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• 摘 要 

此論文描述一個障礙物探測及避免踫撞系統，此系統是利用機械人視覺技術及模 

糊邏輯控制的。此系統的設計是特別地爲了應用在一個富挑戰性的流動機械人平 

台——爬行式機械人。爬行式的機械人在移動時會比使用車輪的機械人，在括取 

到的圖象資料上造成更大量的振動，一般應用於車輪機械人探測障礙物的方法皆 

不適用於此情況。此論文提出新的方法解決這問題。 

此論文應用了，立體空間裹平面所引致的，影像與影像之間的線性映射關係來探 

測地面上的障礙物，我們稱呼這種映射關係爲單對應性。再透過實時計算這不斷 

改變的映射，從不符合這映射的地方找出障礙物。跟着把障礙物圖像再映射到表 

示地面的近距離局部性地圖(簡稱LOM)i。但是在圖像的計算上會造成時間的延 

遲，所以在計算應作出的動作前先要預測實時的LOM。最後，根據LOM的資 

料，配合模糊邏輯控制器作出適當的動作指令去控制機械人。 

在實際的測試中發現，這系統能有效地在實時的、充滿圖案的環境裏，避開地面 

上的牆壁、在轉角處轉彎及在末處回頭。 



Abstract 

An obstacle detection and avoidance system that uses stereo-vision is described. The 

system is designed for a challenging mobile platform: a legged robot, whose locomo-

tion is not as smooth as the wheeled robots，and thus induces more disturbances to the 

visual data. The concept of the image-to-image mapping named homography induced 

by the ground is exploited for detecting obstacles. Such a mapping is allowed to 

change over time as the legged motion takes place. Obstacles can thus be detected in 

terms of a 2D distribution on the ground we call the Local Obstacle Map (LOM). 

Based on the LOM, which is further time-delay compensated, a fuzzy control mecha-

nism is then used to command the robot motion. 

Experiments in textured environments show that the system is effective for autonomous 

and real-time navigation along straight paths, curved corridors, avoiding walls on two 

sides, making turns around corners, and withdrawing from dead-ends. The results also 

show that the autonomous navigation is possible even with large delays between image 

capture and command determination. 
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Chapter 1 

Introduction 

Though legged robots have distinct advantages over wheeled robots like the greater 

capability of climbing over stairs and a higher energy-efficiency, research on them has 

been focused mostly on their balancing and locomotion. In fact, their obstacle detec-

tion, obstacle avoidance, and navigation planning have characteristics of their own 

quite unlike those of wheeled counter parts, and deserve separate studies, such as their 

locomotion is not as smooth and induces more disturbances to the visual data acquir-

able by cameras mounted on them and thus a challenging task for obstacle detection 

and avoidance systems based on visual information. This work serves to contribute to 

the study of how a legged robot mounted with a stereo pair of cameras can detect and 

avoid obstacles using the image data. 

1.1 Objectives 一 Visual Navigation for Legged Robots 

Visual information has a special role in the long-term planning of a navigation task, but 

undeniably, it is used most of the time for watching the immediate or near-immediate 

steps. A substantial part of the image data is thus about places within a few steps of the 

cameras or the robot they are mounted on. For such image data, it is just logical from 
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the lever principle and it is confirmed by empirical observations that a single gait ofthe 

robot would cause tremendous disturbance to the data. For this reason, we believe the 

optical flow based approaches widely proposed for wheeled robots [9][15] are not well 

suited for legged robots. In this work, we would exploit not the temporal attribute of 

the image data, but its spatial attribute, to probe the 3D nature of the surroundings. 

More precisely, we would use not the image motion data but the stereo data to detect 

and avoid obstacles, as the spatial configuration of the stereo cameras can practically be 

made rigid and invariant with respect to the robot at all time. 

In this thesis, we make the assumptions that at any particular instant the robot is mov-

ing on a surface, we call ground which is approximately flat at least in the immediate 

vicinity of the robot, and in the vicinity of the robot anything above and below the lo-

cally ground plane, is an obstacle to avoid. We also assume that the two cameras are 

placed symmetrically about the robot's forward-moving direction, looking out to the 

front left and the front right of the robot, though an extreme accuracy is not necessary 

and in fact the cameras were mounted only manually in our implementation. There has 

been a number of work that uses the "ground" assumption (e.g.,[20][29]), but they use 

it in the context of obstacle detection from a particular stereo image pair. Here we use 

it for obstacle detection of a moving robot, and in particular of a moving legged robot. 

More specifically, we allow the mapping between the stereo images induced by the 

ground be changing over time due to the changing geometry between the robot and the 

ground. 
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Like other obstacle avoidance algorithms, most of the previous work that use the con-

cept of obstacle map, either the obstacle map is assumed given or acquired from a 

range sensor (most often the ultrasound-sensing type). Range sensors, in comparison 

with camera, have several disadvantages [29]. It is obvious that the resolution of the 

data is limited to the number of sensors mounted on a robot. The other disadvantage is 

caused by its reflection-based nature, surfaces of degeneration may miss orientations 

(or orientations close to those degeneracies) with respect to the sensors, and this hap-

pens quite often when the robot is at the comer of a corridor. Moreover, inter-

reflections among surfaces may dilute the accuracy of the range sensors. So, ultrasonic 

sensors are only limited for close-ranges in order to avoid misleading inter-reflections. 

Since our work is aimed at acquiring the local obstacle map not from range sensors but 

from cameras which are passive sensors that do not send out signals and interfere with 

the activities in the surroundings. Using the same sensor, long-range and closer-range 

obstacles can also be detected and the obstacle map can be built in higher resolutions. 

1.2 Summary of Results 

Experiments in textured environments show that the system is effective for autonomous 

and real-time navigation along straight paths and curved corridors while avoiding walls 

on the two sides, making tums at comers, and withdrawing from dead-ends with image 

resolution of 384 by 288 pixels. The results also show that the navigation is performed 

without the affect of the large delay between images capture and command determina-

tion. 

.3 



1.3 Hardware Issues 

A complete navigation system has been implemented and tested with real environments. 

It consists of a six-legged robot of the size about 13"xl2"xl0", a stereo pair of black-

and-white miniature cameras with wide angle lenses mounted on it, and a Pentium II 

remote-brain connected to via wireless video transmission. The remote brain is where 

most of the calculations take place. 

In Chapter 3, Fig.3 shows the robot. The robot is not a sophisticated one; it has each leg 

activated by two RC servos and is embedded with a Motorola 68332 microcontroller 

that drives all the servos. 

1.4 Contributions 

The contributions of this work include: 

• An obstacle detection and avoidance algorithm that needs no explicit 3D recon-

struction. 

• A fuzzy control mechanism that commands the robot motion based on a 2D ob-

stacle distribution only. 

• A real-time implementation of a complete navigation system. 

1.5 Organization of the Thesis 

The thesis is organized as follows: Chapter 2 reviews some related work contributed in 

obstacle detection and control strategies. Chapter 3 briefly describes how the system 

work. Chapter 4 describes the detection of obstacles in the stereo images and the con-
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struction of a local obstacle map. Chapter 5 describes the gait control and the fuzzy 

controller used for obstacle avoidance. Chapter 6 is an analysis of the computation 

complexity of the system. Chapter 7 shows the mobile robot system and the hardware 

implementation. Chapter 8 reports how an implementation of the system performed in 

a textured, locally planar environment full of walls, small hills, comers, and dead-ends. 

Chapter 9 presents a conclusion and future work. 
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Chapter 2 

Previous Work 

This thesis draws on earlier work in the fields of computer vision and robot navigation 

control. Presented below is a brief discussion of some of the work from these fields. 

2.1 Vision Based Navigation 

Obstacle detection and avoidance form a basic competence for mobile robots to ac-

complish tasks autonomously in changing environments. Obstacle detection involves 

acquisition and processing bf the sensor data, while obstacle avoidance is primarily 

mobile robot path planning and control. Mobile robots most often encounter ground 

plane obstacles, so ground plane obstacle detection has become a key issue for mobile 

robot applications and has been addressed by many researchers [18]，[38] and [48]. 

A number of active ranging sensors have been used for obstacle detection, including 

sonar [23][28] and laser ranging [14]; but all these sensors are suffering different kinds 

of disadvantages, such as, short sensing range, reflection and low angular resolution. 

