40 research outputs found

    The Development Of Wave Power: A Techno-Economic Study

    Get PDF
    A study of the development of wave power was undertaken by the National Engineering Laboratory for the Department of Energy and was presented in a two-part report (Summary and Full Report) dated February 1975. Because of the interest generated in the development of wave power it was decided to make the NEL contribution generally available in this report which presents in one document the bulk of the material in the two-part report. The text has not been revised to take account of developments which have taken place since February 1975 and it should be emphasised that this report represents the status and NEL's thinking on wave power at that time. Some footnotes have been added to indicate where new information is in conflict with that in the report. No attempt has been made to take account of all new information in this way

    In-situ health monitoring for wind turbine blade using acoustic wireless sensor networks at low sampling rates

    Get PDF
    PhD ThesisThe development of in-situ structural health monitoring (SHM) techniques represents a challenge for offshore wind turbines (OWTs) in order to reduce the cost of the operation and maintenance (O&M) of safety-critical components and systems. This thesis propos- es an in-situ wireless SHM system based on acoustic emission (AE) techniques. The proposed wireless system of AE sensor networks is not without its own challenges amongst which are requirements of high sampling rates, limitations in the communication bandwidth, memory space, and power resources. This work is part of the HEMOW- FP7 Project, ‘The Health Monitoring of Offshore Wind Farms’. The present study investigates solutions relevant to the abovementioned challenges. Two related topics have been considered: to implement a novel in-situ wireless SHM technique for wind turbine blades (WTBs); and to develop an appropriate signal pro- cessing algorithm to detect, localise, and classify different AE events. The major contri- butions of this study can be summarised as follows: 1) investigating the possibility of employing low sampling rates lower than the Nyquist rate in the data acquisition opera- tion and content-based feature (envelope and time-frequency data analysis) for data analysis; 2) proposing techniques to overcome drawbacks associated with lowering sampling rates, such as information loss and low spatial resolution; 3) showing that the time-frequency domain is an effective domain for analysing the aliased signals, and an envelope-based wavelet transform cross-correlation algorithm, developed in the course of this study, can enhance the estimation accuracy of wireless acoustic source localisa- tion; 4) investigating the implementation of a novel in-situ wireless SHM technique with field deployment on the WTB structure, and developing a constraint model and approaches for localisation of AE sources and environmental monitoring respectively. Finally, the system has been experimentally evaluated with the consideration of the lo- calisation and classification of different AE events as well as changes of environmental conditions. The study concludes that the in-situ wireless SHM platform developed in the course of this research represents a promising technique for reliable SHM for OWTBs in which solutions for major challenges, e.g., employing low sampling rates lower than the Nyquist rate in the acquisition operation and resource constraints of WSNs in terms of communication bandwidth and memory space are presente

    Decentralised Energy Development: A study examining its potential to drive economic regeneration in the UK

    Get PDF
    Following the 2008 financial crash the UK Government, through the Local Enterprise Partnership model has been driving major economic regeneration in localised economies for high value job creation, uplifting skills and infrastructure investment. LEPs are the prime vehicles to identify and deliver their own programmes to gain increased economic growth through targeted and localised support.The Stoke-on-Trent and Staffordshire LEP having a below average performing business base, developed a unique “Powerhouse Central” proposal for its regeneration funding submission into Whitehall. The proposals centred on delivering decentralised energy infrastructure in the form of Stoke-on-Trent district heat network (DHN), and the Keele University Smart Energy Network Demonstrator (SEND). The DHN and SEND are complementary projects, the DHN utilising off the shelf technology to de-risk the project and encourage private investment models to be applied to UK DHN pipeline projects, whilst the Keele SEND allows dynamic smart network technologies to be tested and trialled, both from the hardware and software perspective but also from the social interaction dimension in an idealised small town sized community.Decentralised energy using localised energy resource assets give increased levels of supply security to business, public services and residential populations something that is becoming more difficult with the existing large-scale generation system. The DHN and the SEND gives the opportunity for localised supply chain diversification providing a key element of the LEP’s economic regeneration commitments; this observational study has researched and examined drivers, conflicts and barriers to deploying the DHN and SEND projects specifically regarding the deployment of business support strategies and programmes to drive supply chain diversification and innovation into the decentralised energy opportunity. It is apparent that technology and finance are not the key barriers to decentralised energy supply chain growth but relate to the conflict and non-aligned politics pursing national and local agendas

    Resilience in Floating Offshore Wind Turbines: A Scoping Review

    Get PDF
    Background With climate change a looming global threat, offshore wind energy is a vital resource, and floating offshore wind turbines (FOWT) are essential to capture its full potential. Unfortunately, high operations and maintenance expenses pose an obstacle to widespread implementation of FOWT. Reducing maintenance needs by limiting FOWT damage or failure in harsh environments will undoubtedly contribute to lowering costs and to improving on-site personnel safety. Resilience, an important concept in the field of risk management, may be instrumental in achieving these goals. Objective The objective of this thesis was to develop a thorough understanding of how resilience is understood and its applications to FOWT design and operation. The following issues were of greatest interest: the degree to which FOWT literature addresses resilience, the various interpretations and definitions of resilience that are employed in FOWT research, and how those definitions of resilience are applied to FOWT. These issues and objectives led to the question this thesis sought to answer, in order to map the knowledge and potential gaps in FOWT resilience research: How is resilience understood and applied in the context of FOWT design and operation? Methodology In order to answer this research question, a scoping review was conducted, in which two databases – ScienceDirect and GreenFILE – were searched for sources that discussed resilience with respect to FOWT. In accordance with the JBI scoping review methodology, a search and screening strategy, including search terms and inclusion criteria, was determined in advance. The multi-stage screening process ensured that all relevant sources were included, and the entire process is described in such a way as to be transparent and repeatable. Results Thirteen sources, consisting of twelve articles and one report, were found to meet the inclusion criteria, and these were thematically analyzed in order to investigate the definitions/interpretations and applications of resilience to FOWT technology. Several trends were discovered among the included sources, including a dominant engineering perspective and a glaring lack of explicit resilience definitions. Despite this lack of definitions, however, several interpretations of resilience were found to be used among the thirteen sources, and these are discussed in depth. Furthermore, the various applications of resilience to FOWT were mapped in order to identify popular topics, and these findings were compared to trends noted elsewhere in the literature. Conclusions The results of this review provide valuable insight into the main interpretations of resilience that are used in relation to FOWT. They also provide a solid foundation for future work and for improvements in FOWT resilience research. Among these are the need for a clear definition of resilience in FOWT studies and the potential benefits that could come from the development of a risk management approach to enhance the strong engineering perspective within the field of FOWT resilience research

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    Entropy and Exergy in Renewable Energy

    Get PDF
    Lovelock identified Newcomen’s atmospheric steam engine as the start of Anthropocene with these words: “
there have been two previous decisive events in the history of our planet. The first was 
 when photosynthetic bacteria first appeared [conversing sunlight to usable energy]. The second was in 1712 when Newcomen created an efficient machine that converted the sunlight locked in coal directly into work.” This book is about the necessity of energy transition toward renewables that convert sunlight diurnally, thus a sustainable Anthropocene. Such an energy transition is equally momentous as that of the kick start of the second Industrial Revolution in 1712. Such an energy transition requires “it takes a village” collective effort of mankind; the book is a small part of the collective endeavor
    corecore