9 research outputs found

    Monocular Vision as a Range Sensor

    Get PDF
    One of the most important abilities for a mobile robot is detecting obstacles in order to avoid collisions. Building a map of these obstacles is the next logical step. Most robots to date have used sensors such as passive or active infrared, sonar or laser range finders to locate obstacles in their path. In contrast, this work uses a single colour camera as the only sensor, and consequently the robot must obtain range information from the camera images. We propose simple methods for determining the range to the nearest obstacle in any direction in the robot’s field of view, referred to as the Radial Obstacle Profile. The ROP can then be used to determine the amount of rotation between two successive images, which is important for constructing a 360º view of the surrounding environment as part of map construction

    Погрешности измерения расстояния до препятствия средствами технического зрения и прогноза пути торможения в беспилотных системах управления движением поездов

    Get PDF
    Technical vision systems are sources of information about an obstacle on the track in the case of driverless train control. Based on the information received, the traffic control system decides to turn on the braking mode to prevent a colliosni with an obstacle. In accordance with international and domestic expertise and standard ratings, it is necessary to ensure the probability of a dangerous failure, in this case, the probability of hitting an obstacle, not more than 10-8 with a confidence probability of 0,95 according to SIL-4 ([Russian state standard] GOST-R61508). Considering the presence of an error in measuring the distance to an obstacle by the technical vision system and an error in calculating the stopping distance, it is required to determine the coordinate of the braking start point when an object is detected on the track in such a way as to ensure that the train stops before the obstacle with a probability determined in accordance with SIL-4.A feature of the problem being solved for estimating the errors in measuring the distance to an obstacle and calculating the stopping distance implies the need to determine the estimates of their maximum values and to develop an algorithm for using these estimates in such a way that the collision probability does not exceed the normalised value.A technique is described for determining the maximum value of the error in measuring the distance to the obstacle, the probability of exceeding which is quite small (from 10-2 to 10-6). A proposed algorithm for multiple measurements of the distance to an obstacle allows choosing the minimum measurement result for deciding on the start of braking, which ensures meeting standard indicator of a probability of a train colliding with an obstacle according to SIL-4. A method for estimating the error in calculating the stopping distance has been developed, which, together with the algorithm of multiple measurements by the technical vision system of the distance to the obstacle, provides the standard indicator according to SIL-4. The need for the second channel of technical vision due to the presence of curves along the route is shown. The necessity of using algorithms for multiple measurements to an obstacle through the second channel located outside the train is also substantiated. It is noted that the methods described in this article for choosing the maximum values of random errors in measurements and calculations, the values of which can be exceeded with a very low probability, can be used to solve various applied problems of traffic control in transportation processes.Системы технического зрения являются источниками информации о препятствии, оказавшемся на пути, при беспилотном управлении движением поездов. По полученной информации системой управления движением принимается решение о включении режима торможения с целью предотвращения наезда на препятствие.В соответствии с международным и отечественным опытом и нормами необходимо обеспечить вероятность опасного отказа, в данном случае – вероятность наезда на препятствие, не более 10-8 при доверительной вероятности 0,95 по SIL-4 (ГОСТ-Р61508). Учитывая наличие погрешности измерения расстояния до препятствия системой технического зрения и погрешности расчёта тормозного пути, требуется определить координату точки начала торможения при обнаружении предмета на пути таким образом, чтобы обеспечить остановку поезда до препятствия с вероятностью, определяемой в соответствии с SIL-4.Особенностью решаемой задачи оценки погрешностей измерения расстояния до препятствия и расчёта тормозного пути является необходимость определения оценок их максимальных величин и разработки алгоритма использования этих оценок таким образом, чтобы вероятность наезда не превышала нормированного значения.Приведена методика определения максимальной величины погрешности измерения расстояния до места препятствия, вероятность превышения которой довольно мала (от 10-2 до 10-6). Предложен алгоритм многократных измерений расстояния до препятствия с выбором минимального результата измерений для принятия решения о начале торможения, обеспечивающий выполнение нормативного показателя вероятности столкновения поезда с препятствием согласно SIL-4. Разработана методика оценки погрешности расчёта тормозного пути, обеспечивающая совместно с алгоритмом многократных измерений системой технического зрения расстояния до препятствия, нормативный показатель согласно SIL-4. Показана необходимость функционирования второго канала технического зрения из-за наличия кривых в пути следования. Обоснована необходимость использования алгоритмов многократных измерений до препятствия по второму каналу, расположенному вне поезда. Отмечено, что описанные в данной статье способы выбора максимальных значений случайных погрешностей измерений и расчётов, превышение величин которых имеет весьма малую вероятность, могут быть использованы в различных прикладных задачах управления движением на транспорте

    Random Image Matching CAPTCHA System

    Get PDF
    Security risks is an important issues and caught the attention of researchers in the area of networks, web development, human computer interaction and software engineering. One main challenge for online systems is to identify whether the users are humans or software robots (bots). While it is natural to provide service to human users, providing service for software robots (bots) comes with many security risks and challenges. Software robots are often used by spammers to create fake online accounts, affect search engine ranking, take part in on-line polls, send out spam or simply waste the resources of the server. In this paper we introduce a visual CAPTCHA technique that is based on generating random images by the computer, theuser is then asked to match a feature point between two images (i.e. solve the correspondence problem as defined by the researchers in the computer vision area). The relationship between the two images is based on a randomly generated homography transformation function. The main advantage of our approach compared to other visual CAPTCHA techniques is that we eliminate the need for a database of images while retaining ease of use

    Motorcycles that see: Multifocal stereo vision sensor for advanced safety systems in tilting vehicles

    Get PDF
    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications

    Visually guided obstacle detection and avoidance for legged robot.