To overcome such problems, several investigations have used vision: monocular vision 

with motion analysis [7][27][35], stereo vision [18][53], trinocular vision [1] and even 

multiple camera systems [24]. Many researchers have put much effort to develop a 

.6 



general theoretical framework from which a broad range of problems could be ad-

dressed, such as obstacle detection via 3D reconstruction. However, such generality 

that not often the best and directly solve the problem. Ground plane obstacle detection 

is one of the types. 

2.1.1 Homography 

Recently an image-to-image mapping named homography was introduced for computer 

vision by Faugeras [16][17]. A homography is a mapping induced by a planar surface 

in 3D. While corresponding features in the stereo images projected by the same plane 

ought to satisfy the mapping the plane induces, features not on that plane generally do 

not. The concept of homography has been used primarily for three-view problems, 

namely how two fully corresponded views of a scene can be used for generating a new 

view, and how two fully corresponded views of an object can be used to localize the 

object in any third view, in both cases without the need of an explicit 3D reconstruction 

of the involved scene or object. 

Homography has been used in several pieces of work. However, most of the uses have 

been limited to only three-view problems and the recognition of an object in a third 

view using two fixed views as reference. In this thesis, the concept of Homography is 

shown that it can be applied to the field of obstacle detection in robot navigation. 

In Fig.l, an example of the simple obstacle detection, which uses homography is dem-

onstrated. We can see that in the final difference image, other than the unwarpable 

areas, the textures on the ground are subtracted nearly to zero. Only some ofthe object 
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above the ground is visible. This example easily shows that it works in finding non-

ground areas in an image. 
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Fig.l Principle of homography based ground plane obstacle detection 
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2.1.2 Ground Plane Obstacle Detection 

Ground plane obstacle detection has been investigated in a variety of ways from recon-

structing 3D scene structure to using direct observables from cameras such as optical 

flow, disparities, and the rate of change of disparities without visual reconstruction. By 

reconstructing the ground plane in 3D, we are able to detect ground plane obstacles 

using a parallel computing that explicit 3D reconstruction is not necessary for vehicle 

navigation, so that not only can precise camera calibration be avoided but also a more 

reliable control input variables can be obtained in the obstacle avoidance control sys-

tem. 

Most approaches to visual obstacle detection exploit motion cues for locating obstacles. 

Furthermore, an assumption that is often made is that vehicle motion is confined to a 

surface that is either planar or can be approximated locally by planes [40]，[19], [20], 

[6], [29], [47]，[52] and [31]. 

For examples, Santos-Victor and Sandini [40] employed the estimated normal flow 

field with an uncalibrated camera and detect obstacles lying on a planar floor by per-

forming an inverse perspective transformation that maps the normal flow onto a hori-

zontal (parallel to the floor) plane. However, their methods use an approximate para-

metric model of the flow generated by the ground plane, deals with outliers in an ad 

hoc manner and requires the camera to remain in a fixed position relative to the vehicle. 

Fomland [19] uses the normal flow field measured from a camera moving parallel to 

the ground plane to derive a linear equation relating motion parameters to the spatio-
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temporal derivatives of the image intensity function. Obstacles are then detected as the 

outliers of a robust fit estimated by RANSAC over the image points. 

Gaspar et al in [20] is the first approach to use the concept of homography to detect 

obstacle by stereovision. In their paper, they verified the linear projection induced by a 

3D plane between stereo image pair. In addition, one of the features in their work is the 

configuration of the experiment. They used mirrors to divide the view into two halves 

in order to have the same brightness and contrast in both view. 

Bertozzi et al [6] proposed another stereo-based obstacle detection approach. They 

assumed that the fixed geometry of the ground with respect to the vehicle induces two 

fixed homographies from stereo images to top-viewed images. Stereo images are then 

warped to two top-viewed images. After comparison, the obstacles are detected in the 

top view. 

Li and Brady in [29] have extended the homography based obstacle detection method 

to an active stereo platform. They called the homography mapping as ground plane 

transformation. In their approach, they decomposed the homography matrix and calcu-

lated the approximation in terms of the angles of the pan/tilt platform on both cameras 

and the fully calibrated camera parameters. After the calculation of the homography, 

obstacles are detected on the point correspondences based on the distance between the 

projected coordinate. Error analysis was also conducted in their work. 

Williamson and Thorpe [47] combined two calibration methods to find the fixed 

ground plane homography. And they also applied an adjustment to the homography by 
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using nonlinear optimization in order to minimize the residue error between the warped 

images. 

Zhang et al presented three algorithms for obstacle detection [52]. The first algorithm 

employs a calibrated camera to derive a linear system whose solvability implies the 

absence of obstacles. The second algorithm does not require camera calibration and 

exploits the homography of the ground plane to derive a linear system relating corre-

sponding image coordinates in two views. Similar to the first algorithm, inconsistency 

of this linear system signals the presence of obstacles. The third algorithm uses se-

quences of partially calibrated stereo pairs to estimate the equation of the ground plane 

and the height of obstacles. However, this approach can only find whether the feature 

points are on obstacles but not all image points over the image. 

Lourakis and Orphanoudakis in [31] is the work closest to ours. They assume the 

ground is locally planar and more than half of the feature points shown in the images 

are from the ground. They first solve the point correspondence problem by searching 

on epipolar lines. With the point correspondence found, they solve every homography 

matrix by applying LMedS to the points to reject the non-ground points in every image 

pair. However, using LMedS is just theoretical in solving statistical problems but not 

in real-time control, because the number of mathematical operations needed is impossi-

ble to process in the normal workstations. 
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2.1.3 Regression 

Regression analysis, i.e. the problem of fitting a model to noisy data, is a very impor-

tant subfield in statistics. The traditional approach to regression analysis employs the 

least squares method (LSM), which is popular due to its low computational complexity. 

LSM involves the solution of a linear minimization problem, and achieves optimal per-

formance ifthe underlying noise distribution is Gaussian with zero mean. However, in 

cases where the noise is not Gaussian, or in the presence of outliers, that is observations 

that deviate considerably from the model representing the rest of the observations, the 

LSM estimator becomes highly unreliable. One criterion for characterizing the toler-

ance of an estimator with respect to outliers is its breakdown point, which may be de-

fined as the smallest amount of outlier contamination that may force the value of the 

estimate outside an arbitrary range. As an example, LSM has a breakdown point ofO%, 

because a single outlier may have a substantial impact on the resulting estimation. 

The Least Median of Squares (LMedS) estimator was originally proposed by 

Rousseeuw [37], which can handle data sets containing many outliers. LMedS in-

volves the solution of a nonlinear minimization problem that aims at estimating a set of 

model parameters that best fit the majority of the observations. In contrast, LSM tries 

to estimate a set of model parameters that best fit all the observations. Thus, LMedS 

has a breakdown point of 50%, a characteristic that makes it particularly attractive for 

regression. However, on the other hand, it also requires tremendous number ofcalcula-

tions. If we want to reject 10% of outliers from a set of correspondence numbered 100， 

it needs about iooP9o=6.28e+19 calculations to find the suitable solution. For a real-
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time control operation, it is impossible to accomplish with common workstations as 

well as the fastest PCs. 

2.2 Control Strategy 

A controller is essential for a close loop robotic system. And the main usage of this 

controller is to work with our obstacle detection algorithm and completing the control 

loop. To test the performance and prove the possibility to implement in real-time proc-

ess, goal-seeking behavior is not implemented in this system. For convenience and 

easy implementation, fuzzy controller is chosen as the controller of our robot. In this 

section, some work on navigation control strategy with fuzzy controllers are reviewed, 

e.g. [39], [2], [30] and [10]. 

Since the main contribution of this work is about generating an obstacle map over a 

legged motion from image data. For simplicity, we use a simple fuzzy control algo-

rithm to make use of the obstacle map so acquired for commanding the legged motion. 

