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Fault Detection in Uncertain LPV Systems with
Imperfect Scheduling Parameter Using Sliding
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Abstract

This paper presents a sliding mode fault detection scheme for linear parameter varying (LPV) systems with
uncertain or imperfectly measured scheduling parameters. In the majority of LPV systems, it is assumed that the
scheduling parameters are exactly known. In reality due to noise or possibly faulty sensors, it is sometimes impossible
to have accurate knowledge of the scheduling parameters and a design based on the assumption of perfect knowledge
of the scheduling parameters cannot be guaranteed to work well in this situation. This paper proposes a sliding
mode observer scheme to reconstruct actuator and sensor faults in a situation where the scheduling parameters
are imperfectly known. The efficacy of the approach is demonstrated on simulation data taken from the nonlinear
RECONFIGURE benchmark model
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I. INTRODUCTION

Fault detection and isolation (FDI) plays an important role in many engineering applications − especially in the
aerospace, electrical machinery and process control industries. An effective fault detection scheme, when used with
appropriate controllers can maintain the integrity of the closed-loop system in the presence of faults. One popular
approach for designing FDI schemes is based on observer concepts, usually based on linear theory or slightly
extended versions. A wide range of observer paradigms have been considered in the literature: for example Kalman
filters and their extensions (see for example [1], [2], [3]), H∞ filters (see for example [4], [5], [6]), unknown input
observers (see for example [7], [8], [9]), and sliding mode observers (SMOs) (see for example [10], [11], [12]). One
approach to extending linear methods to make them work effectively across the whole plant operating range is to
design (linear) observers at select operating points, and then schedule the gains with respect to certain parameters
[4]. One of the main difficulties with gain scheduling is the selection of the operating points and how to choose
the gains at intermediate points. Furthermore, formally, between the operating points the stability of the observer
cannot be guaranteed.

A more rigorous alternative approach is based on so-called linear parameter varying (LPV) system designs. In the
LPV approach the gains are automatically scheduled with respect to the plant varying parameters. Another advantage
is many nonlinear systems can be naturally approximated by LPV systems [13], [14]. Recent results on LPV based
fault detection schemes appears in [15], [16], [17] from work in the EU-funded ADDSAFE project. Recently several
sliding mode observer structures have been proposed for LPV systems (see for example [18], [19], [20]). However
in all these papers the scheduling parameters are assumed to be perfectly known. However in reality this may
not be the case: for example inaccurate sensors and/or faults can lead to imperfect knowledge of the parameters.
The use of this corrupted information will affect the performance of the observer. The design of Luenberger-like
observers in scenarios involving uncertain scheduling parameters has been investigated. In [21], using a Linear
matrix inequality (LMI) framework an LPV observer was proposed. Later, a controller and a combined controller-
observer scheme for inexact continuous LPV polytopic systems was presented in [22], [23]. In [24], [25] H∞
filters were employed to deal with uncertainty in the scheduling parameters; exploiting parameter dependent LMI
methods. More recently, an H∞ filter has been proposed to deal with both additive and multiplicative uncertainties
in the LPV parameters in [26]. Recent applications of these ideas to aerospace systems have been explored in [27],
[28]. A fault reconstruction scheme for LPV systems with perfect scheduling parameter knowledge, using H∞
methods has been investigated in [29]. Very few papers have addressed specifically the fault reconstruction problem
for LPV systems with uncertain scheduling parameters, notable exceptions are [30]. To the authors’ knowledge,
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fault reconstruction for LPV systems with uncertain scheduling parameters, using sliding mode observers, has not
yet been investigated.

This paper presents a new FDI scheme based on sliding mode ideas for LPV systems with uncertain scheduling
parameters. This exploits the fact that sliding mode observers have an inherent ability for fault reconstruction, due
to the unique property of the equivalent injection signal [11]. This work is a direct extension of [20], where it was
assumed that the scheduling parameters are perfectly measurable. An earlier version of this work was presented
in [31] and dealt with an actuator fault problem. In [31] all the simulations were performed on simplified LPV
models, whereas in this paper, the work has been extended to deal with sensor faults and the simulation results are
based on data from a high-fidelity nonlinear aircraft model [32]. The main contributions of this paper are: (a)

1) the systematic development of a SMO for a class of LPV systems to reconstruct faults;
2) the proposed SMO is specifically developed to handle uncertain scheduling parameters;
3) the proposed approach is validated on data from the RECONFIGURE benchmark [32] which represents a

high-fidelity nonlinear aircraft model.