    Get PDF
    Chow Ying-ho.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 78-83).Abstracts in English and Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Objectives - Visual Navigation for Legged Robots --- p.1Chapter 1.2 --- Summary of Results --- p.3Chapter 1.3 --- Hardware Issues --- p.4Chapter 1.4 --- Contributions --- p.4Chapter 1.5 --- Organization of the Thesis --- p.4Chapter Chapter 2 --- Previous Work --- p.6Chapter 2.1 --- Vision Based Navigation --- p.6Chapter 2.1.1 --- Homography --- p.7Chapter 2.1.2 --- Ground Plane Obstacle Detection --- p.9Chapter 2.1.3 --- Regression --- p.12Chapter 2.2 --- Control Strategy --- p.13Chapter Chapter 3 --- System Overview --- p.16Chapter Chapter 4 --- Obstacle Detection by Fast Homography Estimation --- p.20Chapter 4.1 --- Ground Feature Extraction --- p.21Chapter 4.2 --- Ground Feature Correspondence --- p.21Chapter 4.3 --- Ground Homography Estimation --- p.24Chapter 4.3.1 --- Input point transformation --- p.24Chapter 4.3.2 --- Initial estimation --- p.26Chapter 4.3.3 --- Robust estimation --- p.27Chapter 4.4 --- Obstacle Detection --- p.29Chapter 4.5 --- Local Obstacle Map (LOM) on Ground --- p.33Chapter 4.5.1 --- Extraction from accumulative evidence --- p.34Chapter 4.5.2 --- Time-delay compensation --- p.34Chapter Chapter 5 --- Obstacle Avoidance by a Fuzzy Controller --- p.36Chapter 5.1 --- Gait Pattern --- p.38Chapter 5.2 --- Fuzzy Logic Controller --- p.42Chapter 5.2.1 --- Controller Inputs --- p.42Chapter 5.2.2 --- Controller Outputs --- p.43Chapter 5.2.3 --- Inference mechanism --- p.46Chapter Chapter 6 --- Implementation --- p.49Chapter 6.1 --- Hardware components --- p.49Chapter 6.1.1 --- VisionBug --- p.49Chapter 6.1.2 --- RF transmitter / receiver modules: --- p.52Chapter 6.2 --- Perception --- p.55Chapter 6.3 --- Image Calibration --- p.56Chapter 6.4 --- Motion Calibration: --- p.58Chapter 6.5 --- Software Programs --- p.66Chapter 6.5.1 --- Computational complexity --- p.68Chapter Chapter 7 --- Experimental Results --- p.69Chapter 7.1 --- Real Navigation Experiments --- p.70Chapter 7.2 --- Error Analysis of LOM --- p.73Chapter Chapter 8 --- Conclusion and future work --- p.7

    3D Vision-based Perception and Modelling techniques for Intelligent Ground Vehicles

    Get PDF
    In this work the candidate proposes an innovative real-time stereo vision system for intelligent/autonomous ground vehicles able to provide a full and reliable 3D reconstruction of the terrain and the obstacles. The terrain has been computed using rational B-Splines surfaces performed by re-weighted iterative least square fitting and equalization. The cloud of 3D points, generated by the processing of the Disparity Space Image (DSI), is sampled into a 2.5D grid map; then grid points are iteratively fitted into rational B-Splines surfaces with different patterns of control points and degrees, depending on traversability consideration. The obtained surface also represents a segmentation of the initial 3D points into terrain inliers and outliers. As final contribution, a new obstacle detection approach is presented, combined with terrain estimation system, in order to model stationary and moving objects in the most challenging scenarios

    Modelling and control of the coordinated motion of a group of autonomous mobile robots

    Get PDF
    The coordinated motion of a group of autonomous mobile robots for the achievement of a coordinated task has received signifcant research interest in the last decade. Avoiding the collisions of the robots with the obstacles and other members of the group is one of the main problems in the area as previous studies have revealed. Substantial amount of research effort has been concentrated on defning virtual forces that will yield reference trajectories for a group of autonomous mobile robots engaged in coordinated behavior. If the mobile robots are nonholonomic, this approach fails to guarantee coordinated motion since the nonholonomic constraint blocks sideway motions. Two novel approaches to the problem of modeling coordinated motion of a group of autonomous nonholonomic mobile robots inclusive of a new collision avoidance scheme are developed in this thesis. In the first approach, a novel coordination method for a group of autonomous nonholonomic mobile robots is developed by the introduction of a virtual reference system, which in turn implies online collision-free trajectories and consists of virtual mass-spring-damper units. In the latter, online generation of reference trajectories for the robots is enabled in terms of their linear and angular velocities. Moreover, a novel collision avoidance algorithm, that updates the velocities of the robots when a collision is predicted, is developed in both of the proposed models. Along with the presentation of several coordinated task examples, the proposed models are verifed via simulations. Experiments were conducted to verify the performance of the collision avoidance algorithm
    corecore