However, more sophisticated control strategies like the one in [39] can be used with our 

obstacle map as the input. The controller proposed in [39] by Saffotti et al, converts 

the range sensors inputs to vectors with different length pointed from the robot. By 

summing up the vectors and the desired goal direction with different weights, the con-

trol vector is found. With different weight sets, different complex behaviors can be 

simulated. Simulations of the robot trajectories are successful without collisions in 

narrow tunnels. 
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In [2], Barret et al designed a neural-fuzzy controller. Other than approaching to a spe-

cific goal, they implemented two navigation behaviors: the centering behavior and the 

left/right wall following behavior. The centering behavior, namely to maintain the 

robot at the center of the obstacles in order to keep away from the obstacles at both 

sides. The wall following behavior is implemented to avoid trapping in concave envi-

ronments, such as withdrawing in dead-ends. In the implementation of the centering 

behavior, they firstly normalize the sensor inputs from three directions, left, right and 

front. The angular velocity is controlled by the first fuzzy controller using the normal-

ized left and right inputs. Finally, the forward speed is controlled by using another 

fuzzy controller with the angular velocity and the normalized front sensor input. 

In [30], Lian designed another navigation fuzzy controller. Like other researches, three 

sensor inputs are detected in left, right and front directions. He departed from using a 

multi-input fuzzy system, while he used three single-input fuzzy systems. Each sub-

system determines its own commands to each motor. Finally, three sets of commands 

are added together to control the robot. In his work, the robot is successful in avoiding 

obstacles and tuming around at dead-ends. 

In [10], Chee et al designed a two-layered fuzzy controller. The first layer integrates all 

the sensor inputs to two outputs, the left and right clearance. The extracted information 

and the goal direction, total three inputs, are fed into the second layer fuzzy system. 

In [43], Song and Sheen presented a neural fuzzy system. In principle, the algorithm 

likes the one presented by Chee et al in [10]. Firstly, 9 kinds of environment are prede-

fined. Then, they use the neural network to classify the incoming sensor readings in 
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real-time. The results of the classification are then put in the fuzzy controller and two 

motor commands are determined. 

Although all the reviewed researchers built successful systems, what they implemented 

on are all wheeled robots. In this thesis, fuzzy controller is applied in controlling a 

legged robot that is seldom seen in the field of navigation control. 
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Chapter 3 

System Overview 

In this thesis, we exploit the concept of the homography for separating the ground and 

the obstacles in a pair of images. We take advantage of the fact that obstacles are al-

ways not lying on the ground plane and thus their projections in the images would not 

agree with the homography the ground induces. Fig.2 shows the flow chart of the 

navigation system. 

With the cameras facing toward the front, and assuming that obstacle detection and 

avoidance in the preceding moments has run effectively, at any particular time instant 

the features at the very bottom of the stereo images would consist of features projected 

from the ground. With a few feature correspondences over those areas available, which 

can often be extracted using the epipolar constraint [26] or the quasi-invariance of the 

features' attributed characteristics, the homography induced by the ground across the 

two images can be estimated. The homography allows the right image to be warped to 

the left view. The original left image and the warped right image would be consistent 

over features from the ground, but not over features not from the ground. Information 

about the obstacles can thus be extracted on the left view, and such a 2D obstacle dis-

tribution can be warped to the ground through another homography, which in tum al-
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lows obstacle information on the ground be extracted in terms of a 2D map we refer to 

as the Local Obstacle Map (LOM). The essence of the approach is that an explicit 3D 
� 

reconstruction of the surroundings is no longer necessary. 

A simple and classical fuzzy controller can then be used to command the robot's global 

motion, the speed and steering, based on the LOM information. By implementing the 

suitable rules to the rule table, the robot can avoid large obstacle, such as walls, and 

small hills. Based on different kind of environment, it will behave to tum left, tum 

right and reverse. 

As we do allow the robot motion and the LOM estimation to take place at the same 

time, the time delay ofthe LOM information ought to be addressed. Consequently, we 

have included a prediction mechanism to compensate the LOM for the upcoming time 

instant from the time-delayed input images. 

A complete navigation system has been implemented and tested with real environments. 

It consists of a six-legged robot of the size about 13"xl2"xl0", a stereo pair of black-

and-white miniature cameras with wide angle lenses mounted on it, and a Pentium II 

remote-brain connected to via wireless video transmission. The remote brain is where 

most of the calculations take place. 
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Fig.3 shows the robot. The robot has each leg activated by two RC servos, and is em-

bedded with a Motorola 68332 microcontroller that drives all the servos. Experiments 

in textured environments show that the system is effective for autonomously and real-

time navigating along straight paths and curved corridors while avoiding walls on the 

two sides, making tums at comers, and withdrawing from dead-ends with image resolu-

tion of384 by 288. 

» 1 « ^ ^ ^ ^ ^ 顯|____麗_議_謹懸醒纖̂̂  5:;¾¾¾¾¾;;;!;?>;::¾¾¾¾¾¾¾ >::̂^̂;:;:;;;;;;>;::̂;:;;:;:;;;:;:;:;;;:;̂:;::;̂  
mmmrnm^rn^'^^^'-imMWi^M^^ _國___霸__囊̂^̂ ^̂  5¾¾;;;;¾;¾:!¾¾¾:;;;¾:;:¾ 
i|||i|||̂ ^^^ 

\ I ^^¾^ ,. :¾ 

£ ^ ^ s 〕 p^^p^ f . 
‘ 〜 勢 -

_ _ : : 1 感 ‘ . 
Fig.3 The six-legged mobile robot used. 
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Chapter 4 

Obstacle Detection by Fast 
Homography Estimation 

Homography is a mapping across two images induced by a plane in 3D. It is captured 

by a 3 by 3 matrix H, a characteristic of the plane, such that any point pair projected by 

that plane to the two images satisfy m' = Hm, where ( w , m') are the homogeneous 

coordinates ofthe two image positions, and 三 denotes equality up to a scale. Features 

that are not on that plane generally do not satisfy the mapping. A homography can be 

estimated from as few as 4 pairs of feature points projected from the associated plane. 

In this chapter, we describe how we detect obstacles from the property that their image 

projections do not satisfy the homography the ground induces. We shall describe how 

image features projected from the ground are obtained, how they are matched, and how 

such matches are used to estimate the homography induced by the ground. With such a 

homography that we refer to as the ground homography available, the obstacles can be 

detected. Naturally, we require that the environment including the ground has suffi-

cient features to be detected and matched across the images. 
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4.1 Ground Feature Extraction 

We assume that at any particular time instant the obstacle detection and avoidance in 

the preceding instants has run effectively. As a result, at any instant the immediate 

front of the robot is free of obstacles. With this, the features at the very bottom of the 

stereo images would consist only of features projected from the ground. We detect 

feature points in those image areas using a simplified method [4] from the filter-based 

method proposed by Tomasi and Kanade in [44]. It finds the features by examining the 

intensity gradients in two orthogonal directions. If at any image position both gradients 

are large, we regard the image position as a textured feature point. In Fig.4, the upper 

image pair shows the textured environment. The lower images show the detected fea-

tured points in small white "+" sign. 

4.2 Ground Feature Correspondence 

We have the epipolar geometry of the two cameras estimated in terms of a fundamental 

matrix F, in an offline process using a method similar to the one in [51]. With the fun-

damental matrix available, for any image position m̂  (in terms of homogeneous coor-

dinates) in one view the locus of its correspondence in the other view is known as a line 

named as the epipolar line. The epipolar geometry with the epipolar plane and lines are 

shown in Fig.5. 
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Fig.5 Stereo geometry and epipolar lines 
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We extract a number of feature correspondences over the ground using this epipolar 

constraint and the information of the previously estimated homography matrix in order 

to minimize the search area. For every pair of feature points in the two views extracted 

above, we define their correspondences' error against the epipolar constraint as the 

normal distance to the corresponding epipolar line: 

m'jFm. 
E i , j = ~ p ^ ⑴ 

4^i,l +讲/,2 

where m, is the 产 feature point in the left image in homogenous coordinates, m'j is the 

f h feature point in the right image also in homogeneous coordinates, and w, j and 历口 

are such that fh. ^ w, 2 历/,3.�= ^ ^ , . 

We take it that m‘ and m'j are a correct correspondence pair if their error is small 

enough (2 pixels in our implementation). At this stage, we do not insist that one point 

is only matched to one point in the other view. All the pairs of feature points so ex-

tracted will be the initial input for the estimation of the ground homography. 
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4.3 Ground Homography Estimation 

For a fast implementation we use only a linear method, whose details are covered in 

section 4.3.2, to estimate the homography. However, linear methods generally suffer 

from more errors, and one important source of such errors is the uneven distribution of 

the input points, which causes some input points to dominate over the others in the 

estimation process. It is therefore necessary to transform the input points to give them 

equal voting power before supplying them to the estimation process. 