II. LINEAR PARAMETER VARYING SYSTEM

Consider an uncertain LPV system subject to actuator faults written in the form

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) +H(ρ)fi(t) +Mξ(t, y, u) (1)
y(t) = Cx(t) + d(t), (2)

where the parameter varying matrices A(ρ) ∈ Rn×n, B(ρ) ∈ Rn×m and H(ρ) ∈ Rn×q. The fixed matrices
are M ∈ Rn×k and C ∈ Rp×n. In (1) and (2) the state vector is x ∈ Rn, y ∈ Rp is the measured output
vector and u ∈ Rm is the control signal. The vector ρ ∈ Ω ⊂ Rr denotes the varying scheduling parameters,
fi(t) ∈ Rq models the unknown actuator faults, ξ(t, y, u) ∈ Rk captures the uncertainty in the system and the
signal d(t) represents an ever-present corruption of the true measured outputs but does not represent sensor noise.
As in [20], three assumptions will be made:

Assumption 1. The signal d(t) is of low frequency and its derivative satisfies

ḋ(t) = −afd(t) + afϕ(t), (3)

where af is a positive scalar and ϕ(t) is an unknown input signal. In the frequency domain, the d(t) will have
low frequency characteristics. Note that d(t) represents corruption in the measurements which are always present
even in the absence of sensor faults, and in general this is accounted in the controller design. In some situations,
such as one of the scenarios from the ADDSAFE benchmark problem [17], the unknown sensor faults are also of
low frequency and hence the lower frequency components of d(t) can cause false alarms. Hence solely for design
purposes, d(t) is assumed as a low frequency signal [17]. Note that the signal d(t) does not represent sensor noise
– during the SMO design sensor noise is not explicitly considered.

Assumption 2. The matrix H(ρ) can be factorised as

H(ρ) = FE(ρ) (4)

where F ∈ Rn×q is fixed and the square matrix E(ρ) ∈ Rq×q is parameter varying. Furthermore it is assumed
that det(E(ρ)) ̸= 0 for all ρ ∈ Ω.

Assumption 3. The matrix C has full rank and rank(CF ) = q.

As a consequence of Assumption 3, there exists a coordinate transformation x(t) 7→ Tox(t) such that in the new
coordinates

y(t) = [0 T ]

[
x1(t)
x2(t)

]
+ d(t), (5)

where T ∈ Rp×p is orthogonal, and

F =

[
0(n−p)×q

F2

]
=

 0(n−p)×q

0
F0

 , (6)

where F2 ∈ Rp×q and F0 ∈ Rq×q. For details see [20].
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Using Assumptions 1-3 and (1) and (4), the system can be written as

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) + FE(ρ)fi(t) +Mξ(t, y, u)

= A(ρ)x(t) +B(ρ)u(t) + Ffv(t, ρ) +Mξ(t, y, u), (7)

where the ‘virtual faults’ fv(t) := E(ρ)fi(t). In what follows, an observer will be first designed to estimate the
virtual faults fv(t, ρ) and then the actual fault fi(t) will be recovered by exploiting the fact that E(ρ) is invertible.

III. SLIDING MODE OBSERVER FOR UNCERTAIN LINEAR PARAMETER VARYING SYSTEM

A. Structure of the Observer
Consider a (sliding mode) observer of the form given by

˙̂x(t) = A(ρ̂)x̂(t) +B(ρ̂)u(t)−Gl(ρ̂)ey(t) +Gnν(t) (8)
ŷ(t) = Cx̂(t), (9)

where ρ̂ is the set of (estimated) observer scheduling parameters. In (8) and (9) the matrices Gl(ρ̂), Gn ∈ Rn×p are
the observer gains and represent design freedom. In (8), ν(t) is a discontinuous nonlinear function which will be
explicitly defined later in the paper used to induce a sliding motion. In this paper it will be assumed that typically
ρ(t) ̸= ρ̂(t) and an observer will be presented to estimate the faults despite imperfect knowledge of the scheduling
parameters. The estimate of the fault fi(t) will be obtained by scaling the so-called equivalent injection signal [11]
(whilst sliding). Specifically

f̂i = E−1(ρ)WT Tνeq (10)

where W ∈ Rq×p is design freedom and νeq represent the equivalent injection (the ‘average’ value of ν(t)) required
to maintain sliding [11].

Define the state estimation error as e(t) = x̂(t)− x(t) and partition the error conformably with the partitions in
(5) and (6) so that e(t) = col(e1(t), e2(t)). The error between the estimated and actual output is given by

ey(t) = ŷ(t)− y(t) = Ce(t)− d(t)

=
[
0 T

] [ e1(t)
e2(t)

]
− d(t) = Te2(t)− d(t). (11)

The objective is to force the output estimation error ey(t) to zero in finite time and induce a sliding motion on the
surface

S = {e(t) ∈ Rn, ey(t) = 0}. (12)

Subtracting (7) from (8), the state estimation error satisfies the differential equation

ė(t) = A(ρ̂)e+ (A(ρ̂)−A(ρ))x(t) + (B(ρ̂)−B(ρ))u(t)−Gl(ρ̂)ey(t) +Gnν(t)− Ffv(t)−Mξ(t, y, u). (13)

The structure of Gn associated with the nonlinear injection term is assumed, as in [20], to have the form

