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Abstract 

 

The development of in-situ structural health monitoring (SHM) techniques represents a 

challenge for offshore wind turbines (OWTs) in order to reduce the cost of the operation 

and maintenance (O&M) of safety-critical components and systems. This thesis propos-

es an in-situ wireless SHM system based on acoustic emission (AE) techniques. The 

proposed wireless system of AE sensor networks is not without its own challenges 

amongst which are requirements of high sampling rates, limitations in the communica-

tion bandwidth, memory space, and power resources. This work is part of the HEMOW-

FP7 Project, ‘The Health Monitoring of Offshore Wind Farms’. 

The present study investigates solutions relevant to the abovementioned challenges. 

Two related topics have been considered: to implement a novel in-situ wireless SHM 

technique for wind turbine blades (WTBs); and to develop an appropriate signal pro-

cessing algorithm to detect, localise, and classify different AE events. The major contri-

butions of this study can be summarised as follows: 1) investigating the possibility of 

employing low sampling rates lower than the Nyquist rate in the data acquisition opera-

tion and content-based feature (envelope and time-frequency data analysis) for data 

analysis; 2) proposing techniques to overcome drawbacks associated with lowering 

sampling rates, such as information loss and low spatial resolution; 3) showing that the 

time-frequency domain is an effective domain for analysing the aliased signals, and an 

envelope-based wavelet transform cross-correlation algorithm, developed in the course 

of this study, can enhance the estimation accuracy of wireless acoustic source localisa-

tion; 4) investigating the implementation of a novel in-situ wireless SHM technique 

with field deployment on the WTB structure, and developing a constraint model and 

approaches for localisation of AE sources and environmental monitoring respectively. 

Finally, the system has been experimentally evaluated with the consideration of the lo-

calisation and classification of different AE events as well as changes of environmental 

conditions. The study concludes that the in-situ wireless SHM platform developed in the 

course of this research represents a promising technique for reliable SHM for OWTBs 

in which solutions for major challenges, e.g., employing low sampling rates lower than 

the Nyquist rate in the acquisition operation and resource constraints of WSNs in terms 

of communication bandwidth and memory space are presented.  
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CHAPTER 1: INTRODUCTION 

 

 

Demand for the harvesting of wind energy has increased recently due to the current en-

ergy crisis and environmental pollution not only in the UK but also worldwide. As a re-

sult, wind turbines have become physically larger and more wind farms are placed in 

remote areas in order to increase efficiency and levels of power generated [1]. One con-

sequence of this is that maintenance and repair work becomes more difficult and chal-

lenging. For instance, the cost of the operation and maintenance (O&M) of offshore 

wind turbines (OWTs) has become significantly higher due to access difficulties, partic-

ularly during extreme weather conditions, where special landing boats may be needed 

[2]. 

These and many other challenges have made the development of structural health moni-

toring (SHM) systems for OWTs an important research topic. Many scientific institu-

tions and wind turbine manufacturers are trying to develop novel techniques for moni-

toring the health of these structures [3-6]. The HEMOW-FP7 Project, ‘The Health Mon-

itoring of Offshore Wind Farms’, is one such funded wind-power research study which 

concentrated initially on the in-situ monitoring of offshore wind turbine blades 

(OWTBs), gearbox and generator systems for both existing and new topologies that will 

be developed in the future [7]. This project aims to support a development of smart 

SHM systems in order to contribute to a cost-optimised O&M particularly for offshore 

wind farms, where faults cause long downtimes. This will be achieved by addressing the 

following challenges [7]: 

1. Smart sensors for wind turbines systems. 

2. Gearbox NDE, generator and condition monitoring. 

3. Hierarchical communication, signal processing and data management. 

4. ICT tools for information fusion and wind farm maintenance management. 
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5. Build a sustainable platform for international collaborative research, networking 

and knowledge transfer.  

The HEMOW project is coordinated at Newcastle University (UNEW), UK, other pat-

terns are West Pomeranian University of Technology (ZUT), Poland, Nanjing Universi-

ty of Aeronautics and Astronautics (NUAA), China, Zhejiang University (ZU), China 

and Indian Institute of Technology Madras (IITM), India. The project is divided into 6 

work packages (WPs), as shown in Figure 1, while WP6 is management and dissemina-

tion and it is not shown in this figure. The list of these WPs is given in Table 1. 

 

Figure 1: HEMOW project diagram. 
 

As part of Newcastle University contributions to the HEMOW-FP7 Project, the focus of 

this research involves the investigation of several non-destructive testing (NDT) and 

condition monitoring techniques in order to develop a suitable SHM technique for wind 

turbine blades (WTBs). To achieve this goal, a research project is being carried out to 

investigate the employment of wireless sensor networks (WSNs) in conjunction with 

acoustic emission (AE) to build in-situ long-term health monitoring systems for 

OWTBs. This research also involves the development of approaches to reduce levels of 

the transfer of sensing data by lowering sampling rates and the local pre-processing of 
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raw data on-board on wireless units so that only the results of evaluation and other 

meaningful information need to be transmitted to the remote control room. 

Table 1: List of WPs HEMOW-FP7 Project. 

WP No. Work Package Title Lead Partner Organisation 

1 Turbine blade health monitoring NUAA, IITM, UNEW 

2 Gearbox NDE and condition monitoring ZUT 

3 Power electrical system and grid monitoring ZU 

4 
WSNs, management of data storage, and signal 

processing 
UNEW, NUAA 

5 
Fault and health identification, lifetime prediction, 

and maintenance management 
UNEW, ZUT 

6 Management and dissemination UNEW 

 

 

This chapter is organised as follows. A brief background is given on the increased de-

mand for wind energy, in the UK and worldwide, and the challenges associated with 

meeting this demand as well as the importance of SHM in the wind power industry. Af-

ter that state-of-the-art inspection techniques used for monitoring the structural health of 

WTBs are briefly reviewed, followed by the challenges associated with these methods 

and the methods which have been proposed for this application. A synopsis of the pre-

sent research objectives is then provided and the scope of the work discussed. The ma-

jor contributions of the research are presented and finally an outline of the thesis is laid 

out. 

1.1 Background 

Wind energy is one of the main renewable energy sources that, in recent decades, has 

gained much attention not only in the UK but also worldwide due to energy crises and 

environmental pollution [1]. Figure 2 shows the annual installations in both onshore and 

offshore wind sectors for the period from 2000 and projected till 2030 [8]. Investment in 

the onshore sector rises steadily until it is expected to reach a peak at 17.8GW in 2020 

and then starts to decrease due to movement towards offshore wind power. In contrast, 

offshore investment continues to grow due to better wind speeds there, and it is project-
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ed to reach almost 14GW in 2030 [8]. 

In addition, the US Department of Energy has reported that, in 2030, wind power will 

contribute 20% to the total US electrical supply [9], whereas 30% of the UK’s electrici-

ty supply in 2020 will be delivered by the wind energy [10]. Therefore, it is expected 

that over the next decade the offshore wind sector will grow particularly rapidly in the 

UK, in order to profit from the more favourable wind conditions at sea which will con-

tribute towards the fulfilment of UK energy requirements. This, however, necessitates 

significant investigation particularly to minimise the production and maintenance costs 

of OWT as well as improving reliability via the health monitoring of wind turbine struc-

tures. 

 

Figure 2: Annual installation of wind turbines onshore and offshore in Europe [8]. 
 

To reach this goal and to increase the offshore wind turbine efficiency and consequently 

capacity, significant investments are being made in wind turbine technology. This has 

led manufactures to develop more complex wind turbines with physically larger size 

and longer as well as lighter blades [11]. However, as a result of the increasing size of 

wind turbine structures, more difficulties follow in installation, maintenance and repair 

work. 

1.1.1 Problems for Wind Turbines 

Unfortunately, as more turbines are installed and their size increases to fulfil demand, 

more frequent accidents and disasters related to wind turbines have been documented. 
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This has been confirmed by the Caithness Windfarm Information Forum [12], which 

reported that the average number of wind turbine incidents in the UK increased from six 

per year from 1992-6 to 140 per year from 2009-12 as shown in Figure 3. 

In addition to that, the Daily Telegraph stated that RenewableUK [13] revealed in De-

cember 2011 that the number of wind turbine accidents and incidents (e.g., blade fail-

ure) had reached 1500 in the UK alone in the period between 2006 and 2011. This gen-

eral trend is expected to accelerate as wind turbines and their blades increase further in 

size and length respectively, unless their structural health can be monitored [1]. 

 
Figure 3: Recorded wind turbine accidents since 1996 [12]. 

 

A WTB is one of the most dangerous parts of the wind turbine structure due to its large 

size and rotation speed. The Caithness Windfarm Information Forum stated that the 

highest proportion of documented incidents were as a consequence of blade failure. 

Blade accidents can be caused by different factors, which can lead the whole wind tur-

bine to break down or where either complete blades or parts of them are detached and 

thrown over long distances. Such blade catastrophes risk not only damaging other wind 

turbines in the wind farm but also affecting surrounding residential areas. These factors 

have led this study to focus on the development and implementation of SHM algorithms 

for WTBs. 

Due to the developments described above, an increasingly scientific approach is now 

being taken to the design and development of SHM techniques for the wind turbine in-

dustry. SHM is typically a strategy of monitoring engineering structures by utilising 

http://www.telegraph.co.uk/news/uknews/8948363/1500-accidents-and-incidents-on-UK-wind-farms.html
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permanent sensors in order to detect damage and to characterise the condition of these 

structures [3, 14]. Such techniques can provide information about the status of the wind 

turbine components or structure, without affecting their current or future performance. 

SHM should therefore be an essential part of the wind turbine industry, particularly for 

offshore turbines, in order to overcome challenges facing them as discussed in the next 

sections. 

1.1.2 Importance of SHM in the Wind Turbine Industry 

The large structures of wind turbines and their long blades can not only cause serious 

accidents and catastrophes but also lead to them being massively hard to install and 

maintain. This is particularly true for OWTs which are sited in remote areas. This ne-

cessitates that OWTs should incorporate SHM systems in order to collect quantitative as 

well as qualitative information about the wind turbine status. This can be achieved by 

collecting continuous online feedback which will also help in predicting the remaining 

lifetime of the OWTs. It also will minimise O&M costs as well as giving operators or 

inspectors the ability to inspect these structures from offsite, while securely maintaining 

the wind turbine [3, 15, 16]. 

The overall significance of SHM for the OWT industry can be summarised in the fol-

lowing points [1, 3, 17] which are also illustrated in Figure 4: 

 Minimising the O&M costs of wind turbine structures. 

 Prediction and evaluation of remaining lifetime as well as the prevention of early 

collapse, including alerting to the need for product replacement and maintenance 

requirements in the early stages. 

 Fault/failure prediction, inspection, detection, assessment, and identification. 

 Safety monitoring of wind turbines offsite. 

 Gathering information and collecting data for future design and optimisation 

calculations. 

 Performance improvement. 

In addition, the importance of SHM is also represented by the monitoring of OWTs 

immediately after natural hazards and man-made disasters as well as extreme weather 

conditions, which will then reduce the impact of such disasters in both economic and 
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social terms. This requires appropriate SHM techniques to be integrated into these struc-

tures. The following sections review state-of-the-art inspection methods in brief, partic-

ularly for WTBs, whereas more detailed reviews of different SHM systems are provided 

in Chapter 2, along with some relevant non-destructive testing (NDT) techniques. 

 

Figure 4: Main objectives of SHM in the OWT industry. 

1.2 State-of-the-Art Inspection Techniques used in SHM for WTBs  

The blade (see Section 2.1) is an essential component of the wind turbine system and 

one of the most expensive to maintain, representing 15-20% of the overall cost. This is 

because failure of the blade can cause damage to the overall wind turbine structure as a 

result of rotational imbalance [1, 18, 19]. This has motivated many researchers to devel-

op new approaches to monitoring the health of these structures [3-6]. 

The majority of blade health inspection techniques are classified as certification tests 

and they specify that laboratory testing must be conducted for the purpose of postpro-

duction inspection prior to blade fitting [1, 3, 15, 19-21]. Such widely utilised tech-

niques include, for example, ultrasonic [22, 23] and AE [24], thermography [25], 

shearography [26, 27], and computed tomography (XR-CT) [28]. 

In contrast, fewer researchers have attempted to develop in-field (in-situ) SHM ap-

proaches with wind turbine blades. Such approaches are either stationary or dynamic in-

service methods. Stationary testing means that the inspection process is completed while 

the blades are static [5, 24, 29], whereas in dynamic testing the inspection process is re-

alised as the blades rotate while in-service [30]. 
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However, the abovementioned techniques are unfortunately incapable of providing a 

robust continuous online SHM system, particularly for OWTBs. This is because they 

are costly and/or time-consuming, and may rely on regular inspection. In addition, most 

of these approaches apart from the AE technique are active, and need to be used under 

the supervision of operators which represents a big challenge for their utilisation in the 

SHM of OWTBs. Further discussion of these issues is presented in Chapter 2. 

In this research, the main focus of study is the development of a robust wireless inspec-

tion system for OWTBs based on the AE technique in conjunction with WSNs. This is 

because AE is a passive technique which can be applied to the blade structure with lim-

ited access, and allows the investigation of defects in the structure under wind load 

while the wind turbine is in-service, as discussed in Chapters 2 and 5. In addition, most 

types of blade failures cause detectable AE waves, including crack initiation and 

growth, crack opening as well as closure, and others [31]. The WSNs also provide a per-

fect means for sending wirelessly the AE sensing data to the remote control unit. The 

integration of these two technologies in this application, however, faces several chal-

lenges which are summarised in the next section. 

1.3  Challenges of Applying SHM and Relevant NDT Methods to OWTBs 

Although there are many advanced SHM and relevant NDT techniques that can be uti-

lised for the inspection of WTBs in laboratory environment, and although there have 

been some attempts to develop in-situ blade SHM systems, as stated above, significant 

challenges are still faced. This section briefly outlines these challenges. Firstly, the chal-

lenges that face the implementation of existing SHM methods with OWTBs are listed, 

and then the problems with the proposed dynamic in-service monitoring approach when 

applied to OWTBs are discussed. 

1.3.1 Difficulties in Offshore Monitoring 

OWTBs are located in remote areas which could involve extremely harsh environments, 

for example due to weather conditions. If current SHM methods are applied to these 

OWTBs, the following challenges will be encountered: 

 The offshore wind energy market is rapidly expanding. The Offshore Wind In-

frastructure Application Lab (www.owi-lab.be) stated that in “the coming 4 

http://www.owi-lab.be/


Chapter 1 

9 

 

years 12GW will be installed offshore; this is 3 times the amount of what has 

been realized over the last 20 years.” This means that the size and the length of 

WTBs will increase. Blade structure will be more complex which poses addi-

tional monitoring challenges. 

 Offshore wind turbines are placed in remote areas, as shown in Figure 5. This 

leads to access difficulties, particularly during extreme weather conditions. Ac-

cess to large blades requires the use of means such as ropes or others which may 

expose inspectors to risk. Special landing boats may even be needed to gain ac-

cess to wind turbines. The inspection process may be a lengthy procedure, and 

for all these reasons inspection costs will increase. 

 

Figure 5: Example of harsh environment of OWTs [32, 33]. 
 

 Problems of access may limit visual inspections to only surface defects and not 

interior anomalies [34]. The direct adoption of traditional NDT techniques such 

as tap tests and ultrasonic testing, including A-scan, B-scan, or C-scan, to 

OWTBs in order to achieve full in-situ inspection may also be limited. This is 

because these techniques require active excitation units and their operation needs 

to be supervised by inspectors. Full coverage of a blade could be achieved, how-

ever, if more advanced approaches such as thermography [25] or shearography 

[26] were used. However, the limited portability of these methods makes them 

unsuitable for offshore in-situ inspection applications. 

 Finally, current SHM techniques are wire-based methods. This represents anoth-
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er challenge if they are applied in the long-term offshore monitoring of OWTBs 

with continuous online feedback. This has stimulated the proposal of the devel-

opment of smart wireless sensing with advanced hierarchical communication 

and signal processing for information fusion as well as data aggregation tech-

niques to collect, process, and manage huge amounts of collected data. The chal-

lenges associated with this proposal are presented below. 

1.3.2 Challenges of Proposed Wireless SHM Method 

The integration of AE techniques with WSNs makes the combination of these technolo-

gies an attractive alternative in developing a robust SHM for OWTBs. This is because 

WSN technology can provide a robust, scalable, reliable, efficient, and economical ap-

proach for such applications. Nevertheless, WSNs have some technical limitations and 

challenges which need to be tackled before they can be integrated into SHM techniques 

for offshore blades. Some of these challenges are discussed below, following an over-

view of WSNs technology. 

WSNs comprise a group of small wireless units known as sensor nodes (wireless units). 

Each has a microcontroller, a wireless interface, and one or more sensors. These nodes 

can be arranged in single- or multi-hop WSNs and they can work collaboratively to 

monitor an area or execute a certain task. They can also interact with a remote control 

unit or other units via a gateway, as shown in Figure 6. Such wireless networks can be 

either centralised or distributed WSNs. The former approach requires that data be trans-

ferred from wireless units to a centralised control unit to be globally analysed and where 

advanced signal processing techniques can be applied, as described in Chapter 4. In the 

latter approach, data is locally processed on-board the wireless units and only meaning-

ful information is sent to the control unit. However, this is subject to the condition that 

only simple signal processing techniques are used, as elaborated in Chapter 5. This is 

due to the limitations of wireless units which are as follows [35-38]: 

 Power resources; where in some applications batteries cannot be replaced or 

even recharged. 

 Processing and memory capabilities. 

 Computational capacity. 

 Transmission range and throughput. 
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 Bandwidth for data transmission. 

This means that the proposed SHM technique must work under severe resource con-

straints, which represent one of the foremost challenges. Typically, SHM systems 

generate huge amounts of sensing data so that high processing and memory capabili-

ties as well as computational capacity are required. This is because the large size of 

OWTBs necessitates having a considerable number of sensors in a complete SHM 

system in order to achieve full blade coverage. In addition, it is necessary that the 

SHM techniques used should be able to sense the condition of blade structures at all 

times in order to give continuous online feedback for the long-term monitoring sys-

tem. 

 

Figure 6: Layout of wireless sensor networks. 
 

Furthermore, the AE technique integrated with WSNs could be very costly due to the 

high sampling rates required [39]. The consequent generation of enormous amounts of 

data may overload the mechanisms of storage, data management, data transmission, and 

data processing as well as power resources in the WSNs. 

Therefore, the reduction of the amounts of sensing data acquired will play a significant 

role in tackling such SHM problems. This is achieved in this study by deployment of 

low sampling rates in acquiring acoustic signals as seen in the coming sections. 

1.4 Aim and Objectives 

In the emerging cross-disciplinary field of research into the SHM of OWTs, and as part 
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of the HEMOW-FP7 Project, the main aim of this research is to design and develop an 

in-situ wireless SHM system for OWTBs in conjunction with the AE technique. It is 

expected that this will increase the consistency and efficiency of these techniques and 

make them more valuable when applied not only with OWTs but also in aerospace, and 

other engineering applications. 

The proposed in-situ SHM system includes the sensor configuration, data acquisition 

and processing, feature extraction and fusion for impact detection and classification. 

The objectives of this research are summarised as follows: 

 To undertake a comprehensive literature survey that explores current SHM tech-

niques and relevant NDT techniques for WTBs and the usage of WSNs in con-

junction with one of these techniques to be used for monitoring the structural 

health of OWTBs. 

 To investigate the requirements of acoustic wireless sensor networks (AWSNs) 

for SHM systems by studying the constraints of acquisition sampling frequency 

under the use of low sampling rates in order to specify an appropriate signal do-

main of analysis. 

 To develop a prototype wireless system for conducting acoustic source localisa-

tion measurements using low sampling rates well below the Nyquist rate in ac-

quiring acoustic signals.  

 To propose/utilise new techniques in signal processing for solving the problems 

encountered when working with low acquisition sampling rates, such as the low 

spatial resolution for acoustic source localisation. 

 To develop feature extraction algorithms based on the use of low sampled data 

for defect detection and classification in order to achieve the highest possible 

levels of system performance even at low sampling rates. 

 To develop and implement an advanced wireless system for a continuous SHM 

system which will be used to evaluate and test the proposed SHM system. This 

will be done by building a real in-situ prototype system on the roof of the School 

of Electrical and Electronic Engineering at Newcastle University incorporating a 

small wind turbine unit, an AWSN, and a user-friendly graphical user interface 
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(GUI). 

1.5  Scope of the Work 

The research involves extensive experimentation in combination with theoretical studies 

into the strengths and weaknesses of selected methods which may be used to make 

WSNs more valuable and efficient if they are applied to SHM applications. This is real-

ised via investigating the requirements of utilising low sampling rates below the 

Nyquist rate in acquiring acoustic signals using AWSNs. This is particularly useful if 

this technology is integrated with AE techniques in conjunction with the use of low 

sampling rate approach for SHM applications. 

Following this investigation, the development of signal processing techniques are intro-

duced to work with low sampling rates and achieve good wireless localisation results 

using data received from AWSN. Tests are carried out with a lab-based wireless acous-

tic source localisation (ASL) system to validate the techniques established and study the 

underlying theory behind the techniques developed. 

Next, issues involved in implementing an in-situ wireless SHM system for OWTBs are 

discussed to provide in field wireless AE measurements based on distributed AWSNs. 

This is accomplished by having a 300W wind turbine installed on the School roof with 

an acoustic wireless sensing system on the top of it which is composed of a distributed 

WSN and an AE technique. AE sensing data will be locally processed on-board and on-

ly vectors carrying common AE features extracted named ‘acoustic vector properties’ 

(AVPs) will be sent to the remote control unit. The AVPs will be then used to assess 

blades health and to localise as well as classify AE events and environmental monitor-

ing respectively under different environmental conditions. 

1.6  Research Contributions 

As part of the HEMOW-FP7 Project, this study makes a number of contributions to the 

body of knowledge about SHM. In fact, the major contribution is the development of 

the in-situ wireless SHM system with field deployment on the WTB structure which is 

intended for use in monitoring the structural health of OWTBs. Other main contribu-

tions include showing the use of low sampling rates in the sensing process and identify-

ing its potential and limitations as well as specifying how these limitations could be 
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overcome. These contributions are described in more detail below. 

 A thorough review has been undertaken of different SHM systems with relevant 

non-destructive testing and evaluation techniques in conjunction with WSNs as 

well as the potential for their integration.  

 Through a comparative study in conjunction with the use of different time delay 

estimation algorithms, it has been shown that the utilisation of low sampling 

rates overcomes the challenges posed by the limitations of data transmission 

over WSNs for ASL. This original contribution will be important in terms of da-

ta reduction and power savings in the design and development of the proposed 

offshore wind turbine SHM technique based on AWSNs. 

 Through the investigation of a novel combination of the wavelet transform, en-

velope fitting, cross-correlation and the Shannon entropy criterion, the utilisation 

of ASL using AWSNs with the setting of sampling frequency lower than the 

commonly required Nyquist frequency has been validated. These results con-

tribute to the reduction of the amount of sensing data, level of power consump-

tion, and communication bandwidth required and is therefore beneficial for 

AWSN applications. 

 Through the implementation of an in-situ SHM system on the top of a 300W 

wind turbine installed on the School roof composed of the developed WSN and 

an AE technique, the proposed data reduction technique has been evaluated in a 

field environment. In addition, signal processing techniques for the extraction of 

local AE features from the aliased AE signals have been used to monitor and as-

sess the structural health of WTBs. This contributes to solving the problems of 

limited power and bandwidth for data transmission in WSNs, which could en-

hance the performance of the developed in-situ wireless SHM for OWTBs.  

 The in-situ wireless SHM has also been experimentally evaluated based on the 

utilisation of low sampling rates the consideration given to the detection, moni-

toring, and classification of different AE events emulating impact damage and 

audible cracks as well as changes in environmental conditions. Furthermore, 

through a combination of zonal and constraint geometrical point localisation 

techniques, a localisation model has been developed and precise source localisa-
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tion results were achieved for the complex structure of WTBs. Such a model is a 

potential candidate for large scale WTBs to provide precise estimation results 

for AE source localisation.   

 Several aspects of the research have been the subject of publications in refereed 

journals, conference papers, and posters. 

1.7 Publications Arising from this Thesis 

Journal Papers 

J1. O. M. Bouzid, G. Y. Tian, J. Neasham, and B. Sharif, "Investigation of sam-

pling frequency requirements for acoustic source localisation using wireless 

sensor networks," Journal of Applied Acoustics, vol. 74, pp. 269-274, 2013. 

J2. O. M. Bouzid, G. Y. Tian, J. Neasham, and B. Sharif, “Envelope and wavelet 

transform for sound localisation at low sampling rates in wireless sensor net-

works,” Journal of Sensors, vol. 2012, 9 pp., 2012. 

J3. P. Wang, Y. Yan, G. Y. Tian, O. M. Bouzid, and Z. Ding, “Investigation of 

wireless sensor networks for structural health monitoring,” Journal of Sensors, 

vol. 2012, 7 pp., 2012. 

J4. O. M. Bouzid, G. Y. Tian, J. Neasham, and K. Cumanan, “Sound localisation 

using WSNs for SHM of wind turbine blades at Low Sampling Rates,” submit-

ted to Journal of Structural Health Monitoring, 2013. 

Conference Papers 

C1. O. M. Bouzid, G. Y. Tian, J. Neasham and B. Sharif, “Acoustic source locali-

sation using wireless sensor network at low sampling frequency for structural 

integrity assessment,” ESIA11, International Conference on Engineering Struc-

tural Integrity Assessment, Manchester, UK, 2011. 

C2. G. Y. Tian, F. Abugchem, L. Cheng, and O. M. Bouzid, “Health monitoring of 

offshore wind farms,” ESIA11, International Conference on Engineering Struc-

tural Integrity Assessment, Manchester, UK, 2011. 

C3. O. Bunting, J. Stammers, D. Chesmore, O. M. Bouzid, G. Y. Tian, C. Karatso-

vis, and S. Dyne, “Instrument for soundscape recognition, identification and 

evaluation (ISRIE): technology and practical uses,” Euronoise 2009, Edin-
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burgh, UK, Oct. 2009. 

Posters 

P1. O. M. Bouzid, G. Y. Tian, J. Neasham and B. Sharif, “Acoustic wireless sensor 

network for structural health monitoring,” Post Graduate Conference 2010, 

Newcastle University, Jan. 2010. 

P2. O. M. Bouzid, G. Y. Tian, J. Neasham and B. Sharif, “Wireless condition mon-

itoring of wind turbine blade using low rate acoustic sampling,” Products and 

Processes Postgraduate Research Awareness Event, Newcastle University, 

Mar. 2012. 

P3. O. M. Bouzid, K. J. Li, G. Y. Tian and A. Al-Qubaa, “Integration of acoustic 

emission and wireless sensor networks for intelligent wind turbine blade struc-

tural health monitoring,” Sustainable Control of Offshore Wind Turbines 

Workshop, Hull University, Sep. 2012. 

P4. O. M. Bouzid, L. Cheng, and G. Y. Tian, “Intelligent AE and PECT based 

structural health monitoring system for wind power systems,” 6th European 

Workshop on Structural Health Monitoring, July 2012. 

1.8  Thesis Outline 

This thesis consists of seven chapters. Chapter 2 provides an extensive literature review 

of SHM methods. Chapters 3 to 6 represent the main contributions of this study, while 

Chapter 7 concludes the research and outlines future work. The following sections 

summarise each chapter. 

Chapter 1 presents the research background which shows the significance of SHM for 

the offshore wind turbine industry in general and WTBs in particular. A brief review of 

current inspection techniques combined with their associated challenges is given. The 

chapter also outlines the aim and objectives, scope of the work and the general 

achievements of this study. 

Chapter 2 presents the literature survey conducted in this research, starting with an in-

troduction to wind power systems and their most important parts, with more attention 

given to the WTB. The types of failure modelling for WTBs are reviewed along with 

the state-of-the-art health inspection techniques for WTBs. The strength and weaknesses 
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of the relevant techniques are discussed with an emphasis on those which show poten-

tial for integration with WSNs. 

Based on the comparison study conducted in this chapter, the AE technique was found 

to be an effective method of detecting such failures, since most of these are related to 

stress waves; therefore, special attention is paid to this technique in the literature survey, 

with an emphasis on its integration with WSNs. The major challenges of this combina-

tion are discussed and the utilisation of low sampling rates method is described for mak-

ing WSNs more valuable and efficient in the intended SHM application. Finally a sum-

mary of the problem is presented, outlining the need for the integration of AE technique 

with WSNs in conjunction with low sampling rates to provide an appropriate SHM ap-

proach for the assessment of OWTBs. 

Chapter 3 presents the theoretical background of the compressive sensing approach with 

an emphasis on how this method differs from in this study proposed method so that the 

acoustic signals captured can be processed under the use of low sampling rates to per-

form source localisation or feature extraction based on the aliased versions of acoustic 

signals without the need to reconstruct the original signals. A general overview of TDE 

algorithms in the time, frequency, and time-frequency domains is then elaborated. These 

domains are investigated in this research in order to derive guidelines for working under 

the low sampling rates and to specify the appropriate domain of analysis for the estima-

tion algorithms if WSN is involved. 