4.3.1 Input point transformation 

Here we aim at transforming the homogeneous coordinates of the feature points on the 

two views respectively to two separate sets ofhomogeneous coordinates, each ofwhich 

close to a unit spherical surface and spanning the surface as evenly as possible: 

^ m^ mT = nI t % f 9 i ' / = n I .^) 
/=i /=i �) 

where n is the total number of point pairs, I is the 3 by 3 identity matrix, m^ and m] are 

the 3 by 1 vectors representing the transformed homogenous coordinates of the ith 

point pair on the two views. 

The idea is adapted from the method proposed in [22], there was a fundamental matrix 
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to be estimated but here is a homography. We first find two 3 by 3 matrices A and A' 

from the point pair coordinates: 

A = Y^m^ m； A' = Y^m[m'' ( 3 ) 

Using Cholesky Factorization, we can decompose A and A' into the lower triangular 

matrices L and L，: 

nA = LL' nA' 二 L'L『 (^) 

Then the required transformation is merely 

m, = L-'m, m\ = Vm] ( 5 ) 
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4.3.2 Initial estimation 

The set of equations m\ 二 色知、，V/ e {l,2, • •.，n) can be expressed as 

/v 
M 

A 
m,,.m',3 m,2m',3 m,,3m',3 0 0 0 m,,m', m.̂ m',, m,3m',/ 

0 0 0 m,,m',3 m,-2̂ ',3 m,3W',3 m,>',^ 论,,2汝,,2 而，3论’>，2 
• • . • • • • • • . • . • • • • • • 
. . • 寒 • • 擎 零 • _ 

f ^ \ 八 

• vec H = 0 
\ / 

( 6 ) 

where H is the homography associated with the transformed point coordinates, and is 

defined up to an arbitrary scale. Without loss of generality, we can set the Frobenius 

norm of H to 1, i.e., ||^|| = 1. The least-square solution of H is then the unit eigenvec-

tor associated with the least eigenvalue of the matrix {M^M). However, in our 
y\ 

implementation to speed up the process we take one it its entries as 1 and estimate H 

using a simple matrix inversion process. In the case that some of the other entries of 
H obtained very large magnitudes, which indicate that the entry assumed one is close 

to zero compared to them, we fixed one entry of H as 1 and get another estimation, 

A 
and this process goes on until we get an H of finite entries. 
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Since m； = Hrh, and m; = L'm\ = L'HL'^m,, the homography H associated with the 

original point coordinates is: 

H = L'HL' ( 7 ) 

4.3.3 Robust estimation 

There can be wrong matches or matches not coming from the ground in the above fea-

ture points, and they cause error in estimating the ground homography. Assuming most 

ofthe input feature points are correct matches from the ground, we use a robust estima-

tion process to remove the outliers and improve the estimation accuracy. Fig.6 shows 

the process flow diagram we use. 

The error of the 产 point pair is defmed as the Euclidean distance between one point 

and the position on the same view projected from the other point using the homography: 

E ' = j ( - ' ' , l - f ^ ) 2 + K 2 - f ^ ) 2 ( 8 ) 

y H^m^ H^m. 

The error threshold we use in our implementation is 1.6 
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4.4 Obstacle Detection 

Once we have the ground homography H，we can use it to project one image to the 

other image, and the obstacles can be detected as the places where the first image and 

the warped image do not agree. Using the equation m； = Hm^ or 历,=H'^m] to find 

the left warped to right image or the right warped to left image. 

Fig.7 shows a stereo pair of regulated images of one of our testing environments, and 

Fig.8 shows the right image warped to the left view. In Fig.9, the magnitudes of the 

differences of the images are shown. It can be seen that feature points on the ground 

have almost zero values whereas feature points not from the ground like those from the 

walls score higher. The difference image over the view indicates the obstacle distribu-

tion in an image space. 

W^^^^^^^B 
^^m 

Fig.7 Perspectively projected image pair 
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Fig.9 Difference of the two images 

Imperfections in the difference image come from the inaccuracy of the ground homo-

graphy, the unevenness of the ground, the different illuminations of the two original 

images and their finite resolutions. To enhance the contrast between the obstacles and 

the ground features in the difference image, we apply a simple filtering process to it. 

.30 



We calculate the sum of the differences over a small window (of size 20x15 in our im-

plementation) around every point (/, j) and see if it is bigger than a threshold (2000 in 

our implementation). If the magnitude of the sum is larger than the threshold, the fil-

tered region is regarded as an obstacle. 

Feature point pairs detected, which do not satisfy the ground homography, can be fea-

tures from the near obstacles, from the ceiling (if the environment is an indoor one), or 

from the obstacles very far away. Since for robot navigation it is the near obstacles that 

are ofthe immediate concern, we would only regard near obstacles as the obstacles, and 

they are taken as the areas around the boundary of the ground area in the left view. 

Fig.lO shows the detected obstacles in a left view. 

^^M 
^^S 
?Sw^ 

Fig.lO Obstacles detected in left view The left view and the ground surface are yet another pair of planes related by a homo-graphy that is induced by the ground. We pre-estimate this homography in an offline 
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process, and assuming it be approximately constant over time, use it to warp the obsta-

cle information from the right view to construct the 2D obstacle distribution on the 

ground. (See Fig.ll ) 

Left Image 

^ ^ - ^ ^ ^ 
^ \ ^ > i ! ! j g h t I m a g e 

LOM / ^ X J ^ 

/:.‘...... ... ^ ? N A 

" " ^ " ^ 3 ^ 
Fig.ll Homography projections 

While an assumed constancy of the homography between the stereo views would cause 

failure in detecting the obstacles, here the assumed constancy of the homography be-

tween the left view and the ground would only distort the detected positions of those 

obstacles on the ground. The distortions are found to be minimal and tolerable in our 

implementation. 

The advantages ofthis obstacle detection mechanism include that only the fundamental 

matrix of the stereo setup but not the camera calibrations is needed, no explicit 3D 

reconstruction of the surroundings is necessary, and that all the steps are simple enough 
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to be implemented fast. 

We do not make the claim that such obstacle information is without errors. Once in a 

while isolated error from various sources can occur at a particular time instant. In the 

next subsection we shall see how the obstacle information can be further improved by 

accumulating the information over a period of time and how its time delay can be com-

pensated. 

4.5 Local Obstacle Map (LOM) on Ground 

The local obstacle map (LOM) in our system is a 41 by 41 array over the ground, as 

shown in Fig.l2, with each array element having a value ranging from 0 to 1 which 

indicates how probable it is to have an obstacle responsible for an area on the ground of 

the size about 10cm by 10cm at the corresponding position on the ground. The value 1 

at any particular entry indicates that the corresponding position on the ground definitely 

contains an obstacle, whereas the value 0 indicates the opposite. In practice, when we 

need to make a decision about whether there is an obstacle or not in a particular posi-

tion, we take it that any value larger than 0.5 means a yes, and any value smaller than 

0.5 means a no. A similar probability map has been used in [8], but it is used there for 

object localization rather than robot navigation. Here without any information about 

the obstacles at the very beginning, all the entries of the LOM are initialized with the 

value 0.5. 
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Fig.l2 Design of Local Obstacle Maps 

4.5.1 Extraction from accumulative evidence 

At every time instant the stereo images would allow an obstacle distribution on the 

ground to be acquired. If obstacle is detected at a particular position ofthe ground, the 

corresponding entry of the LOM will be increased by 0.1. If obstacle is not detected, 

the corresponding entry of the LOM will be decreased by 0.1. This way the LOM is 

constructed based on accumulative evidence over a longer period of time, and is less 

prone to mistakes made at any particular time instant. 

4.5.2 Time-delay compensation 

We allow the robot to execute motion while obstacles are detected. This would cause 

the LOM to be obsolete by the time it is estimated. We compensate the time-delay by 

predicting the robot translation and rotation from the motion commands given to the 
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robot while the last image pair is taken, and using such a robot motion to remedy the 

LOM. There would be errors in the compensation, as the robot motion isjust a predic-

tion, but since the LOM is updated from the most current image pair every time they 

are available, such errors are not accumulative and are tolerable. 