Gn =

[
Gn1

Gn2

]
=

[
−LT T

T T

]
, (14)

where the matrix sub-block L ∈ R(n−p)×p is in turn assumed to be of the form

L =
[
L1 0

]
, (15)

where L1 ∈ R(n−p)×(p−q). In the analysis which follows (13) will be written in partitioned form as[
ė1(t)
ė2(t)

]
=

[
A11(ρ̂) A12(ρ̂)
A21(ρ̂) A22(ρ̂)

] [
e1(t)
e2(t)

]
+

[
Be

1(ρ̂, ρ)
Be

2(ρ̂, ρ)

]
u(t) +

[
Ae

11(ρ̂, ρ) Ae
12(ρ̂, ρ)

Ae
21(ρ̂, ρ) Ae

22(ρ̂, ρ)

] [
x1(t)
x2(t)

]
−
[

0
F2

]
fv(t) +

[
Gn1

Gn2

]
ν(t)−

[
Gl1(ρ̂)
Gl2(ρ̂)

]
ey(t)−

[
M1

M2

]
ξ(t, y, u), (16)

where Ai,j(ρ̂) and Ai,j(ρ) for i, j ∈ {1, 2} represent appropriate partitions of A(ρ̂) and A(ρ), and Bi(ρ̂) and Bi(ρ)
are sub-blocks from B(ρ̂) and B(ρ). Further Ae

ij(ρ̂, ρ) := Aij(ρ̂) − Aij(ρ) and Be
i (ρ̂, ρ) := Bi(ρ̂) − Bi(ρ) for

i, j ∈ {1, 2}.
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For analysis purposes, define a linear coordinate transformation (e1, e2) 7→ (e1 + Le2, T e2) := (ẽ1, ẽ2), where

TL =

[
I L
0 T

]
.

In the new set of coordinates, equation (16) becomes[
˙̃e1(t)
˙̃e2(t)

]
=

[
Ã11(ρ̂) Ã12(ρ̂)

Ã21(ρ̂) Ã22(ρ̂)

]
︸ ︷︷ ︸

Ã(ρ̂)=TLA(ρ̂)T−1
L

[
ẽ1(t)
ẽ2(t)

]
+

[
B̃e

1(ρ̂, ρ)

B̃e
2(ρ̂, ρ)

]
︸ ︷︷ ︸

B̃e(ρ̂,ρ)=TLBe(ρ̂,ρ)

u(t) +

[
Ãe

11(ρ̂, ρ) Ãe
12(ρ̂, ρ)

Ãe
21(ρ̂, ρ) Ãe

22(ρ̂, ρ)

]
︸ ︷︷ ︸

Ãe(ρ̂,ρ)=TLAe(ρ̂,ρ)T−1
L

[
x1(t)
x2(t)

]

−
[

0

F̃2

]
︸ ︷︷ ︸
F̃=TLF

fv(t) +

[
0
I

]
︸ ︷︷ ︸

G̃n=TLGn

ν(t)−
[
G̃l1(ρ̂)

G̃l2(ρ̂)

]
︸ ︷︷ ︸
G̃l=TLGl

ey(t)−
[
M̃1

M̃2

]
︸ ︷︷ ︸
M̃=TLM

ξ(t, y, u). (17)

Furthermore, in (17), it can be shown Ã11(ρ̂) = A11(ρ̂) + LA21(ρ̂). In the new coordinates C̃ = CT−1
L = [0 I],

and consequently the output error can be expressed as

ey = ẽ2 − d. (18)

Due to the special structure of L in (15), if A21(ρ̂) from (16) is further partitioned as

A21(ρ̂) =

[
A211(ρ̂)
A212(ρ̂)

]
(19)

then Ã11(ρ̂) can be written as Ã11(ρ̂) = A11(ρ̂) + L1A211(ρ̂).

Assumption 4. There exists a symmetric positive definite matrix, P11, such that

ÃT
11(ρ̂)P11 + P11Ã11(ρ̂) < 0. (20)

for all ρ̂ ∈ Ω; i.e. in other words Ã11(ρ̂) is quadratically stable.

Finally create a new state vector by augmenting d(t) from (3), and ẽ1(t) and ey(t) from (17) and (18), such that ḋ(t)
˙̃e1(t)
ėy(t)

 =

 −afIp 0 0

Ã12(ρ̂) Ã11(ρ̂) Ã12(ρ̂)

Ã22(ρ̂) + af Ã21(ρ̂) Ã22(ρ̂)


︸ ︷︷ ︸

Ãa(ρ̂)

 d(t)
ẽ1(t)
ey(t)

+

 0 0 0 afT

Ãe
1(ρ, ρ̂) B̃1

e
(ρ, ρ̂) −M̃1 0

Ãe
2(ρ, ρ̂) B̃2

e
(ρ, ρ̂) −M̃2 −afT


︸ ︷︷ ︸

M̃a(ρ,ρ̂)

ξa(t, y, u)

