16 research outputs found

    Decentralized H

    Get PDF
    The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method

    Fault detection in uncertain LPV systems with imperfect scheduling parameter using sliding mode observers

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.This paper presents a sliding mode fault detection scheme for linear parameter varying (LPV) systems with uncertain or imperfectly measured scheduling parameters. In the majority of LPV systems, it is assumed that the scheduling parameters are exactly known. In reality due to noise or possibly faulty sensors, it is sometimes impossible to have accurate knowledge of the scheduling parameters and a design based on the assumption of perfect knowledge of the scheduling parameters cannot be guaranteed to work well in this situation. This paper proposes a sliding mode observer scheme to reconstruct actuator and sensor faults in a situation where the scheduling parameters are imperfectly known. The efficacy of the approach is demonstrated on simulation data taken from the nonlinear RECONFIGURE benchmark model.This work is supported by the EU-FP7 Grant (FP7-AAT-2012-314544

    On interval observer design for continuous-time LPV switched systems

    Get PDF
    State estimation for switched systems with time-varying parameters has received a great attention during the past decades. In this paper, a new approach to design an interval observer for this class of systems is proposed. The scheduling vector is described by a convex combination so that the varying parameters belong into polytopes. The considered system is also subject to measurement noise and state disturbances which are supposed to be unknown but bounded. The proposed method guarantees both cooperativity and Input to State Stability (ISS) of the upper and lower observation errors. Sufficient conditions are given in terms of Linear Matrix Inequalities (LMIs) using a common quadratic Lyapunov function. Finally, a numerical example is provided to show the effectiveness of the designed observer

    Control of nonlinear and LPV systems: interval observer-based framework

    Get PDF
    International audienceThe problem of output stabilization of a class of nonlinear systems subject to parametric and signal uncertainties is studied. First, an interval observer is designed estimating the set of admissible values for the state. Next, it is proposed to design a control algorithm for the interval observer providing convergence of interval variables to zero, that implies a similar convergence of the state for the original nonlinear system. An application of the proposed technique shows that a robust stabilization can be performed for linear time-varying and Linear-Parameter-Varying (LPV) systems without assumption that the vector of scheduling parameters is available for measurements. Efficiency of the proposed approach is demonstrated through two examples

    Input-to-state stabilization of feasible model predictive controllers for linear systems

    Get PDF
    Research on sub-optimal Model Predictive Control (MPC) has led to a variety of optimization methods based on explicit or online approaches, or combinations thereof. Its foremost aim is to guarantee essential controller properties, i.e. recursive feasibility, stability, and robustness, at reduced and predictable computational cost, i.e. computation time and storage space. This paper shows how the input sequence of any (not necessarily stabilizing) sub-optimal controller and the shifted input sequence from the previous time step can be used in an optimal convex combination, which is easy to determine online, in order to guarantee input-to-state stability for the closed-loop system. The presented method is thus able to stabilize a wide range of existing sub-optimal MPC schemes that lack a formal stability guarantee, if they can be considered as a continuous map from the state space to the space of feasible input sequences

    Robust Observer Design for Hybrid Dynamical Systems with Linear Maps and Approximately Known Jump Times

    Get PDF
    This paper proposes a general framework for the state estimation of plants given by hybrid systems with linear flow and jump maps, in the favorable case where their jump events can be detected (almost) instantaneously. A candidate observer consists of a copy of the plant's hybrid dynamics with continuous-time and/or discrete-time correction terms multiplied by two constant gains, and with jumps triggered by those of the plant. Assuming that the time between successive jumps is known to belong to a given closed set allows us to formulate an augmented system with a timer which keeps track of the time elapsed between successive jumps and facilitates the analysis. Then, since the jumps of the plant and of the observer are synchronized, the error system has time-invariant linear flow and jump maps, and a Lyapunov analysis leads to sufficient conditions for the design of the observer gains for uniform asymptotic stability in three different settings: continuous and discrete updates, only discrete updates, and only continuous updates. These conditions take the form of matrix inequalities, which we solve in examples including cases where the time between successive jumps is unbounded or tends to zero (Zeno behavior), and cases where either both the continuous and discrete dynamics, only one of them, or neither of them are detectable. Finally, we study the robustness of this approach when the jumps of the observer are delayed with respect to those of the plant. We show that if the plant's trajectories are bounded and the time between successive jumps is lower-bounded away from zero, the estimation error is bounded, and arbitrarily small outside the delay intervals between the plant's and the observer's jumps