Fig.l3 shows a few LOMs for different environments. Fig.l3 (a) is the case where the 

robot is walking between two walls. Fig.l3 (b) is the case where there is a road leading 

to the right. Fig.l3 (c) is the case where there is a road comering to the right. All the 

LOMs were captured from a real robot exploration in real-time. 

WF^^^md W MM 5 : : ' . ] g 

^ m ^ ' ' m U ^ ^ n 

Ht^i^**V^B^ 
(a) straight path (b) right going path (c) right angle path 

Fig.l3 Sample Local Obstacle Maps OVhite blocks indicates obstacles) 
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Chapter 5 

Obstacle Avoidance by a 
Fuzzy Controller 

A controller is essential for a close loop robotic system. And the main usage of this 

controller is to work with our obstacle detection algorithm to test the performance and 

prove the possibility to implement in real-time process. 

Application of fuzzy logic or neural-fuzzy in robot navigation is not a new topic, e.g. 

[43][10], but most of them aimed at using sonar or IR range sensors to detect distance 

to the obstacle. In [43], an example of navigation control with a neural-fuzzy controller 

was introduced. In their approach, obstacle distances in five directions are detected. 

By fuzzy logic, the shape of the environment is divided into a few common types. 

Each type of environment has its corresponding control command. A neural network is 

used in combining output commands from all possible commands. 

In [10]，a two-layered fuzzy controller is introduced. The first layer integrates all the 

sensors' information into two valuables, the left and right clearance. The other layer 

determines the control commands making use of the clearance valuables. The goal 

direction also encountered. 

Since our robot is six-legged and already has a sub-controller to drive the leg motion. 

Based on one of the gait patterns covered in [3], we designed the leg motion sequence. 
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With the difference of the magnitude of the leg movement on two sides, we can control 

the forward and rotating speed of the robot. So what are left to control are only two 

de^ees of freedom: the direction of steering and the walking speed in the global robot 

motion. 

Fuzzy controller is one of the simple controllers that can handle rules without compli-

cated implementation. A simple fuzzy controller with classical fuzzy logic is designed 

to achieve the task. It is a controller with 3 inputs and 2 outputs. Without a specific 

goal to reach, our robot is a behavioral robot with the following rules for its navigation: 

• The robot walks among obstacles in a way that the obstacles are evenly 

distributed on the two sides of the robot. 

• If there is no obstacle in the front, the robot walks directly to the front. 

• If there are obstacles on the left, it steers toward the right, and vice versa. 

• The walking speed of the robot decreases with decreasing distance to the 

obstacles. 

What we do is to translate these navigating behaviors into linguistic rules to the rule 

table of the fuzzy controller. 
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5.1 Gait Pattern 

According to the research of Beer et al [3], the motion of an individual leg from a 

multi-legged animal, including all kinds of animal, can be separated into two phases, 

the stance phase and the swing phase. As a legged creature moves towards the forward 

direction, in order to push the body to the front, it always presses its legs on the ground 

and moves from the front to the back with respect to the body. In the period the legs 

moving backward is called the stance phase. Then since limitations exist at all joints, 

the leg would be bounded. At the moment the leg reached the limit at back most, the 

leg will reactively pick up and move to the most forward position very quickly. The 

period the leg suddenly moving to the front is called the swing phase. Namely, in the 

swing phase, the leg moves like a pendulum and swing to the front, the energy con-

sumed is as little as possible. When these two phases changes recursively, the body 

moves to the forward direction. Moreover, these two phases are activated by neurons, 

which form a small neural control system. Each leg individually has its own neural 

control system and the structure of the networks is created when the legged creature is 

built or born. 

Since the motion of a leg is performed recursively, when the phase cycles of the legs 

are being activated is the key problem to move the body globally and effectively. To 

coordinate all the legs at the same time seems to be a difficult problem. Insects re-

searchers found that all insect gaits are characterized by a stepping sequence known as 

a metachronal wave in which sequences of swings propagate from the back of the in-
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sect to the front on each side of body. Based on this control structure, multi-legged 

creatures, such as worms, although have more than 10 pairs of legs, they are still con-

trollable with a periodical control signal without disorder or mess-up with the legs. 

In addition, by the concept of metachronal wave, only two degrees of freedom remain 

to control the global motion of a legged creature. If the frequency of the metachronal 

wave of both sides increased, the speed of the global motion in the forward direction 

will also increased. If the frequency of the metachronal wave in the left side is higher 

than the right side, the global motion of the body will probably tuming to the right and 

vice versa. 

Applying the same concept in robot leg control, the six legs on the robot in our experi-

ment are divided into three sets. The path of the motion of a leg is shown in Fig.l5. In 

the figure, it shows the path of this contact point, at where the leg contacts the ground 

(Fig.l4). It also shows that the motion of a single leg is divided into 6 states. The 

controlled points and the actual motion are represented by dotted lines and a solid curve 

respectively. 

l f f^ . 
Contact Point 

\L[ 
Fig.l4 Contact point of a leg 
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Fig.l5 Side viewed motion of a leg 

At the same moment, the legs in the same set are commanded to position at the same 

state. Considering supporting the robot evenly, the sets oflegs are organized as follows: 

Set 1: Left Front & Right Middle 

Set 2: Left Middle & Right Rear 

Set 3: Left Rear & Right Front 

The arrangement and the leg position are shown in Table.l. In the fourth row of the 

table, small pictures representing the states are also shown. A black dot at the end of a 

leg indicates contact between the leg and the ground. If no dot on the leg indicates that 

the leg is picked up and stepping forward in the swing phase. 
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State 1 State 2 State 3 State 4 State 5 State 6 

Set 1 e f a b c d 

Set 2 c d e f a b 

Set 3 a b c d e f 

ewSi ^ p^ • «^ p^ ^ p^ p^ p^ 
^¾^ n C > b ^ b ^#K d ^ 
; | � ^ | - z | Z - I - ^ f ^ ^ l -
^ 0 = * M 3 - ^ *=LX. ^ M J = ^^^^0^ =LJ=^ 

TabIe.l Legs configurations in each state 

From this leg configuration, we can see that all of the time the robot walks with four 

legs supporting the body. This configuration can effectively alleviate the vibrative 

walking motion. 
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5.2 Fuzzy Logic Controller 

5.2.1 Controller Inputs 

For simplicity, we only extract three inputs from the local map. It is because 3 is mini-

mum number of inputs that can handle most of the sceneries. If one more input is used, 

the number of rules will be increased from 27 to 64. Moreover, it is not easy to define 

so much rules manually. 

The inputs are defined by the shortest distance of the obstacles to the robot in the left, 

front and right directions (/【，î  and /只）.In practical, these values are measured from 

the predicted LOM, as shown in Fig.l6. These variables are then fuzzfied to linguistic 

variable sets I[，Ip and /^，which contains linguistic variables. 

The cardinal of the linguistic variables set is chosen as 3, which will allow us to de-

scribe 27 different rules. The linguistic variables are denoted as: 

S : Short 

M : Medium 

L : Long 

The 3 inputs use the same membership function. The shape of the membership func-

tion is triangular and shown in the Fig.l7 
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Fig.l6 Fuzzy inputs extracted from LOM 
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Fig.l7 Input fuzzy membership function 
5.2.2 Controller Outputs 
Although the robot is six legged, it still walking on a 2D plane. Like other wheeled 

robots, we only need to command the robot in two variables, the steering and the speed. 
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According to these two variables, gait controller can assign the legs motion to accom-

plish the desired global motion in order to avoid obstacles. 

Fig.l8 and Fig.l9 show the membership functions of the steering output and speed 

output respectively. 

L t c R _ 

1 
-4.0 0.0 4.0 

Fig.l8 Steering output membership function 
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Fig.l9 Speed output membership function 
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5,2.3 Inference mechanism 

Fuzzy systems are based on the integration of expert knowledge through fuzzy reason-

ing. Let us define a general rule base form as 

R1: if 1^ is Al , Ip is B1 and /^ is C1, then 0 _ is D1 and O — is El 

R2: if 1^ is A2, 1^ is B2 and 1^ is C2, then 0 _ is D2 and O — is E2 

• 
• 

where 1^, 1^ and /^ are linguistic variables representing the process state variables. 