−

 0
0

F̃2

 fv(t)−

 0

G̃l1(ρ̂)

G̃l2(ρ̂)

 ey(t) +

 0
0
I

 ν(t) (21)

where

Ãe
1(ρ̂, ρ) = [Ãe

11(ρ̂, ρ) Ãe
12(ρ̂, ρ)],

Ãe
2(ρ̂, ρ) = [Ãe

21(ρ̂, ρ) Ãe
22(ρ̂, ρ)].

and

ξa(t, y, u) = col(x(t), u(t), ξ(t, y, u), T Tϕ(t)). (22)

Define [
Ãa11(ρ̂) Ãa12(ρ̂)

Ãa21(ρ̂) Ãa22(ρ̂)

]
:=

 −afIp 0 0

Ã12(ρ̂) Ã11(ρ̂) Ã12(ρ̂)

Ã22(ρ̂) + af Ã21(ρ̂) Ã22(ρ̂)

 , (23)

and [
M̃a1(ρ̂, ρ)

M̃a2(ρ̂, ρ)

]
:=

 0 0 0 afT

Ãe
1(ρ̂, ρ) B̃e

1(ρ̂, ρ) −M̃1 0

Ãe
2(ρ̂, ρ) B̃e

2(ρ̂, ρ) −M̃2 −afT

 , (24)
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then one choice for the observer gain G̃l(ρ̂) (in the new coordinates) is

G̃l(ρ̂) :=

[
G̃l1(ρ̂)

G̃l2(ρ̂)

]
:=

[
Ã12(ρ̂)

Ã22(ρ̂)− Ãs
22

]
, (25)

where Ãs
22 is any selected Hurwitz matrix. Substituting G̃l(ρ̂) from (25) into (21) yields[

ėa1(t)
ėy(t)

]
︸ ︷︷ ︸

˙̃ea

=

[
Ãa11(ρ̂) 0

Ãa21(ρ̂) Ãs
22

]
︸ ︷︷ ︸

Ão(ρ̂)

[
ea1(t)
ey(t)

]
︸ ︷︷ ︸

ẽa

+

[
M̃a1(ρ̂, ρ)

M̃a2(ρ̂, ρ)

]
︸ ︷︷ ︸

M̃a(ρ̂,ρ)

ξa(t, y, u)−
[

0

F̃2

]
︸ ︷︷ ︸

F̃a

fv(t) +

[
0
I

]
︸ ︷︷ ︸
G̃na

ν(t). (26)

Here the discontinuous output error injection term is defined as

ν(t) = −λ(t, y, u, ρ̂)
Poey(t)

∥Poey(t)∥
, (27)

where Po is a symmetric positive definite Lyapunov matrix for the Hurwitz matrix Ãs
22. The modulation gain λ(·)

is a scalar satisfying λ(·) > ∥F̃2∥a(t, ρ̂, u) + η0, where the function a(t, ρ̂, u) is a known bound on the fault such
that ∥fv(t, ρ̂)∥ ≤ a(t, ρ̂, u), and η0 is a positive scalar.
Remark 1: From (14), (25) and (27), the design freedom in the observer configuration in (8)-(9) is characterized
in terms of a gain matrix L1 from (15) (subject to satisfying Assumption 4), and the Hurwitz matrix Ãs

22 in (25).

Lemma 1. [33] If there exists a symmetric positive definite matrix (s.p.d) P11 such that (20) holds, then there
exists a s.p.d P̃a s.t. P̃aÃo(ρ̂) + ÃT

o(ρ̂)P̃a < −Q̃a where Q̃a is s.p.d and Ão(ρ̂) is defined in (26).

Proof. The proof is similar to the one given in [33].

Let b and bϕ be scalars representing upper bounds on the uncertainty and measurement perturbations so that
conditions

∥ξ(t, y, u)∥ < b and ∥ϕ(t)∥ < bϕ

hold. Also assume that, despite imperfect information about ρ, the closed-loop system satisfies

∥x(t)∥ < bx and ∥u(t)∥ < bu

so that the aggregated disturbance defined in (22) satisfies ∥ξa(t, y, u)∥ < b̄, where b̄ is a positive scalar. Define a
scalar µ0 = λmin(Q̃a) > 0. Then it follows from Lemma 1 that

P̃aÃo(ρ̂) + ÃT
o (ρ̂)P̃a ≤ −µ0I. (28)

Lemma 2. [33] The state estimation error ẽa in (26) is ultimately bounded with respect to the compact set defined
by Ωε = {ẽa : ∥ẽa∥ < 2b̄µ1

µ0
+ ε}, where ε is a small positive scalar and the scalar

µ1 =

√
λmax(M̃a(ρ̂, ρ)TP̃ 2

a M̃a(ρ̂, ρ)),

where M̃a is defined in (21).

Proof. The proof is similar to the one given in [33].

Based on the scalars from Lemma 1 and 2, a suitable choice of the modulation gain in (27) will be identified.