Next, a comparative experimental investigation of the TDE methods is detailed and the 

results are discussed. These confirm the possibility of relaxing the Nyquist rate and uti-

lising sampling rates much below this criterion in the proposed application, provided 

that the time-frequency domain is used. The material of this chapter is the basis of a pa-

per published in the Journal of Applied Acoustics and International Conference on En-

gineering Structural Integrity Assessment, [J1 and C1 in Section 1.7]. 

Chapter 4 reports the wireless experimental setup as well as validation results for locat-

ing a sound source using data received from AWSNs in conjunction with low sampling 

rates method. It starts with an introduction to the theoretical background of the wavelet 

transform (WT) and the complementary TDE algorithm developed based on the rec-

ommendations made in previous chapters. Two TDE algorithms proposed for central-
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ised wireless work are discussed and compared. Ways of selecting the optimum scale 

value in continuous WT in addition to methods for enhancing the TDE accuracy are 

then explained, and the results of the continual wireless experimental assessments of 

system performance are reported. 

Issues related to the realisation of synchronised sensing operations among wireless units 

are analysed and discussed. Finally, the test results show that the proposed methods can 

provide good capabilities in overcoming the challenges of working under the employ-

ment of low sampling rates and in providing good localisation results. The material of 

this chapter is the basis of a paper published in the Journal of Sensors [J2 in Section 

1.7]. 

Chapter 5 describes the implementation of an in-situ wireless SHM technique with its 

field deployment on the wind turbine blade structure. The chapter starts with a back-

ground which covers the most relevant work to development of SHM for WTBs, fol-

lowed by the discussion of the installation challenges with an emphasis on hardware and 

software considerations. A brief review of the AE technique is also presented in this 

chapter, followed by an elaboration of the feature extraction algorithms and their use in 

AE event detection and localisation. 

The feasibility of this system in hardware and software perspectives has been validated 

by conducting several zonal and constraint geometrical point localisations. The experi-

mental wireless measurements of artificial AE source localisation are reported and dis-

cussed in this chapter, which shows the validity of the proposed proof-of-concept. The 

material of this chapter is the basis of a paper submitted to the Journal of Structural 

Health Monitoring [J4 in Section 1.7]. 

Chapter 6 also presents the experimental evaluation of both the developed wireless 

SHM system and from low sampled date extracted AE features in providing a robust 

SHM system for WTBs under field environment. This has been shown by the considera-

tion of the localisation and classification of different AE events emulated as well as 

changes of environmental conditions e.g., impact damage and rain respectively. Time 

and time-frequency feature extraction algorithms in addition to PCA method have been 

used to extract the most relevant information, which in turn are used to classify or rec-

ognise a testing condition that is represented by the response signals. 
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Chapter 7 summaries the research work conducted so far with its limitations and pro-

vides suggestions for the directions of further work based on the current investigation. 

The chapter ends with the practical implications of this research. 
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CHAPTER 2: LITERATURE REVIEW ON WTB 

HEALTH MONITORING 

 

 

The results of an extensive literature review are presented in this chapter, beginning 

with an introduction to wind power systems. This includes descriptions of the main 

parts of the system with particular emphasis on the blade of the wind turbine. The chap-

ter also considers failure models for WTB which cause audible stress waves, and then 

the state-of-the-art techniques used for monitoring the structural health of this compo-

nent are described. Evaluations of the strengths and weaknesses of these techniques are 

offered, and a comparison is made of the selection criteria used to decide which tech-

niques are able to passively detect defects and show potential ability for integration with 

WSNs. Attention is also given to the finer details of WSNs and the major challenges 

faced in the application of this technology associated with SHM for OWTBs, with spe-

cial attention paid to a combination of AE techniques with WSNs. In addition, the use 

of low sampling rates approach is described, which can make WSNs more valuable and 

efficient in the intended SHM application.  

The chapter is organised as follows. Section 2.1 presents a brief background to wind 

power system along with a description to main parts. Section 2.2 reviews some common 

failure models for WTBs. State-of-the-art techniques for the SHM for WTBs are dis-

cussed in Section 2.3 along with a detailed comparison. Section 2.4 introduces WSNs in 

conjunction with relevant data acquisition approaches. Finally, the conclusions and 

problem identification are drawn in section 2.5. 

2.1 Background to Wind Power Systems 

Wind turbines are typically used to convert wind power into a useful form of energy, 

electricity. Figure 7 shows the main components of this system, including the nacelle, 

tower, rotor, and blades. Other parts are required for delivering usable electricity, in-

http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Energy
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cluding batteries, charge-controllers, inverters, and cabling. Some of these components 

are discussed below. 

 

Figure 7: Key parts of a wind turbine [40]. 

2.1.1 Nacelle and Tower 

The nacelle is the large covered housing which contains the key components of the wind 

turbine generator. These components include a control system, a generator, gearbox, 

bearing, rotor shaft, yaw, and brake systems. The rotor shaft transfers the motion into 

the gearbox which greatly increases the speed of the rotational shaft. This shaft is con-

nected to the generator and converts the mechanical, rotational movement into electrici-

ty. The control system is employed to balance and optimise the operation of the wind 

turbine and its energy productions as well as providing a means for monitoring the wind 

turbine unit. The main function of the yaw system is to ensure that the rotor of the wind 

turbine faces the wind as its direction changes, so that the amount of electric energy 

generated is maximised at all times. The braking system is utilised to slow the rotor 

speed either electrically or mechanically. The main shaft bearing system has the func-

tion of supporting and carrying the main shaft. 

The abovementioned components are carried and supported by an essential, usually tub-

ular, part called the tower. This raises the wind turbine high into the air at between 10m 

to 100m above the ground and surrounding obstacles in order to increase energy pro-

duction, since at this height the air flows are stronger and more reliable as well as less 

http://en.wikipedia.org/wiki/Electric_potential_energy
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turbulent, particularly if the wind speed is low. In addition, having naturally faster and 

more consistent wind speeds prolongs the life of the wind turbine components and 

therefore decreases maintenance costs. 

2.1.2 Rotor and Blades 

Energy is collected from the wind through a rotor which usually consists of two or more 

blades. These blades are attached to a hub and adjusted by pitch systems to regulate the 

angle of the blades so that they can take the maximum advantage of wind speed. At the 

same time, the pitch systems function as a brake by adjusting the blade angle to slow-

down the movement of the blade. The blade face bearings are used to support the rotor 

or other moving parts and to allow the blade to pitch about a span-wise axis. These 

blades rotate about an axis which could be horizontal or vertical, at a rate determined by 

the wind speed and the shape of the blades. Once the blades are forced to move by any 

significant rotational speed, they spin the generator through the main shaft to produce 

power. This results in the kinetic energy of the wind being converted into electricity. 

Most wind turbines have three blades, and their length varies generally between 30 to 

60m (in the future blades are expected to reach 100m long). The weight of blades de-

pends on the size and the design material of the blades. Current WTBs are of specific 

interest from an engineering point of view, due to the complexity of their structures. 

They are typically fabricated from glass/carbon fibre reinforced plastics (G/CFRP) sup-

ported by lightweight materials such as wood or plastic foam. This is due to cost and 

weight issues as well as the high strength, stiffness, modulus, corrosion resistance, and 

excellent fatigue performance of G/CFRP in contrast to other materials [41, 42]. This 

makes the WTB a complicated and non-homogeneous structure, resulting in variable 

thickness, a multi-layered structure, and arbitrary curved surfaces (of the spar cap, and 

leading and trailing edges and so on) [43] as illustrated in Figure 8. 

WTBs are essential components of wind power systems and one of the most expensive 

components to maintain, representing 15-20% of the overall cost [1, 44]. They also re-

quire long time to repair in particular OWTBs. These blades are complex in section and 

rotate in extreme environments and under varying wind loading conditions, for example 

icy condition, bird and lightning strikes, and wind gusts. Such environments may lead to 

changes in the structure of the blades’ materials or their structural geometric properties, 
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which can cause failure and adversely affect performance. Failure of the blade can cause 

damage to the overall wind turbine structure as a result of rotational imbalance [1, 18, 

19]. Therefore, the detection and identification of abnormal changes in the structure of 

the blade, preferably in early stages, allows necessary repairs to take place promptly be-

fore the blade breaks. 

 

Figure 8: Cross section of a WTB showing its main parts and their variable thicknesses 

[43]. 

2.2 Failure Models for Wind Turbine Blades 

Changes in the structure of WTB materials or geometric structural properties are de-

fined as damage, which represents changes in boundary conditions and system connec-

tivities [1]. Such damage can be caused by different factors. For instance, in engineering 

systems, most materials have some inherent initial flaws or defects which tend to grow 

if these materials are continuously used under environmental and operational loading. 

Such damage can negatively affect blade performance rather than system functionality 

and, as the damage increases, it will reach a point at which system operation is affected, 

so that results which no longer acceptable are obtained. This point is referred to as a 

failure [45]. 

Failures of WTB can also be caused by other reasons as depicted in Figure 9. These in-

clude icy condition, lightning strikes, fatigue cycles, wind gusts, thermal stress, mois-

ture absorption, and bird strikes [1, 46, 47]. In wind farms, the interaction of aerody-

namic factors between groups of wind turbines may lead to unpredictable and excessive 

loads on the blades. In addition, major failures of composite blades, such as GFRP and 
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CFRP, are caused by impact damage [48]. Such harsh environment and loads can also 

result in the production of different failure models, as shown in Figure 9. In the follow-

ing sections, some of the common types of failure of WTBs are discussed briefly. These 

are related to stress waves which cause audible sound.  

 

Figure 9: Failure causes and models of WTB and inspection techniques. 

2.2.1 Impact Damage 

Current WTBs are typically manufactured from fibre-reinforced composite material. 

These blades are placed in outdoor environments, which make them subject to acci-

dental impact by different objects, such as tools, bird strikes, or strong hail. The effects 

of such causes might not be visible; however, they may lead to minor subsurface dam-

age, including delamination, fibre breakage, debonding, and matrix micro-cracking, 

which may then lead to significant reductions in the compressive strength and stiffness 

of the composites [49]. These types of failure may increase and becomes serious as the 

blades are placed under load [50]. Figure 10 shows scanning electron microscopy 

(SEM) images of failure modes during tensile tests on twelve-layer GFRPs laminates 
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[51]. These failure modes might have different shapes according to the thickness and 

type of composite materials, as shown in Figure 11. 

Composite materials have also been studied for the effects of different velocities of im-

pact, which are classified into low-velocity, high-velocity, and hyper velocity [49]. Due 

to the extensive use of these materials in different areas, such as blade manufacture, 

aerospace, and others, many researchers have investigated the effect of impacts on such 

materials [49, 50, 52, 53]. To assess and inspect impact damage, different NDT tech-

niques are available, for instance ultrasonic [54], AE [55], and X-ray radiography [56]. 

For more information about impact damage and NDT techniques used refer to Abrate 

[52]. 

 

Figure 10: SEM images of failure modes on twelve-layer GFRPs laminates: (a) Matrix 

micro-cracking and macro-cracking, (b) Delamination (c) Fibre-matrix interface 

debonding (d) Fibre breakage [51]. 

2.2.2 Delamination 

Delamination is a separation between plies and one of the most serious failure issues in 

WTB structures [57, 58]. This type of failure is undetectable through visual inspection 
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as it is sub-surface damage as shown in Figure 10 and Figure 11. It can also occur at 

several interfaces of the composite material, causing multiple delaminations. This type 

of failure can take place in several situations as a result either of manufacturing incon-

sistencies, maintenance and repair, or as a consequence of accidental impacts of foreign 

objects or due to severe loads, and the size of the delaminated area is proportional to the 

energy produced by these causes.  

Such types of failures can also lead to a significant degradation in the compressive 

strength and stiffness of the composite component [48, 59]. Thus, robust NDT tech-

niques are required to detect and characterise them during both: the manufacturing and 

employment of the composite components so that their safe operation will be ensured. 

 

Figure 11: Delamination damage to WTB driven by a buckling load [21]. 
 

A range of specific techniques are utilised or are under development which can be used 

to detect or study the effect of such failures [42, 60]. Other methods are also used for 

the detection of delamination, such as those based on AE [61] and pulsed eddy current 

(PEC) thermography [48]. 

2.2.3 Fatigue Crack 

WTBs are placed in outdoor environments which leads them to be regularly subject to 

varying wind loads. In particular, wind gusts and wind shear cause variations in load 

which may result in breaking the blade. This type of damage is known as fatigue crack 

and it is usually expressed as the number of repeated loading cycles needed to initiate a 

fatigue crack which then grows until reaching a critical size [62]. 

Therefore, careful blade fatigue tests are conducted by several national laboratories, for 

instance, the National Renewable Energy Laboratory (NREL); USA, the National Re-

newable Energy Centre (NAREC); UK, and others as mentioned in Section 2.3, in order 

to help validate and enhance the design and manufacturing of the blades [63, 64], so that 

the fatigue lifetime extended. Such tests are performed by applying a number of load 
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cycles and in each time the load is increased until the blade fails. The collected data is 

plotted in an S-N curve, which is defined as stress (S) against the number of cycles to 

failure (N). 

During fatigue tests, SHM and relevant NDT techniques are utilised to assess the blade 

structure [65, 66]. The electrical potential technique is also used to characterise impact 

damage in carbon fibre composite materials [67]. In the following sections, the state-of-

the-art approaches employed for blade health assessment and monitoring are discussed. 

2.3 State-of-the-Art Techniques for SHM of WTBs  

Generally, the SHM is a recent developed technology that is defined as a method to re-

duce O&M costs and improve the safety and reliability of structures. This is performed 

by incorporating distributed sensors into the structure in order to provide continuous 

health monitoring, and detection of damage in this structure with minimal human inter-

action. Figure 12 shows the main parts of a smart SHM system. The first part involves 

the utilised smart materials and sensors which can be, for instance, either AE, ultrason-

ic, fibre optic, vibration or any other combinations. Such sensors are used to sense the 

structural health of the structure and need be connected with a suitable data acquisition 

(DAQ) system. Acquired data are then transferred to a collection point via a sensor net-

work which can be either wired or wireless based on the nature of the sensor technique 

used. Data are collected at the central unit in order to be processed and analysed either 

off-line or online. Finally, based on the results of these analyses a decision for Go/No-

Go will be taken. 

Such an emerging technology has worldwide attracted a considerable number of scien-

tific institutions and national laboratories in different areas. For instance, civil infra-

structure such as bridge, dam, and building [68] and in aerospace vehicles [69]. The 

Structures and Composites Laboratory in Stanford's department of Aeronautics and As-

tronautics [70] as well as Key Lab for Smart Materials and Structures in Nanjing Uni-

versity of Aeronautics and Astronautics which give their attention to aerospace applica-

tion.  

The SHM systems have also an important role for WTBs in terms of reducing O&M 

costs and increasing reliability of wind turbines, particularly in the offshore industry [3, 

http://structure.stanford.edu/
http://structure.stanford.edu/
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14, 71]. Thus, SHM become an active research field since the appropriate methods 

could also provide critical in-situ information about faults in WTBs at the early stage as 

well as predicting the future failure of subcomponents and also providing information 

about the causes, types, and the locations of failure [72]. The overall significance of 

SHM for the OWT industry has been discussed above in Chapter 1. 

 
Figure 12: A block-diagram of a smart structural health monitoring system. 

 

A large number of SHM methods are used in wind power systems [1, 3, 15, 19-21]. The 

SCADA (Supervisory Control And Data Acquisition) system is one of these approaches 

which is utilised as a global technique since it is based on the general parameters of the 

wind turbine system available in the control system [73]. It also provides full remote 

control and supervision of both the wind farm as a whole and individual wind turbines, 

as shown in Figure 13. The advantage of the SCADA approach is that no additional 

hardware is required. However, the information obtained is general and does not reflect 

the exact condition of specific wind turbine components. 

In contrast, subsystems or components approaches are based on monitoring the health of 

the individual components of wind turbines and are able to provide more accurate in-

formation about the condition of each component. However, such approaches require 

more sensors and generate enormous amounts of data, both of which add complexity to 

the monitoring system. The majority of these methods are classified as certification tests 

and they are conducted by scientific institutions and wind turbine manufacturers as well 

as national laboratories, including the NREL, Sandia National Laboratory (SNL); USA, 

NASA Kennedy Space Centre; USA, Purdue University; USA, Virginia Tech; USA; 



Chapter 2 

29 

 

USA and NAREC. In particular, the Danish wind turbine industry is a world leader in 

the commercialisation of this technology. 

 

Figure 13: Wind farm SCADA system [74]. 
 

These techniques can be grouped into active or passive methods depending on the oper-

ational strategy used, as illustrated in Figure 14. In active inspection systems, the sen-

sors first require external excitation to be applied to the structure and a response caused 

by this event is then measured and evaluated [75, 76]. In contrast, passive inspection 

approaches differ from active systems in the sense that no external excitation is needed 

and relevant events are usually caused by changes within the material due to, for exam-

ple, external loads or incipient damage, as AE based SHM [65]. 

In the use of such techniques it is specified that laboratory testing must be conducted for 

the purpose of postproduction inspection prior to blade fitting [1, 3, 15, 19-21, 77]. A 

recent review [78, 79] surveys the current technologies used for testing, inspecting, and 

monitoring WTBs and composite materials. These include mechanical property testing, 

NDT, full-scale testing, SHM and condition monitoring. In the following sections, 

summaries are presented of SHM and relevant NDT techniques which may have prom-

ising application to WTBs. These include ultrasonic, AE, fibre optic, thermography and 

X-ray CT techniques. To date, the first two of these methods have been extensively used 

in SHM applications and, according to many literature reviews, they have the potential 

to perform well for online or off-line inspection techniques [78]. Due to the small vol-
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ume of fibre optic sensors, it is possible to integrate them within the blade structure in 

order to construct ‘smart blades’. Thermography and radiography, meanwhile, have the 

advantage of enabling inspection of large areas in a short time. A more detailed compar-

ison of these methods is given in Section 2.3.7. 

 

Figure 14: Active and passive techniques. 

2.3.1 Ultrasonic Technique 

The ultrasonic technique (UT) is an active approach used to inspect different solid ob-

jects. The main principle of this method is based on sending an excitation signal into a 

test specimen through a couplant, which is usually liquid or air, using an ultrasonic 

transmitter. The signal generated will propagate in the material and it be reflected at the 

back wall of the object or at any discontinuity of an acoustic property of the material 

inspected, such as flaws. 

There are two different modes which can be used to pick up the reflected waveforms; 

reflection (or pulse-echo) and attenuation (or pitch-catch). In the former mode, the re-

flected waves are recorded using the same transmitter; whereas in the latter, a separate 

transducer known as a receiver is utilised to detect the propagated waves that have 

reached it. Imperfections or other conditions existing in the specimen affect the propa-

gated waves, thus revealing their presence. The pulse echo method is limited to a pene-

tration range from the outer surface, since only a single side access is available, whereas 
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this is not the case with the pitch-catch method and hence it is more sensitive to the 

waves propagated.  

Since 1999, low frequency ultrasound NDE based on guided wave propagation has be-

come a successful technique in commercial and industrial environments [80]. In this 

method, mechanical stress waves are guided by its boundaries and propagated along an 

elongated structure. This has the advantage that the waves travel a long distance with 

little loss in energy due to the employment of very low ultrasonic frequencies compared 

to the traditional UT. This is performed by using a single ultrasonic transducer or the 

deployment of transducers in the form of arrays to transmit and receive guided waves in 

rail and pipeline applications [81, 82]. This has the advantages of the rapid screening of 

these objects and allows them to be inspected even with limited access points [83]. 

However, the interpretation of ultrasonic collected data is highly operator dependent. 

The ultrasonic guided wave has also become a widespread approach used in most oil-

gas companies [84] and the rail [85]  and the aviation sectors [86], among others. 

Recently, the ultrasonic guided wave has been applied to SHM where ultrasonic trans-

ducers can be permanently attached to a structure and the health monitoring process 

achieved either on demand or continuously [87]. The wind turbine industry is an exam-

ple of a sector where ultrasonic guided wave is utilised, particularly for the towers and 

blades of wind turbines. TWI [88] is one of the leading UK companies which has 

worked in this area along with universities and other industrial partners to develop new 

approaches for SHM based on ultrasonic guided wave, such as in the IINSIGHT project 

[89] and HEMOW [7]. 

In addition, many academic institutions have used this technology for development and 

research purposes. For instance, Jasiūnienė et al. [90] employed a pulse-echo immersion 

technique to inspect a GFRP wind turbine blade. Dr. Drinkwater from Bristol Universi-

ty, UK, and his team have used ultrasonic arrays for the imaging of composite material 

in order to detect small defects in thick sections of such material [91]. Satito and Kim-

para [92] have used both ultrasonic scanning devices and optical cross-sectional obser-

vations to reconstruct impact damage within CFRP laminates. Ultrasonic guided wave 

beam-forming has also been utilised to monitor the health of the structure of composite 

laminates [93].  
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Nevertheless, the UT is challenged by the high attenuation of sound waves in composite 

materials. The use of couplant-based transducers may increase the efficiency of the UT 

system. This coupling is in most cases water as in [94], but also it causes a challenge in 

field tests, particularly for WTBs. Air-coupled ultrasonic transducers could solve this 

problem [95]. However, this is strictly dependent on setting the correct incident angle in 

order to control mode purity, which is specifically required for composite materials in 

order to improve the signal to noise ratio (SNR) and simplify data processing compared 

to signals obtained with mixed mode excitation. Moreover, a large impedance mismatch 

between air/solid couplings may cause a poor coupling of energy from the transmitter to 

the sample. Finally, having a conventional excitation unit as, in the above mentioned 

studies is uneconomical and impractical for use in SHM systems for WTBs due to their 

large size and mass as well as complex geometry.  

A another variation of the ultrasonic method known as acoustic wave-field imaging 

(AWI) has been proposed [96], in which a sparse array of ultrasonic transmitters is em-

bedded within the component. The acoustic waves generated by exciting these transduc-

ers travel through the structure. An air-coupled receiver is employed to scan the overall 

surface of the sample in order to image it. In an alternative to this scheme which over-

comes the limitations of air-coupling, a laser interferometric sensor can be used to per-

form the scan process. If the ultrasonic receivers are embedded in the structure, then la-

ser ultrasonics will have the potential to realise the ultrasonic pitch-catch mode [97-99]. 

However, the techniques discussed above still face challenges if they are intended to be 

applied to OWTs. This is due to the harsh environment of offshore wind farms as well 

as the rotation of the WTBs which will make the employment of the laser ultrasonic or 

the laser interferometric sensors in the in-situ SHM systems difficult. In addition, the 

wind itself provides inconvenient conditions. Such techniques also require scanning the 

overall structure which will generate huge amounts of data. This is far from ideal in 

such monitoring systems. Furthermore, the inspection process would take a long time 

and would be limited to surface defects which may be affected by the purity of the sur-

face. Therefore, the UT is not selected in this research for the implementation of the in-

situ SHM system where sources of ambient excitation are needed. 
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2.3.2 Acoustic Emission 

AE is a passive method and one of the most common and sensitive NDT methods used 

in SHM systems. In this technique the radiation of mechanical stress waves within the 

material generated due to flaws or the degradation of material is used to detect and iden-

tify the fingerprints of the main possible sources [31, 79]. The radiation of these stress 

waves can be caused either by applying an external load or by ambient loading. More 

discussion concerning the principles of this technique can be found in Chapter 5.  

AE is a well-established method which has been utilised in several applications, particu-

larly research into NDT and SHM methods [100]. These include monitoring engine oil 

viscosity [101], failure identification and characterisation in composite materials [51, 

61] and in WTBs [102], and conducting the qualification testing of WTBs [24]. AE has 

also been used to study the damage mechanisms occurring in self-reinforced polyeth-

ylene composites [103]. Tests have revealed that the AE technique is able to identify 

cracks which generate audible sound, provided that pattern recognition software is used 

to evaluate this type of damage. AE techniques have also been applied in damage locali-

sation not only in metallic or, concrete structures but also in composites [104, 105]. AE 

has also been combined with ultrasonic transmission in order to track information about 

the location and the structural health of composite materials [106]. It has also been 

shown that the AE method can be used to monitor the health structural of bridges [107].  

The widespread use of this technique in different applications is most likely due to the 

following advantages. Based on a material’s structure the AE method can provide a 

monitoring technique for large structures with limited access and only a few AE sen-

sors, which is a significant advantage for field tests. However, for complex structures 

such as WTBs more AE sensors may be required [104]. AE methods also possess the 

advantage of locating the source of AE-related defects on the structure without the need 

to scan the whole structure [108].  

Compared to other NDT methods, this technique offers potential sensitivity and its ef-

fectiveness depends less on the orientation of the defect [79]. It can also be used to dis-

criminate between different AE events occurring during the inspection process. Since 

AE is a passive approach, it is possible to develop a long-term field inspection system 

running under ambient loading which can also provide the time and place of event oc-
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currence. Other strengths of AE methods are discussed in Chapter 5. 

However, the major challenge faced when using AE techniques is that sound waves are 

highly attenuated in composite materials. This challenge could be overcome by deploy-

ing more AE sensors in locations likely to suffer damage and fewer sensors in other lo-

cations. In addition, the AE source is a non-repeatable event and such an event is not 

generated unless an external load is applied to the structure. This means that the averag-

ing method, which is usually applied to eliminate incoherent noise in the data, is inap-

plicable in this case [80]. However, for applications such as the monitoring of the health 

of OWTB structure these challenges would be uncritical, because WTBs run under var-

ious different environment loads such as those caused by wind which lead AE events to 

be repeatable and therefore the effect of noise can be minimised. AE sensors are large; 

however, using micro-electro-mechanical systems (MEMS) technology may reduce the 

size and weight of these sensors. 

It is also claimed that the AE approach cannot operate on-demand or continuously. 

Nevertheless, this can be seen as an advantage for SHM systems for OWTBs. The rea-

son for this is that leaving the SHM system to run continuously will produce huge 

amounts of data which will overload the storage and processing mechanisms of the 

monitoring system. Finally, the AE technique is very costly due to the high sampling 

rates required to capture AE events, and therefore the overall cost of the SHM system 

will increase [39, 109]. The last two challenges have been identified as a research prob-

lem and are taken into the consideration in this research during the implementation of 

the proposed SHM system for OWTBs. 

2.3.3 Fibre Optic Method 

Fibre optic methods are extensively used in communications technology and have re-

cently been utilised in SHM applications in various forms. The main principle of this 

technique is based on the embedding or attaching of fibre optic sensors within or on the 

structure without the need to embed electrical devices. Then the optical fibre will act as 

a waveguide through which the optical power of a light source propagates. The propaga-

tion of such light is linearly affected by the load applied to the structure. By increasing 

this load the structure may encounter a sudden break. In this case, the light will be dra-

matically destroyed. Thus, such techniques can be used as an indicator to reflect the 
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condition of the structure [1, 110]. 

Fibre optic techniques have been demonstrated in a variety of applications using the dif-

ferent forms of optical fibres which have been developed over time [1, 111]. These in-

clude SHM in civil infrastructure such as bridges, offshore platforms [112], and marine 

structures [113], the dynamic and static testing of WTB performance under load [114], 

and blade tip deflection [115]. The fibre optic approach has been also used to study the 

influence of delamination on the resonance frequencies of composite material [116] as 

well as in damage detection [117]. The widespread employment of fiber optic methods 

is due to their many advantages such as flexibility and small sensor size, high multiplex-

ing capabilities, immunity to electromagnetic interference, the fact that no signal attenu-

ation occurs over long distances, and high sensitivity [118, 119]. 

However, fiber optic sensors are limited due to their susceptibility to physical damage, 

special test equipment is often required, and they are as yet unavailable as highly cost 

effective systems [120]. The fiber optic method cannot provide extra information about 

flaws. 

2.3.4 Thermography Technique 

Thermography or thermal imaging method is a non-contact NDT technique. The main 

principles of this method are based on capturing the thermal radiation emitted, which its 

amount increases with temperature, by all objects above absolute zero [121]. It has the 

advantage of the possible coverage of large areas in one scan without the need of inter-

action with the sample, and therefore inspection time is significantly minimised [122]. 

This makes thermography an interesting technique in the NDT and SHM fields, particu-

larly for composite materials in which multi-layer structures exist and classic NDT 

techniques cannot be used to inspect them. This is because variations in the thermody-

namic properties of the object due to internal or external stimuli generate surface tem-

perature patterns which can be imaged using an infrared imaging system. 

Thermography methods fall generally into two categories. In passive methods the mate-

rial inspected emits infrared radiation due to the broadband sources of ambient excita-

tion applied, whereas in active methods an external stimulus is required in order to pro-

duce a thermal gradient [79, 121]. Typical applications of both types of thermography 

can be found not only in NDT but also in medical, security, and military sectors, in in-
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dustry such as chemicals manufacture, and in civil and mechanical engineering, and 

many other areas [123]. It has also been applied in damage monitoring in composites 

[124] as well as for the detection of cracks in objects with complex shaped such as 

WTBs [25]. 

In active thermography, different methods can be used to provide an external stimulus 

in order to produce a temperature flow, such as laser, flash lights, ultrasonic waves, and 

eddy current. Therefore, different types of thermography have been developed that can 

also be used to inspect composite materials; namely, flash thermography [125], sonic 

thermography [126], laser thermography [127], and eddy current pulsed thermography 

[128]. 

