments that are typically used by human beings. The principal idea behind the proposal of this thesis was to allow localization and navigation by providing a sequence of instructions, the execution of each instruction being conditional on the expected sensor data. This approach to navigation is expected to lead to new applications which will include the autonomous navigation of environments of very large scale. It is also expected to lead to a more intuitive interaction between mobile robots and humans. However, the concept of the navigation Mission opens up new problems namely in the way in which the sequence of instructions and the expected observations are to be represented. To solve this problem, binary features were used to integrate observations from multiple sensors, the dimensionality of which was reduced by modelling the binary data as a Finite Mixture Model comprised of Bernoulli distributions. Another original contribution was the modification of the Markov Chains used in Hidden Markov Models to enable the use of the sequential context in which the expected observations are specified in the navigation Mission. The localization method that was developed enabled the direct creation of a topological representation of an environment without recourse to an intermediate geometric map. Other contributions include developments that were made in the characterisation of images through the application of local features and of laser range scans through the creation of original features based on the scan contour and free-area properties

    The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on Visual Loop Closure Detection

    Full text link
    Where am I? This is one of the most critical questions that any intelligent system should answer to decide whether it navigates to a previously visited area. This problem has long been acknowledged for its challenging nature in simultaneous localization and mapping (SLAM), wherein the robot needs to correctly associate the incoming sensory data to the database allowing consistent map generation. The significant advances in computer vision achieved over the last 20 years, the increased computational power, and the growing demand for long-term exploration contributed to efficiently performing such a complex task with inexpensive perception sensors. In this article, visual loop closure detection, which formulates a solution based solely on appearance input data, is surveyed. We start by briefly introducing place recognition and SLAM concepts in robotics. Then, we describe a loop closure detection system's structure, covering an extensive collection of topics, including the feature extraction, the environment representation, the decision-making step, and the evaluation process. We conclude by discussing open and new research challenges, particularly concerning the robustness in dynamic environments, the computational complexity, and scalability in long-term operations. The article aims to serve as a tutorial and a position paper for newcomers to visual loop closure detection.Comment: 25 pages, 15 figure

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    User modelling for robotic companions using stochastic context-free grammars

    Get PDF
    Creating models about others is a sophisticated human ability that robotic companions need to develop in order to have successful interactions. This thesis proposes user modelling frameworks to personalise the interaction between a robot and its user and devises novel scenarios where robotic companions may apply these user modelling techniques. We tackle the creation of user models in a hierarchical manner, using a streamlined version of the Hierarchical Attentive Multiple-Models for Execution and Recognition (HAMMER) architecture to detect low-level user actions and taking advantage of Stochastic Context-Free Grammars (SCFGs) to instantiate higher-level models which recognise uncertain and recursive sequences of low-level actions. We discuss a couple of distinct scenarios for robotic companions: a humanoid sidekick for power-wheelchair users and a companion of hospital patients. Next, we address the limitations of the previous scenarios by applying our user modelling techniques and designing two further scenarios that fully take advantage of the user model. These scenarios are: a wheelchair driving tutor which models the user abilities, and the musical collaborator which learns the preferences of its users. The methodology produced interesting results in all scenarios: users preferred the actual robot over a simulator as a wheelchair sidekick. Hospital patients rated positively their interactions with the companion independently of their age. Moreover, most users agreed that the music collaborator had become a better accompanist with our framework. Finally, we observed that users' driving performance improved when the robotic tutor instructed them to repeat a task. As our workforce ages and the care requirements in our society grow, robots will need to play a role in helping us lead better lives. This thesis shows that, through the use of SCFGs, adaptive user models may be generated which then can be used by robots to assist their users.Open Acces

    Human multi-robot interaction based on gesture recognition

    Get PDF
    This Master Thesis is devoted to the development of a gestural interface to interact with two robots, a NAO and a Wifibot, in a similar way as humans do. A Kinect 2 sensor is used to recognize the two gestures that have been implemented in the application, which are the pointing and waving gestures

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers
    corecore