Lemma 3. If the modulation gain in (27) satisfies

λ(·) ≥ 2a21b̄
µ1

µ0
+ ∥M̃a2

∥b̄+ ∥F̃2∥a+ η0, (29)

where the scalar a21 = maxρ̂∈Ω Ãa21
(ρ̂) then an ideal sliding motion takes place on S given in (12).

Proof. Consider a Lyapunov function candidate V = eT
yPoey, where Po is a s.p.d Lyapunov matrix for Ãs

22. The
derivative of V along the trajectory of ey in (26) is

V̇ = 2eT
yPoÃa21

(ρ̂)ẽa1
−eT

y

(
PoÃ

s
22 + (Ãs

22)
TPo

)
ey + 2eT

yPoν(t) + 2eT
yPoM̃a2

(ρ̂, ρ)ξa(t, y, u)− 2eT
yPoF̃2fν(t)

≤ −2∥Poey∥
(
λ− a21∥ẽa1

∥ − ∥F̃2∥∥fν∥ − ∥M̃a2
(ρ̂, ρ)∥∥ξa(t, y, u)∥

)
, (30)
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since eT
y

(
PoÃ22 + (Ã22)

TPo

)
ey ≤ 0 by choice of Po.

From Lemma 2, the estimation error ẽa1
is bounded by ∥ẽa1

∥ < 2b̄µ1

µ0
+ε, and specifically ẽa ∈ Ωε in finite time.

Using the fact that ∥fν∥ < a(t, ρ, u), and ∥ξa(t, y, u)∥ < b̄, and from the choice of λ in (29), (30) can be written
as V̇ ≤ −2η0∥Poey∥ ≤ −2η0η

√
V where η :=

√
λmin(Po). This ensures the output estimation error ey reaches

zero in finite time and sliding takes place on S in finite time.

Define the reconstruction signal for the unknown input fv(t) (the virtual fault) to be

f̂v(t) = WT Tνeq(t), (31)

where W ∈ Rq×p has the form W = [W1 F−1
0 ], and W1 ∈ Rq×(p−q) represents design freedom. The square

matrix and F0 is defined in (6) as part of the fault input distribution matrix.
It follows from (26) that during sliding motion

ėa(t) = Aa(ρ̂)ea(t) +Ba(ρ̂, ρ)ξa(t, y, u) (32)

where
ea(t) = col(Td(t), ẽ1(t)) (33)

and the system matrices in (32) are given by

Aa =

[
−afIp 0

A12(ρ̂) + LA22(ρ̂) + afL A11(ρ̂) + LA21(ρ̂)

]
(34)

Ba =

[
0 0 0 afIp

Ae
1(ρ̂, ρ) + LAe

2(ρ̂, ρ) Be
1(ρ̂, ρ) + LBe

2(ρ̂, ρ) −(M1 + LM2) −afL

]
. (35)

Note that for all W1, WF2 = Iq. It follows from (31) and (26) that the fault estimation error is

f̂v(t)− fv(t) = Ca(ρ̂)ea(t) +Da(ρ̂, ρ)ξa(t, y, u), (36)

where

Ca =
[
−WA22(ρ̂)− afW −WA21(ρ̂)

]
(37)

Da =
[
−WAe

2(ρ̂, ρ) −WBe
2(ρ̂, ρ) WM2 Waf

]
. (38)

Equations (32) and (36) constitute a state space representation where ea(t) and f̂v(t)− fv(t) can be considered as
the state and output vectors, Aa(ρ̂), Ba(ρ̂, ρ), Ca(ρ̂) and Da(ρ̂, ρ) as state space matrices, and the system is driven
by the disturbance ξa(t, y, u). In this paper the objective is to minimise the effect of ξa(·) on the fault reconstruction
error f̂v(t)−fv(t) in an L2 sense. The key point is that minimising the effect of ξa on f̂v(t)−fv(t) also minimises
the effect of the observer plant mismatch when ρ ̸= ρ̂.

Theorem 1. Consider the observer in (8)-(9) with gains parameterized in terms of L from (15) and the nonlinear
modulation gain λ(t, y, u, ρ̂) from (27) chosen to ensure Lemma 3 is satisfied. Then if by choice of L, a positive
definite matrix P can be found so that AT

a(ρ̂)P + PAa(ρ̂) P (Ba(ρ̂, ρ)∆) CT
a(ρ̂)

(Ba(ρ̂, ρ)∆)TP −γI (Da(ρ̂, ρ)∆)T

Ca(ρ̂) Da(ρ̂, ρ)∆ −γI

 < 0 (39)

P =

[
Pa 0
0 P11

]
> 0, (40)

the inequality ∥f̂v − fv∥ < γ∥ξa∥ is satisfied, where the scalar γ represents an upper bound on the L2 gain.

Proof. From the bounded real lemma (BRL) [13], inequality (39) guarantees the L2 gain of the system (32) and
(36) from ξa(t, y, u) to f̂v(t)− fv(t) is less than γ.