0 _ and Ospeed are linguistic variables representing the control variables. Ai, Bi, Ci, 

Di and Ei are linguistic values of the linguistic variables with i=l, 2，.. .，27. 

The rules can be described by two 3 by 3 by 3 matrices as shown in Fig.20. The lin-

guistic values in the tables are chosen manually in real experiments that the robot can 

avoid obstacles. And these may not be the rules that perform the optimal performance. 
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Fig.20 3D rule table for the speed output and the steering output 
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Let a, be the measure of the contribution of the 产 rule to the fuzzy control action. For 

rules i we have: 

^ / = " ^ K ( ' F ) " c , ( 0 

and leads to the control decisions: 

27 27 

Osteer = T / ^ A 〇 _ = ^ 明 /=1 /=1 

where d̂  and ê  are the actual values of the linguistic control values Di and Ei which 

defined in the output membership functions. 
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Chapter 6 

Implementation 

In this chapter, hardware specification and the capabilities will be presented and focus 

on the vision side, since it is a computer vision application. The calibration of the 

video camera and the motion of the robot will also be included. 

6.1 Hardware components 

Hardware is one of the important contributions in this thesis. Other than a legged ro-

bot~VisionBug, there are still other components to make the robot controlled remotely 

by a personal computer only based on the captured visual data. This section describes 

the hardware, the connections and the signal flow between devices. 

In Fig.21, the diagram shows the major hardware components and their connections in 

this remote-brain control system. There are two main components, the robot and the 

PC. 

6.1.1 VisionBug 

VisionBug namely is a bug like robot small robot that use computer vision in robot 

navigation. It is also the hardware platform we implement our developed algorithms. 

VisionBug is a legged small mobile robot converted from RugWalker, which is pur-
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chased from Joker Robotics. It is 13" long and 11” wide with stretched legs. The 

height is about 10” when it walks and it weight about 1.5kg including batteries. 

On the robot, other than the leg motors, a micro-controller board, a serial signal re-

ceiver, two circuit board cameras and two miniature video transmitter are attached. The 

receiver board connected to the serial port of the micro-controller board and the twelve 

motors connected to the PWM ports. Although the video cameras and transmitters are 

attached on the robot, since they are used for capture images from the robot and con-

nected wirelessly to the PC, no connections are needed between the micro-controller 

boards. 

The PC just like other common desktop computers but installed a video grabber - Ma-

trox Genesis, which is a high-end grabber with processors and 64Mbyte memory on-

board. This PC is also where most of the calculation-extensive jobs take place. 

To complete the control loop，other individual hardware such as the TV tuners, serial 

signal transmitter board are used. 
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Fig.21 Hardware components and connections 
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6.1.2 RF transmitter / receiver modules: 

The RF transmitter/receiver modules are part of our contribution, which are specially 

designed for commanding the robot wirelessly. In the market, there are different kinds 

of wireless transmission solution, such as wireless modem, wireless controller from 

R/C model cars. However, none of them are suitable to implement on our mobile plat-

form. Most of the wireless modem in the market is relatively large compare to our 

small legged robot. Although there exists a wireless modem, which is small enough to 

fit into the robot, the modulation and demodulation processes will cause another prob-

lems. It is also not allowed in real-time robot control, since the delay time is not con-

stant and increases the error of the predicted motion. So we used some high speed RF 

pulse transmission chips and make a direct RF transmission by means of interfacing to 

the RS232 signal. 

[ r ^ 丛 
L.Jl!| ^ I I 

^am ! ^ ^ ^ ^ f ^ ^ ^ f S f ^ ^ ^ ^ ^ — ^ Processor 
/ ^ \ Transmitter Receiver board on robot 

I g i r g n T W ^ ^ ^ ^ y - Board Board 
Fig.22 Connections of the RF transmission modules 
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Transmitter module: 

The circuit diagram shows the transmitter circuit in 1:1 scale. The circuit inverts and 

converts the RS232 signal to CMOS level, and connects to the transmitter IC. 

k h 1 m , \ I 1 L /' 
! . .一一 ‘ V.....'........7 ‘ 7 / 1 

• :T̂..,.... / / / ：••'••••••••••••••'••••••••••'>. / 

J ^ ^ t = f M a ^ ^ , / e 

/ ; f l l : i b 
i | ^ ^ ^ a 

g f e 

Fig.23 Serial data transmitter circuit board 

Components in the circuit: 

a Power Voltage(Vcc) +7 to +12V input. 

b Daia In ut Connect to the serial port Tx and GND pins of the 
desktop computer. 

LM7805 voltage Regulates the input voltage to +5V(Max. Current 
regulator lOOmA). 

d Trimmer 500 ohm trimmer. 

e Antenna 90mm long antenna. 

RF transmitter chip, 
f HX2000 Sample provided by RF Monolithics, Inc. 

(Data sheet see: http://www.rfm.com) 

g HCF4009UB Hex CMOS level buffer/invertor 

h MAX232A RS232 to TTF/CMOS signal convertor. 

i 0.2 ^F 
Capacitors 

j, k, 1 and m 0.1 ^F 

Table. 2 Transmitter board component list 
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Receiver module: 

The circuit diagram below shows the receiver board in 1:1 scale. This receiver receives 

the signal transmitted from the transmitter. Since the data output is connected to the 

CMOS level serial port on the on-board processor, the received signal can be acquired 

by the on-board processor. Then, the one-way connection between the desktop com-

puter and the mobile platform is established. 

C a b 

d v J v 
^ ; * ^ 

M^^m-^ f z t y ^ ^ ^ \ � 

Fig.24 Serial data reciver board 

a Input voltage (Vcc) +7 to +12 V 

b Data Input Cmos level serial input +3.3V. 

c 7805 voltage regulator Regulate the input voltage to +5V (lOOmA) 

d Trimmer Tune the input voltage to +3.3V 

RF receiver IC 
e RX2056 Sample provided by RF Monolithics, Inc. 

(Data sheet see: http://www.rfm.com) 

f HCF4009UB CMOS level Hex invertor with buffer 

g Antenna 90 mm long antenna 

h Capacitors lO îF Surface mount capacitors 

Table. 3 Receiver board component list 
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6.2 Perception 

Two CMOS cameras with wide-angle lenses are attached to the front of the robot in 

order to cover larger field of view, and connected to two independent video transmitters. 

In our implementation, single type of sensor, the visual sensors (CMOS cameras) are 

mounted on the robot and have about 90° wide-angle stereo field of view. The view-

able areas are shown in Fig.25. Since the cameras are in fixed resolution, the closer 

areas, corresponding to the lower part of the images, are having more detail than fara-

way areas. The differences are more obvious if images are captured from wide-angle 

lens. 

w 
=̂=̂ =̂riK̂  = ? ^ 

c:===̂ =̂ iK 
3 Area covered by left camera 

>^ Area covered by right camera 

^ Area covered by both cameras 

Fig.25 The viewable area of the VisionBug 
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6.3 Image Calibration 

To increase the field of view of the robot, wide-angle cameras are mounted on the robot. 

The focal length of the lens is about 2.1mm，which is very wide-angle and close to a 

fisheye lens. Because of the effect of wide-angle lens, the captured images are highly 

distorted. 

Fig.26 was an image captured from a square grid pattem using our camera and we can 

see the distortion in this image. Since we use homography based method, some intrin-

sic parameters of the camera can be combined into the homography. Also, there is no 

need to consider the extrinsic parameters the geometry of the two cameras with respect 

to the robot. Since the geometry is fixed. So, what we needed is only some intrinsic 

parameters, such as focal length, optical center and first and second order radial lens 

distortion coefficients. The full camera calibration is avoided. 

According to Tsai's calibration method [45], (program code can be downloaded from 

http://wwwxs.cmu.edu/afs/csxmu.edu/user/rgw/wwwArsaiCode.html), we found the 

calibration data from the lens distortion. 

In Fig.27, the regulated image is shown, and we can see that the patterns are close to 

the original grid pattem. However, the camera is so small that it is not easy to vertically 

face to the grid and the regulated image looks asymmetric. Also, since the resolution of 

the image sensor is limited, the center area will have better resolution than the area at 

the sides. 
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Fig.27 Regulated Image from calibration data 
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6.4 Motion Calibration: 

Time delay is one of the problems in visually guided robot control. The controller has 

to control the robot from prediction of its environments. In visual control problems, the 

time delay will be much longer because of the computation intensive visual processes. 