    Fixed-structure LPV Discrete-time Controller Design with Induced l2-Norm and H2 Performance

    Get PDF
    A new method for the design of fixed-structure dynamic output-feedback Linear Parameter Varying (LPV) controllers for discrete-time LPV systems with bounded scheduling parameter variations is presented. Sufficient conditions for the stability, H2\mathscr{H}_2 and induced l2l_2-norm performance of a given LPV system are represented through a set of Linear Matrix Inequalities (LMIs). These LMIs are used in an iterative algorithm with monotonic convergence for LPV controller design. Extension to the case of uncertain scheduling parameter value is considered as well. Controller parameters appear directly as decision variables in the optimization program, which enables preserving a desired controller structure in addition to the low order. Efficiency of the proposed method is illustrated on a simulation example, with an iterative convex optimization scheme used for the improvement of the control system performance

    LPV methods for fault-tolerant vehicle dynamic control

    No full text
    International audienceThis paper aims at presenting the interest of the Linear Parameter Varying methods for vehicle dynamics control, in particular when some actuators may be in failure. The cases of the semi-active suspension control problem and the yaw control using braking, steering and suspension actuators will be presented. In the first part, we will consider the semi-active suspension control problem, where some sensors or actuator (damper leakage) faults are considered. From a quarter-car vehicle model including a non linear semi-active damper model, an LPV model will be described, accounting for some actuator fault represented as some varying parameters. A single LPV fault-tolerant control approach is then developed to manage the system performances and constraints. In the second part the synthesis of a robust gain-scheduled H1 MIMO vehicle dynamic stability controller (VDSC), involving front steering, rear braking, and four active suspension actuators, is proposed to improve the yaw stability and lateral performances. An original LPV method for actuator coordination is proposed, when the actuator limitations and eventually failures, are taken into account. Some simulations on a complex full vehicle model (which has been validated on a real car), subject to critical driving situations (in particular a loss of some actuator), show the efficiency and robustness of the proposed solution

    Computationalcost Reduction of Robust Controllers Foractive Magnetic Bearing Systems

    Get PDF
    This work developed strategies for reducing the computational complexity of implementing robust controllers for active magnetic bearing (AMB) systems and investigated the use of a novel add-on controller for gyroscopic effect compensation to improve achievable performance with robust controllers. AMB systems are multi-input multi-output (MIMO) systems with many interacting mechanisms that needs to fulfill conflicting performance criteria. That is why robust control techniques are a perfect application for AMB systems as they provide systematic methods to address both robustness and performance objectives. However, robust control techniques generally result in high order controllers that require high-end control hardware for implementation. Such controllers are not desirable by industrial AMB vendors since their hardware is based on embedded systems with limited bandwidths. That is why the computational cost is a major obstacle towards industry adaptation of robust controllers. Two novel strategies are developed to reduce the computational complexity of singlerate robust controllers while preserving robust performance. The first strategy identifies a dual-rate configuration of the controller for implementation. The selection of the dualrate configuration uses the worst-case plant analysis and a novel approach that identifies the largest tolerable perturbations to the controller. The second strategy aims to redesign iv the controller by identifying and removing negligible channels in the context of robust performance via the largest tolerable perturbations to the controller. The developed methods are demonstrated both in simulation and experiment using three different AMB systems, where significant computational savings are achieved without degrading the performance. To improve the achievable performance with robust controllers, a novel add-on controller is developed to compensate the gyroscopic effects in flexible rotor-AMB systems via modal feedback control. The compensation allows for relaxing the robustness requirements in the control problem formulation, potentially enabling better performance. The effectiveness of the developed add-on controller is demonstrated experimentally on two AMB systems with different rotor configurations. The effects of the presence of the add-on controller on the performance controller design is investigated for one of the AMB systems. Slight performance improvements are observed at the cost of increased power consumption and increased computational complexity

    Observer-based control of discrete-time LPV systems with uncertain parameters

    No full text
    In this paper LMI-based design conditions are presented for observer-based controllers that stabilize discrete-time LPV systems in the situation where the parameters are not exactly known, but are only available with a finite accuracy. The presented framework allows to make tradeoffs between the admissible level of parameter uncertainty on the one hand and the transient performance on the other. In addition, the level of parameter uncertainty can be maximized while still guaranteeing closed-loop stability
    corecore