Since by assumption the set Ω is compact, it can be enclosed by a polytope, and then by determining the vertices
of the enclosing polytope, the system in (32) and (36) can be represented as a polytopic system, with vertices
β1, β2, . . . , βnβ , where nβ = 2r. Hence the LPV matrices in (32) and (36), (Aa(ρ̂), Ba(ρ̂, ρ), Ca(ρ̂), Da(ρ̂, ρ)), can
be replaced by (Aa(βi), Ba(βi), Ca(βi), Da(βi)) [13]. A sufficient condition for (39) to hold is that the LMI given in



THIS PREPRINT APPEARS IN ITS FINAL FORM IN EUROPEAN JOURNAL OF CONTROL, DOI: HTTP://DX.DOI.ORG/10.1016/J.EJCON.2016.12.001 7

(39) can be solved for all the vertices of the polytopic system with LPV system matrices (Aa(βi), Ba(βi), Ca(βi), Da(βi))
[20]. The polytopic version of (39) and (40) will be used to synthesize the gain L (which specifies the sliding mode
LPV observer in (8)-(9) and the weighting matrix W ). Formally the optimization problem is:

Minimize γ subject to (40) and AT
a(βi)P + PAa(βi) P (Ba(βi)∆) CT

a (βi)
(Ba(βi)∆)TP −γI (Da(βi)∆)T

Ca(βi) Da(βi)∆ −γI

 < 0 (41)

with respect to P,L and W .

Remark 2: In what follows Ba and Da will be scaled with a weighting matrix ∆ = diag(δ1, δ2, δ3, δ4), where
δ1 = diag(δ1,1, . . . , δ1,n), δ2 = diag(δ2,1, . . . , δ2,m), δ3 = diag(δ3,1, . . . , δ3,k) and δ4 = diag(δ4,1, . . . , δ4,p), to
introduce extra design freedom. The components δ1, . . . , δ4 are design gains which can be used to trade-off and
weight the different elements of uncertainty in (22).

Remark 3: In the case when ρ̂ = ρ, and in the absence of uncertainty, i.e. when ξ(t, y, u) ≡ 0 and when d(t) ≡ 0,
it follows from (16) and (35) that Ba(ρ̂, ρ)ξa(t, y, u) ≡ 0 and Da(ρ̂, ρ)ξa(t, y, u) ≡ 0. As a consequence, (32)
collapses to

ėa(t) = Aa(ρ̂)ea(t) (42)

It follow from the top left sub-block of (39) that AT
a(ρ̂)P + PAa(ρ̂) < 0 and so ea(t) → 0 asymptotically. Since

Da(ρ̂, ρ)ξa(t, y, u) = 0 and f̂v(t)− fv(t) = Ca(ρ̂)ea(t), f̂v(t) → fv(t) as t → ∞, i.e. asymptotic fault estimation
(and asymptotic state estimation) takes place. If either ξ(t, y, u) ̸= 0 or ρ̂ ̸= ρ, generically, asymptotic estimation
is lost and the performance of the fault estimation is given in terms of the L2 gain γ in Theorem 1. Provided the
optimization in (41) yields a small value of γ, good estimation of fv(t) (in an L2 sense) is still achieved.

Finally, the estimate of the virtual fault f̂v(t) is obtained from (31), and the actual fault can be recovered using (7)
as

f̂i(t) = E(ρ̂)−1f̂v(t). (43)

IV. RECONSTRUCTION OF SENSOR FAULTS FOR UNCERTAIN LPV SYSTEMS

The problem of sensor fault reconstruction can be reformulated as an actuator fault reconstruction [20] which
allows the sliding mode observer scheme for actuator fault reconstruction given in Section III to be employed.
Consider an uncertain LPV system subject to sensor faults given by

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) +Mξ(t, y, u) (44)
y(t) = Cx(t) +Nfo(t) + d(t), (45)

where fo ∈ Rr models the unknown sensor faults and the fixed matrix N ∈ Rp×r is known. It is assumed
that r < p. The remaining matrices and vectors in (44) and (45) are assumed to have the same properties (and
dimensions) as those in (1) and (2). By scaling and rearranging the outputs, if necessary, the output vector can be
written as

y(t) =

[
y1(t)
y2(t)

]
=

[
C1

C2

]
x(t) +

[
0
Ir

]
fo(t) +

[
d1(t)
d2(t)

]
, (46)

where the fixed matrices C1 ∈ R(p−r)×n, C2 ∈ Rr×n. It is assumed that y1(t) ∈ Rp−r are fault free outputs and
y2(t) ∈ Rr are potentially prone to faults. As in [20] consider a new state zf (t) ∈ Rr constructed by passing y2(t)
through a filter which satisfies the differential equation

żf (t) = −Afzf (t) +Afy2(t), (47)

where Af ∈ Rr×r is a stable Hurwitz matrix.
A new state vector can be formed by augmenting x(t) from (44) with zf (t) (obtained by substituting y2(t) from