Such techniques have the advantage that they can be used in remote sensing techniques 

where inspection can be done metres away from the objects. They also provide full cov-

erage of large areas in a short time. However, the lightning protection mesh present in 

some composite materials may mask the radiation emitted. These techniques are also 

more sensitive to defects on or near surface [79]. In addition, these methods are mostly 

applied for in-house inspection rather than in the field due to portability and cost issues 

which make them impractical for OWTBs. 

2.3.5 Radiographic Inspection 

Radiography is another NDT remote sensing technique that provides the possibility of 

the inspection and evaluation of objects without requiring physical contact. This is 

achieved by bombarding the object under test with X-rays or gamma rays, which are the 

most common forms of radiation [79]. The basic principle of this technique is the fact 

that materials have different radiation absorption properties and once a sample is pene-

trated by a beam, an image can be constructed by a detector which identifies the proper-

ties of this sample [129]. This will also reflect changes in either the density or thickness 

of the sample as well as signs of flaws. 

However, the radiography method is sensitive to the orientation of flaws and cannot 

provide additional depth information. Such limitations have been overcome by using 

computed radiography (CR). This is similar to traditional radiography; however, it al-

lows 2D and 3D cross-sectional images of an object to be generated from traditional X-

ray images by rotating the sample around one axis [130]. The resulting data are then 
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used to construct 2D and 3D images of the object, thus delivering the additional infor-

mation which would otherwise be missed. 

Both techniques have been applied in several applications, including in the medical 

[131] and military [132] fields, in SHM for WTBs [133] and NDT as well as for com-

posites [79, 134]. The widespread application of radiography approaches is due to the 

following advantages. They can inspect different types of material and thicker sections 

as well as produce better resolution in comparison to the ultrasonic technique because 

the wave-length of X-rays is significantly shorter [79, 129]. Furthermore, they require 

the minimum of preparation of the surface.  

On the other hand, the radiography method cannot provide extra information about 

flaws unless CR is used, which increases the total cost both in terms of time and money. 

These techniques require access to both sides of the object, which may be impossible in 

field applications, particularly for OWTs. The next section surveys and discusses the 

most relevant in-situ SHM systems developed for WTBs. 

2.3.6 Relevant Work on in-situ SHM Systems for WTBs 

Most of the above-mentioned NDT methods are well established and are suitable when 

conducting laboratory tests or qualification blade inspections. However, few attempts 

have been made to utilise them in field monitoring of the structural health of WTBs. 

Since the main topic of this research is the implementation of an in-situ SHM technique 

for OWTBs, this section briefly surveys the most recent and relevant SHM techniques 

employed for such an intention. 

In-field (in-situ) SHM approaches for OWTBs play an important role, since they can 

detect faults at the time of occurrence, while wind turbines are in operation and there-

fore appropriate action can be taken in time to prevent the occurrence of any further 

damage or failure. These techniques are either stationary or dynamic in-service meth-

ods. Stationary testing means that the inspection process is completed while the blades 

are static, whereas in dynamic testing the inspection process is realised as the blades 

rotate while in-service.  

Recently, there have been some attempts to extend laboratory methods to be realised as 

in-situ monitoring systems for both static and dynamic tests. One such attempt [24] is 
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illustrated in Figure 15-a. In this approach, an AE technique (AET) in conjunction with 

a “load and hold” principle was applied to a WTB. The results show the possibility of 

applying this method to static in-field inspection. However, it is time-consuming, diffi-

cult to implement for OWTs, and it alters the components since it needs to be repeated 

many times.  

 

Figure 15: In-situ tests: a, b) AET [24], c) Laser vibrometer [5] and d) Robot inspector 

[29]. 

 

To overcome the drawback of overloading the wind turbine components, the authors 

proposed the use of AET in conjunction with WSNs, as shown in Figure 15-b. AE sen-

sors were employed in this prototype mounted span-wise along the blade which was left 

under wind load during its rotation. The effectiveness of the prototype; however, was 

affected by noise produced due to the way the sensor was attached to the external sur-

face of the blade. 

More recently, a continuous-scan laser Doppler vibrometry (CSLDV) method has been 

proposed for the static inspection of WTBs [5]. Figure 15-c shows the idea behind this 

approach, which employs a laser vibrometer to measure the natural frequencies and 

mode shapes of the first several modes of the WTB. The WTB was excited by ambient 

wind.. In this method, a retro-reflective tape was applied on the blades in order to en-

hance the SNR; however, the blade’s curvature and movement affect the reflectivity at 

some points [46, 135]. 

A long distance laser ultrasonic propagation imaging system has been proposed [22] to 

mitigate the challenges of applying the CSLDV method via the integration of AET and 
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laser ultrasonic. AE sensors and ultrasonic receivers are embedded in locations likely to 

suffer damage. Once the AE sensor detects a failure event, a laser beam generated by a 

portable long distance ultrasonic propagation imaging system installed in the wind tur-

bine tower is directed to that position for further scanning. However, the proposed wired 

embedded sensors and the portability of the laser ultrasonic system are still challenges, 

especially for offshore applications. 

The same author then conducted a feasibility study [135] using a laser displacement 

sensor (LDS) for in-situ blade deflection monitoring. Another approach proposed for 

remotely monitoring the dynamics of WTBs uses laser interferometry [136]. However, 

although these proposed techniques tackle important problems in wind turbines, they are 

still incapable of delivering enough information about the overall structural health of the 

blades. In addition, these techniques require the surface of the blade to be clean and thus 

it would be a challenge to apply them to OWTBs, especially in extreme weather condi-

tions, since they need to be supervised by operators. 

An advanced climbing robot shown in Figure 15–d has also been proposed [29]. This 

approach has the advantage that it involves advanced techniques for more precise in-

spections. However, the cost is high and the inspection procedures must be conducted at 

regular intervals as well as taking a long time. Passive and active thermography tech-

nique have also been applied to inspect WTB, in the field [25], and the results show po-

tentially effective performance in the detection of different defects. Another advanced 

approach for a dynamic WTB field inspection system is based on a frequency modulat-

ed continuous wave (FRCW) radar system [30]. This system uses a novel approach; 

however, it is still far from being a commercially viable system and it will be an expen-

sive and time-consuming approach if it is intended to be applied to OWTBs.  

So far, some of the in-situ techniques discussed above show clear potential for WTB 

inspection. Nevertheless, these techniques may be costly, time-consuming, rely on regu-

lar inspection intervals or their performance is degraded by poor SNRs. Most important-

ly, they also need to be supervised by an operator. Therefore, these approaches are im-

practical for OWTBs. 

In addition, remote sensing or wireless inspection techniques would seem to be the op-

timum solution for such applications in order to provide online testing and inspection. 
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The main reasons for this are that a greater number of wind farms are being placed in 

more remote areas, and the size of OWTs has become physically larger. These factors 

make their transport and reaching them for inspection very difficult. Thus, the selection 

of suitable techniques and the integration of several different technologies are nowadays 

very important in order to develop a robust continuous online SHM system [19]. 

2.3.7 Comparison of NDT Methods used in SHM for WTBs 

This section provides a short summary of the strengths and weaknesses of the NDT 

techniques discussed above and as shown in Table 2. 

Table 2: Comparison of NDT techniques used in SHM for WTBs [1, 3, 15, 19-21, 77, 

115, 119, 120]. 

NDT technique Advantage Disadvantage 

Ultrasonic • High sensitivity 

• Detection of surface and subseries flaws 

• Depth information 

• Reproducible of flaw detection 

• Possibility of mode purity 

• Low complexity of signals 

• On-demand inspection 

• Couplants are needed 

• Extensive technical knowledge is 

required 

• Surface preparation 

• Difficulties in inspecting irregular 

shapes 

• High penetrating power 

• Baseline 

• Relies on regular inspection inter-

vals 

• Time consuming 

• Short-term field inspection 

• Supervision is needed 

• High signal attenuation 

Acoustic Emis-

sion 

• High sensitivity 

• Real time detection and high SNR 

• Defect localisation 

• Able to detect at an early-stage faults 

• Passive and in service inspection 

• Capable of portable or highly automated 

operation 

• No Couplants are required 

• Adaptable with WSN 

• No supervision is needed 

• Frequency range far from load perturba-

tion 

• Long-term field inspection 

• No need to disassemble and clean a spec-

imen 

• Few access points are required 

• Non-repeatable event 

• Event based 

• Very high sampling rate required 

• No quantitative results about size 

and depth 

• High signal attenuation 

 

Fibre optics • High sensitivity 

• No attenuation over long distances 

• Impractical for large wind farms 

• Requires extreme care for safe 
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• Small size and light weight 

• High multiplexing capabilities 

• Immunity to electromagnetic interference 

installation 

• Susceptibility to physical damage 

• Thermal sensitivity 

Thermography • Large scale inspection 

• Full-coverage in short time 

• Can be used for inaccessible areas 

• Single side access is required 

• No specific safety required 

• Limited to on or near surface flaws 

• Manual operation and expensive 

• Difficult to use on rotating blades 

• Difficult to detect interior damage 

• Relies on regular inspection inter-

vals 

• Short-term field inspection 

• Supervision is needed 

• CR is a high computational cost 

method 

Radiography • Depth information 

• Suitable for complex structures and dif-

ferent material 

• Large scale inspection 

• Full-coverage in short time 

• 2D and 3D images 

• Good contrast sensitivity 

• Manual operation 

• Double sides access are required 

• Expensive 

• Difficult to use on rotating blades 

• Health risks 

• Rely on regular inspection inter-

vals 

• Short-term field inspection 

• Supervision is needed 
 

2.3.8 Choice of Appropriate NDT Technique for SHM for OWTBs 

SHM systems for OWTBs play a pivotal role not only in the prevention of serious acci-

dents and catastrophes but also in minimising the cost of O&M [15]. To achieve these 

objectives, an NDT technique should be appropriately selected in order to provide an 

efficient and reliable fault prediction system which gives early warnings of blade de-

fects and may prevent major component failures. This is particularly important for 

OWTBs where prompt repair means that breakdown is avoided, minimising both down-

time and maintenance costs as well as prolonging the lifetime of OWTs [77]. 

This section therefore provides guidelines for the choice or development of a suitable 

SHM method for OWTBs. Nevertheless, the significant challenges which face the im-

plementation as well as the integration of any existing or future development of SHM 

methods for OWTBs are first reviewed. 

2.3.8.1 Challenges Faced by SHM Techniques for OWTBs 

Placing wind farms in remote areas such as offshore environments leads to several chal-

lenges in the development of a suitable SHM technique for OWTBs. Some of these 

challenges have been listed in Chapter 1. Nonetheless, they are briefly reviewed here in 
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order to assist in providing criteria for the selection of the most appropriate inspection 

and monitoring technique for SHM application, as discussed in the next section. 

Offshore wind farms are located in remote areas where enormous expense may be in-

volved in reaching them, particularly in harsh environments with for example extreme 

weather conditions, wind gusts, and lightning. Besides that, the large scale and structur-

al complexity of WTBs as well as their rotation under dynamic loads make the adoption 

of existing wired SHM approaches in such structure impossible. Offshore wind farms 

normally comprise of several wind turbines, which makes the possibility of inspecting 

them regularly and under the supervision of operators or inspectors very time-

consuming and expensive. Furthermore, the existence of several wind turbines per farm 

necessitates the use of low cost SHM techniques with hierarchical communication, sig-

nal processing and robust data management techniques for the purpose of data minimi-

sation. 

These factors guide the choices made in the development of an appropriate SHM tech-

nique for offshore wind turbines, as shown next. 

2.3.8.2 Selection Criteria of an NDT Method for SHM 

In general, the development of a good SHM method for OWTBs depends on the sensor 

technology, the data acquisition technology, signal analysis and interpretation, and the 

hierarchical communication between the wind farm and the remote control room [1]. 

Understanding and optimising these concerns will help in tackling some of the chal-

lenges mentioned above. For example, the deployment of a large number of sensors re-

sults in immense amounts of data; therefore, special ways are required to pre-process 

such data, and to extract only the most meaningful information for delivering to the re-

mote control room. 

Therefore, based on the above discussion, an inspection method is required to continu-

ously monitor the structural health of the blades and to warn of possible failure at an 

early stage. Based on the extensive literature review of NDT methods conducted above, 

the method employed or that developed in the future should satisfy the following condi-

tions: 

 The method should not be based on regular inspection intervals. This is because 
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the condition of blades between these intervals would remain unknown. 

 Faults should be detected at an early stage. This is required to take prompt repair 

action before a catastrophic failure occurs. 

 A passive technique should be used. This is due to the difficulties in employing 

excitation units due to the rotation of the blades. Besides, it is unnecessary to use 

such units, since the blades work under wind loads which are themselves enough 

to excite the structure. 

 The development and installation costs of the method should be low, since it 

will need to be integrated into a large number of wind turbines. 

 The method should have the ability to be integrated with WSNs, because wired 

solutions are impractical for such applications. 

 The method should work as a stand-alone technique without any human-

machine interaction (supervision) if possible. This is due to access costs and dif-

ficulties, particularly in extreme weather conditions. 

Table 3: Important selection criteria of NDT method for SHM for OWTBs. 

 Selection criteria 

NDT technique 
Irregular 

intervals 

Early de-

tection 

Low 

Cost 

Passive 

mode 

Adaptable 

with WSN 

No supervi-

sion 

AE √ √ √ √ √ √ 

Ultrasonic X X √ X X*  X 

Fibre optics √ √ X X X √  

Radiography X X X X X  X 

Thermography X X X √ X X 

*Challenge with excitation unit, 

 

Table 3 summarises these criteria in relation to the above-discussed NDT methods. It is 

worth mentioning that the cost criterion is not specified here in terms of a specific val-

ue; but based on a comparison between the cost of an UT or AE system and a radiog-

raphy system. The UT system may also be adaptable with WSNs; nevertheless, difficul-

ties will occur with excitation units. Finally, as is clear from this table, the AE technique 

satisfies most of the requirements of SHM systems for OWTBs. Thus, the AE technique 

is selected in conjunction with WSNs in the development of a wireless SHM technique 
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to monitor the structural health of OWTBs. The rest of this literature survey pays atten-

tion to this type of integration and the challenges which emerge. 

2.4 WSNs and Data Acquisition Techniques 

Based on the previous discussion, the AE technique can play a pivotal role in the design 

of an SHM system for OWTBs since it satisfies most of the criteria required for the de-

velopment of such monitoring systems in offshore environments. One of these criteria 

was the possibility of the integration of this technology with WSNs which will open up 

new horizons for transforming wired SHM systems into wireless systems. However, the 

combination of the two technologies encounters various issues which need to be tackled 

first. These challenges are out of the scope of this chapter, having been discussed in 

Section 1.3 in conjunction with the definition of the WSN as well as in the studies 

which have been published [35-38]. 

In the context of the challenges highlighted so far, wireless sensor nodes are resource-

constrained in terms of power supply, storage capacity, and processing capability. Thus, 

the utilisation of WSNs in SHM systems necessitates the efficient use of these re-

sources, particularly of the power supply which is a crucial requirement for the individ-

ual sensor nodes. This can be achieved in different ways, as shown in Figure 16 [137]. 

Firstly, ‘duty cycling’ takes advantage of topology control or power management which 

focuses on putting the radio transceiver into sleep mode whenever no transmission is 

needed. Alternatively mobility-based techniques deploy a mobile sink or a service for 

message relaying, or data-driven approaches emphasise data reduction and the utilisa-

tion of efficient techniques for DAQ. The first two approaches are beyond the scope of 

this literature review; however, a more detailed review of these methods has been pub-

lished [137]. 

The data-driven technique has been used in different projects which have dealt with 

WSNs in sensing acoustic signals. For example, Grosse et al. [138] presented a wireless 

SHM technique based on the detection of AE activity, where once an AE event is de-

tected, the system starts to record and transmit whereas otherwise the acquisition pro-

cess stops. In another study [139], AE signals are locally processed to estimate AE ac-

tivity based on the “Hit-rate” or “Event-rate” exceeding a threshold value. Lédeczi and 

his team [140] also presented a wireless monitoring system for bridges based on AE 
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which used sleep/wake-up modes to save power and reduce data. In the following sec-

tion, the data-driven technique is discussed in more details. 

 

Figure 16: Taxonomy of approaches to energy saving in sensor networks [137]. 

2.4.1 Data-driven Approaches and WSNs 

Because data-driven approaches are more relevant to the topic of this study, they are 

considered further in this section. This type of method is categorised into two tech-

niques which aim to reduce the amount of data transmitted by utilising two different 

principles, as shown in Figure 17 [137]. The first approach achieves data reduction via 

the local pre-processing of raw data on-board on wireless units, so that only the results 

of evaluation and other meaningful information are transmitted to the remote control 

room; these are distributed WSNs [141]. Here the radio frequency transceiver of the 

wireless sensor node is the most power-hungry part, whereas the local processing of da-

ta consumes much less energy [142, 143]. On the other hand, in data compression in-

formation encoded on-board is sent to the sink where it is decoded with the aim of re-

moving redundancy in the information [144]. Finally, data prediction is based on de-

scribing the actual phenomenon sensed by a sensor node via the development of a spe-

cific model executed at the sink [145]. 
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Figure 17: Taxonomy of data-driven approaches to energy conservation [137]. 
 

2.4.1.1 Energy-efficient DAQ Schemes 

In contrast, energy-efficient DAQ schemes try to tackle the problem of energy conser-

vation from another angle, by reducing the power consumed by the sensing subsystems, 

such as analogue-to-digital converter (ADC) devices which may consume much more 

power than radio transceivers [137, 146, 147]. This may be due to the power-hungry 

nature of such devices, their long acquisition times, and the use of active sensors. Nev-

ertheless, these schemes also have a direct link to data reduction and therefore the min-

imisation of the amounts of data transmitted. 

As illustrated in Figure 17, this technique can be performed in the form of adaptive 

sampling, where the sampling frequency is adjusted based on a temporal analysis of the 

information acquired [148]. Unfortunately, this may lead to the problem of over-

sampling if unnecessarily high sampling rates are set. A Kalman filter-based method is 

used to overcome such problems; however, this method requires the adaptive sampling 

to be calculated in a centralised unit which broadcasts it to the sensor nodes. Other 

adaptive techniques are discussed in more detail in the literature [137, 149]. 

Another form of energy-efficient DAQ approach is known as a hierarchical sampling 

routine or multi-scale sensing, in which a cluster of efficient power sensor nodes are 

used first to detect events; nonetheless, this process has limited resolution. Next, more 

advanced nodes are employed to perform a more detailed detection [150]. The level of 
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accuracy of this approach is the result of a trade-off between resolution and power effi-

ciency. 

Model-based active sampling predicts the future values of a sensed phenomenon based 

on a model which is developed using an initial set of sampled data with known levels of 

accuracy [151]. By doing this, energy is saved in the next sampling process. As long as 

the accuracy gained becomes low, a new model needs to be estimated in order to follow 

changes in the physical phenomenon monitored [137]. 

Although these methods can contribute to data reduction and therefore a preservation of 

the communication bandwidth as well as the optimisation of power consumption, these 

methods may be unsuitable for dynamic events which exhibit rapid variation over time. 

This is due to the significant communication overhead between the nodes and the cen-

tral unit or sinks. This results in busying the wireless nodes which makes its response to 

other actions slow. In addition, multi-scale sensing adds more complexity to the moni-

toring system, particularly for SHM applications. These techniques still follow the 

Nyquist theorem for sampling acoustic signals which is one of the most critical chal-

lenges in WSNs. Thus, the use of sub-Nyquist sampling rates approaches is required in 

SHM based AE applications, which will lead to a reduction in both the amounts of data 

and power consumption, as discussed next. 

2.4.1.2 Compressive Sensing Approach and WSNs 

In several WSN-based applications, due to resource limitations part of the captured data 

is often discarded before being stored or transmitted in order that the signal can be com-

pressed. In addition, ADCs are power-hungry devices, particularly if high sampling 

rates are used. Thus, the question that is raised is why the physical phenomenon to be 

monitored is not sampled at lower rates in order to save cost and time, if part of the data 

is going to be thrown away anyway. The answer to this question represents the basic 

principle of the recently emerging technique of compressive sampling or sensing (CS). 

A recent extensive review lists the latest studies covering CS and its applications [152]. 

CS is an alternative theory to Nyquist criterion which is about recovering a signal or an 

image from a few random samples much less than what Nyquist criterion usually sug-

gests. However, this is subject to the condition that signals or images satisfy the re-

quirements of sparsity and compressible representation Donoho [153] and Candès et al. 
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[154]. The CS relaxes the Nyquist criterion and allows the employment of low sampling 

rates in the process of the acquisition of data from the physical phenomenon. It has at-

tracted a considerable number of researchers in different areas ranging from medical 

imaging, signal processing and seismology to communications and networking. Recent-

ly, there has been a growing interest in applying the CS technique to a wider range of 

topics in SHM and the relevant NDT techniques in conjunction with WSNs. 

Such an application has the advantages that it results in saving time and cost, since it 

does not work on the basis of first sensing then compressing, but instead performs com-

pression while sensing at a lower sampling rate. Applying these principles in WSNs 

leads to overcoming the limited resources of WSNs, including storage, bandwidth, and 

power problems. This is why this approach is categorised among the energy-efficient 

data acquisition schemes, as shown in Figure 18. 

 

Figure 18: Taxonomy of energy-efficient DAQ approaches with the new data reduction 

method. 
 

Most of the works conducted in CS [155, 156] have the intention to perfectly recover 

the monitored physical phenomena from a small number of random projections sent 

over the wireless link, as will be discussed in Chapter 3. However, the reconstruction of 

these phenomena at the sink may lead to a degradation in quality of the recovering pro-

cess due to variations in the data gathered if it is not manipulated appropriately [157]. 

Also, sending a number of random vectors to the central unit is still a challenge and 

makes the recovery process severe [158]. This is true for applications such as SHM, in 

which the recovery of the original signal or image may be unnecessary if data are local-

ly processed and main features are extracted under the use of low sampling rates. In this 

case, these challenges can be overcome, as shown next. 
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2.4.2 Feature Extraction under the Use of Low Sampling Rates 

Working with the CS dates back to the research of Hsu et al. 1983 [159], where targets 

were recognised automatically from compressed images. Since then, it has found appli-

cation in different areas, such as the detection of moving objects by surveillance sys-

tems [160]. In this application the moving objects are determined from compressed vid-

eo data without the need to recover the original image, which has led to the develop-

ment of computationally efficient surveillance systems.  

Nagesh and Li [161] have shown that the low-dimensional random projection of origi-

nal images can offer sufficient information for feature extraction, which can provide 

good classification. Therefore, it is also possible to extract features when CS is involved 

[162]. Zhang et al. [163] have used a very sparse measurement matrix which allowed 

them to efficiently extract features to be used for a tracking task. This enabled them to 

execute the tracking algorithm on a real-time basis due to computational energy savings 

while still performing well in terms of accuracy and robustness. In another study [164], 

the features of lines were directly extracted from the compressed images rather than 

from reconstructed images. 

The same principle has been also applied in compressive wireless sensing. Shoaib et al. 

[158] presented a seizure-detection processor which is able to extract locally on-board 

features from compressively-sensed electroencephalograms (EEGs), which reduces the 

communication and energy costs. Dang et al. [165] presented an interesting example of 

running a light-weight animal classification algorithm on resource-constrained wireless 

nodes (MICAz) based on the extraction of a shape feature or envelope from randomly-

sampled data at much lower rate than the Nyquist rate would require, where the analysis 

is performed using the compressed data. 

The integration of CS with wireless sensor technology enables this technology to over-

come to a certain degree the challenges of resource-constraints in terms of saving pow-

er, reducing communication bandwidth load, and relaxing storage capability. However, 

the transmission of the selected random samples to the central unit is still a challenge. 

According to one study [166], the power cost required to send a single bit of data is al-

most the same as the power required to execute a thousand instructions in a typical 

wireless sensor node. Therefore, the local processing of these samples for the purpose of 
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feature extraction can mitigate the energy conservation problem for wireless networks 

via the reduction in the amount of raw data transmitted. A critical discussion of these 

methods is presented in Chapter 3. 

2.5 Summary and Problem Formulation 

An extensive literature survey of SHM methods for WTBs is reported in this chapter. It 

began with an introduction to wind power systems and their most important parts, with 

more attention given to the blades of wind turbines, followed by a brief summary of 

types of failure modelling for WTBs. The state-of-the-art health inspection techniques 

which are promising for application to WTBs were reviewed along with a comparison 

of the strengths and weaknesses of these techniques. More emphasis was given to those 

which show potential for integration with WSNs. 

In the context of this comparison and the challenges faced in applying these methods to 

OWTBs, the selection criteria for a suitable NDT technique to develop an SHM system 

for the blades were formulated. The AE technology is found to be an effective method 

for such applications in conjunction with WSNs. The major challenges of this combina-

tion are discussed and the use of low sampling rates is suggested to make WSNs more 

valuable and efficient in the intended SHM application. Thus, the literature survey end-

ed with a review of the CS technique along with feature extraction under the use of the 

new proposed technique. 

From the literature survey several problems arise in monitoring the structural health of 

OWTBs which need to be addressed especially for in-situ systems used for the long-

term monitoring of offshore blades with continuous online feedback. These are as fol-

lows: 

 Recently, wind turbines have become physically larger and more wind farms 

are placed in remote areas. Blades are fundamental components of wind power 

systems and one of the most expensive components to maintain. Faults in 

blades cause long downtimes which leads to high O&M costs. Early detection 

of potential damage and its status with the help of smart SHM techniques for 

condition-based O&M is now considered vital. 
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 The placing of wind farms in remote areas leads to access difficulties, particu-

larly during extreme weather conditions. In addition, access to large blades re-

quires the use of means such as ropes or other tools which may expose inspec-

tors to risk. Limited access to the interiors of blades is also a problem. Special 

landing boats may even be needed to gain access to wind turbines. The inspec-

tion process may be a lengthy procedure, and for all these reasons inspection 

costs will increase. Visual inspections may be limited to only surface defects 

and not interior anomalies.  

 Although many SHM and relevant NDT techniques are available, the direct 

adoption of traditional methods such as tap tests and ultrasonic testing to 

OWTBs may also be limited due to requirements of human supervision and ac-

tive excitation units, which results in them not being viable for in-service or 

online monitoring. This necessitates the development of smart wireless sensors 

as well as SHM systems for OWTBs that can overcome such challenges. 

 The AE technique presents the opportunity to develop a wireless, in-situ, and 

long-term monitoring system for OWTBs. Nevertheless, this method is very 

costly in terms of data generation due to the high sampling rates required to 

capture the AE events. Furthermore, the large size of OWTBs necessitates a 

considerable number of sensors in a complete SHM system in order to achieve 

full blade coverage, and online continuous monitoring increases the amount of 

sensing data produced. 

 The heavy traffic load produced in SHM represents a challenge for wireless 

technology due to the limitations of data transmission over WSNs and the high 

latency in data collection and increased power consumption. Therefore, the re-

duction of the volume of the data via the use of low sampling rates in wireless 

technology will play a significant role in tackling such SHM problems, as 

shown in this thesis, particularly in Chapter 3. 

 Finally, hierarchical communication and ICT tools for information fusion, deci-

sion making, and wind farm maintenance management are needed. 



Chapter 2 

52 

 

To address the problems identified, a research approach using wireless sensor networks 

are proposed and investigated in the next several chapters. In the following chapter, the 

systematic approach and the investigation of sampling rate requirements for wireless 

ASL are presented. 
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CHAPTER 3: SYSTEMATIC APPROACH AND 

SAMPLING RATE REQUIREMENTS FOR 

WIRELESS SENSOR NETWORKS 

 

 

 

The comprehensive literature survey carried out in Chapter 2 suggests to develop an in-

situ SHM system based on the use of low sampling rates in wireless acoustic sensor 

technology in order to overcome the limitations of data transmission over WSNs, this 

chapter discusses the theoretical background of CS, in an effort to demonstrate the fun-

damental change achieved with the proposed concept of lowering the sampling rate in 

the acquisition operation of acoustic signals. The chapter also investigates the effect of 

employing the new data reduction method on the accuracy of time delay estimation 

(TDE) using different algorithms in the time, frequency, and time-frequency (content-

based features) domains. These include basic cross correlation (BCC), generalised phase 

spectrum (GPS), and envelope-GPS (EGPS). It also attempts to specify methods which 

will effectively analyse the  acoustic signals acquired at low sampling rates so that any 

drawbacks associated with lowering sampling rates, such as information loss and low 

spatial sampling, are overcome. 

The chapter is organised as follows. Section 3.1 presents the systematic approach to this 

work. Section 3.2 reviews the CS approach in conjunction with WSNs. The TDE algo-

rithms which are widely used for sound localisation are discussed in Section 3.3. Sec-

tion 3.4 describes the experimental setup that was built to capture different acoustic sig-

nals at different sampling rates. In Section 3.5, the results of comparisons of the TDE 

algorithms and their impact on WSN design and development for ASL are discussed. 