By creating the local map and combine the transformation by the last command, we can 

predict the up-to-date local map in order to command the robot accurately. 

Other than the map, we have to know how much the robot moved, the angle it rotated 

for any motion command. Therefore, motion calibration is necessary. Motion calibra-

tion is the step that recovers the mapping between the command and the real motion. 

Since the robot is legged and the motion is discrete, the calibration method is different 

with wheeled mobile robot. The method is described as below: 

The model: 

Assumes the motion of the robot is combination of rotation and translation on the 

ground plane. (See Fig.28) We defined two command values. One is the curvature 

command K. It controls the ratio between the rotating speed and translation speed. 

Only it can change the trajectory of the robot motion. (The size of the circle it walking 

on.) The other command is the speed command v. This command controls the speed 

of the robot. When the value is large, the robot moves faster. The route of the robot will 

not be changed by the speed command with the same K. 

.58 



These are the equations representing the model. 

、 P{t + AO = P{t) + Rm))d{v, K) 
Q.{t + ^t) = e{v,K)+Q.{t) 

Notations: 

P{t) Position vector at time t 

Q(r) Orientation at time t in radian 

t Time 

Ar Time elapsed between two command sent (variant) 

V Speed command 

K Curvature command 

6 Angle rotated in single step 

d Displacement vector in single step 

cos9 - s in^ 
R{G) = 

[s in^ cos^ 

In these equations, we attempted to find d and 6 which depend on command v and K. 

.59 



户2(?2，1，？2,2),̂  — 一 - > “̂ 
Z 

、 Z , , 
• 

• 
• 

/ 

W i , ” Z 

^ 
h f = = ^ _ 
4 ^ 
Fig.28 Path of robot mation with constant commands 

Measurement of calibration data: 

1. Define x and 少-axes and position the robot to align with y-axis and the cen-

ter of the cameras at the origin as Fig.28. 

2. Command the robot to move n steps with the same v and K commands, 

(where n is known and n=5 in our experiments) 

3. Measure the new position of the robot (distance moved in x and y direc-

tions). We call this P^. 

4. Repeat steps 2 & 3 and record P:. 

5. Repeat all the steps in different combination of the speed and rotation com-

mands. 
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Calculations: 

In this step, we are going to solve the d and 6 with different commands. Let P^ and 

P2 are the measured position vectors. Base on the model mentioned above. We have: 

p , = f ^ R { e y d p, = Y R { e y d ( 1 0 ) 
/=0 /=0 

Such that: 

p, - p, = R{ey^R{eyd = R{eyp, ( 1 1 ) 
/=0 

Then, from the angle between vectors P̂  and P̂  - P,: 

e{v,K) = l a c o s f ^ , ( P 2 - � (12 ) 
n Ul^ilMlA-^i||J 

/2«-! �- l , , , 
d{v.K)= ^R{ey P , = { l - R { 0 ) l l - R { G f " J P , ( 1 3 ) 

V /=o y 
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From the equations above, we have measured one data set for each variable. They are 

plotted in the graphs below. The first one is the 0{v,K). We can easily see that it is 

cl05e to a straight line. We can easily approximate their relationship by linear regres-

sion. 

0.4 ~i 1 
4- Measured data 

Estimation 
0.3 - ^ 

0.2 - y ^ -

y 
0.1 - j / ^ -

外… 0. ^ K -

• . X . 
-0.2 - 0 ^ -

-0.3'~~^ ‘ ‘ 
0 5 10 15 

Curvature command 

Fig.29 Calibration: curvature command vs angle rotated 

By linear regression, the data is approximated by the line: 

0�K, v) = (- 0.34043081515815 + 0.04257533090013/t> 

Max error = 0.01138330201773 radian (0.65221516253848 degree) 
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The next one is to find the x component of the vector d. The graph below shows the 

plot of the calibration data and a fitting line. Since these values are small, it makes the 

error looks so large. Indeed, the maximum error is about 5 mm. 

Side motion calibration 
2 I I I 1 1 1 

• Measured data 
— Regression line ^ 

1.5 辛 -

I * z 
Q . 1 - / . 

I Z 辛 
I 0.5 - Z • 

I ° x ^ * _ 
I X * 
节-0.5 - 声 -

^ 辛 X 
-1 - + , Z -

- 1 . 5 l ‘ — — ^ — — ‘ ‘ ‘ ‘ ‘ 

0 2 4 6 8 10 12 14 

Curvature command 
Fig.30 Calibration: Curvature command vs x distance moved 

By linear regression, we found: 

d,=(-1.60828209014281 + 0.21895534641356A:)v 

Max error = 0.528cm 
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The last parameter is the y component of d. We can found that it can be fit into two 

straight lines. Also by regression, two lines are found. 

Forward motion calibration 
6 1 1 1 1 1 1 

5 . A • I I 
4 . / \ 辛 Measured data 

8- / \ Line 1 
« / A Line 2 

i ; A 
-2 1 1 1 1 1 1 

0 2 4 6 8 10 12 14 
curvature command 

Fig.31 Calibration: Curvature command vs y distance moved 

By divide the data and apply linear regression, we found two lines: 

dy = (- 2.44325174527432 + 0.97588853433808^:>/ (K<S) 

dy =(l2.81351572244978-0.98858945100810/fV (A:>8) 

Max error = 0.44419cm 
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After calibration, real motion can be found by sending the same command in n cycles: 

、P{n) = Y R{9)d = (/ - R{G))~' (/ 一 R _ ) d 
i=i 

Replace n by t/T, we have motion in time (t): 

Let Cj = cosO , 5j =s in^ , c、- c o s ^ and S2 = s i n ^ : 

/^,) = ( / -華 ) ) - { / - <没 ) > V 1 乂 

= _l_Ci -5, T'P"^2 -^2 J^X 
5j l - C ^ � L 2̂ 1 - � 2 �d y 

1 [1-^1 1̂ ] � 1 - � 2 -^2 lRx 
2 - 2Cj [ - 5, l-^^JL 2̂ l_C2_i"y 

=-[(1 - C, )(1 - C, ) + V 2 K + k (1 - 2̂ ) - 2̂ (1 - ^, ) R -
= [ 5 , ( l - c . ) - 5 , ( l - c , ) K +[(l-Ci)( l-C2) + V2>U ( 14) 
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6.5 Software Programs 

According the designed architecture of the system, two programs are developed. One 

of them is running on the robot and the other is running on the PC with frame grabber. 

The program running on the PC processes all the vision calculations. The fuzzy con-

troller is also implemented in this program. This program processes the input images 

as described in Chapter 4 and implements the fuzzy controller as in Chapter 5. In 

Fig.32, the detail processes in the two programs are shown. On the right of the figure, 

we can see the program, which run on the PC. The processes in this program include 

feature extraction, image regulation, recursive homography estimation and the fuzzy 

controller. The programming language used is Microsoft Visual C++ 6.0 in most ofthe 

calculations. Also, this program used Matrox MIL Image Processing Library 5.0 in 

capturing image and handle some kemel filtering. 

On the left of the figure, it shows the program running on the micro-controller, which 

controls the robot. This program's main usage is to communicate with the remote PC, 

get the command and assign the gait pattem to the legs. The programming language 

used in this program is the GNU C++. 
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Fig.32 The two main programs 
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6.5.1 Computational complexity 

Here is a simple analysis of the computational complexity of the processes that update 
、、7， . 

the LOM from time {t 一 A t ) to time t. The computations for extracting features from 

images are excluded, since it is not the contribution of this work, any feature extraction 

algorithms are all applicable in this work. 

Suppose P features are detected in each image and F point correspondences are 

matched in a pair of stereo images. In searching for point correspondences, since we 

already know the previous ground homography Ĥ _̂ ^ at time t 一 A t, and we assume 

that the new homography at time t is close to it, we only search along the epipolar line 

in a small neighborhood of the expected position estimated from H—^ • The entire 

correspondence establishment process therefore costs 0(P) time. After the extraction 

of the correspondences, the matrix M in equation ( 6 ) is formed and the eigenvalues 

and eigenvectors of the 9 by 9 matrix M^M are calculated. Including input point 

normalization, finding the solution of H recursively takes up 0{P) + 0{P^) = 0{P^) 
A /N 

time, as the size of the matrix M M is fixed. 