(46) into (47)). The new state vector xs(t) = col(x(t), zf (t)) and its derivative satisfies

ẋs(t) = As(ρ)xs(t) +Bs(ρ)u(t) +Hsfo(t) +Msξs(t, y, u), (48)



THIS PREPRINT APPEARS IN ITS FINAL FORM IN EUROPEAN JOURNAL OF CONTROL, DOI: HTTP://DX.DOI.ORG/10.1016/J.EJCON.2016.12.001 8

where ξs(t, y, u) = col(ξ(t, y, u), d2(t)) and the matrices

As(ρ) =

[
A(ρ) 0
AfC2 −Af

]
, Bs(ρ) =

[
B(ρ)
0

]
, Hs =

[
0
Af

]
, and Ms =

[
M 0
0 Af

]
.

A new output vector can be constructed by augmenting y1(t) from (46) and zf (t) from (47), ys(t) = col(y1(t), zf (t)),
such that

ys(t) = Cs(t)xs(t) + ds(t), (49)

where the matrices
Cs =

[
C1 0
0 Ir

]
and ds(t) =

[
d1(t)
0

]
.

The augmented system in (48) and (49) has a similar form to the system given in (1) and (2), and therefore the
fault reconstruction scheme given in Section III can be directly used to reconstruct the sensor fault fo(t).

V. RECONFIGURE BENCHMARK MODEL

The Reconfiguration of Control in Flight for Integral Global Upset Recovery (RECONFIGURE) project aims to
study fault tolerant scenarios for a passenger aircraft. The benchmark mainly consists of a high-fidelity nonlinear
aircraft model which is used to simulate nominal flight conditions and realistic fault scenarios [34]. The validated
aircraft model has been delivered to the consortium by Airbus to explore various fault tolerant mechanisms. The
benchmark model covers the complete nonlinear flight domain along with the sensors, actuators, flight control
computers, guidance and navigation mechanisms, etc. [34]. Several linear models (which covers a limited operating
range) at various operating points were provided by AIRBUS. An LPV model was built based on the one described
in [35] to explore the performance of the fault detection and reconstruction scheme given earlier in this paper. The
designed LPV SMO is validated on the high-fidelity nonlinear aircraft model for the complete operating envelope.
Here a sensor fault scenario is considered for the RECONFIGURE benchmark problem and used to test the proposed
FDI scheme.

A. LPV models
An LPV model of the RECONFIGURE benchmark problem has been developed in [35]. The state vector com-

prises pitch rate (deg/s), ground speed (kts), ground angle of attack (deg) and pitch angle (deg), i.e. [q Vg α θ]T;
the plant inputs are the left inboard elevator, right inboard elevator, left outboard elevator, right outboard elevator
and trimmable horizontal stabiliser, [δeil δeir δeol δeor δstab]

T. In this paper it is assumed the all the states
are measured and hence the outputs and the states are the same. The scheduling parameters for the LPV model
are: mass w(tons), x-position of the center of gravity c.g.(%/100), conventional airspeed Vcas(m/s), and the Mach
number Mach; ρ := [w c.g. Vcas Mach].

B. Design
This paper considers the longitudinal axes of the aircraft. The relevant control problems in the RECONFIGURE

benchmark are concerned with maintaining the normal load factor and angle of attack protection control laws. The
specific objective here is to reconstruct sensor faults in α and Vg using a sliding mode observer with imperfectly
known scheduling parameters. In this paper the scheduling parameters, ρ, is assumed to be known only up to a
certain degree of accuracy and in particular that conventional airspeed Vcas is subject to a fault. For the design, the
states of the LPV system are:

x = [θ q α Vg]
T. (50)

A new state vector xs is created by augmenting x with the zf = [αf Vgf ]
T obtained by passing the measurements

of α and Vg through a filter which satisfies (47). Here Af is chosen as the second order identity matrix. The
augmented state vector is given by

xs = [θ q α Vg αf Vgf ]
T. (51)

A new output vector for driving the observer is formed by augmenting fault free outputs with zf , so that

ys = [θ q αf Vgf ]
T.
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The LPV matrices have an affine representation

A(ρ) = A0 +

4∑
i=1

ρiAi

B(ρ) = B0 +

4∑
i=1

ρiBi

The elevators are assumed to move in tandem and hence they have been aggregated to create a single elevator
input δe. The corresponding input distribution matrix Bs(ρ) in (48), based on the state vector in (50), has the form
Bs(ρ) = [B(ρ) 0]T, where (true) plant input distribution matrix

B(ρ) =

[
B11(ρ) B21(ρ) 0 B41(ρ)
B12(ρ) B22(ρ) 0 B42(ρ)

]T

. (52)

Permutating the states of the system in (51) yields

xs = [α Vg θ q αf Vgf ]
T, (53)