Finally, the conclusions are drawn in section 3.6. 
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3.1 Research Methodology 

To address the problems identified in the literature review, the systematic approach for a 

wireless in-situ SHM system proposed in this research is outlined in this chapter and as 

shown in Figure 19, which involves five main tasks. Each task is covered in one chapter 

of this thesis and has its own function and output that contributes to the next task as well 

as to the overall research. These tasks are described below: 

 Task 1: Undertaking a comprehensive literature review in order to explore the 

state-of-the-art inspection techniques for SHM and to choose an appropriate ap-

proach for the inspection of the structural health of OWTBs in conjunction with 

WSNs. A proposal is also outlined for tackling the challenges identified with the 

selected technique, as discussed in Chapter 2. 

 Task 2: Following the recommendations arising from Task 1 and due to the limi-

tations of data transmission over WSNs, the sampling rate requirements for ASL 

using WSNs are investigated in this chapter. The analysis is carried out by test-

ing different time delay estimation (TDE) algorithms in the time, frequency, and 

time-frequency domains based on content-based features extracted from the ali-

ased versions of the sound signals used. 

 Task 3: Based on the conclusions drawn from the previous task, which were 

based on the use of a wired localisation system, a wireless setup for ASL is built 

in order to validate the findings of the previous task using data received from a 

centralised AWSN. The completion of this task is the basis of the work dis-

cussed in Chapter 4 and is realised by continual experimental assessments of 

system performance by conducting several kinds of measurements of the central-

ised wireless ASL using low sampling rates. The underlying theory behind the 

technique developed is also studied. 

 Task 4: The experiments discussed in the previous task are lab-based experi-

ments using a centralised AWSN where advanced signal processing techniques 

are used to locate a sound source. This task will extend the experience gained 

from Task 3 to the field environment. The completion of this task is the basis of 

the work discussed in Chapter 5. A case study for in-situ AE sensing and the lo-

calisation of emulated impact damage are also considered in this chapter, where 
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blade health is assessed and the emulated AE events are localised. 

 
Figure 19: Block diagram of the research methodology. 

 

 Task 5: In addition to the evaluation of the in-situ wireless SHM system imple-

mented for the localisation of AE sources emulated on WTBs, it is of significant 

importance to distinguish between such emulated sources and AE events relative 

to environmental monitoring. Therefore, a further evaluation case study of the 

in-situ system developed is considered in this Task. The material of this task is 

the basis of the work discussed in Chapter 6. 

The rest of this chapter reports on the completion of Task 2, whereas the rest of the the-
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sis covers the material introduced in the last three tasks where a critical discussion of 

the results is also provided.  

3.2 Requirements of Low Sampling Rates 

The Nyquist sampling criterion states that, for a perfect reconstruction of a signal, the 

sampling frequency should be at least greater than or equal to double the maximum fre-

quency of the signal being monitored. Otherwise, aliasing will occur which will cause 

the misinterpretation of the sampled signals (aliased versions) and ruin the reconstruc-

tion process. However, CS offers new concepts for relaxing the Nyquist-Shannon sam-

pling theorem, where the original signals or images can be reconstructed from far fewer 

samples than traditional techniques necessitate [153, 167]. This opens new horizons for 

facilitating numerous applications in different areas, ranging from image reconstruction, 

medical imaging, compressive wireless sensing, and analogue-to-digital converter. Re-

cently there has been a growing interest in applying the CS approach to a wide range of 

applications, such as wireless ASL, SHM and many others. In the following section, the 

underlying theory behind the traditional CS is discussed, followed by an explanation of 

the use of this approach with WSNs. Then the derived concept of utilising the low sam-

pling rates in the WSNs is presented. 

3.2.1 Compressive Sensing Theory 

CS is a new approach and is still being explored. The main principle of this technique is 

detailed in several published studies [153, 168, 169]. CS is an alternative theory to the 

Nyquist concept, and concerns the recovery of signal or image from a few random sam-

ples at much lower rates than what the Nyquist criterion would usually suggest, provid-

ed that the signals have a sparse or compressible representation [153, 154]. 

Next, a brief introduction to CS in mathematical terms is given. Assuming a discrete 

time signal of interest in ℝ is given by      where          . This signal can be rep-

resented as in Equation (3.1) [153, 167]: 

   ∑     
 
   , or in a matrix form as         (3.1) 

where                is the     basic matrix with basis orthonormal vectors    

as columns and the vector                  ℝ of n sampled values of     .   
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represents the     column vector of coefficients and can be expressed as in Equation 

(3.2) [153, 167]: 

     , where             (3.2) 

Assuming y is an     length data vector acquired by a linear projection of x which is 

defined as in Equation (3.3) [153, 167]: 

          ̃       (3.3) 

where  ̃     is an     matrix and   ℝ    is known as a measurement matrix 

with    . Then the aim is to recover the signal x or to find a suitable approximation 

of it by finding a solution to Equation (3.3). This problem is an ill-posed problem, since 

it is an underdetermined system, where the number of equations m is less than the num-

ber of variables. A solution to this problem exists for a case where signals or images are 

sparse, which is the case for most of them, which means that for a signal of length n, it 

is possible to represent this signal with     non-zero coefficients  [170]. Under this 

condition, Equation (3.3) can be solved to retrieve   from a small number of measure-

ments with very high accuracy based on optimisation approaches [171, 172] from which 

the signal x is reconstructed using Equation (3.1). 

Therefore, to reconstruct the compressible signal x from a relatively small set of random 

projections, a convex l0 norm minimisation problem needs to be solved as in Equation 

(3.4) [173]: 

      ℝ       provided that         (3.4) 

where      represents the l0 norm (i.e., the count of the nonzero elements in x). Howev-

er, the l0 norm gives unstable numerical results and it is an NP-hard problem [174]. It 

has been proven that the l1 norm is equivalent to the l0 norm and can be easily expressed 

as a linear program for providing an efficient solution to the previous convex minimisa-

tion using Equation (3.5) [154]: 

     ℝ        provided that         (3.5) 

In reality, measurements are contaminated by a finite level of noise which needs to be 

taken into account while solving the optimisation problem, as in Equation (3.6) [167, 
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175]: 

     ℝ        provided that             (3.6) 

where      denotes the l2 norm (i.e., the Euclidean norm) and ε is a given noise level. 

As seen in Equations (3.4)-(3.6), the main target of the sparse approximation problem is 

to find a good approximation of the original signal or image via a linear combination of 

a few elementary signals which are randomly chosen from a fixed set of signals. Be-

cause the present research is not based on the full reconstruction of the original infor-

mation, these techniques will not be considered in the rest of this chapter. However, 

more details and other techniques have been presented in a comprehensive survey of 

most practical methods for sparse approximation [175]. 

3.2.2 Uniform Low Sampling Rates Concept  

The aforementioned discussion focuses mainly on the principle of CS in recovering a 

compressible signal x from far fewer measurements y than is usually required. These 

measurements inherit most of the sparse salient information of the original data [163]. 

Such data make it possible to directly use them to extract meaningful information, if 

appropriate techniques are employed, without first having to reconstruct the original da-

ta. This has the advantage that it is not only computationally efficient but also reduced 

communication cost and balanced network load problem associated with large data 

transmissions [160]. 

On the other hand, the employment of low sampling rates in the data acquisition opera-

tion of acoustic signals is particularly relevant for applications where meaningful infor-

mation can be extracted from the content-based features (envelopes) of the aliased ver-

sions (low sampled data) without the need to use the reconstructed signals. In this case, 

the following questions may be raised: 

 Would be possible to use the aliased versions for further processing, without the 

need to recover the original signal? In which domain of analysis should they be 

processed? 

 Would they be usable for locating sound sources? Would they inherit useful fea-

tures for AE event detection and classification? 

 By doing so, what are the conditions and guidelines for the employment of low 
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sampling rates to reach this goal? 

 How can the drawbacks, including information loss and the low spatial resolu-

tion caused by the employment of such sampling rates, be overcome?  

The answers to these questions represent the major contributions of this research which 

are sought in the rest of this chapter as well as the subsequent chapters. 

In general, the utilisation of low sampling rates in this research differs from the princi-

ple of the traditional CS in the following important aspects and as shown in Figure 20. 

Firstly, this research utilises a concept of employing low sampling rates much lower 

than the Nyquist rate to generate aliased versions of the physical phenomenon (x), rather 

than using a random projection process, as shown in Figure 20-a. The produced versions 

represent the raw data which can be either sent to a global central unit or processed lo-

cally in order to extract the features required and to create the AVPs. The AVPs will be 

then transmitted via the wireless link to the collection point where they are used for fur-

ther analysis, as shown in Figure 20-b and discussed in Chapter 5. 

 

Figure 20: The principle of utilising low sampling rates at: a) wireless node, b) central 

unit. 
 

The new proposed approach has the following key advantages: 

 It directly utilises a low sampling rate much below the Nyquist rate which pre-
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serves the resource-constrained sensors and enables them to classify high fre-

quency signals. 

 Most importantly, such a new approach also provides timing information about 

the occurrence of an event, which is needed for the localisation purposes. 

 The utilisation of a low sampling rate leads to the sensed data being coherent 

among the wireless nodes. This is also useful for the purpose of TDE. 

 The aliased versions of the physical phenomenon can conserve the original 

shape, which helps in maintaining the most salient information (features) of the 

original signals without the need to reconstruct them. 

3.2.3 Conditions for the Utilisation of Uniform Low Sampling Rates 

As stated above, the reason for applying low sampling rates much below the Nyquist 

rate is to preserve the resource-constrained at the wireless sensor level without the need 

to recover the original signals. However, this is restricted to narrow bandwidths and not 

periodic signals. In other words, it is limited to transient or abnormal signals, such as 

acoustic pulses or AE signals. These types of signals are expected to be generated in the 

target application of this research, which is the SHM of WTBs. This means that the 

acoustic signal generated should have a finite pulse duration. The following sections 

investigate the effect of the utilisation of such uniform low sampling rates on the time 

delay estimation for sound source localisation. 

3.3 Acoustic Source Localisation Using Low Sampled Data 

The determination of the location of a sound source relative to reference points is 

known as acoustic source localisation (ASL). This localisation process can be achieved 

based on the arrival time of acoustic signals captured with at least two or more micro-

phones and the velocity of sound in the medium in which the sound source is located. In 

the literature, several TDE techniques have over the years been developed with varying 

degrees of accuracy and computational complexity [176-178]. This section reviews the 

typical TDE algorithms which will be investigated in order to test their dependence on 

the sampling frequency using different domains such as time, frequency, and time-

frequency (content-based features). 

http://dictionary.sensagent.com/conserve/en-en/#anchorSynonyms
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3.3.1 Time Delay Estimation Using Microphone Arrays 

Before describing the typical TDE algorithms, a simple mathematical model for the 

acoustic signal received at any microphone shown in Figure 21 is presented. Such a 

model shows how the relative TDE between the microphone outputs is used to investi-

gate the relationship between the sampling rate and estimation accuracy under the three 

domains. From Figure 21, if               denotes the i-th signal of the i-th micro-

phone which can be modelled as Equation (3.7): 

                             (3.7) 

where αi represents an attenuation factor due to propagation effects; τi is the propagation 

time from the unknown source      to the i-th microphone;       is assumed as an un-

correlated additive noise signal at the i-th microphone. Then the time delay between any 

two microphone signals, for example, M1 and M2, can be expressed as Equation (3.8): 

                   (3.8) 

   can be estimated by applying TDE algorithms to the two signals       and      , as 

shown in the following sections. 

Once the time delay is estimated, the location of the acoustic source can be computed 

using the triangulation method between the three microphones and the sound source, as 

shown in Figure 21 and Equations (3.9) and (3.10). More details about the use of this 

method are given in Atmoko et al. [179].  

                 (3.9) 

                 (3.10) 

where c is the propagation speed of sound in air which is assumed to be 340 ms
-1

. 

The time delays    and    can now be estimated using the above mentioned algorithms 

in order to quantify the estimation accuracy for each domain, as shown in the next sec-

tion. As a result, the acoustic source location can be estimated as reported next. 

The following derivation of sound source location is in 2-D space. From the two trian-

gles SM2M1 and SM2M3, it is possible to derive the cosine relations for both angles φn 

and φm which are azimuths for microphones one and three as in Equations (3.11) and 

(3.12) respectively. 
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Figure 21: Geometrical relationship of three microphones and a sound source. R is the 

shortest path between sound source S and M2. 
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where ln and lm represent the known separation distances between the microphones, as 

shown in Figure 21. R is the shortest path between the sound source and the reference 

microphone M2. Similarly, from the triangle SM1M3, it is possible to develop the expres-

sion in Equation (3.13): 
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Using Equations (3.11)-(3.13) it is now possible to calculate, via appropriate substitu-

tions, the three variables R, φn, and φm as in Equations (3.14)-(3.16): 
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As is seen in Equations (3.14)-(3.16), by knowing the variables R, φm, and φn it is possi-

ble to estimate the sound source location in 2D. Moreover, the propagation path differ-
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ences dn and dm play an important role in the estimation of these parameters. The more 

accurate dn and dm are, the better the localisation results become. These two parameters 

will be used to evaluate the performance of the TDE methods under the use of low sam-

pling rates to study the requirements of the ASL at rates much below the Nyquist rate, 

as shown in the following sections. 

3.3.2 Selection of Appropriate Analysis Method for Low Sampled Data 

The employment of sampling rates much below those usually considered necessary in 

the acquisition process necessitates new knowledge about the selection of an appropri-

ate analysis technique which will be used to process the aliased versions of the acoustic 

signals. This is done by the investigation of different TDE algorithms in the time, fre-

quency, and time-frequency (content-based features) domains under the use of low 

sampling rates. The reason behind this is to find new ways to overcoming the challenges 

faced when lowering the sampling rate. Such knowledge is useful for specifying a suita-

ble domain of analysis for the use of WSNs in ASL and SHM applications. 

3.3.2.1 Time Domain Analysis for TDE 

Several TDE procedures have been proposed and implemented in the time domain over 

the years. The basic idea of most of these techniques is based on locating the absolute 

extremum of the cross-correlation, cross-correlation coefficient function or some other 

statistic associated with the observed signals. For example, basic cross-correlation 

(BCC) [180] and generalised cross-correlation (GCC) algorithms [181] search for co-

herence among the captured acoustic signals in order to determine the lag at which the 

cross-correlation function (CCF) has its maximum. This lag then represents the time 

delay between the two signals, as shown in Table 4. The main difference between the 

two algorithms is that GCC uses weighting functions (filtering the captured signals) to 

improve the performance of the TDE approach [181, 182]. 

As shown in Table 4, the GCC is defined as the inverse Fourier transform of the cross-

spectrum of the input signals,        
    , scaled by a weighting function      

which is summarised in Table 5 for several common GCC methods. 

The BCC and GCC approaches have been widely used in different applications, such as 

sonar, displacement or velocity determination and pattern recognition [183]. Further-



Chapter 3 

64 

 

more, they can be applied in flow or strain determination from sequences of images 

[184]. Time domain approaches have the advantages that they are simple, and therefore 

not computationally expensive, and more suitable for real-world applications. However, 

they depend strongly on the coherence among the signals received, which is likely to 

impact upon their accuracy in precisely estimating the time delay [185], particularly if 

low sampling rates are used. 

Table 4: Basic mathematical expressions for BCC and GCC. 

TDE algorithm Mathematical expression Estimated time delay 

BCC          
 

   
∫      
 

 

                              

GCC          ∫          
 

  

  
                               

 

Table 5: Commonly used weighting functions in the GCC method [181]. 

Method Name Weighting Function      

Cross Correlation 1 

Roth Impulse Response          ⁄  

Phase Transform (PHAT)  |        |⁄  

Smoothed Coherence Transform (SCOT)  √                ⁄  

Eckart Filter                           ⁄  

Hannon and Thomson (HT)         
  |        |           

  ⁄   

 

3.3.2.2 Frequency Domain Analysis for TDE 

Frequency domain algorithms are based on examining the phase spectrum of two sig-

nals. For instance, the GPS is used to compute the time delay between two signals       

and       by estimating the cross-power spectral density (CPSD) of the two signals and 
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then computing the phase slope of the CPSD as a function of frequency [185]. Figure 22 

shows a typical measured phase spectrum from the test signals, discussed below, in con-

junction with an estimate of the actual phase spectrum. As seen in this figure, the signal 

used is dominated by ambient noise at frequencies below    and greater than   . Thus, 

the GPS uses the frequency band    to weight the phase in order to improve the TDE 

which can be described as follows, 

Let    represent the estimated phase at the frequency   
 
from two sensors       and 

      with a number of points N; then the time delay is defined as in Equation (3.17) 

[186]: 

     ∑   
   
       ∑   

   
     

 ⁄      (3.17) 

where    is a frequency dependent weighting function at frequency   . 

In this equation, only the frequency band    which corresponds to the linear phase gra-

dient of CPSD shown in Figure 22 is selected to calculate the time delay. 

 
Figure 22: Selection of the cut-off frequencies ω_0, ω_1, and frequency bandwidth ∆ω. 

 

This GPS algorithm has potential application in radar, sonar and optical imaging sys-

tems [187]. It has the advantages over the time domain algorithms that in the frequency 

domain the time delay is directly estimated, which makes it easier to use filters [188]. 

This leads to improving the speed of estimation of time delays and simplifying the sig-

nal processing algorithms. Furthermore, as shown in Equation (3.17), only a selected 

frequency range is used in this calculation [185]. This makes the localisation process 

more robust in a noisy environment, since the CPSD will be weighted according to this 
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range [186]. 

3.3.2.3 Time-Frequency Domain Analysis for TDE 

Content-based feature data analysis algorithms, such as envelope GPS (EGPS) algo-

rithm rely on the analysis of the actual contents of the signal, such as the shape or any 

other information that can be derived from it. This concept has been successfully ap-

plied in research fields such as image retrieval applications [189]. In this investigation, 

this concept will be adopted for the estimation of the time delay between two signals 

      and       by first extracting the envelopes or shape of both signals using the Hil-

bert function [190] and then, as in frequency domain algorithms, the GPS method is ap-

plied to calculate the time delay using the signal envelopes. The reason behind the use 

of the signal envelope is to smooth the signal shape and to overcome the loss of infor-

mation due to the employment of low sampling rates. 

3.4 Experimental Setup for TDE at Low Sampling Rates 

In order to investigate the influence of sampling frequency on the accuracy of TDE for 

ASL, so that an appropriate domain of analysis for an accurate ASL algorithm can be 

specified, a wired experimental setup was built as shown in Figure 23. The experiments 

were conducted in an ordinary indoor laboratory environment which contains objects 

such as tables, PCs and lab equipment which are normally found in a typical laboratory. 

The geometrical limitations of ln, lm, R and S directivity have not been discussed for the 

reliable localisation of the source, which is out of the scope of this study. As shown in 

Figure 23, three omni-directional mini electret condenser microphones were positioned 

to face a sound source and used to simultaneously capture acoustic signals generated 

from the sound source. They were positioned so that the acoustic signals reached them 

at different instants of time. 

The acoustic signals were pulses and male speech signals, as illustrated in Figure 24-a 

and were generated for the test using professional audio software and played through a 

PC speaker. Figure 24-b shows the frequency spectrum of these signals, were acquired 

at a sampling frequency of 48kHz for a recording period of 8s. A computing system was 

used to save and process the received data off-line. The time delay was then estimated 

using the above mentioned algorithms under the same structure at different sampling 
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frequencies ranging from 1kHz to 48kHz. 

 

Figure 23: Schematic representation of the wired experimental setup for the ASL. 
 

 

 
Figure 24: Wave forms of sound sources and their spectrum used as test signals: left, 

pulse signal, and right male speech ‘acoustic camera’. 
 

3.5 Results and Discussion 

Traditional sampling frequencies, which comply with the Nyquist criterion for proper 

sound signal reconstruction in wired solutions, present problems when employing 
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WSNs in ASL or SHM applications. For this reason, the experiments were conducted 

here in order to investigate the effect of sampling frequency on the accuracy of the TDE 

process using the BCC, envelope BCC (EBCC), GPS and EGPS algorithms, so that a 

valuable technique could be specified for processing the acquired sound signals using 

lower sampling frequencies in ASL and SHM applications. In these experiments, differ-

ent acoustic signals were generated, as mentioned in Section 3.4, and were captured by 

three microphones which acquired data at a sampling frequency of 48kHz under the 

same structure. A down-sampling process was then applied to the captured signals in 

order to reduce the sampling rate of these signals. This process was utilised by reducing 

the sampling rate of the signal acquired by an integer factor M, so that if      repre-

sents the data sequence then the down-sampled sequence      is represented by 

     . 

Theoretically, based on the Nyquist sampling theorem, this process can introduce alias-

ing effects to the down-sampled data due to the decreased sampling rate. This problem 

can be overcome with the right signal processing technique to extract TDEs since the 

reconstruction process of the original signal is unnecessary in this application. After 

each down-sampling process the time delay among these signals was estimated using 

the above mentioned algorithms and errors in the TDE process were computed using the 

following Equation (3.18): 

                                                      (3.18) 

where  the expected time delay denotes the known distance d divided by the speed of 

sound c, and the computed time delay is the delay estimated by the TDE algorithms. 

Figure 25 shows the results of this process where errors in the TDE are plotted against 

the sampling frequency. In this figure, the actual delay is 833µs, which corresponds to 

40 samples. As is seen in this figure, the trend of the error in the time domain shows 

large deviations at lower sampling frequencies, whereas as the sampling rate becomes 

higher these deviations tend towards zero. This is because the cross-correlation algo-

rithms depend on finding the highest value of CCF to estimate the time delay between 

two signals, which can be missed due to the low time resolution of the time axis if low 

sampling frequencies are used. This conforms to what is expected, since time domain 

algorithms for ASL are strongly affected by the sampling frequency used. 
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Figure 25: Comparison results of TDE algorithms using: a) pulse, b) speech signals, for 

a delay of 40 samples. 
 

In contrast to time domain analysis, it can be clearly seen in the ASL algorithms based 

on the frequency and time-frequency domains, i.e., GPS and EGPS, as shown in Figure 

25, those errors in the TDE are less than 0.3µs. This is because these algorithms esti-

mate the time delay through information contained in the frequency and time-frequency 

domains. This can be clarified by seeing Figure 22 where only the frequency band    is 

used to weight the phase of used aliased signals which leads to the improvement gained 

in these TDE calculations. This means that the use of the linear part of the computed 

phase spectrum makes the calculation of TDE not affected and the errors in TDE are not 
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sensitive to the sampling frequencies in the range used in the experimental studies from 

1 to 48kHz. From these results it can be concluded that, for sound localisation and SHM 

applications, it is possible to use low sampling rates to capture acoustic signals in order 

to construct the aliased versions of acoustic signals. This gives the opportunity to pro-

cess these versions to estimate the time delay between them, provided that these aliased 

versions are processed in the frequency or time-frequency domain. 

 

Figure 26: Comparison results of TDE algorithms using: a) pulse, b) speech signals, for 

a delay of 30 samples. 
 

To confirm this finding, data with a time delay of 625µs, corresponds to 30 samples 

were used in simulation of a different location of a sound source as another example of 
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the investigation of TDE errors under the same set of sampling frequencies. The results 

of this study are illustrated in Figure 26. As can be seen from this figure, the variations 

in error in the time domain at low sampling rates are higher than those in the other two 

domains, while at high sampling rates all domains exhibit steady results. It is clear that 

in both cases the computed errors at lower sampling frequencies using GPS or EGPS are 

almost the same as the results obtained at higher sampling frequencies. In contrast, the 

time domain algorithms exhibit unstable behaviour at lower sampling frequencies, and 

hence it was concluded that is more appropriate for such applications to use frequency 

or time-frequency domain to estimate the time delay if low sampling rates are chosen. 

To illustrate the fact that the proposed method is independent of the location of the 

sound source, different time delays were simulated and investigated, with the results 

shown in Figure 25 and Figure 26. In addition to the sample delays of 40 and 30, anoth-

er experiment with a delay of 10 samples was also conducted and the results are shown 

in Figure 27. As shown in these figures, the errors in time delay estimation tend to de-

crease as the sampling rate increases. This means that error variation patterns will re-

main similar as the time delay is changed. 

Therefore, given these results, it is confirmed that data from low sampling rates below 

the Nyquist rate directly in the sensing process can be utilised to save data acquisition 

costs and time. In addition, this leads to the property of coherence among the aliased 

versions of the acoustic signals being preserved, which is useful for delivering the time 

information required for the ASL. As no signal reconstruction is required, the sparsity 

feature is no longer needed. To overcome drawbacks such as information loss and low 

spatial resolution caused by this employment, the envelopes of the aliased versions are 

used. In addition, these envelopes should be processed in the frequency or time-

frequency domains. 

However, if frequency domain algorithms are used to analyse the aliased version of the 

received signals, they will be unable to show the dominant spectral component at the 

original signal frequency in cases where surrounding noise may affect the original sig-

nals. This means that a major portion of frequency content is lost and any TDE used in 

this domain will lead to inaccurate results. Therefore, the time-frequency domain is pro-

posed as an optimal domain for the processing of these aliased versions, as is discussed 

in the next chapter. 
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Figure 27: Comparison results of TDE algorithms using: a) pulse, b) speech signals, for 

a delay of 10 samples. 
 

3.6 Summary 

Based on the literature survey and the problems identified in Chapter 2 and due to the 

limitations of data transmission over WSNs, a low sampling rate method for sound lo-

calisation has been proposed in this chapter. With low rates of sampling data, acoustic 

source localisation using the data content in terms of time, envelope, and content-based 

feature domains, such as the BCC, GPS and EGPS algorithms, has been investigated. 

Time-frequency domain and envelope content-based features have been identified as 
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optimal domain for processing the aliased versions and mitigating the effect of the in-

formation loss. Such conclusions were drawn based on the use of a wired localisation 

system. Therefore, the next chapter extends the use of low sampling rates to the wireless 

ASL so that data received from the AWSN are used to validate these findings. 
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CHAPTER 4: EXPERIMENTAL VALIDATION OF 

SOUND LOCALISATION USING AWSNs AT LOW 

SAMPLING RATES 

 

 

In the previous chapter, it has been shown that, for wireless sound source localisation, 

the use of low sampling rates in data acquisition operations can be used. This depends 

on the utilisation of appropriate domains of analysis and the development of new time 

delay estimation algorithms in order to overcome the challenges associated with lower-

ing the sampling rate. To validate these findings in a wireless system using centralised 

AWSNs, this chapter introduces a lab-based experimental wireless setup for ASL in 

conjunction with the use of low sampling rates. In addition, it proposes algorithms for 

centralised data processing based on the utilisation of the envelope feature and wavelet 

transform (WT) technique for processing data received from the wireless system global-

ly at a central unit. Such algorithms are also required to mitigate the problems accom-

panying the use of AWSNs, including errors relevant to time synchronisation issues 

among wireless units, which affect the accuracy of TDE. 

The methods proposed are also used to smooth the contents of the aliased versions re-

ceived through the combination of different time-frequency contents. Enhanced versions 

of aliased signals are processed using cross-correlation (CC) in conjunction with a para-

bolic fit interpolation to accurately calculate the time delay. Shannon entropy (SE) is 

used to select an optimum scale index which gives the optimum spatial resolution. Such 

an algorithm is useful for developing precise wireless ASL without the need for any ex-

cessive sensor resources, particularly for SHM applications. 

The chapter is organised as follows. Section 4.1 presents a brief background to this 

work. Section 4.2 discusses data processing strategy for the aliased data. The TDE algo-

rithms proposed for sound localisation is discussed in Section 4.3. Section 4.4 describes 
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the Shannon entropy based TDE algorithm proposed for minimising the computational 

complexity of the previous method. Section 4.5 presents the experimental setup for the 

ASL system using AWSNs. In Section 4.6, the estimation results of sound localisation 

using both proposed methods are discussed and compared. Finally, the conclusions are 

drawn in Section 4.7. 

4.1 Background 

The integration of acoustic sensors into WSNs opens up new horizons for transforming 

wired ASL systems into wireless systems [191]. This involves the utilisation of distrib-

uted wireless units which are able to realise on-board computation to achieve either dis-

tributed or centralised data manipulation. Such integration has been adopted in a large 

variety of applications, including vehicle identification [192], SHM [140], and military 

activities [193]. 

WSNs have been widely used in such applications due to the enormous number of ad-

vantages that are highlighted in chapters one and two as well as in Yick et al. [37]. The 

use of such wireless technology also faces challenges during implementation in real ap-

plications as discussed earlier and in a review and discussion published by Jangra [194] 

of various issues associated with WSNs, including bandwidth and computational limita-

tions at the level of the wireless unit. 

Therefore, the utilisation of low sampling rates, as discussed in Chapter 3, will help in 

solving such problems, since power consumption is linearly proportional to the sam-

pling rate of an analogue-to-digital converter [146]. Recently, there has been growing 

interest in the use of low data acquisition sampling rates in WSNs [165] so that low-cost 

commercial off-the-shelf (COTS) wireless units can be implemented without the need 

for extra hardware resources. Nevertheless, lowering the sampling frequency below the 

Nyquist criterion can be detrimental due to information loss, which produces inaccurate 

results in sound localisation.  