In the construction of the LOM, assuming the image and the map resolution are N x N 

and R x R respectively, the warping of the right image to the left view and the compari-

son made there take a total of 0{N^) time. Finally, the warping of the obstacle image 

to LOM is a process of 0{R^). 

In total, it takes 0{P^) + 0{N^) + 0{R^) time to find the obstacle map from detected 

features. 
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Chapter 7 

Experimental Results 

We have tested our robot with a textured environment where the paths, the walls, the 

small hills, and dead-ends, which with the same textures, can be arranged as wished. 

Fig.33 and Fig.34 show some navigation steps of the robot made in every 12 seconds. 

The snapshots are read from left to right, top to bottom. 

The robot successfully walked between two walls without crashing to them, and made a 

tum-around at a dead-end. Empirical data has shown that the legged motion does cause 

a large disturbance to the geometry between the robot and the ground surface, and in 

tum to the homography between the stereo images. An assumption of a constant plane-

transformation between the images, which is widely proposed for wheeled robots, 

would certainly cause failure in capturing the obstacles. We believe the success of our 

system is due mostly to the allowance that the homography between the images can 

change over time. 
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7.1 Real Navigation Experiments 

In the experiments of the real navigation, we can see that the robot moves very slowly. 

The control command is sent every 2 to 3 seconds. It is mainly caused by the slow 

computation of an IBM PC. There still also some reasons affecting the global perform-

ance: 

• Wide angle camera lenses: 

In real experiment, we used wide-angle camera lenses in order to increase the field 

of view of the obstacle detection. However, other than more difficult camera cali-

bration, wide-angle lenses caused other problem that was not predicted. 

When we apply the method of Homography, model of pinhole camera must be em-

ployed. However, the stereo images we captured from usual cameras and lenses, 

must be previously rectified in order to simulate images captured from pinhole 

cameras. After regulation, it is obvious that the areas far from the image center are 

blurred, especially at the comers. This kind of distortion is very usual and obvious 

after regulation in wide-angle lenses. Since some area is blurred in the image, this 

also means the effective resolution as well as the textureness are also affected. 

Then the image coordinate of detected feature on the comers contains a high error. 

It directly affects the accuracy of the calculated homography. 

參 Video RF transmission 

Another factor affecting the experiment is bad video transmission. Since the RF 

video transmitters use reflective wave in the range of UHF and VHF, which are 

mainly used in TV broadcasting. This kind of radio wave highly depends on the 
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geometry of the antenna, so that every TV antenna needed to be placed for the best 

picture quality. 

� T h e bad video transmissions result on the captured images. The affected image will 

be distorted or ruined. If this effect remains for a few iterations, the robot would 

probably be like a blind insect and crashes into obstacles. Fortunately, this bad 

video transmission would not last long in real experiments. If it just happens in a 

short period, the system can overwhelm this effect by the probabilistic LOM. 
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Fig.33 Experiment results - Turning in a left corner 
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t:flH^MmiH^BCtfSX73l^::JIII^^HBH^HHKCtaX!5Xi^JI^^^HB^^^^^^RCtS^Q"a^:,HHgMWMMBCXaXKI^ 

Fig.34 Experiment results - Withdrawing from dead-end 

7.2 ErrorAnalysis ofLOM 

In the last sub-section, experiment shows that the robot can navigate inside a closed 

environment. However, no quantitative evaluation is taken in order to analyze the accu-

racy of the LOM. Here, we will conduct a simple test to analyze the error of the de-

tected obstacle distance. The procedures are shown as follows: First, we put a textured 

cardboard at the front of the robot. And we measure a fixed and known distance from 

the obstacle. Then, we program the robot to move to the front. Until the robot arrived to 

the fixed distance, we capture the obstacle image. Then, according to the obstacle de-

tected in the image, we can reproject the position of the obstacle from the image coor-
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dinates to the ground coordinates. And we can also know the detected obstacle distance. 

Tables 4. to 7. below show 4 sets of data taken at 4 different obstacle distance. Each 

table contains detected obstacle distance at each fixed obstacle distance: 

Detected Obstacles' Calculated Obstacle ^ . . 
y coordinates (pixels) Distance (cm) 

219 一 12.7342 2.7342 
227 ~ 11.5650 1.5650 
229 ~ 11.2901 1.2901 
233 10.7595 0.7595 
228 一 11.4268 1.4268 
234 — 10.6306 0.6306 
228 一 11.4268 1.4268 
230 “ 11.1551 1.1551~~ 

Mean Square Error 1.4987 

Table. 4 A wall positioned at 10cm in front of the robot 

Detected Obstacles' Calculated Obstacle ^^^^^ (cm) 
y coordinates (pixels) Distance (cm) 

m 20.9551 0.9551 
184 19.6354 -0.3646 
174 一 22.3914 2.3914 
172 ~ 23.0021 3.0021 
169 23.9605 3.9605 
174 一 22.3914 2.3914 

— 180 20.6823 0.6823 
173 一 22.6940 2.6940 

|Mean Square Error 2.3692 

Table. 5 A wall positioned at 20cm in front of the robot 
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Detected Obstacles' Calculated Obstacle grror (cm) 
y coordinates (pixels) Distance (cm) 

m 47.3979 7.3979 
� 130 43.9880 — 3.9880 ~ " 

138 ~ ~ 38.2290 — -1.7710 
127 ~ " 46.5068 — 6.5068 
134 40.9510 0.9510 
132 42.4268 2.4268 
138 ~ ~ 38.2290 — -1.7710 
136 39.5538 -0.4462 

Mean Square Error 3.9724 

Table. 6 A wall positioned at 40cm in front of the robot 

Detected Obstacles' Calculated Obstacle ^^^^ (em) 
y coordinates (pixels) Distance (cm) 

103 一 79.5660 — -0.4340 
94 ~ ~ 104.3060 — 24.3060 

— 97 94.6904 14.6904— 
100 一 86.5487 6.5487 
99 89.1203 一 9.1203 
93 107.9101 一 27.9101 
89 — 124.8872 44.8872 
105 75.4381 -4.5619 

Mean Square Error 21.6428 

Table. 7 A wall positioned at 80cm in front of the robot 

From the result, we can see that the error increases exponentially as the obstacle dis-

tance increases. This increasing error is explained by the significance ofthe pixel ofthe 

image captured. As each image point represents a fixed angle of perception, the image 

points at the bottom of the image cover lesser area of the ground. The image resolution 

to the ground is higher at the closer portions. Like any other animals' vision, far away 

objects are not so clear as close objects. This also is the fact that all types of sensors 

could not avoid. 
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Chapter 8 

Conclusion and future work 

In this thesis, a visually guided obstacle detection and avoidance system on a legged 

robot platform has been presented. The system detects obstacles, such as walls or small 

hills or dead-ends, on a roughly textured planar surface. The obstacle information ob-

tained is sufficient to drive the robot to move about using a simple fuzzy controller. 

Hardware implementation has been conducted and experiments have been performed 

which show that the robot can walk in real-time without crashing to the obstacles. 

For the part of obstacle detection, an image-to-image mapping called homography in-

duced by the ground across the two images is first estimated. The homography allows 

the right image to be warped to the left view. The original left image and the warped 

right image would be consistent over features on the ground, but not over features not 

on the ground. Information about the obstacles can thus be extracted on the left view, 

and such a 2D obstacle distribution can be warped to the ground through another ho-

mography, which in tum allows obstacle information on the ground be extracted in 

terms o f a 2 D map we refer to as the Local Obstacle Map (LOM). The essence of the 

approach is that an explicit 3D reconstruction of the surroundings is no longer neces-

sary. 
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A simple and classical fuzzy controller can then be used to command the robot's global 

motion, the speed and steering, based on the LOM information. By implementing the 

suitable rules to the rule table, the robot can avoid large obstacle, such as walls, and 

small hills. Based on different kind of environment, it will behave to tum left, tum 

right and reverse. 

Although the designed fuzzy controllers are easy to implement but it still cannot opti-

mally control the robot. To obtain the optimal performance, the controller should have 

the adaptive ability or unsupervised learning ability. 
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