4.2 Signal Processing Strategy under the Use of Low Sampling Rates 

To the best of the present author’s knowledge, no wireless ASL system has previously 

used low sampling rates below the Nyquist criterion to process the aliased versions to 

locate sound sources. Therefore, the goal of this chapter is to validate the feasibility of 
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using low sampling rates in AWSNs to develop a low-cost, energy-efficient, and relia-

ble wireless ASL. At the same time, this study tries to achieve a reasonable estimation 

accuracy of sound location using data obtained from AWSNs and to analysis them in 

time-frequency domain, even if the Nyquist rule is violated. 

The strategy of performing this is based on the utilisation of a signal envelope instead of 

amplitude values in the TDE process. This is because the envelope is a preferred meth-

od for smoothing the shape of a signal and minimising the ambiguity present around its 

onset. This has been used in several applications such as ultrasonic ranging measure-

ments [195]. However, although using the envelope as defined so far instead of ampli-

tude signal values is an essential step, it is insufficient to establish a robust localisation 

algorithm at low sampling rates. Further steps are needed to enhance estimation accura-

cy. Therefore, the WT is proposed to extract the time and spectral contents of the ali-

ased signals, which help in facilitating further improvements in TDE accuracy. The next 

section will discuss this strategy in more details. 

4.3 Proposed Localisation Method 

To date, there has been no progress in the development of TDE and localisation algo-

rithms, when the low sampled data are involved in the estimation process of the time 

delay based on the aliased versions of the signals captured. This section discusses a lo-

calisation technique proposed to counteract the effect of violating the Nyquist criterion 

as well as noise effects and to improve time resolution in order to gain feasible localisa-

tion results. There is a variety of time-frequency methods, including the short-time Fou-

rier transform (STFT), Hilbert-Huang transform (HHT), Wigner-Ville distribution 

(WVD), and wavelet transform (WT). In this work, the latter approach is utilised here to 

overcome the challenge of using low sampling rates using AWSNs. 

This technique is known as envelope-based WT cross-correlation (EWT-CC), and is a 

three-stage strategy, as shown in Figure 28. In the first stage, the envelopes of the ali-

ased signals denoted by  ̃    , where        , are extracted using the methods ex-

plained in the next section. In the second stage, the WTs of these envelopes are comput-

ed. This is achieved by the utilisation of discrete values for the scaling parameter 

          . For each scale index, the CC in conjunction with a parabolic fit interpo-

lation in the wavelet domain is applied to estimate the time delay     . Finally, the aver-
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age of the computed delays is calculated in order to obtain the final time delay    . 

These steps are discussed in detail in the following subsections. 

 

Figure 28: Detailed block diagram of the proposed TDE algorithm EWT-CC. 

4.3.1 Envelope Fitting for Smoothing Shape Feature 

In the literature, several methods can be employed to extract the envelopes of signals 

captured. Actually, any extraction method can be used here as long as no time delay is 

introduced due to its operation. Envelopes are usually extracted from band-pass filter 

outputs by full-wave rectification and low pass filtering. Another method, which is im-

plemented in this work, is to use the square root of the energies of the original and the 

Hilbert transformed signals, as shown in Equation (4.1) [196]. 

 ̃     √         ̂          (4.1) 

where       is the original signal,   ̂    is the Hilbert transformed signal,  ̃     is the 

obtained envelope, and          .  

4.3.2 Wavelet Transform 

Both the continuous wavelet transform (CWT) and discrete wavelet transform (DWT) 

have been found to be effective approaches in many applications, including in the signal 

processing field. In this study, the WT is proposed to counteract the impact of using low 

sampling rates on the estimation accuracy of sound source location. In mathematics, the 

WT is defined for a signal      as in Equation (4.2): 

   
             ⁄ ∫        

   

 
       (4.2) 

where      is the transforming function or mother wavelet which can be expressed as in 
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Equation (4.3) [197]:  

             
   ⁄   

   

 
       (4.3) 

where   and 0s  are the translation and scale parameters of the mother wavelet 

respectively. The factor  √   ⁄  is an energy normalisation factor and ‘*’ denotes the 

complex conjugate [198]. Equation (4.2) is also known as the CWT, which has the abil-

ity to break up a continuous-time function into wavelets by performing an inner product 

between the signal and a series of daughter wavelets. These series are generated by the 

stretching and translation of the mother wavelet via controlling s and τ values [199]. 

Such an operation provides the capability to analyse the signal at different levels of res-

olution and to present the processed signal in the time-frequency domain. This highly 

convenient property offers the possibility of good time and frequency localisation, as 

explained in the next section. 

In addition, the WT offers several different valuable mother wavelets that can be em-

ployed in the CWT, DWT and in the signal analysis, including Haar, Meyer, Morlet, 

Daubechies, Mexican Hat, Gaussian and many others available in the MATLAB library 

[200]. Table 6 lists some popular mother wavelet families. The range of various wavelet 

filters, indeed, represents the strength of this transform. This means that, based on the 

signal features or shape, an optimum mother wavelet, which is closest to the signal un-

der test, can be selected for the detection of those particular features. This can be 

achieved by the utilisation of quantitative criteria, including the maximum energy or 

minimum Shannon entropy (SE) [201, 202]. 

4.3.2.1 Optimum Mother Wavelet Selection for Signals under Analysis 

The key to the use of the WT here is to look for a set of wavelets that contain descrip-

tions which are most close to the signal under analysis [202]. This is performed by 

stretching and translating the mother wavelet via varying the scale index   . Therefore, 

the more similar these wavelets are to the signal components, the larger the wavelet co-

efficients. This means that the wavelet coefficients will have relatively high magnitudes 

for the case where a high correlation between a major frequency component correspond-

ing to a particular component exists in the signal, and in the mother wavelet. 

http://en.wikipedia.org/wiki/Time-frequency_representation
http://en.wikipedia.org/wiki/Time-frequency_representation
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This allows the derivation of a basic criterion in the selection of the mother wavelet for 

signals under investigation. To apply this criterion to the problem at hand, some arbi-

trary wavelet filters are selected, and then the cross correlation-coefficients between 

these signals and the chosen mother wavelets are computed. Finally, the optimum moth-

er wavelet is the wavelet which maximises the cross-correlation coefficient. Figure 29 

shows the normalised cross-correlation coefficient of aliased versions of acoustic sig-

nals, which are captured in three real wireless measurements, namely M1, M2, and M3 as 

discussed in Section 4.5, with the wavelet filters listed in Table 6. 

It is clear that the Mexican hat wavelet exhibits the largest cross-correlation coefficient 

in comparison to those from the rest of the wavelet filters. This mother wavelet is then 

considered as the optimal mother wavelet for the range of experiments conducted in this 

study. However, this may vary from one application to another based on the nature or 

shape of the signal and the order of the mother wavelet used. The experimental results 

discussed in Section 4.6 will further validate these results regarding the selection of the 

optimal mother wavelet. 

The reason behind the maximisation of the cross-correlation coefficient when the Mexi-

can hat wavelet is used is the large similarity between this wavelet and the envelope of 

the aliased versions under analysis. In addition, the noise generated is uncorrelated with 

the Mexican hat wavelet and thus its effects can potentially be reduced in the estimation 

process. As shown in Figure 29, there are also good correlations among the Daubechies 

order 4, Gaussian order 4, and the test signal, which is most likely due to the similarities 

in shape between these wavelets and Mexican hat wavelet as shown in Table 6. Alt-

hough the Haar wavelet shape differs from the shape of the optimum wavelet, its corre-

lation coefficients also show high values and this may be due to the fact that this wave-

let is good at transient or discontinuity detection [203, 204]. 

Finally, the DWT is another form of WT which involves the use of the dyadic scheme. 

This is satisfied by the utilisation of discrete values of the scaling and translation 

                 [197], where   denotes the set of integers. In this study, CWT 

is applied instead of DWT [197]. This is because CWT does not require that the wavelet 

has to satisfy the orthogonality condition, which makes the selection of an appropriate 

mother wavelet for feature extraction easier. Another reason for this utilisation is that 

the CWT can be time-invariant which means the same phase relationship is reserved 
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and no additional time delay is introduced [197, 205]. 

 

Figure 29: Comparative plot of correlation coefficients with various wavelet filters for 

the signals under investigation. 
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Table 6: Waveforms of some selected mother wavelet. 

Mother wavelet Wavelet function plot 

Daubechies wavelet: ‘db4’ 

 

Daubechies wavelet: ‘db8’ 

 

Haar wavelet: ‘haar’ 

 

Meyer wavelet: ‘meyr’ 

 

Mexican hat wavelet: ‘mexh’ 

 

Gaussian wavelet: ‘gaus4’ 

 
Morlet wavelet: ‘morl’ 
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4.3.2.2 Sound Localisation Using WT and CC 

As mentioned previously, the proposed technique for locating a sound source wirelessly 

is a centralised approach known as EWT-CC. This means that this algorithm requires 

the aliased versions to be received at the central unit in order to localise the sound 

source. To estimate the time delay between any two received signals, for instance       

and      , there are many techniques which, as explained in Chapter 3, can be applied 

to these signals. One of these is the conventional CC, which is expressed in Equation 

(4.4) [180] and used here for comparison purposes and to be combined with WT: 

            ⁄ ∫               
 

 
      (4.4) 

where T is the observation time interval. The aim of Equation (4.4) is to examine the 

coherence between the received signals in order to estimate the time lag at which the 

CCF has its maximum. 

In the proposed algorithm, the CWT is applied to the envelopes extracted from the ali-

ased acoustic signals received at the central unit, for example,  ̃     and  ̃    , just be-

fore the execution of the CC algorithm. Equations (4.5) and (4.6) represent the CWT of 

these envelopes. 

     
     ∫  ̃     

 (
   

  
)       (4.5) 

     
     ∫  ̃     

 (
   

  
)       (4.6) 

As stated above, varying the s parameter in the mother wavelet in Equations (4.5) and 

(4.6) leads to the dilation or compression of the signals, which allows to search for the 

similarity in terms of frequency contents between the series of daughter wavelets and 

 ̃     at each scale index:            where N is the number of variations and τ is 

assumed to be equal to the sampling period [197]. The process of dilating or compress-

ing the signal via scale variation allows us to analyse the signal and to compute the 

wavelet coefficients at different resolutions (i.e., in multi-resolution analysis). The CWT 

coefficients here represent a measure of the cohesion between the signal and the mother 

wavelet, at that particular scale index. If the frequency components of the signal corre-

spond to the scale of the mother wavelet, then the computed coefficients at this time in-

stant in the timescale are comparatively large [197]. 



Chapter 4  

83 

 

As a result of this process, two 2D wavelet coefficient matrices are generated for Equa-

tions (4.5) and (4.6); namely, A and B respectively, as shown in Figure 28. Each row in 

A and B corresponds to the j
th

 wavelet coefficients. The size of these matrices is 

      where M is the length of the processed signal. At each level of resolution the 

time delay is estimated. As seen in Figure 28, after obtaining the j
th

 wavelet coefficient 

matrices, the CC algorithm in conjunction with curve-fitting interpolation is applied to 

the individual rows    and    in order to estimate the delay under the j
th

 scale, as in 

Equation (4.7): 

                         (4.7) 

where “ ” denotes the conventional CC. This process is repeated until j =N and then the 

actual time delay     between       and       can be calculated by taking the average 

of      as given in Equation (4.8): 

    
 

 
∑     
 
          (4.8) 

Once the time delays are estimated, as shown in the previous paragraph, using the last 

equation, the propagation path differences (PPDs) as well as the sound location can be 

computed as explained in Chapter 3. 

The method discussed above uses a multi-scale averaging technique to estimate the de-

lays among received signals. This represents a drawback of this algorithm, since it is 

time-consuming. To counteract this, a Shannon entropy (SE) criterion is applied in Sec-

tion 4.4 to optimise the selection of the best scale index that gives the best estimation 

accuracy without the need to perform multi-scale averaging. Next, the use of parabolic 

fit interpolation is discussed. 

4.3.2.3 Parabolic Fit Interpolation for Improvement of Spatial Resolution 

In the classical time delay estimation measurements, the discrete cross-correlation is 

only calculated at integer indices. This means that inaccurate estimation is given if the 

true delay between two signals is a non-integral multiple of the sample period. There are 

several techniques that can be used to optimise this time resolution, such as a parabolic 

interpolation [206] where the position of the peak is located at its centre. Theoretically, 

fitting a parabola requires at least three points, as shown in Figure 30: the maximum 
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peak of correlation coefficients (I0), its preceding (I0-1), and subsequent (I0+1) neigh-

bours. The three points are needed in order to calculate the coefficients a, b, and c in 

Equation (4.9) which represents the applied parabola [206]. In Figure 30, the blue dotted 

curve represents the curve fitted to the red dashed curve of the cross-correlation output.  

                 (4.9) 

 

Figure 30: Curve-fitting interpolation using three points. 
 

The coefficients a, b, and c in Equation (4.9) are calculated by substituting the three 

sample points and their corresponding indices in the parabola equation, which yields the 

following Equations (4.10a-c): 

             
              (4.10a) 

         
             (4.10b) 

             
              (4.10c) 

Once the coefficients a, b and c are calculated, the derivative of Equation (4.9) can be 

taken. This equals zero when the peak is maximum; therefore, the interpolated peak, Ip, 

is computed, as illustrated in Equation (4.11). 

       ⁄         (4.11) 

A series of experiments have been conducted in order to estimate the propagation path 

differences, as discussed in Section 4.6, which show the performance of the proposed 
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parabolic fit interpolation. Based on the current setting of the sample frequency used in 

these experiments (4807Hz), the minimum distance resolution was improved in these 

experiments in average from 7.07cm to 1.50cm, which is almost five times better. Such 

an improvement resolution will contribute to increasing the estimation accuracy of 

sound source localisation using the AWSNs at low sampling rates, as illustrated in Sec-

tion 4.6. 

4.4 Shannon Entropy based EWT for TDE 

The modified technique, Shannon entropy-based EWT (SE-EWT), is also a three-stage 

strategy, as shown in Figure 31. In the first stage, the envelopes of the received signals 

 ̃     are extracted, as mentioned in Section 4.3.1. The second stage applies CWT to the 

envelopes extracted, as explained in the previous section. In the last stage, the SE of the 

wavelet coefficients (SEWCs) is computed and the best scale value for the TDE is spec-

ified, as discussed in the following subsection. 

 

Figure 31: Detailed block diagram of the modified TDE algorithm, SE-EWT. 

4.4.1 Shannon Entropy Criterion for Optimum Scale Selection 

SE measures the degree of similarity between different segments of signals and gives an 

excellent indicator of energy concentration [207]. In other words, the energy distribu-

tion of the wavelet coefficients can be described by this criterion. This is why the SE 

has been utilised in different applications for the selection of a suitable and optimal 

mother wavelet-based CWT. This is required in order to obtain the best performance in 

the application used [208, 209]. 

In this research, the SE is adopted in the proposed TDE algorithm in order to select the 
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most appropriate CWT scale index which gives the best TDE accuracy. This is because 

varying the scale value within the CWT will produce the local minima in the wavelet 

domain if SE is applied. In this case and at that particular scale, the similarity in terms 

of frequency contents between the series of daughter wavelets and signals processed 

will be high. This means that the more similar the mother wavelet is to the signal com-

ponents, the larger the wavelet coefficients [202]. This criterion will then yield the best 

scale value that gives the maximum resolution. 

Below, a mathematical definition of SE is first given, and then its use in the choice of 

the optimum scale is explained. For any discrete probability distribution, P, where 

                  , the SE is defined as in Equation (4.12) [202]. 

      ∑           
 
         (4.12) 

Assuming that the wavelet coefficients of an input signal      calculated at a scale in-

dex, a, are denoted by                           , then the normalised SEWC of the 

computed CWT coefficients at the scale a is given by Equation (4.13): 

        ∑  
    
 

 
     

    
 

 
   

        (4.13) 

where C is a normalisation factor calculated using Equation (4.14): 

  ∑ ∑     
  

   
 
          (4.14) 

To find the most appropriate CWT scale for the best resolution, the SEWCs are com-

puted using Equation (4.13) for all scale values. Then the best scale is equal to the min-

imum index of the SEWCs, as in Equation (4.15). The reason behind selecting the min-

imum value is that the higher energy concentration is, the lower the SEWC will be. 

                                (4.15) 

4.4.2 Problem of Applying SE and CWT 

As mentioned previously, the aim of using the SE here is to select the best scale index 

which leads to the best TDE accuracy. However, due to the properties of time-frequency 

algorithms such as WT, the generated wavelet coefficients for both envelopes  ̃     and 

 ̃    , represented by matrices A and B respectively in Figure 28, include large amounts 

of redundant data. This redundancy is caused by the redundant information generated 

for the same time point due to the change in the scale index during the calculation of the 
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CWT [210]. 

Therefore, applying the SE directly to such redundant data may lead to miscalculation 

of both the local minima as well as the optimum scale value. An example showing this 

redundancy is illustrated in Figure 32-a and -b. These figures show the coefficients for 

real aliased acoustic signals captured at low sampling rates using the system setup dis-

cussed in the next section. These coefficients are displayed as images for the scale range 

1 to 200. The WT shows the occurrence of a single, short duration acoustic pulse around 

index 125. 

To overcome this problem and in order to make SE work efficiently, the redundant data 

were filtered out via subtracting the wavelet coefficients of matrix B from those of ma-

trix A. The result of this subtraction is depicted in Figure 32-c which displays the differ-

ence between the previous two images. The advantage of this step is that it removes the 

ambiguity in finding the local minima and therefore the optimum scale value can be ac-

curately computed. 

 

Figure 32: Redundancy of CWT coefficient (Zoom-In) of an acoustic pulse: a) matrix A, 

b) matrix B and c) difference (A-B). 
 

Figure 33 shows the computed SEWCs vs. scales as a consequence of applying SE to A, 

B, and the difference A-B for real data. As is clear from this figure, there are no minima 

in either the A or B curves for the range of scales shown. On the other hand, the SEWCs 

of the difference A-B, the dashed curve, obviously have a minimum which helps in the 

determination of the optimum scale index that gives the most accurate TDE results ac-

cording to Equation (4.15) and as discussed in Section 4.6.2. 

The major advantage of the new SE-based envelope WT algorithm over the proposed 
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algorithm discussed in Section 4.3 is that the computational complexity of the former 

approach is much lower. In the SE-based envelope WT method, there is no longer a 

need to estimate the delay at each scale index using the CC in conjunction with a para-

bolic fit interpolation in the wavelet domain. Instead the SE-EWT applies the CC only 

once, at the selected optimum scale index, to estimate the time delay    . This leads to a 

reduction in the computational complexity by a factor of N. Table 7 summarises the ap-

proximate computational complexity of both algorithms which shows the degree of re-

duction in complexity. 

 

Figure 33: Shannon entropy of wavelet coefficients, SEWCs, vs. scales. 
 

The calculation in Table 7 is based simply on the evaluation of the most important parts 

in both algorithms and on the assumption that the number of samples is M, the number 

of scales is N, and the number of lags is n for which the CC is computed. It also does 

not take into account the computational complexity of CWT because this is the same for 

both algorithms. As a next step, both algorithms are tested and evaluated using the ex-

perimental wireless work presented below. 

4.5 Experimental Setup for ASL Using AWSNs 

The abovementioned low sampled TDE algorithms are intended to be utilised in a wire-

less ASL application. Thus, before the performance of the proposed algorithm is vali-

dated and discussed, it is most important to explain the wireless system setup used in 
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the experimental work. In addition, problems with the realisation of synchronised sens-

ing in this wireless ASL system are also discussed. 

Table 7: Computational complexity comparison of both TDE algorithms. 

Method Summation Multiplication 

 CC AVG SE CC AVG SE 

EWT-CC    ∑      
   

   
 N -    ∑       

   

   
 - - 

SE-EWT   ∑      
   

   
 - N   ∑       

   

   
 - N 

 

4.5.1 Configuration of the Experimental AWSNs 

The principle of WSNs discussed in Chapter 1 is proposed here for implementing a 

wireless ASL system which is then used to test and validate the TDE and ASL algo-

rithms proposed based on the use of low sampling rates. The system was employed to 

study the utilisation of a single-hop WSN for sound source localisation at uniform low 

sampling frequencies with more attention is given in this study to the sensing process. 

Thus, this work can be easily extended to multi-hop WSNs for data collection from 

multiple sources by integrating multi-hop data collection protocols such as CTP [211]. 

This section discusses the system configuration designed and implemented as a proof-

of-concept model for the wireless ASL system. The hardware prototype for the designed 

single-hop WSN comprises hardware components such as wireless sensing units, a base 

station (gateway) and a central control unit (PC). Each wireless sensing unit consists of 

a wireless node, a signal conditioning, and a microphone and takes charge of capturing 

acoustic signals independently. Each unit is programed with a unique identification 

number to prevent data chaos in data transmission. 

The schematic structure of the wireless sensing unit is depicted in Figure 34. This struc-

ture mainly consists of signal conversion, processing core, data storage and wireless 

communication components as well as signal conditioning part. Some of the key com-

ponents which make up single-hop WSNs are discussed in this section. 
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Figure 34: The schematic structure of a wireless sensing unit. 
 

4.5.1.1 Signal Conditioning  

Generally, the outputs of microphone sensors have to be pre-processed through signal 

conditioning and amplification circuit boards. This is required in order to filter and ad-

just the acoustic waveforms to the ADC inputs of a wireless node used. For this pur-

pose, MTS310 sensor board has been used as low-cost current state-of-the-art sensor 

technologies that provide capabilities to use different sensor modalities [212]. One of 

these modalities is an omni-directional microphone sensor which is used in these exper-

iments to collect the acoustic signals generated. 

4.5.1.2 Wireless Node of AWSNs 

MICAz motes represent one of the low-cost current state-of-the-art sensor technologies 

that provide capabilities to build wireless networks [37]. The MICAz is 2.4GHz, 

IEEE/ZigBee 802.15.4 boards equipped with 4KB of RAM. At the centre of the mote is 

the processing core which contains function modules for data collection, processing and 

communication control. The MPR2400 is based on the Atmel ATmega128L and capa-

ble of running at speeds up to 7.3MHz [213]. This mote also supports a 10 bit analogue 

to digital converter with 8 channel and 0-3V input range, refer to Appendix A for more 

specification details. All the motes used are programmed under the TinyOS environ-

ment which is an operating system which has been widely used for WSN design [214]. 

4.5.1.3 Wireless Setup of ASL System 

The experimental wireless sensing setup is shown in Figure 35. The figure also illus-



Chapter 4  

91 

 

trates the triangular configuration which is composed of three wireless units and a sound 

source used for this purpose. The wireless units are placed in a straight line at different 

positions (P0-P4) in order to construct a sensor array with a known geometry and to give 

different test configurations. 

One of these wireless units acts as a reference node and is positioned at P2. The loca-

tions of the two other wireless units vary between points P0 and P4 and, accordingly, the 

PPDs dn and dm also vary. The PPDs are the extra distances that the acoustic signals 

generated from S travel in order to reach the two wireless units with respect to the refer-

ence node. For simplicity, it is assumed that these nodes are located at points P0 and P4.  

The mathematical model for the acoustic signals received at any wireless unit is de-

scribed in Section 3.3. Next, the process of the TDE using EWT-CC is explained. These 

units sense simultaneously via the omni-directional microphone sensor and send the da-

ta to a base station. All the sensing units communicate with the base station via a radio 

frequency (RF) interface. An MIB520 gateway board incorporating a MICAz mote is 

used to forward the captured aliased signals to the central unit where they are processed 

off-line using MATLAB. The sound source is then located using the approaches ex-

plained above. In the following, both acoustic sensing and RF transmission strategies 

are discussed in more detail. After that, issues regarding the realisation of a synchro-

nised data acquisition process among wireless units are discussed. 

 

Figure 35: Wireless experimental setup and the triangular configuration of wireless 

units-sound source for the localisation where Pi represents wireless unit position and R 

is the shortest path between sound source S and the wireless unit located at P2. R varies 

between 1 and 2.5m. 
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The experiments were conducted in an ordinary indoor laboratory environment which 

contains objects such as tables, PCs and lab equipment. Street traffic and people talking 

contributed to the background noise where the experiments were being conducted. 

4.5.1.4 Acoustic Sensing Strategy  

The acoustic sensing process within the single-hop WSN commences with the receipt of 

a start command which is broadcast by the base station. For the purpose of testing and 

validation of the proposed algorithms, an additional wireless unit is used to trigger the 

KEITHLEY 3390 function generator, as shown in Figure 36. This is needed in order to 

generate the acoustic test signal within the sampling period of the wireless units em-

ployed in order to make the detection process easier. (In a real SHM system where 

acoustic emission events are random, a simple threshold crossing is used to ensure that 

such events will be captured by the wireless units, as discussed in Chapter 5). This wire-

less unit is programed so that one of the LEDs turns on once it receives the start com-

mand. This LED (Pin 1) is connected to the trigger input of the function generator in 

order to trigger it during the acquisition process of wireless units. 

 

Figure 36: Connection of KEITHLEY 3390 function generator with MICAz as a trigger 

node. 
 

The test signal used in these experiments was produced using the function generator and 

simulated through generating a tone burst of 50-sinusoidal cycles of frequency 10kHz 

which was played via a PC speaker. These values were selected experimentally in order 

to generate a reasonable acoustic pulse shape used for the experiments conducted. 
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It is worth mentioning that the TinyOS operating system running on MICAz motes has 

two modes; namely, the task and hardware event handler (HEH) modes [214]. Both 

modes can be utilised in performing data acquisition operations, and more discussion of 

this is presented in Section 4.5.2. In the task mode, the acoustic test signals were ac-

quired at a 4096Hz sampling frequency for a recording period of 0.3s. This sampling 

rate is almost the maximum sampling rate that the MICAz mote can achieve using such 

a mode. While in the latter, the generated acoustic signals are acquired at the minimum 

sampling rate that the MICAz mote can achieve using this mode which is 4807Hz for 

the same recording period. Note that in Chapter 3, it has nevertheless been shown that 

lower sampling rates than these can be used. 

4.5.1.5 RF Transmission Strategy 

As this research focuses more on the sensing process rather than network protocols, it is 

crucial that data collisions among transmitted data are avoided. To achieve this, the 

transmission operation is conducted according to the following strategy. The wireless 

units were given three different levels of priority to start the sending operation. The 

wireless unit with the highest priority transfers its raw data, in packets with a length of 

ten samples each, to the control unit once it fills its local buffer, whereas the other two 

units wait until the first one finishes the transmission process. The second and third lev-

els of priorities are given to the other wireless units. The wireless units with first and 

second priorities will also not commence a new sensing process until the wireless unit 

with third priority finishes transferring its collected data. 

Having the transmission process in a sequence, as mentioned earlier, can avoid data col-

lisions among transmitted data and ensure that all packets are received correctly. It also 

ensures to a certain degree that the sensing process amongst the wireless units is syn-

chronised. However, a scheme with higher synchronisation can be utilised by incorpo-

rating existing time synchronisation protocols [215, 216], which is left for future work. 

4.5.2 Realisation of Synchronised Data Acquisition in AWSNs 

As mentioned above, WSNs are composed from multiple acoustic wireless units de-

ployed at different locations. These units should work collaboratively in order to 

achieve a robust wireless localisation system. Time synchronisation among these units 
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is likely to be an important factor in helping to satisfy such requirements. Detailed com-

prehensive reviews of different time synchronisation protocols along with relevant tech-

niques in the decomposition of time delays over a wireless link have been published 

[217]. 

Collected signals can be coherent if the wireless units of the WSNs are properly time-

synchronised [191, 218]. In addition, WSNs which work depending on high precision 

clock synchronisation seem to exhibit consistency of collected data, which is likely to 

help in solving the problem of the redundant detection of the same event and coordina-

tion [219]. A further reason why appropriate time synchronisation is an important factor 

in WSNs is that communication among the sensors can then be more effectively utilised 

[218]. 

These reasons and others [219] do indeed require that time synchronisation protocols 

should be designed and implemented so that WSNs can be robust and beneficial in the 

intended applications. This leads to the major concern of designing time synchronisation 

protocols for WSNs which: (a) achieve high precision in time synchronisation, especial-

ly in applications such as sound localisation, SHM and tracking moving targets; (b) 

have the capability of overcoming node and link failures [218]; (c) are robust in situa-

tions of dynamic topology change [219]; and (d) require lower communication band-

width and power consumption [220]. 

However, from previous studies in the area [221] and the preliminary experimental re-

sults using MICAzs in this research, it is noticeable that the use of time-synchronised 

wireless units based on global time does not guarantee that the acquired acoustic signals 

or the acquisition operations among wireless units are perfectly synchronised with each 

other. This is because most time synchronisation protocols consider delays in the radio 

message delivery in WSNs rather than delays caused by the nature of the operating sys-

tem which runs on the motes used in that particular application. This nature can general-

ly be deterministic or non-deterministic. 

The former means that the start and end of the execution of data acquisition operations 

can be predicted with a high degree of certainty; whereas in the latter, this execution can 

occur in an unpredictable order and at unpredictable times, and the execution time of the 

same code varies at each repeated execution, especially if it is performed on different 
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microcontrollers, as is the case in WSNs. In real time measurements, this is a very im-

portant factor which also needs to be considered in order to perform synchronised sens-

ing measurements in particular when MICAz is used, as discussed next. 

To investigate this problem, the TinyOS employed in this research and many others 

[222] should first be analysed. This operating system has two modes of execution 

threads: task and HEH modes [214]. The former mode has a non-deterministic nature, 

which means that the execution time for the same code varies at each repeated execu-

tion. This introduces unpredictability into waiting times during the acquisition operation 

due to the TinyOS scheduler executing posted tasks. This results in unequal intervals, 

which leads the acoustic sensing tasks of all wireless units unsynchronised, and syn-

chronisation sensing errors (SSEs) thus increase. It also has the disadvantage that it does 

not allow the users to either control the execution procedures of their measurement pro-

cess or set priorities among the steps of the measurements. 

One attempt to overcome this synchronisation problem has been published [15]. A 

resampling solution based on a combination of interpolation, filtering, and decimation 

processes is applied to the acquired signals in order to compensate for SSEs. However, 

the resampling process is a considerable challenge, since perfect filtering is hard to 

achieve due to the infinite number of filter coefficients required. Furthermore, the pro-

posed solution increases computational costs which make it impractical in real applica-

tions. 

In contrast, the HEH mode is a deterministic mode which allows the user to control the 

execution process by forcing the controller to execute the data acquisition operation via 

assigning a priority to this operation. This leads the measurement to run with precise 

timing and a high degree of reliability. Thus, the use of this mode is proposed in this 

research to realise synchronised data acquisition among acoustic wireless units, since 

asynchronous commands are immediately executed. 

To show the efficiency of the selected HEH mode compared to the task mode in the de-

velopment of a suitable data acquisition system for the wireless acoustic source localisa-

tion system, both modes of the TinyOS were implemented and tested using MICAz 

motes and the results are discussed in Section 4.6.1.  
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4.6 Results and Discussion 

The main aim of this chapter is to develop and evaluate novel time delay estimation al-

gorithms in order to overcome the challenges associated with lowering the sampling rate 

below than the Nyquist rate in AWSNs. This section introduces and discusses the re-

sults of applying both EWT-CC and SE-EWT in order to accurately calculate the time 

delay from the aliased acoustic signals captured by the wireless ASL system discussed 

in Section 4.5. To begin with, the results gained for overcoming the synchronisation 

problem in the sensing operation via considering the HEH mode rather than the task 

mode are considered. After that, results for both proposed algorithms in conjunction 

with the parabolic fit interpolation and SE are presented. 

4.6.1 Synchronised Data Acquisition Process 

In order to test the efficiency of the HEH mode in comparison to the other mode, wire-

less units were positioned at the same points and at the same distances from the sound 

source. Such a setup should introduce no time delays among the collected aliased acous-

tic signals, which gives the opportunity to measure levels of SSE caused by the two 

modes. 

Figure 37 shows the first 200 samples of an example of the envelopes extracted from 

the aliased acoustic signals captured using the wireless units one, two, and three, as they 

were positioned at the point P2 in Figure 35. Figure 37-a illustrates the effect of using 

HEH mode in minimising the SSEs during the acquisition process. Figure 37-b depicts, 

in contrast, the result of using the task mode where errors in the acquisition process are 

obviously higher with respect to the onset of these signals. 

Theoretically, the onset of the curves shown in Figure 37-b should start at the same time 

instant because the wireless units were located at the same point. However, this is not 

the case. This is mainly due to the SSEs introduced by the task mode. To show the ran-

dom variations in repeated measurements of the task mode in comparison to the HEH 

mode, the SSEs of 30 experimental measurements are plotted in Figure 38. The time 

delays were estimated by applying the EWT-CC algorithm to the acquired aliased sig-

nals as described in Section 4.3.4. 
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Figure 37: The first 200 envelope samples of captured acoustic signals using a) HEH 

mode and b) task mode. 
 

From Figure 38, it is clear that the task mode exhibits unstable results due to the non-

deterministic nature of this mode, where the average of the calculated SSEs is 1.1ms 

with a standard deviation of 0.6 which represents a poor repeatability indicator. Such 

errors yield an estimation error in the PPD around 1m, based on the maximum SSEs and 

assuming a sound velocity of 340ms
-1

, which would represent a massive error if the ex-

periments were considered as a near-field measurement. 

In contrast, the HEH mode yields a good repeatability and is able to achieve a sufficient 

level of accuracy for the TDE which shows an average of 0.06ms with a standard devia-

tion of 0.1. This means the SSEs of HEH mode are much lower than the task mode er-

rors where the RMS errors of the estimated time delays in both modes are 0.1ms and 

1.2ms respectively. 

To conclude this section, the cause of the SSEs is mainly due to the unsynchronised data 

acquisition operation, which is caused by the task mode. In contrast, the HEH mode ex-

hibits a significant improvement in delivering synchronised data acquisition operations, 

since the SSEs of wireless units are minimised due to the deterministic nature of this 

mode. Such a conclusion is very important for realising synchronised data acquisition 

operations and designing a robust wireless sound localisation system using low sam-
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pling rates and MICAz motes. This is because the minimisation of SSEs contributes to 

the enhacement of the TDE among the received signals, as seen in the next section. 

 

Figure 38: Repeatability measurements of Task and HEH modes. 
 

4.6.2 Wireless ASL at Low Sampling Rates 

To evaluate and compare the proposed algorithms experimentally, several 

measurements have been conducted using the wireless setup shown in Figure 35. In 

each measurement, the three wireless units simultaneously receive a start sample 

command from the base station in order to commence the sensing process. The 

experiments were again conducted in an ordinary indoor laboratory environment as 

explained in Section 4.5.1. A tone burst of 50-sinusoidal cycles of frequency 10kHz is 

used as an acoustic test signal played through a PC speaker representing a sound source. 

This acoustic signal is propagated in the air medium in order to reach the acoustic 

wireless units. Based on the previous discussion, the HEH mode was selected to 

program the wireless units in order to minimise the SSEs. The sampling rate was set to 

4.8KHz and the sample duration was around 0.3s. 

Figure 39-a shows an example of aliased versions of the acoustic signals captured by 

wireless units one, two, and three, as they were positioned at P0, P2, and P4 in Figure 35 

repsectively. In contrast, Figure 39-b depicts the envelopes exctracted from these 

aliased versions which preserve the original shape of the test signal used as discuseed in 

Chapter 3. This salient information represents a very important feature of the developed 

TDE algorithms, as seen below. In both figures, the solid curves represent the signals 
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received at wireless unit one and the dashed curves show the signals received at wireless 

unit three, while the dotted curves illustrate the signals received at the reference wireless 

unit two. 

 

Figure 39: The first 200 samples of captured signals by wireless units one, two, and 

three at 4.8KHz: a) Aliased acoustic signals b) Their envelopes. 
 

As is seen in Figure 39-b, since the distance between the reference wireless unit and the 

sound source represents the shortest path, the signal received from this wireless unit 

appears first in this figure. Whereas the two other wireless units were located at equal 

distances from the reference node, and their received signals appear second and at 

almost the same time. Therefore, feeding these envelopes, instead of the original 

signals, to the WT is an imortant step towards improving localisation accuarcy. 

Before the results of this processing are discussed in this section, and for the purpose of 

showing the functionality of the proposed approaches, as well as explaining how they 

improve the spatial resolution of the sound source localisation, it is useful to illustrate 

the advantage of applying the EWT-CC with curve fitting interpolation in improving 

localisation accuracy.  

Figure 40 explaines the results of the individaul steps of the proposed technique. As 
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shown in this figure, due to the low time resoluton caused by the utilisation of low 

sampling rates, the output of CCF gives a false maximun index. On the othe hand, the 

WT improves the shapes of the aliased signals and the SNR due to the high correlation 

between these envelopes and the Mexican hat mother wavelet used. This results in the 

hidden characteristics of both envelopes being revealed and therefore the output of the 

EWT-CC becomes narrow, as shown in this figure. This makes the identification of the 

index of the maxmimum output much easier. As a final step towards detecting the most 

accurate index, curve fitting interpolation is applied to the output of EWT-CC as 

explained in Section 4.3.1.  

 

Figure 40: Zoom-In output of CC and EWTCC with and without parabolic fit interpola-

tion. 
 

4.6.2.1 Results of the EWT-CC Algorithm 

The results of EWT-CC are validated by conducting several wireless experiments for 

sound localisation where different values for dm and dn shown in Figure 35 were 

estimated. These values result from varing the positions of wireless units one and three 

between P0 and P4. The results of these experiments are reported in Table 8. This table 

summarises the dn and dm estimation results obtained by the developed wireless 

localisation system using both conventional CC and the proposed EWT-CC with and 

without curve fitting interpolation approaches. The table also reports the averages and 

standard deviations of these results gained from 15 experiments in order to show the 
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robustness of the proposed algorithm in the estimation of these PPDs under the use of 

low sampling rates discussed in Chapter 3. The results also show that replicated 

measurements can provide closely similar results. 

It is apparent from this table that results when applying EWT-CC with curve fitting 

interpolation are much more highly correlated with the real values of dn and dm than the 

other results. A good example of this is the case where dn = 15cm. The average of the 

estimated result using EWT-CC with fitting is 15.62cm, while it is 12.26cm using CC 

and 16.51cm using EWT-CC without fitting. Again, the standard deviation of the EWT-

CC with fitting for this example is lower than that of the CC and EWT-CC without 

fitting . This means that the errors in the estimation of dn and dm using EWT-CC with 

curve fitting interpolation are much lower than those with the CC method due to the 

multiresoluton analysis possible with CWT and curve interpolation. Consequently, the 

use of such a method in the estimation of PPDs exhibits better performance than 

employing the CC method as shown in Figure 41. 

Table 8: AVGs and STDs of estimated PPDs for 15 experiments using CC, EWT-CC, 

and EWT-CC Fitting. 

Configuration 

of SN1 SN2 SN3 

PPDs 

(cm) 

Estimated PPDs (cm) 

CC EWT-CC EWT-CC Fitting 

AVG STD AVG STD AVG STD 

P2 P2 P2 
dm 00.00 6.14 3.07 1.80 1.14 1.12 0.80 

dn 00.00 2.56 4.58 1.91 1.85 1.23 1.01 

P0 P2 P3 

dm 15.00 12.26 5.65 14.20 3.43 15.19 2.60 

dn 36.00 26.41 20.62 37.01 3.90 36.47 3.73 

P1 P2 P3 

dm 21.00 23.11 9.44 22.93 5.00 21.41 4.10 

dn 15.00 12.26 10.51 16.51 5.62 15.62 4.50 

 

Figure 41 illistrates the RMS errors computed for the three configurations shown in 

Table 8. As seen from this figure the maximum RMS error in the estimation of dn and 

dm using EWT-CC with curve fitting interpolation is 1.70cm, while it is 2.68cm using 

just EWT-CC and 9.97cm using CC. In addition, the trend of the RMS error using the 
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proposed method is shown to decline with the increase in PPDs. 

Such an enhancement in the estimation accuracy of sound localisation has two causes. 

Firstly, employing the envelopes of acquired signals reduces the ambiguity present 

around the peak indices of CC; and secondly processing these envelops in the time-

frequency domain using WT integrates both time and spectral contents in the estimation 

process. Thus, the EWT-CC algorithm in conjunction with curve fitting interpolation is 

able to achieve a sufficient level of estimation accuracy for the wireless ASL at low 

sampling rates, as compared to the time domain methods, as shown in Chapter 3. 

 

Figure 41: RMS errors for CC, EWT-CC and EWT-CC-Fitting algorithm. 
 

Although the EWT-CC delivers more accurate localisation results in comparison to the 

CC, the multi-scale averaging technique still represents a drawback in this algorithm 

since it is time-consuming as explained in 4.4. Next, the results for the modified algo-

rithm, SE-EWT, are reported and compared with those for the EWT-CC. 

4.6.2.2 Results of the SE-EWT Algorithm 

The results of this algorithm are based on the use of the SE to estimate the optimum 

scale index that gives the best estimation results, as discussed in Section 4.4. To show 

the functionality of this modified method, two examples of the estimation of the PPDs 

are demonstrated in Figure 42 and Figure 43. These figures show the estimated PPDs 

and Shannon entropy of wavelet coefficients (SEWCs) vs. scales in one plot. In both 
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figures, the scale range was 1 to 100, where increasing the number of scales significant-

ly increases the computational time of the WT. 

The figures also explain the strategy of the employment of the SE to determine the 

PPDs, which is as follows. In the first, the SE is calculated for all WT coefficients, 

which results in SEWCs. In the second, the index of the minimum value of the SEWCs 

is selected, which represents the optimum scale index. Finally, the WT coefficients 

which correspond to this index are then selected and used in the estimation process by 

applying CC in conjunction with the curve fitting interpolation to these coefficients.  

 

Figure 42: First example for using the SEWCs to select the optimum scale value (58) 

which delivers the PPD (20.59cm), where the actual PPD 21cm was. 
 

In addition, the two examples illustrate the difference between the EWT-CC approach 

and the modified one. In the former, the PPDs were estimated at each scale value, repre-

sented by the thick blue dots curves in both figures, and then the EWT-CC algorithm 

takes the average of these, whereas the latter only estimated the PPDs at the optimum 

scale value. In Figure 42, the estimated PPD using the modified method is 20.59cm 

while for multi-scale averaging it was around 22cm for the same example. Furthermore, 

in Figure 43, the SE-EWT delivered a value of 35.50cm in comparison to 36.82cm from 

the EWT-CC technique. 

To conclude, both approaches provide almost the same results with respect to the actual 

PPDs which are 21cm and 36cm, and more examples are summarised in Table 9. How-
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ever, according to Table 7 the computational complexity of the EWT-CC method is 

higher than that of SE-EWT. This makes the latter approach more suitable to be em-

ployed in wireless ASL applications if the time delays are intended to be extracted from 

the aliased versions of the acoustic signals captured at low sampling rates. 

 

Figure 43: Second example for using the SEWCs to select the optimum scale value (59) 

which delivers the PPD (35.50cm), where the actual PPD 36cm was. 
 

Table 9: Comparison between EWT-CC and SE-EWT algoritms. 

Configuration 

of WU1 WU2 WU3 

PPDs 

(cm) 

Estimated PPDs (cm) 

EWT-CC SE-EWT 

AVG STD AVG STD 

P2 P2 P2 
dm 00.00 1.12 0.80 1.00 0.78 

dn 00.00 1.23 1.01 1.12 0.90 

P0 P2 P3 

dm 15.00 15.19 2.60 14.99 3.01 

dn 36.00 36.47 3.73 36.13 2.89 

P1 P2 P3 

dm 21.00 21.41 4.10 21.40 3.50 

dn 15.00 15.62 4.50 15.03 3.91 
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4.7 Summary 

Working with low sampling rates and localising a sound source using a centralised 

AWSN as well as from acoustic signals acquired at low sampling rates much below the 

Nyquist rate have been investigated. This includes the development of a new signal pro-

cessing algorithm to be used for sound source localisation. The new technique has been 

implemented using an envelope-based wavelet transform cross-correlation (EWT-CC) 

in conjunction with a parabolic fit interpolation method. The intention of this technique 

is to globally extract the time delays from the aliased acoustic signals captured by the 

AWSN and received at a centralised collection point.  

The proposed algorithm, offers a multi-resolution domain of analysis which shows po-

tentially good performance in counteracting the ambiguity of peaks due to the low time 

resolution. The proposed approach enhances the spatial resolution of the localisation 

process in the following respects. Firstly, via the employment of the WT, it was possible 

to extract the characteristics hidden in the envelopes of the aliased versions looking for 

the closeness between them and the mother wavelet. Secondly, by applying the Shannon 

entropy, it was possible to select an optimum scale index that gives the best spatial reso-

lution. Furthermore, the utilisation of curve-fitting interpolation enhances spatial resolu-

tion by a factor of almost five based on the current setting of the developed wireless sys-

tem. Finally, the use of the HEH mode in the MICAz platforms makes the data acquisi-

tion operation among acoustic wireless units more synchronised. 

The approaches presented are proposed for the centralisation of data processing, which 

means that the individual wireless units are required to send the raw data to the central 

unit to be processed and analysed. This was performed for global off-line data pro-

cessing, which still can overload the data transmission over WSNs if continuous online 

monitoring is involved. Therefore, the use of wireless sensing systems is obviously re-

quired, which involves approaches for decentralised data processing in order to extract 

meaningful information or important features from content-based features with the use 

of low sampling rates. This provides the framework of the next chapter in conjunction 

with the implementation of a wireless in-situ SHM system on the top of WTBs for con-

tinuous monitoring and further field study evaluations of the use of low sampling rates 

approach. 
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CHAPTER 5: WIRELESS SHM CASE STUDY I: 

SOUND LOCALISATION ON WTBs AT LOW 

SAMPLING RATES 

 

 

In the previous chapter, the experimental validation of TDE algorithms based on the uti-

lisation of acoustic data received from lab-based centralised AWSNs has been dis-

cussed. Building upon the experience gained, this chapter introduces a proof-of-concept 

distributed sensor network implementation proposed for an in-situ wireless SHM sys-

tem for WTBs. It also discusses the challenges facing the SHM system developed by 

utilising AWSNs based on AE. This system is then used for the field study validation of 

the proposed reduction technique. The validation is based on the extraction of meaning-

ful information from the content-based features on-board the wireless units to form the 

AVPs and to send only these to the control unit. The AVPs are then utilised in the re-

mote control unit to locate AE events occurring during a test phase with the intention to 

preserve the communication bandwidth, since only AVPs are transferred. 

The chapter is organised as follows. The in-situ wireless SHM system setup is discussed 

in Section 5.1 along with a review of the AE technique and common AE parameters. 

Section 5.2 presents the software setup and the considerations taken into account when 

performing field studies. In Section 5.3, considerations relating to the localisation of 

artificial AE sources are discussed. In Section 5.4, the estimation results for AE source 

localisation are presented. Finally, the conclusions are drawn in Section 5.5. 

5.1 In-situ Wireless SHM System Setup for WTBs 

The implementation of the proposed wireless sensing technique on the top of WTBs is 

based on the utilisation of a single-hop WSN, since attention is given in this work to the 

sensing process rather than network protocols. Thus, this work can be extended to mul-



Chapter 5 

107 

 

ti-hop WSNs for data collection from multiple sources by integrating multi-hop data 

collection protocols such as CTP [211]. This section discusses the system configuration 

which is implemented as a proof-of-concept model for the WTB SHM system. 

5.1.1 AWSN Model and Hardware Requirements 

The development of the in-situ SHM system takes advantage of wireless technology to 

form a monitoring network. Figure 44 illustrates the deployment of the proposed model 

of a sensor network prototype on the WTBs. This system is a single-hop WSN which is 

comprised of hardware components such as wireless sensing units and a base station 

(gateway). Each wireless sensing unit consists of a wireless node and an AE sensor and 

takes charge of one blade of the wind turbine structure and records the AE events inde-

pendently. Every unit is programed with a unique identification to prevent data chaos in 

data transmission. 

As shown in Figure 45, the MICAz motes equipped with the sensor board (MTS310) 

are used in developing the wireless system. The schematic structure of these wireless 

sensing units is discussed in Chapter 4. The omni-directional microphone sensor of the 

MTS310 board is replaced by a BNC connector for AE sensors. The AE sensor is the 

BII-7070 from ‘Benthowave Instrument Inc.’ (www.benthowave.com) and operates at a 

usable frequency range of 0.1Hz to 400kHz with a size of ɸ x L = 18.6 x 20mm. It is 

characterised by relatively small mass and low cost. This wireless prototype system is 

applied to a 300W wind turbine which is installed on the roof of the School of Electrical 

and Electronic Engineering (EEE). This wind turbine has three blades made of carbon 

with a diameter of 1.5m (see Appendix B for more details of specifications). 

All of the sensing units communicate with a PC base station via an RF interface and are 

programmed in a TinyOS
 
environment [222]. The PC base station includes an MIB510 

gateway board incorporating a MICAz mote which is used to forward the extracted fea-

tures or the raw data to the PC for monitoring and processing. The PC runs a software 

package which consists of a Java application and MATLAB scripts to provide a user-

friendly graphical user interface (GUI) which allows operators to control the monitoring 

process, as explained in Section 5.2. 

http://www.benthowave.com/
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Figure 44: a) Illustration of a monitoring network with the wind turbine. 
 

 

Figure 45: Hardware components: wireless unit (WU) and gateway. 

5.1.2 Integration of Wireless System and AE Technique 

Bringing together the entire component subsystems into one system which is integrated 

into the wind turbine unit for in-situ monitoring requires that it can be ensured that the 

attachment of sensing units to the WTBs will last for a long time. This is achieved by 

placing the wireless units in waterproofed plastic secured by cable tidy-ties in the wind 

turbine nose, as shown in Figure 46-a. This has the advantage that it makes the radius of 

rotation of the wireless units very small, so that the rotation of the WTBs has no effect 

http://en.wikipedia.org/wiki/Subsystem
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on the data transmitted. This is because the path loss is proportional to rotating radius 

[223]. 

Figure 46-b and -c illustrates the attachments of AE sensors and their cables to the 

WTBs. A diagram showing the attachment configuration is given in Figure 46-c, where 

a portion of a protection tube of 18.7mm diameter and 24mm in length is fixed by an 

Araldite adhesive to the WTB. The AE sensor is positioned in the tube and secured by a 

screw, and its cable is held by a cable holder which is fastened to the blade using the 

Araldite adhesive. The reason for this attachment is that it gives the system the flexibilty 

to allow changes to be made to the AE sensor at any time, and also minimises the noise 

generated compared to the use of tabs [24]. The AE sensor is attached to the WTB at an 

equal distance of 300mm, which is almost 30% along the length of the blade from the 

root section. This is because it has been found by both simulation and experimental 

methods for WTBs that this area is more prone to damage [1]. 

 

Figure 46: Wireless unit installation: a) photograph of WSN node inside the nose, b) 

photograph of AE sensors fixed on the blades, c) Diagram of AE sensors fixed on the 

blades. 
 

The AE data captured from the rotating blades are wirelessly sent to the MIB510 serial 

gateway which is attached to the wind turbine tower, as shown in Figure 48-b. This data 

can then be transferred to the remote control unit via wired or wireless communication, 

such as using Wi-Fi or any other wireless techniques. In this application, the gateway 
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used forwards the data collected to the PC base station in the lab via a serial cable which 

is also used to power the serial gateway. Since the proposed system is based on the 

integration of WSNs and AE technique, the following section gives more attention to 

the AE approach. 

5.1.3 Acoustic Emission Technique 

The AET is one of the most commonly used and sensitive NDT methods for SHM sys-

tems, and shows potential capabilities for providing information on the degradation in 

structural health of materials under mechanical load. This technique is defined as the 

radiation of mechanical stress waves generated due to sudden changes in the internal 

structure of a material [31]. This can be due to overloading beyond or near to the mate-

rial’s yield stress. Other possible AE sources include impacts, the origination and 

growth of cracks, fatigue cracks, delamination, matrix cracking, and fibre breakage in 

composite material [224]. These sources are all failure-related and the signals generated 

propagate in the material. Therefore, the AE technique has been found to be an effective 

method for the detection of such failures and, by using suitable signal processing algo-

rithms, these failures can be localised, identified, and classified [51]. 

AE waves are abnormal and transient activities which are affected by the characteristics 

of the induced stress field. These waves can be converted into a number of useful AE 

parameters or features, as shown in Figure 47, which can then be used to identify these 

events. Some of these are as follows [140]:  

 Amplitude, A, is the maximum amplitude which is usually measured in decibels 

(dB). 

 Rise time, R, is the time interval between the first threshold crossing and the 

time when the AE signal reaches its A. 

 Duration, D, represents the time difference between the first and the last cross-

ings of the threshold value. 

 Counts, N, refer to the number of times the signal crosses the threshold value.  

 Power, P, is the area under the curve or the summation of the squared sample 

values. 

 Arrival time, T, is the time of the first threshold crossing. 
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 Root mean square, RMS, is a statistical average parameter used for comparative-

ly long transients. 

Such AE features can be used to separate and identify different AE sources, such as 

crack growth, impact, friction and others, provided that pattern recognition software 

is used to evaluate these sources [225, 226]. However, not all of the common AE 

features can be extracted from the aliased versions. Counts are one such exception. 

The reason for this is that this feature represents the number of threshold crossings 

along the timespan between the initial and the last crossings of the threshold value. 

These in-between crossings are in most cases unavailable when envelopes are uti-

lised in the extraction process. However, the duration feature which represents the 

timespan between these two points is still valid in this domain, since the threshold 

crossings occur at these points, as shown in Figure 47. 

 

Figure 47: Key features of an aliased AE signal. 
 

Comparing to the vibration technique, which needs data from multi-axes, AE is non-

directional and a single AE sensor is enough to conduct measurement [227, 228]. Fur-

thermore, the former technique records the local motion of a component, whereas the 

latter listens to the component and registers its response [15, 21]. This technology is 

therefore selected in this study because it is a passive technique and can be applied to 

structures with limited access without any supervision. It also allows the investigation 
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of defects in the structure under real loading conditions, such as a wind load in the in-

tended application of this study. 

The AE technique also plays an important role in the inspection of many civil engineer-

ing structures [229]. This is due to its high sensitivity to sound events generated from 

inside and on the surface of material structures if they are stressed and at earlier stages 

of beginning to fail [230]. It also has the advantage that the localisation of AE sources is 

possible by utilising multiple AE sensors. Structural resonances and usual mechanical 

background noise have no effect on the AE signal due to differences in the detection of 

frequency ranges [231]. However, the AE technique is very costly due to the high sam-

pling rates required [39], which was taken into consideration in the implementation of 

the proposed wireless SHM system for WTBs. 

5.1.4 System Setup and Implementation 

The entire wind turbine unit has been installed with the wireless SHM system on the 

School’s roof, as shown in Figure 48-a and -b. The gateway is placed in a waterproof 

case and attached next to the wind turbine tower. This gateway is basically used for 

sending a start sensing command, and setting the threshold value of the sensing process 

as well as switching between the AVP and raw data modes. These commands are initi-

ated by the control unit which is located in the School’s lab (Figure 48-c), as discussed 

below. 

 

Figure 48: System installation: a) WT installation on the school's roof, b) Gateway fixed 

to the WT tower, c) Control unit. 
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5.2 Software Setup and Sensing Considerations 

To make communication between the control unit and the wireless sensing units easier, 

and to control the wireless monitoring system, a software package for this system is de-

signed. This package consists of an operating package and a Java application GUI. The 

former package is executed by the TinyOS operating system installed on the MICAz 

hardware platform, and its main function is to perform the operations of sensing and the 

transmission of AE data. The GUI is used to interact with the developed wireless moni-

toring system. 

The main functions of this GUI are to provide an interface for controlling the monitor-

ing process and to fuse the collected features and to perform data analysis which helps 

in the assessment of WTB condition. Figure 49 shows samples of screenshots of this 

GUI. This prototype also offers to the user the ability to switch between two transmis-

sion modes: ‘AVP’ mode or ‘Raw Data’ mode. The latter mode is needed for the cases 

where the actual raw data needs to be used, as discussed in Chapter 4, or for the user to 

conduct more signal analysis, as shown in Chapter 6. To transfer the raw data to the 

control unit, a request raw data command should be broadcast to all sensing units via the 

GUI. This results the raw data being displayed in the ‘Raw Data Windows’ as well as 

saving them in MATLAB script files.  

 

Figure 49: Screenshot of the GUI of the wireless demonstration system. 
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5.2.1 AE Sensing for Field Study 

The sensing of the AE events, in this application, differs slightly from that explained in 

Chapter 4. This process commences in all wireless sensing units with the receipt of a 

start command, indicated by ‘SC’ in Figure 50. This command is broadcast by the base 

station and forces the wireless units to enter into a listening mode which makes them 

wait for AE events to occur which are above a pre-set threshold value, indicated by 

‘ED’. Once the wireless units detect such events they start acquiring AE signals at a 

sampling rate of almost 4.8KHz for a sampling period of 0.11s. 

After finishing the sensing operation, the sensing units start to execute the sending oper-

ation based on the transmission mode as discussed in the next section. As soon as they 

complete the sending operations, they enter again into the listening mode and a similar 

procedure is repeated in the same sequence. 

 

Figure 50: Schematic diagram of synchronised sensing and transmission operations. 
 

5.2.2 Event Based Transmission Strategy for Field Study 

In the proposed wireless system, the transmission operation is an event-based process, 
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which means that wireless units will not send any data unless an AE event is detected. 

Once the AE event is detected, these units will transfer their data after the sampling pro-

cess is completed and according to the strategy explained in Chapter 4 and shown in 

Figure 50. It is worth mentioning here that the waiting period for each wireless unit is 

very small, due to the short time required for the transmission process and particularly 

for the transmission of AVPs, since this is the default transmission option as explained 

below and in Chapter 6. Thus, data loss will be rare.  

Moreover, depending on the transmission mode, the wireless units will send either raw 

data or the constructed AVPs to the control unit. The default setting of this mode is set 

to AVP mode. In this case, the wireless units process the raw data in order to extract 

meaningful AE information or important features from the aliased versions; and only 

those in the form of AVPs, instead of the aliased versions, will be sent to the remote 

control unit. For cases where the transmission mode is set to raw data, the wireless units 

will follow the same sending strategy as explained in Chapter 4. Irrespective of 

transmission mode, data are collected from various wireless units and aggregated into 

the control unit for further analysis. 

5.2.3 On-Board AE Feature Extraction Algorithm for Field Study 

For field study and continuous monitoring, the relevant AE aliased signals captured 

should be locally pre-processed on-board the wireless units, so that only the results of 

evaluation and other meaningful features are transmitted to the remote control room, 

which reduce the amounts of data captured. These features are essential for the further 

analysis and classification of AE events. However, as the wireless system developed 

here is based on the use of MICAz platforms, which have limited power resources and 

memory size as well as low processing capabilities, computationally expensive algo-

rithms which are based on spectral and statistical approaches [232] cannot be consid-

ered. Therefore, relatively simple signal processing algorithms need to be considered for 

on-board AE feature extraction. 

In addition, for better analysis and classification results, content-based features should 

be extracted from the envelope of the received AE aliased versions rather than from the 

amplitude values of the time domain signal, since the envelope optimises the signal 

shape and minimises the ambiguity in the signal caused by lowering the sampling rate. 



Chapter 5 

116 

 

Figure 51 summarises the steps of the proposed feature extraction algorithm utilised in 

this wireless SHM system, which are discussed next. 

 
Figure 51: On-board feature extraction algorithm. 

 

5.2.3.1 On-Board Envelope Extraction of Aliased AE Signal 

As pointed out previously, the envelope of the aliased AE signal is extracted on-board; 

thus, the extraction method differs from that explained in Chapter 4 in the sense that it is 

relatively simple and not computationally complex. In this algorithm, the envelope is 

extracted from band-pass filter outputs by full-wave rectification and low pass filtering, 

as shown in Figure 51. To do this, a one-pole filter with a smoothing parameter β is ap-

plied to the full rectified AE aliased version shown in Equations (5.1) and (5.2) [233].  

                   (5.1) 

                           (5.2)  

where      is the aliased AE signal, t = 1, 2, …, N where N is the number of samples. 

This method is implemented in a streaming manner, where each sample is fully pro-

cessed and saved before the next sample arrives without having a specific loop for run-

ning the filter code. Figure 52 shows an example of an aliased AE version with the en-

velope extracted using the one-pole filter. The aliased version was captured using the 

developed in-suit SHM system. 
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Figure 52: Aliased AE signals with its envelope. 

5.2.3.2 Extraction of AE Features of Aliased AE Signal 

As mentioned in Chapter 3, the advantage of the utilisation of low sampling rates is that 

the original shape can be conserved, which helps in maintaining the most salient infor-

mation or features of the original AE signals without the need to reconstruct them. This 

means that the most relevant AE event parameters, discussed in Section 5.1.3, will be 

retained if the aliased versions of acoustic signals are used. Fortunately, most of them 

are time-domain features, as shown in Figure 47. This simplifies the process of on-

board feature extraction. 

AE features, including peak value, arrival time, mean value, and power value, are ex-

tracted from the envelopes of the aliased AE signals. These features have the advantage 

that they can be computed while the sensing process is in progress without the need to 

have acquired the whole signal first. The extracted features are assembled in vectors 

named ‘acoustic vector properties’ (AVPs) which are transferred to the control unit 

where they are characterised and used to distinguish different AE events. 

In the previous sections, the main concepts and considerations of the proposed wireless 

SHM monitoring system are explained. The following sections concentrate more on 

showing the functionality of this system in terms of the localisation of AE events on the 

WTBs caused by artificial AE sources via hitting the blades with a plastic stick which 

has a diameter and length of 15mm and 500mm respectively. Such sources could emu-

late impact damage or audible cracks caused by different objects, such as tools, bird 

strikes, or strong hail, all of which represent abrupt AE events. 
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5.3 Validation of AE Source Localisation on WTBs 

For SHM applications, AE source localisation is very important for large structures such 

as WTBs in which active regions where damage in material structure is expected can be 

identified and therefore a more precise investigation using other NDTs can be undertak-

en. To locate the AE sources on WTBs there are different techniques of source localisa-

tion: line-of-sight location, zonal location, and constraint geometrical point location 

[234]. In the following subsections, these techniques are detailed. Here, it is important 

to mention that the calculation of localisation features such as arrival time and peak am-

plitude are locally extracted by the individual acoustic wireless units. These features are 

then transferred to the control unit where they are assembled and utilised to estimate the 

location of the AE event. 

5.3.1 Line-of-Sight AE Source Localisation on WTB 

Line-of-sight localisation basically depends on the calculation of the arrival time of AE 

events and the velocity of AE signals in the medium in which they propagate. This type 

of localisation is conducted here in order to verify the possibility of locating AE events 

based on their arrival times measured by the individual wireless units. The velocity with 

which AE signals propagate in the WTB, which is made of carbon fibre is also meas-

ured. Figure 53 depicts the setup used to conduct theses wireless measurements. An arti-

ficial AE sound is generated by hitting the blade with a metallic ball, which has a diam-

eter of 9mm and a mass of 3g, at known positions in order to conduct the velocity 

measurements. 

 

Figure 53: Linear localisation of AE events. 
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5.3.1.1 Measurement of Arrival Time Features 

The arrival time features of aliased AE signals are calculated using the first threshold 

crossing. This method is applied in conjunction with low pass filtering to overcome the 

ambiguity caused by utilising low sampling rates, which leads to enhancing the detec-

tion accuracy of the arrival times of the captured aliased AE versions. These times are 

measured based on the local time of the individual wireless units, which affects the 

measurement precision of the arrival times of these events due to the drift in the clocks 

of these units.  

To overcome this problem, a simple time synchronisation procedure is applied in which 

the wireless units time-stamp the arrival of the start sample command ‘SC’ (see Figure 

50), which is denoted by    , and then they use these timestamps to convert the arrival 

time to a global time according to the relation:                             , 

where    is the arrival time of the detected AE signal at each wireless unit and 

           . A sequence of measurements has been conducted in order to test the ro-

bustness of this method, in which the arrival times were calculated with and without us-

ing the global arrival time relation. 

In these measurements, the wireless units were located at equal distances from a sound 

source, which means that the AE signals should arrive at the individual units at the same 

time instant. By comparing the results obtained from both cases, it has been found that 

using the global time reduces the time synchronisation errors from 46.33µs to 1.55µs 

which represents an average improvement of 96.65%  according to the setting of the 

experiments conducted. Such an improvement will have a positive impact on both ve-

locity and localisation measurements, as shown next. 

5.3.1.2 Measurement of Propagation Velocity 

Based on detected arrival times    and    (Figure 53), a calibration method is used to 

measure the velocity of wave propagation (v) using the relation:            , 

where D is the known distance between the two AE sensors (i.e., wireless units). Due to 

the short length of the blade used, only a small number of measurements are conducted. 

However, to show the robustness and repeatability of these measurements, each one is 

repeated a number of times and the results are discussed in Section 5.4. 
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5.3.2 Zonal Localisation for Active Blade Identification 

It is important for the experiments conducted that AE events are traced in order to speci-

fy the active zone or blade (i.e., the damaged blade). This is useful in order that more 

attention can be given to that particular zone or blade. This can be done by zonal locali-

sation, where each blade is assigned to an AE wireless unit and, via a comparison be-

tween the maximum amplitudes (A) of the AE signal received at the wireless units, the 

active blade can be specified. In contrast, to trace the active region within a large blade, 

AE wireless units can be spaced apart on the blade and AE source can be assumed to be 

within a region and less than halfway between AE wireless units. 

In this study, zonal localisation is used to specify the active blade, and the results of this 

localisation are presented in Section 5.4.2. However, additional precise localisation 

techniques are required to determine the exact location of the AE source, as shown next. 

5.3.3 Constraint Geometrical Point Localisation of AE Sources 

The constraint geometrical point location technique is used to pinpoint precisely the AE 

source based on the arrival time and signal strength features as well as the predeter-

mined sound velocity (v). For large scale WTBs where multiple AE wireless units are 

deployed, this technique can also be combined with zonal location to provide more pre-

cise source localisation results. This can be achieved by clustering the wireless units de-

ployed on the blade into areas, where active areas are specified based on the principle of 

zonal location i.e., signal strength. Then constraint geometrical point location is applied 

to precisely pinpoint the AE source, as explained next. 

Due to the small size of the wind turbine used in this study, a combination of zonal and 

constraint geometrical point localisation is implemented as shown in Figure 54. To ap-

ply this localisation technique to the WTBs, a model of 2D localisation needs first to be 

developed. To achieve this, AE sensors are assumed to be configured as shown in Fig-

ure 54. In this configuration, it is also assumed that the AE sensors are located in a 2D 

plane and the AE signals generated propagate in constrained paths along the blades. In 

Figure 54, D1 and D2 represent the shortest paths which will be taken by the AE signlas 

in order to reach the AE sensors S1 and S2 respectively. 

Based on the configuration shown in Figure 54 and these assumptions, a 2D model can 
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be derived as shown in Figure 55 where the shortest paths D1 and D2 are approximated 

by Ď1 and Ď2 respectively. In this case, the Equations (5.3)-(5.5) [234] are valid and can 

be used to estimate the unknown coordinates of the AE source, x and y, which are indi-

cated by the intersection of hyperbolas which are not shown in this figure. 

   √                         (5.3) 

   √                         (5.4) 

   √ 
           (5.5) 

where d is the distance between S3 and the AE source, l1,3 and l1,2 are the distances be-

tween S1 and S3 and S1 and S2 respectively, which are equal in this configuration.      

and      are the differences in arrival times between AE sensors S1 and S2 as well as 

between AE sensors S1 and S3. 

The proposed approach is examined by conducting several experiments to locate AE 

sources produced at a known location on blades by artificial AE events produced via 

hitting the blades with the same plastic stick discussed in Section 5.2. The results of 

these experiments are discussed in Section 5.4.3. 

 

Figure 54: Proposed configuration of acoustic wireless units, x and y are the unknown 

coordinates of AE source, ti is the arrival time of AE signal at AE sensor Si. 
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Figure 55: Proposed 2D localisation model. 
 

5.4 Results and Discussion 

The aim of this chapter is to develop and evaluate a proof-of-concept model for the in-

situ wireless SHM of OWTBs. This system is also used to evaluate the use of low sam-

pling rates technique proposed in this study for field test studies. The system has been 

used and tested for the localisation of AE events on WTBs released during a test phase 

and in in-suit environmental conditions. 

These AE events were captured at a sampling rate of 4.8KHz, which is much below 

Nyquist requirements. The arrival times of these events have been detected as discussed 

in Section 5.4.1 and used to estimate the delays among the AE aliased signals captured. 

These signals were processed locally at the wireless units used in order to extract AE 

features and to construct the AVPs. These AVPs were received at the control unit for 

further analysis. This section presents and discusses the results of the above-mentioned 

experiments. 

5.4.1 Line-of-Sight Localisation of AE Events 

Different artificial AE events were generated at known positions and localised using 

line-of-sight localisation on a single WTB. The results show the potential of the AE 

source localisation at low sampling rate based on the arrival time feature. These experi-

ments were conducted using the setup shown in Figure 53. The relation         
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   –          is used to localise the sound source, where v is the velocity measured and 

     is the difference in arrival times between AE sensors S1 and S2. The results gained 

from six experiments are summarised in Table 10.  

From the results shown in Table 10, the actual and estimated results are closely matched 

giving an overall error of 4.13% based on the measurement setting. The percentage er-

ror was calculated according to Equation (5.6). 

       
                             

            
         (5.6) 

As seen in Table 10, the rate of estimated error decreases as the distance d increases. 

This is because the use of low sampling rates led to decreasing spatial resolution, which 

in contrast increases the error in the detection of arrival times of the signals as d be-

comes smaller. Next, the results of active blade identification and constraint geometrical 

point localisation are reported. 

Table 10: Line-of-sight results of AE events localisation based on AVPs. 

Exp. # D (cm) d (cm) 
Average of estimated d 

(cm) from 6 readings 
Error (%) 

1 

82 

35 35.52 1.49 

2 20 19.65 1.75 

3 15 13.47 10.20 

4 

88 

40 40.03 0.08 

5 30 31.52 5.07 

6 21 22.30 6.19 

 

5.4.2 Active Blade Identification 

Active (damaged) blade identification has a significant importance in the application in 

SHM of OWTBs. This is because it can restrict the inspection process to that particular 

blade, which saves cost and time. Abnormal AE signals can be caused by different fail-

ure sources. Thus, locating their sources can be used to specify the most likely damaged 
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blade. To emulate these sources, WTBs were individually subject to several hits, as dis-

cussed above. 

Figure 56 shows the AE aliased signals received as a consequence of hitting the three 

blades individually while they were static. Each reading consists of 500 samples and all 

of them are initiated by a simple threshold crossing condition (100mv) which was cho-

sen experimentally to be above noise level. Figure 56-a illustrates the results of hitting 

blade number one. It is clear that a strong AE event was occurring at this blade, which 

needs to be taken into account in event detection and localisation as discussed next. The 

other two plots show the results of the propagation of this event to blades two and three. 

In contrast Figure 56-b and -c depicts the consequence of hitting blades two and three 

respectively. In both cases, the strongest aliased AE signal can be used to specify which 

blade was subject to the hit, whereas weak signals were obtained in each case as a result 

of the propagation of both strongest aliased AE signals to the other blades. In addition, 

it can be observed in Figure 56-a that there is a slight difference between the waveforms 

shown in this figure and those in Figure 56-b and -c in which the first shows that there 

is a minor hit result following the main hit result. 

These aliased signals shown in Figure 56 also demonstrate that applying uniform sam-

pling rates lower than Nyquist requirements in the acquisition process can still preserve 

the shape or contents of the AE signals. This is because the shape and common AE fea-

tures of these aliased versions are correlated with the AE signals captured at high sam-

pling rates [140]. This is a very important criterion in the extraction of AE features in 

SHM applications, which is not satisfied in techniques previously applied [153, 167] 

where a set of random projected samples was used, as discussed in Chapter 3. 

The determination of the active blade can also be achieved based on the AVPs received, 

as depicted in Figure 57 which summarises the results illustrated in Figure 56. For each 

test, the maximum peak values indicate the active blade which was hit. This means that, 

from Figure 57 and based on the peak values, the first test shows that the AE event oc-

curred on blade number one, whereas they occurred on blades two and three in the sec-

ond and third tests respectively. The results gained here can be combined with those of 

the constraint geometrical point location technique to provide more precise source local-

isation results for large scale WTBs, as discussed next. 
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(a) 

 
(b) 

 
(c) 

Figure 56: Aliased AE signals received from the wireless units as a consequence of hit-

ting the three blades individually a) one, b) two, and c) three. 
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Figure 57: Active blade identification based on peak value features of AE events shown 

in Figure 56. 

5.4.3 Constraint Geometrical Point Localisation of AE Events 

Due to the symmetry of sensor configuration in Figure 54, the distance x is known and 

equals l1,2/2 and the arrival times at S1 and S2 are equal, which means that       . 

Thus, any two sensors located on the propagation path are sufficient to estimate the dis-

tance d and consequently the coordinate y. In addition, once the active blade is specified 

based on zonal location, as explained in Section 5.3, then the proposed model in Figure 

55 can be adjusted accordingly. 

The proposed approach is examined by conducting several experiments to locate AE 

sources produced at known locations on blades by artificial AE events. For this purpose, 

the locations of AE sensors were changed to 50cm instead of 30cm on each blade, in 

order to provide more scope for changing the value of d. In these measurements, a cali-

bration method as discussed in Section 5.3 is used to measure the velocity of wave 

propagation from the measured time difference between the different AE sensors on the 

blades, and it is found to be around 2x10
4
m/s on average. It is worth mentioning that as 

the distance between the two AE sensors decreases the measured velocity becomes in-

accurate. The reason behind this is that the velocity measurement will be dominant by 

the small distance between the two sensors which is dominant by the complex structure 

of the wind turbine at hub. Whereas as this distance increases, it will be dominant by the 

simple one-dimensional structures of the blades.  
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Based on the velocity calculated, several experiments were conducted to locate the AE 

sources using the wireless setup discussed in Section 5.1 and based on the model shown 

in Figure 55. The results obtained are summarised in Table 11. From the results shown 

in this table, the actual and the estimated results are closely matched. They give an 

overall error of 7.98%, which shows the feasibility of the proposed model for AE source 

localisation at sampling rates much lower than the Nyquist rate for the specific wind 

turbine structure. The percentage error was calculated according to Equation (5.6). It is 

noticeable that the percentage error also increases with a decrease in d. In addition, the 

results obtained here although for a small wind turbine system, show significant poten-

tial to be extended to large-scale OWTBs. 

Table 11: Estimation results of constraint geometrical point localisation. 

5.5 Summary 

In this chapter, the implementation of an in-situ SHM monitoring system for WTBs has 

been introduced and described based on the integration of the AE technique and wire-

less technology. The developed system was integrated onto a 300W wind turbine in-

stalled on the roof. The technique proposed in Chapter 3 has been applied to this wire-

less system for field test study and validation. A case study of sound localisation at low 

sampling rates has been investigated and discussed.  

As elaborated in this chapter, the artificial AE events were generated on WTBs and used 

to test the robustness of the system in terms of localising AE sources based on the con-

Exp. # 
l1,2, l1,3 

(cm) 

Ď1, Ď2 

(cm) 

d 

(cm) 

Average of esti-

mated d (cm) 

from 6 readings 

Error (%) 

1 

92 103 

15 17.58 17.20 

2 20 21.70 8.50 

3 25 23.19 7.24 

4 30 31.90 6.33 

5 35 36.60 4.57 

6 40 41. 61 4.02 
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tent-based features extracted from the aliased AE versions on-board the wireless units. 

These features formed the AVPs which were received and fused in the central unit to 

estimate the location of AE sources. This has been achieved for the complementary as-

pects of the line-of-sight, zonal, and constraint geometrical point localisation tech-

niques. A localisation model for the latter technique in conjunction with the zonal ap-

proach has been developed and applied to the three WTBs. Several wireless localisation 

tests have been carried out to assess the localisation capabilities of the proposed model 

on the WTBs. The results illustrate the feasibility of the proposed model for AE source 

localisation at sampling rates much lower than the Nyquist rate in this specific wind tur-

bine structure.  

These results were obtained for a small wind turbine system. However they represent a 

proof of the concept of developing the in-situ SHM system based on the integration of 

the AE technology and WSNs with the utilisation of low sampling rates discussed 

throughout this research. In addition, such conclusions are important for the further de-

sign and development of wireless SHM systems and their application in developing con-

tinuous in-situ offshore large scale WTB condition monitoring systems. In the next 

chapter, further field validation of the proposed system is considered by conducting 

subsequent in-situ experiments in which AE events and environmental monitoring are 

taken into account under different environmental conditions and artificial AE sources. 
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CHAPTER 6: WIRELESS SHM CASE STUDY II: AE 

EVENT AND ENVIRONMENTAL MONITORING 

 

 

In the previous chapter, an in-situ wireless inspection system proposed for monitoring 

the structural health of the WTBs in conjunction with the localisation of AE sources has 

been presented. The work presented in this chapter conducts field test studies for the 

validation of both the developed wireless SHM system and AE features in providing a 

robust SHM system for WTBs. This is shown by conducting further in-situ experiments 

in which AE events are detected and discriminated amongst in different environmental 

conditions in conjunction with artificial AE sources. The intention of using such sound 

sources is to emulate impact damage or audible cracks caused by different objects such 

as tools, bird strikes, or strong hail. Time and time-frequency feature extraction algo-

rithms, in addition to the PCA method, are used to extract the most relevant infor-

mation, which in turn can be used to classify or recognise a testing condition that is rep-

resented by the response signals. 

The layout of this chapter is as follows. Section 6.1 presents a general introduction to 

the proposed feature extraction and classification plan for system validation. Section 6.2 

discusses the feature extraction techniques proposed in this study to extract AE parame-

ters. System validation procedures are discussed in Section 6.3. In Section 6.4, the vali-

dation results of AE events and environmental monitoring conditions are presented. Fi-

nally, the conclusions are drawn in Section 6.5. 

6.1 Introduction 

As explained in Chapter 2, AE WSNs are large collections of resource-limited wireless 

units, densely deployed to collectively monitor an area or execute a certain task. The 

limited resources necessitate that only small amounts of data gathered by these units 

should be used to detect and discriminate different AE events. This should be performed 
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by extracting the most important AE parameters locally on-board from the aliased ver-

sions collected at the central unit. Figure 58 below illustrates the proposed feature ex-

traction and classification strategy for the detection and classification of AE events. 

 

Figure 58: AE events detection and classification strategy. 
 

As seen in Figure 58, the proposed strategy provides two possible options for the extrac-

tion of AE features: either on-board the wireless units or in the central unit. The former 

option represents the default case and it is implemented for a continuous monitoring ap-

proach where a simple content-based feature algorithm is applied; whereas the latter is 

used for off-line techniques or for cases where more investigation is requested, using 

advanced feature extraction approaches, including principal component analysis (PCA) 

and WT.  

The on-board feature extraction method was discussed in the previous chapter. Howev-

er, in the following sections, a brief background of feature extraction techniques pro-

posed for centralised processing is presented along with the motivation behind their use. 

The effectiveness of individual features is then tested and discussed. Based on the re-
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sults obtained, only features that perform well are selected for feature fusion and then 

for AE event classification. 

6.2 Extraction and Fusion of AE Features 

The key to a successful in-situ SHM system for WTBs is an effective monitoring sys-

tem with the highly reliable ability to detect and discriminate different AE events and 

environmental conditions. This can be achieved by extracting the most relevant AE fea-

tures, which in turn can be used to classify or recognise a testing condition that is repre-

sented by the response signals [235].  

Feature extraction can be seen as a process of transforming a set of data into a set of fea-

tures which are then used for further analysis and classification [235]. Such a process 

has the advantage that it allows the representation and classification of different AE 

events using a small number of features compared to the size of the original data, which 

saves memory space and speeds up the monitoring process. Therefore, extracting dis-

tinctive and distinguishable features from aliased AE signals is imperative for their 

proper classification. To achieve an optimal SHM system it is extremely important that 

the feature extraction process is accompanied by appropriate feature selection and opti-

misation, which are considered to be complementary steps in improving performance 

and identifying the most relevant features of a particular AE event. 

6.2.1 Pre-processing of Aliased AE Signals 

Work under the use of low sampling rates to extract meaningful information requires 

the use of envelopes of aliased signals instead of amplitude values in the extraction pro-

cess, in order to mitigate the problems associated with employing low sampling rates 

below the Nyquist requirements such as the loss of information. Therefore, the first step 

in the extraction process is to fit or extract the envelope of the aliased acoustic versions. 

This can be performed as discussed in Sections 4.3 and 5.3. 

6.2.2 Principal Component Analysis-Based Features 

PCA is a multivariate statistical signal processing technique extensively used for feature 

extraction to reduce the dimensionality of the original data, thus allowing a simpler 

analysis process. This is achieved by transforming the data linearly into a smaller num-
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ber of uncorrelated (i.e., independent) and orthogonal to all other principal components 

(PCs) which correspond to the maximum possible amount of variation within the data. 

Each PC is a linear combination of the original data and the first principal component 

explains most of the variation in the data and each succeeding component accounts most 

of the remaining variance and so on. The number of significant components to use is 

user-defined. However, in most cases, the first, second, and third components provide a 

good summary of all of the possible variation. 

PCA has been used in diverse applications, including the analysis of PEC response from 

corrosion in mild steel [236], the detection of metal loss [237], the analysis of acoustic 

emission signals from landing gear components to detect fatigue fractures [238], the au-

tomatic classification of acoustic emission patterns [226], face recognition [239], and 

biomedical engineering [240, 241]. The widespread use of this technique in different 

applications is most likely due to the following advantages. In addition to its simplicity, 

the PCA is a non-parametric method which allows the extraction of the most important 

or hidden information from confusing data sets. It also provides a tool to explain a large 

percentage of the total variance with only a few components, which can reduce a com-

plex data set to a lower dimension set [242]. Therefore, PCA can be used to provide the 

features of any such data sets. 

In this study, PCA-based signal processing is applied to extract dominant AE features 

from the aliased AE signals. Thus, diverse AE events and environmental conditions can 

accurately be discriminated and classified. The approach suggested in this study uses 

the envelope of the aliased AE time-series signals acquired from various different im-

pact and environmental conditions. To obtain the PCs each data set from a wireless 

measurement is transformed into a column vector, Γn, whose length N is specified by 

the number of variables used. For M measurements, an array matrix Γ with the size of 

    will be obtained, as in Equation (6.1) [237]: 

                     (6.1) 

As a next step and to ensure that the first principal component accounts for the direction 

of maximum variance, the mean is calculated and subtracted along each dimension, as 

in Equations (6.2) and (6.3) respectively. This leads to a mean of zero which helps in 

finding a basis that minimises the mean square error of the approximation of the data 

https://en.wikipedia.org/wiki/Minimum_mean_square_error


Chapter 6 

133 

 

[243]. 

 ̅  
 

 
 ∑   

 
          (6.2) 

       ̅        (6.3) 

The orthogonal Eigen-signals are then calculated by working out the covariance matrix 

C, as shown in Equation (6.4): 

  
 

 
 ∑      

   
   

 

 
          (6.4) 

where               . 

After calculating the eigenvectors and eigenvalues of the covariance matrix, the eigen-

vector with the largest corresponding eigenvalue is seen as the direction of the first PC. 

Similarly, the eigenvector with the second largest eigenvalue represents the direction of 

the second PC and so on. In this study, the aliased AE time-series signals are character-

ised as projections of the first three principal component scores of the aliased AE signal 

i.e., the first three normalised principal components PCA1, PCA2, and PCA3 of the i-th 

AE signal,   , as illustrated in Equation (6.5) [236]: 

     
      

     
              (6.5) 

The AE projection space contains the new features that are used for classification pur-

poses, as shown in Section 6.4. 

6.2.3 Wavelet Transform-Based Features 

WT offers simultaneous time domain and frequency analysis for de-noising and 

smoothing data in a natural and integrated way [244]. This allows the pre-processing of 

data in order to better locate and identify significant features. Following the discussion 

in Section 4.3, the WT decomposes the data into orthogonal subspaces, each of which 

contains information about details at a given resolution. This resolution is high in the 

frequency domain while it is low in the time domain; or when the resolution is low in 

the frequency domain it is high in the time domain. This leads to the de-noising of the 

signal being processed [245]. 

Various types of WT are available in the wavelet analysis toolbox provided by 

MATLAB. For the purpose of de-noising and smoothing the aliased AE signals, sta-
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tionary wavelet transformation (SWT) [246] is used in this part of the study. The SWT 

is a shift-invariant transform compared to, for instance, the classical DWT. This is 

achieved as a result of upsampling the coefficients of the filter by a factor of      in the 

j
th

 level of DWT instead of using the downsamplers and upsamplers in this technique 

[247].This means that a translated version of a signal x is the same as the SWT of the 

original signal, which is important in various applications, including de-noising, pattern 

recognition, feature extraction, and change detection. 

Figure 59 illustrates the block diagram of the SWT. In this figure, for a given signal S of 

length N, the first step of the SWT algorithm starts with decomposing it into two sets of 

coefficients; namely, the approximation coefficients cA1 and detail coefficients cD1. 

Both vectors are generated via the convolution of S with low-pass (Lo_D) and high-pass 

(Hi_D) filter respectively. In the next step, the cA1 and cD1 coefficients are again split 

into two parts using the same scheme. However, the filters used in this step are obtained 

by up-sampling the filters employed in the previous step. As a result, cA2 and cD2 are 

generated. More generally, these can be expressed in the following Equations (6.6) and 

(6.7) [245]: 

      ∑   
   

                    (6.6) 

      ∑   
   

                    (6.7) 

where   
   

 and   
   

 denote inserting 2j-1 number of zeros between two points of h0 and 

h1; and                ,                ;   is a scale function;   is a wave-

let function; and            . 

Two resolution levels of wavelet decomposition have been implemented in order to pre-

serve most of the significant wavelet behaviour, and to minimise the significant wavelet 

behaviour which corresponds to noise in the aliased AE signal. Three types of statistical 

measurements were applied to the wavelet approximation coefficients as unique features 

for each aliased AE signal. Wavelet entropy (ENT) is a measure of the energy disper-

sion among wavelet coefficients. The entropy of a signal              is given as in 

Equation (6.8) [232]: 

     ∑   
         

   
         (6.8) 

Another statistical measure is the root mean square (RMS) which is the sum of squares 



Chapter 6 

135 

 

of the difference between the amplitudes and mean value of the signal  ̅, and it is meas-

ured as in Equation (6.9) [248]. In addition to the standard deviation (STD) feature, 

these features are used for classification purposes, as discussed in Section 6.4. 

    ∑      ̅ 
  

         (6.9) 

 

Figure 59: Block diagram of SWT. 
 

6.2.4 Wavelet Transform-Principal Component Analysis Based Features 

As mentioned in the previous section, the pre-processing of data with WT leads to the 

smoothing of the aliased AE signal and better identification of significant features. 

Thus, the fusion of this type of data pre-processing with multivariate statistics (PCA) 

facilitates the extraction of the hidden information in these signals for data analysis and 

interpretation. The integration of WT and PCA has found application in defect classifi-

cation and quantification for pulsed eddy current NDT [249], and in condition monitor-

ing to detect faults in an automobile engine using AE [248] as well as in face recogni-

tion [250, 251]. This promising type of integration is adopted in this work for better fea-

ture extraction via the application of PCA to the wavelet coefficients of aliased AE sig-

nals captured wirelessly using low sampling rates lower than the Nyquist rate in the data 

acquisition operations. The results of this integration are presented in Section 6.4. 
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6.3 System Validation Using Emulated Impact Damage and Environmental Moni-

toring 

The proof-of-concept hardware implementation of an in-situ wireless SHM system for 

WTBs proposed in Chapter 5 is experimentally evaluated in this chapter. This is accom-

plished by detecting and classifying different AE events as well as changes in environ-

mental conditions. As mentioned in Section 6.1, two complementary options were 

available to perform this validation: firstly, by fusing the AVPs received from the indi-

vidual wireless units at the remote control unit; or, secondly, by collecting the raw data 

of the aliased AE signals at the remote control unit in order to extract the AE features 

using the aforementioned advanced feature extraction techniques. 

For the validation process, it is important that AE events relevant to environmental con-

ditions are recorded and separated from those relevant to the health condition of WTBs. 

Thus, different case studies are considered, including those with AE events and envi-

ronmental monitoring under different environment conditions. Artificial AE sources are 

generated to emulate impact damage or audible cracks caused by different objects such 

as tools, bird strikes, or strong hail in order to validate the system. These cases represent 

abrupt signals and continuous monitoring for the detection of sudden changes under 

wind and rain loads. The validation of AE event localisation has been discussed in 

Chapter 5, and therefore this chapter gives more attention to the validation of the envi-

ronmental monitoring and classification of emulated impact damage based on the fea-

tures extracted using the abovementioned algorithms, as discussed next. 

6.4 Validation Results and Discussion 

Leaving the WTB system to rotate under different environment conditions is likely to 

result in different AE events based on these conditions as well as on the structural health 

of the blades. Therefore, for a robust SHM system it is very important to be able to dis-

tinguish and characterise these events in order to specify the main causes of such events. 

This section discusses the experimental results of the system validation based on these 

variables. The experiments were conducted using the wireless experimental setup dis-

cussed in Chapter 5 in order to collect the AE signals generated. 



Chapter 6 

137 

 

6.4.1 AE Event and Environmental Monitoring 

Continuously in-situ sensing the structural health of the three blades leads to the moni-

toring of the AE events under different environmental conditions. This results in differ-

ent AE events based on the health condition of the blades as well as climate conditions. 

The waveforms of various relevant environmental conditions were recorded during this 

type of in-situ experiment under wind and rain conditions. The experiments were con-

ducted while the wind turbine was installed on the School roof with the wireless moni-

toring system on top of it. As explained in Chapter 5, each reading consists of 500 sam-

ples, all of which were initiated by a simple threshold crossing condition which was be-

low 100mv in order to allow the wireless units to detect such waveforms even if they 

were weak. 

6.4.1.1 AE Event and Environmental Waveforms 

Figure 60 depicts an example of waveforms detected while the blades rotated due to the 

wind i.e., the Wind condition. Such types of waveforms are caused by the sound pro-

duced as a result of blade rotation. These signals are characterised as noisy signals 

whose variance and power increase with wind speed. However, raising the detection 

threshold value of the wireless units will lead to the filtering of these signals. 

 

Figure 60: Wind condition waveform detected. 
 

The second environmental condition waveforms were signals caused during the rainfall 

condition. These signals were recorded while the blades were stationary and then when 
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the blades were rotating. Figure 61 shows an example of the waveform recorded in the 

former case. This type of signals is characterised by a random sequence of repetitive AE 

pulses whose peak and repetition values depend on the density and speed of the rainfall. 

 

Figure 61: Rainfall condition waveform detected. 
 

 

Figure 62: Rainfall and wind condition waveform detected. 
 

In contrast, a waveform of a rain and wind condition is shown in Figure 62. This type of 

waveforms was recorded during light rainfall while the blades were spinning under the 

wind load. As a result of blade rotation the collected rain waveform was contaminated 

with the noise caused by the spinning of the blades. This type of waveform appears as a 

sum of the two waveforms of the rain and wind conditions. 
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In addition, the blades were also hit with a plastic stick while the blades were stationary 

and then during the rain test in order to capture both an abnormal signal and a rainfall 

condition waveform. Figure 63 and Figure 64 show an example of waveforms obtained 

from such experiments for impact as well as rain and impact conditions respectively. 

Based on the results of the experiments conducted, these types of signals can be usually 

characterised by the differences in amplitude and shape between the hit event and the 

rainfall signals. It is worth mentioning that the AE signal received as shown in Figure 

63 was captured while the threshold crossing value was low, which allows the capture 

of the signal onset in comparison to the signals shown in Figure 56.  

Furthermore, by comparing the signals received from all wireless units for the meas-

urements in the rainfall condition, it is noticeable that there is a high correlation be-

tween these signals in terms of the amplitude and width of the individual pulses, as 

shown in Figure 65-a. This is because they were caused by the same condition, i.e., 

rainfall. This makes the features extracted from such signals among wireless units al-

most the same. In contrast, if one of the blades encountered a hit during the rainfall 

condition, the received signals will be similar to the signals shown in Figure 65-b. In 

addition to the rain condition waveforms, this figure shows the signals caused by the 

emulated impact damage of blade number one. As discussed in Chapter 5, the impact 

signal propagated from this blade to the other two blades, which are then captured by 

wireless units two and three, can be clearly seen in the last two plots in Figure 65-b. 

 

Figure 63: Emulated impact damage waveform. 
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The above mentioned in-situ wireless experiments were conducted several times and a 

sequence of AE aliased waveforms was recorded under the aforementioned conditions. 

In addition, waveforms of the steady case at a very low wind speed were also recorded. 

These waveforms were further analysed and classified as discussed next. 

 

Figure 64: Emulated impact damage and rain condition waveform detected. 

 

 

Figure 65: AE events received at three wireless units (WU), a) for rain, b) rain and hit 

measurements. 
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6.4.1.2 Classification of AE Event and Environmental Monitoring  

As discussed above, the AE event and environmental experiments were repeated several 

times, and in each case the AE parameters or features discussed in Sections 5.4 and 6.2 

were extracted on-board the wireless unit and at the remote control unit respectively. In 

both cases, these features were used at the control unit to discriminate between the 

waveforms captured during these experiments. 

Figure 66 illustrates the results using peak value and RMS features as a combination to 

lead to the signals recorded being distinguished. From the captured waveforms dis-

cussed above, it is noticeable that those relevant only to the wind condition have values 

of RMS greater than those in waveforms for the steady condition case. This difference 

was increased by increasing the speed of rotation of the WTBs. In contrast, the differ-

ence in peak values due to raindrops hitting the blades between the waveforms of the 

former condition and the rainfall condition led to the two cases being distinguishable, 

and as the strength of the rainfall increased this difference increased as well. In addition, 

the waveforms relevant to the rain and wind condition were distinguished by their rela-

tively large RMS values compared to the rainfall condition due to the difference in 

noise levels. 

 

Figure 66: Classification of received events under different environment conditions us-

ing time domain features. 
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Finally, for the cases where the blades were manually hit, in order to generate artificial 

sounds which emulated audible cracks or impact damage due to different objects, the 

AE events produced gave the highest peak values as shown in Figure 66. These values 

made the discrimination of these events from the waveforms discussed above very easy. 

The signals resulting from the propagation of the emulated impact damage to the other 

blades are not considered in Figure 66 since they show the same features as the main 

signals, but with relatively low values. 

In addition to the time domain features which were used in the above classification of 

AE events under different environment conditions, the PCA features have also been ap-

plied to a similar set of such events collected at the remote unit. Figure 67 illustrates the 

discrimination results of this process. In this figure, to ensure better representation of 

this classification, the first two PCs features have been integrated with the time domain 

features (average of peak values) of the AE events captured. As seen in this figure, it 

was found that this integration has the potential to discriminate between these AE 

events, where they are clearly classified into six non-overlapping clusters based on this 

combination.  

 

Figure 67: Classification of received events under different environment conditions us-

ing the integration of time domain and PCA features. 
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In the last two figures, it can be seen that waveforms relative to the impact damage 

emulated are obviously separated from the rest of waveforms discussed above. To ob-

tain better identification and classification of such impact or crack AE events, more em-

ulated impact measurements were conducted and additional feature extraction algo-

rithms applied, as discussed in the next section. 

6.4.2 Discrimination and Classification of Emulated Impact Damage 

Monitoring of the emulated impact damage is carried out on WTBs through the devel-

oped wireless SHM system. The impact was emulated by hitting the blades while they 

were static, by three metallic balls of different sizes, as shown in Figure 69. The small-

est ball (SB) has a diameter and mass of 5mm and 1g respectively, whereas the medium 

ball (MB) is 9mm and 3g and the largest ball (LB) 13mm and 9g. The balls were thrown 

to the blades at the same speed and from the same height (H) and at the same distance 

(D) from the AE wireless units, as shown in Figure 68. 

 

Figure 68: Emulated impact damage setup. 
 

As a result of this emulated impact damage three different aliased AE signals were gen-

erated, as illustrated in Figure 69. It can be seen in this figure that the duration and pow-

er parameters of these signals are proportional to the size of the ball used, where the 

largest ball cased the longest signal duration and maximum power. These experiments 

were repeated several times and in each case the AE parameters or features discussed in 
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Section 5.4 were extracted on-board the wireless unit and sent to the control unit in the 

form of APVs. These APVs were used in the control unit to discriminate between the 

three cases. 

To identify the three cases, it was found that the AE parameters such as power and dura-

tion features are sensitive to the type of impact damage emulated. These parameters 

were used to discriminate between the different ball impacts, as shown in Figure 70. 

This figure shows that the AE aliased signals caused by the smallest ball were character-

ised by small values of the selected parameters. These parameters increased as the size 

of the ball increased, leading to a clear separation between the three cases. 

To confirm these results, the WT and PCA feature extraction algorithms have also been 

applied to the AE aliased signals collected at the remote unit for the same set of experi-

ments. Figure 71 illustrates the discrimination results of the impact signals caused by 

the three balls using SWT-based features; namely, the entropy and standard deviation 

parameters. 

As can be seen in Figure 71, the three impact cases can be easily identified as they are 

well separated. This technique is simply used to cluster the AE signals, using statistical 

information gained from the WT coefficients, into individual groups which have similar 

values representing the three different AE generation sources. It is also noticeable that 

the aliased AE waveforms produce a more linear and monotonic distribution in terms of 

grade classification of the acoustic signals generated. 

The combination of WT and PCA has also been applied to the same set of aliased AE 

signals discussed above in order to confirm these results using different feature extrac-

tion algorithms. Figure 72 illustrates the results of using WT-PCA based features in dis-

tinguishing between the three cases of impact damage using the first three PCs. AE sig-

nals caused by the largest ball are separated from the others as the PCA1 values are all 

positive. In addition, the PCA3 values are all negative for the smallest ball which distin-

guishes them from the signals caused by the medium ball, whereas the PCA2 values are 

positive for all cases.  

Despite the fact that the results show a distinct separation between these signals, the pat-

terns shown in Figure 70 and Figure 71are lost which showed no much improvement 

through combining WT and PCA based algorithms. However, the values of PCA3 are 
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almost linearly proportional to the strength of these signals which increased as the effect 

of the impact source increased. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 69: Aliased AE signals caused by the emulated impact damages by the three 

balls; a) LB, b) MB, and c) SB. 
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Figure 70: Discrimination between impact signals caused by the three balls. 
 

 

Figure 71: Discrimination between impact signals caused by the three balls using SWT-

based features. 
 

Since PCA is a purely mathematical procedure, it is useful to relate the results obtained 

to the time-domain features of the aliased AE waveforms in order to facilitate physical 

explanations. It is found that the normalised third PC for all sets of aliased AE signals 

correlates with the time domain feature of the normalised average power parameter of 
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SB 

LB 
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these signals, as shown in Figure 73. Therefore, as the effect of the impact increases 

with increasing grades, the duration of the aliased signals increases and hence more 

power is accumulated by the AE sensor. 

 

Figure 72: The principal component analysis of the WT coefficients to discrimination 

between impact signals caused by the three balls. 
 

 

Figure 73: Third principal component correlates with normalised average power param-

eter of aliased AE signals for the three impact cases. 
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6.5 Summary 

In order to demonstrate the validation of the wireless SHM system developed in the 

course of this research, AE events were captured under different environmental condi-

tions, including wind and rain conditions. In addition, artificial AE sources were gener-

ated while the blades were static and during the rain test to emulate audible cracks or 

impact damage caused by different objects. A sequence of experiments was conducted 

and in each measurement AE aliased waveforms were captured and time and time-

frequency AE features were extracted in addition to PCA features. 

Based on the measurements conducted during the validation of the proposed in-situ 

wireless SHM technique with field deployment on the WTB structure, the main charac-

teristics of the waveforms captured are summarised in Table 12. The data collected here 

are based on the experimental settings and environmental conditions on the days of the 

experiments, which may have varied from day to day, but the trends in the data are simi-

lar. 

Table 12: Waveform descriptions of the AE event and environmental conditions.  

AE event and environ-

mental condition 
Waveform description 

Steady A very low noisy signal. 

Wind 
Noisy signals whose variance and power increased 

with increasing wind speed. 

Rain 

Random sequence of repetitive AE pulses whose peak 

and repetition values depend on the strength of the 

rainfall. 

Impact 
Abnormal signals whose AE parameters such as power 

and duration depend on the strength of impact. 

Wind and Rain 
A sum of the two waveforms of the rain and wind 

conditions. 

Impact and Rain 
A sum of the two waveforms of the impact event and 

rainfall. 

 

To check data validity, simple repeatability tests were also carried out. Each waveform 

was captured several times. The results of separating and clustering the individual 

groups based on the extracted AE features were then plotted for all groups. These re-
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sults were confirmed using time and time-frequency feature extraction algorithms in 

addition to the PCA technique. This also showed that working under the utilisation of 

low sampling rates to extract AE features from aliased AE waveforms can help in ful-

filling the requirements of AWSNs for SHM systems as discussed in Chapters 1 and 2. 

The data samples collected were limited in terms of the number and type of measure-

ments taken, due to the small size of the wind turbine unit used and safety issues associ-

ated with using the wind turbine on the School roof. The evaluation case studies con-

firm the feasibility of employing the proposed in-situ wireless system for SHM applica-

tions. It would be better if a wider range of real defects was considered. However, the 

investigation of the full range of possible defects which might occur would have been 

beyond the scope of this research, due to the time required to develop such defects. 
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CHAPTER 7: CONCLUSIONS AND FURTHER 

WORK 

 

 

In this chapter, the research work presented in this thesis is summarised. It starts with a 

summary of the research exploring the major work that has been completed throughout 

the journey of this research. In the subsequent section, the main scientific contributions 

described in the thesis are presented. After that the limitations of the study are dis-

cussed, followed by the potential directions for future research in terms of both extend-

ing the existing system to cope with multi-hop data collection and its adoption in large 

scale wind turbines. Finally, the practical implications of the research are described. 

7.1 Research Summary 

Interest in the integration of SHM systems into various industrial applications has been 

steadily growing over the last few years. This is because such systems are widely con-

sidered as efficient techniques for significantly reducing the costs of the O&M of safe-

ty-critical structures and systems. This is also true for the wind power industry where 

rising demand for the harvesting of wind energy means that wind turbines have become 

physically larger and more wind farms are placed in remote areas in order to increase 

efficiency and the levels of power generated. These requirements have made the devel-

opment of in-situ SHM techniques for OWTs an important research topic. 

For such an application, an SHM system can be deemed successful only if it provides 

good sensitivity to defects, fault prediction and the evaluation of the remaining lifetime, 

as well as the prevention of the early collapse of wind turbine units. This can be 

achieved in terms of giving warnings of the need for product replacement and mainte-

nance in the early stages, along with defect localisation and identification. To achieve 

this, two relevant topics have been considered. The first is to implement an in-situ wire-

less SHM technique for OWTBs based on the integration of wireless technology and the 
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AE technique in conjunction with the use of low sampling rates; and the second is to 

develop appropriate signal processing algorithms to detect, localise, and classify differ-

ent AE events under the employment of low sampling rates. The research can be catego-

rised in terms of various tasks which are described as follows. 

The subject of this research and the framework within the project was conducted as well 

as the main contributions of this thesis were introduced in Chapter 1. For convenience a 

summary of this work and the results are also presented in Chapter 1. 

The contributions made in Chapter 2 are represented by providing background infor-

mation on wind power systems, with special attention given to WTBs in conjunction 

with different types of failure model for them. State-of-the-art techniques for inspecting 

and monitoring the structural health of WTBs are also explored. The strengths and 

weaknesses of these techniques are compared, and criteria used to select the most ap-

propriate are presented. The literature survey concluded that the AE technique has been 

found to be an effective method of detecting WTB failures; however, wired-based solu-

tions make the adoption of this technology in the SHM of OWTBs is almost impossible 

due to, for example rotation of blades. Thus, integrating this technique with WSNs was 

suggested in order to develop a robust wireless SHM system. The potential and limita-

tions of this integration are discussed. A sensing method based on the use of low sam-

pling rates is also described with the intention to solve the limitations of power and 

commutation bandwidth at the level of wireless sensor. It also helps to overcome the 

requirement of high sampling rates in accordance with the Nyquist rate which are re-

quired for highly reliable acoustic records. 

The fundamentals of the CS technique are briefly discussed in Chapter 3. A concept 

based on the use of low sampling rates, lower than the Nyquist rate, in data acquisition 

operations was proposed. The advantage of this utilisation is that it is an energy-

efficient scheme for wireless technology. In addition, the shape of the original acoustic 

signal is preserved. This helps in retaining the most salient information, such as timing 

information and the coherence of aliased signals captured by the different wireless 

nodes, both of which are very important for ASL and classification.  

The main drawbacks of working under the use of low sampling rates are discussed since 

it may significantly reduce the performance of the TDE algorithms due to loss of infor-
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mation and low spatial resolution. Therefore, based on experimental and comparative 

studies of different domains of analysis for TDE, it was concluded that the employment 

of the time-frequency domain and envelopes of the aliased signals instead of their am-

plitude values would be significant in overcoming this issue and allow this utilisation 

while enhancing the accuracy of TDE. 

These techniques were then successfully evaluated in Chapter 4 using data from 

AWSNs. Thus, the main contribution of this chapter is in proposing a novel TDE algo-

rithm based on the recommendations of the previous chapter. The proposed technique 

takes advantage of the envelope feature to smooth the aliased acoustic versions received 

from the ASL system which was developed using AWSNs. The WT and CC in conjunc-

tion with parabolic fit interpolation were then employed to estimate the time delays 

among the aliased signals captured. However, the multi-scale averaging approach used 

to calculate the time delay represents a drawback of this technique, since it is time-

consuming. To counteract this problem, an SE criterion is applied in order to optimise 

the selection of the scale index that gives the best estimation accuracy without the need 

to perform averaging. In addition, the experimental results have shown that, a wireless 

ASL system based on MICAz platforms and TinyOS HEH mode was able to realise 

synchronised sensing operations among the wireless units due to its deterministic nature 

which greatly improved the accuracy of estimation.  

Building on the experience gained from the aforementioned work, an in-situ wireless 

SHM system was implemented on the top of WTBs. Thus, the main contribution of 

Chapter 5 was to introduce the hardware implementation of this proof-of-concept for the 

in-situ system in conjunction with a detailed discussion of the main challenges facing 

this implementation. The feasibility of this wireless technique with field deployment on 

the WTB structure was validated by experimental results for the localisation of several 

AE events. Both centralised and decentralised approaches were considered for the de-

veloped system in which the AE parameters were extracted from the envelope of the 

aliased AE signals on-board the wireless units. These parameters were used to construct 

only the AVPs, which were sent to the remote control room for central processing 

where the AE events can then be identified and classified. In this chapter, AVPs have 

been used in a combination of the constraint geometrical point and zonal localisation 
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techniques to localise the AE sources, which have shown precise source localisation re-

sults with the WTBs structure used in this study. 

In Chapter 6, the potential of the proposed wireless SHM system is evaluated using dif-

ferent case studies. This has been performed by conducting several wireless in-situ 

measurements in which several AE events emulating impact damages as well as chang-

es in environmental conditions were detected and monitored. The extraction of AE pa-

rameters was performed on-board the wireless units and at the remote control unit using 

time and time-frequency feature extraction algorithms in addition to PCA method re-

spectively. Complementary information is identified and schemes for event monitoring 

with data fusion are discussed, which in turn are used to classify or recognise a testing 

condition that is represented by the response signals. 

7.2 Main Contributions of the Research 

As part of Newcastle University contributions to the HEMOW-FP7 Project, the aim and 

objectives of this research have been met, and the following achievements have been 

satisfied concerning the development of a proof-of-concept SHM technique for OWTBs 

based on WSNs and AE techniques in conjunction with the use of low sampling rates. 

 A thorough review has been undertaken of different SHM systems with relevant 

non-destructive testing and evaluation techniques in conjunction with WSNs as 

well as the potential for their integration.  

 Through a comparative study in conjunction with the use of different time delay 

estimation algorithms, it has been shown that the utilisation of low sampling 

rates overcomes the challenges posed by the limitations of data transmission 

over WSNs for ASL. This original contribution will be important in terms of da-

ta reduction and power savings in the design and development of the proposed 

offshore wind turbine SHM technique based on AWSNs. 

 Through the investigation of a novel combination of the wavelet transform, en-

velope fitting, cross-correlation and the Shannon entropy criterion, the utilisation 

of ASL using AWSNs with the setting of sampling frequency lower than the 

commonly required Nyquist frequency has been validated. These results con-

tribute to the reduction of the amount of sensing data, level of power consump-
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tion, and communication bandwidth required and is therefore beneficial for 

AWSN applications. 

 Through the implementation of an in-situ SHM system on the top of a 300W 

wind turbine installed on the School roof composed of the developed WSN and 

an AE technique, the use of low sampling rates has been evaluated in a field en-

vironment. In addition, signal processing techniques for the extraction of local 

AE features from the aliased AE signals have been used to monitor and assess 

the structural health of WTBs. This contributes to solving the problems of lim-

ited power and bandwidth for data transmission in WSNs, which could enhance 

the performance of the developed in-situ wireless SHM for OWTBs.  

 The in-situ wireless SHM has also been experimentally evaluated based on the 

utilisation of low sampling rates the consideration given to the detection, moni-

toring, and classification of different AE events emulating impact damage and 

audible cracks as well as changes in environmental conditions. Furthermore, 

through a combination of zonal and constraint geometrical point localisation 

techniques, a localisation model has been developed and precise source localisa-

tion results were achieved for the complex structure of WTBs. Such a model is a 

potential candidate for large scale WTBs to provide precise estimation results 

for AE source localisation.  

 Several aspects of the research have been the subject of publications in refereed 

journals, conference papers, and posters. 

7.3 Limitations of the Research 

The research has introduced an in-situ wireless SHM system which has the ability to 

satisfy the SHM requirements for OWTB development. However, the following limita-

tions are still there: 

 In the current in-situ prototype system, the MICAz platforms used to develop the 

wireless units are resource constrained in terms of limited power supply, which 

represents a weakness in this system. 



Chapter 7 

155 

 

 Since this is one of the first wireless SHM prototypes for WTBs, its hardware 

implementation is limited to a small scale of wind turbines. For larger scale sys-

tems the AE sensors and wireless units would need to be fitted differently.  

 Due to the resource constraints on wireless units, the on-board signal processing 

algorithms were relatively simple rather than advanced techniques, which may 

limit their performance and efficiency in AE feature extraction. 

 The evaluation case study was limited in terms of the number and type of meas-

urements taken due to the small size of wind turbine unit used and safety issues 

of using the wind turbine on the School roof. It would be better if a wider range 

of real defects was considered. However, the investigation of the full range of 

possible defects to occur would have been beyond the scope of this research, be-

cause many defects may take days, months or even longer to develop. 

7.4 Suggestions for Future Work 

The research presented in this thesis can significantly improve SHM practice in OWTB 

development and more cost effective of O&M in terms of safety-critical components 

and systems. This is due to the introduction of the in-situ wireless SHM system which 

was developed based on new concepts in the signal processing field and aspects of 

hardware implementation. However, there are several directions for further develop-

ment and improvement of the current work in terms of tackling the abovementioned re-

search limitations. In the following, some opportunities which stem from this research 

can be investigated in future work: 

 The proposed in-situ wireless SHM system was developed based on the utilisa-

tion of low sampling rates in acquisition operations, which may reduce the pow-

er consumption of wireless units. However, the use of a limited power supply 

represents a drawback in this system. To overcome this limitation, energy har-

vesting systems show promising approaches. There are different possible solu-

tions which can be integrated with such systems. For example, ambient vibra-

tions can be converted into electrical energy based on giant magnetostrictive ma-

terial [252], using a new technique based on infrared solar rectennas [253], or 

utilising ambient RF energy to remotely power the wireless units [254]. 
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 The current wireless system presented in this research was adapted to a small 

scale of wind turbines. However, its feasibility appears promising for practical 

large scale WTBs. Therefore, further development of this work is necessary to 

make this system effectively applicable to large wind power systems. This can 

be performed by paying more attention to the multi-hop WSN data aggregation 

protocols [211]. In addition, with the future improvement of sensors as well as 

wireless technologies, alternative low profile and low mass AE sensors based 

on, for example, MEMS or piezofilm technologies and wireless nodes can be 

used. However, the integration of these sensors with WTBs is still a challenge 

which is required to be tackled. This may be performed by mounting them inside 

the blades or even integrated into their structure during the manufacturing pro-

cess. 

 AE source localisation is very important for large structures such as WTBs in 

identifying active regions where damage in the material structure is expected. To 

achieve this by extending the work in this study, the large scale WTB can be di-

vided into regions each of which is assigned to a wireless AE unit or a group of 

units. Then, by applying the combination of zonal and constraint geometrical 

point localisation techniques, active regions can be specified, as discussed in 

Chapter 5. This would have the advantage of excluding the inspection of inactive 

areas, and therefore minimising the inspection costs. 

 Future work based on this research should pay more attention to the implementa-

tion of time synchronisation protocols among wireless units in order to enhance 

the robustness of the wireless localisation system. Furthermore, an analysis of 

power consumption in relation to sampling rates should be able to confirm the 

importance of the reduction of sampling frequencies in WSN applications. 

 Although, AET can detect the generation and propagation of defects in online 

and in-situ monitoring, it is a challenge to obtain quantitative information about 

the defects. Therefore, it is thought for future work that a more precise investiga-

tion can be conducted by collecting more data from the sensors around that par-

ticular region or using other NDTs, as explained in next section. In addition, the 

investigation of different possible defects could be achieved if the proposed in-
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situ wireless system will be mounted in a large scale wind turbine placed in re-

mote area. Furthermore, the discrimination capabilities of the system could be 

developed to the point that training and validation data collected will be passed 

to automatic classification techniques, such as artificial neural network (ANN) 

or support vector machine (SVM) in order to provide a robust and fully auto-

mated SHM system for OWT units. 

7.5 Research Implications for Practice 

The research is significant because it has resulted in a better understanding of the nature 

of SHM development and its requirements for monitoring OWTBs, specifying the 

strengths and weaknesses of existing NDT approaches and identifying the most suitable 

technique to be integrated with wireless technology in order to develop an in-situ wire-

less SHM system for such applications. This system was designed with the intention to 

easy to use, simple, flexible and adaptable as well as these advantages are supported 

through the evaluations. Therefore, the aforementioned contributions have several sig-

nificant implications for both assessing and constructing online SHM systems, particu-

larly for OWTBs and many other applications. 

Furthermore, due to the advantages of low cost and the early detection as well as locali-

sation capabilities of the in-situ wireless SHM system presented in this thesis, new hori-

zons are opened up for integrating this system in many applications, ranging from civil 

to engineering applications such as bridges, highways, tall buildings, and aircraft and 

ship structures. In addition, the system could be combined with more advanced tech-

niques, for example, climbing vehicular robots [29, 255]. After the defect zone is local-

ised using the in-situ SHM system as discussed in Chapter 5, robots can be send to that 

particular zone for further precise inspection, as shown in Figure 74. This has the poten-

tial to make the inspection process using vehicular robots based on event monitoring 

rather than on regular inspection, which is more cost effective. 
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Figure 74: Combination of the proposed in-situ wireless SHM system and vehicular 

climbing robots. 
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Appendix B: Wind Turbine Specifications 

Rated Output: 300W  

Max Output:  400W 

Generator:  Permanent magnet generator 

Rated output voltage:  24V 

Start-up wind speed:  2.5m/s 

Rated wind speed:  12m/s 

Security wind speed:  35m/s 

Number of blade:  3 

Material of blade:  Carbon fibre 

Blade Diameter:  1.5m 

Speed protection:  Automatic leaned 

Rated Rotating Speed:  400r/min 

Wind Energy Transforming Rate:  0.40Cp 

Pole Diameter:  76*2.5 steel tube 

Tower height:  6m 

Work temperature:  -40Cº to 60Cº 

Allocated battery:  12V150AH, 2 pcs 

Controller:  Inverter, controller, charger 

 

Available from: HZPRODUCT.COM, Global Wholesale Center
TM 

 

http://www.hzproduct.com/pro/881/88281/wind-generator-300w-216318.html 

 