The derivative of xs satisfies

ẋs(t) = As(ρ)xs(t) +Bs(ρ)u(t) +Hsfo(t) +Msξs(t, y, u), (54)

where Hs = [0 Af ]
T. Since, α and Vg are prone to faults, the corresponding elements of the uncertainty distribution

matrix, Ms =

[
M 0
0 Af

]
, has been given more weights such that

M =

[
0.01 0 0 0
0 0.01 0 0

]T

. (55)

The outputs (as the function of transformed states in (54)) can be written as

ys =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

xs = [0 I4]xs (56)

The transformed system in (54) and (56) are in the form of (7) and (5). Hence the LPV SMO given in section
III can be synthesised to estimate the sensor faults. It is assumed that the fault estimation is equally affected
by the uncertainty in the state vector, control input (due to imperfect knowledge of ρ), plant uncertainty ξ(t),
and measurement corruption ϕ(t). Here the parameters of the design weighting matrix ∆ in (39) are chosen as
δ1 = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01), δ2 = diag(0.01, 0.01), δ3 = diag(0.01, 0.01, 0.01, 0.01) and δ4 =
diag(0.01, 0.01, 0.01, 0.01). These weights are used to scale the plant matrix, input matrix, output matrix and
uncertainty matrix.

The gain L in (15) has been synthesised by solving the LMIs in (39) in Matlab where the upper bound on L2

gain obtained is γ = 0.1728. This gain is then used to evaluate Gn in (14) and Gl(ρ) = Gl0+Gl1(ρ̂1)+Gl2(ρ̂2)+
Gl3(ρ̂3)+Gl4(ρ̂4) is evaluated from (25). Here the designer selected Hurwitz matrix Ãs

22 which forms part of Gl(ρ̂)
has been chosen as diag(−3.33,−6.66,−3.33,−3.33). Finally, the faults are reconstructed from (31), wherein the
discontinuous function has been approximated as

νeq(t) = −λ(t, y, u, ρ̂)
Poey(t)

∥Poey(t)∥+ δ
,

where Po is a Lyapunov matrix for Ãs
22 and δ is a small positive constant. Finally, λ and δ are chosen as

diag(100, 100, 300, 300) and 0.01, respectively.
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FP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 wt (tons) cg (%)

A 1 10 19 31 43 55 67 79 91 103 115 127 139 151 163 175 187 199 211 MFW max. fwd

B 2 11 20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200 212 MFW med.

C 3 12 21 33 45 57 69 81 93 105 117 129 141 153 165 177 189 201 213 MFW max. aft

D 4 13 22 34 46 58 70 82 94 106 118 130 142 154 166 178 190 202 214 (MLW+MFZW)/2 max. fwd

E 5 14 23 35 47 59 71 83 95 107 119 131 143 155 167 179 191 203 215 (MLW+MFZW)/2 med.

F 6 15 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 (MLW+MFZW)/2 max. aft

G 7 16 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 (MTOW+MFZW)/2 max. fwd

H 8 17 26 38 50 62 74 86 98 110 122 134 146 158 170 182 194 206 218 (MTOW+MFZW)/2 med.

I 9 18 27 39 51 63 75 87 99 111 123 135 147 159 171 183 195 207 219 (MTOW+MFZW)/2 max. aft

J 28 40 52 64 76 88 100 112 124 136 148 160 172 184 196 208 220 MTOW max. fwd

K 29 41 53 65 77 89 101 113 125 137 149 161 173 185 197 209 221 MTOW med.

L 30 42 54 66 78 90 102 114 126 138 150 162 174 186 198 210 222 MTOW max. aft

S/F 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 4 4 5 5

Gear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Alt. (m) 13,106 13,106 9,144 9,144 4,572 4,572 4,572 2,286 2,286 2,286 2,286 1,524 1,524 610 610 305 305 305 305

Vcas (m/s) VLS-5

VMO/M

MO VLS VMO VLS VMO-90 VMO

(ARS+AES)

/2 VFE VLS

(ARS+AES)

/2 VLS VFE VLS VFE VLS VFE VLS VFE

MFW:max flight weight MLW:max landing weight MZFW: max zero fuel weight MTOW: max takeoff weight

VLS: min (lower) selectable speed VMO: max operating speed MMO: max mach operating speed ARS: auto retraction (slats & flaps) speed

AES: auto retraction (slats & flaps) speed VFE: auto retraction (slats & flaps) speed S/F: Slat/Flap configuration aft: aircraft

TABLE I
FLIGHT OPERATING POINTS SHOWING THE LPV REGION (RED SHADE) AND COMPLETE FLIGHT ENVELOPE (WHITE SHADE)

C. RECONFIGURE FES
In this paper the FDI scheme will be tested during both static and dynamic manoeuvres for various parametric

dispersions. The parametric dispersions include variations in weight (minimum flight weight to maximum take-off
weight), altitude (varying from ground to ceiling altitude), calibrated speed (minimum selectable speed to maximum
operating speed), slat/flap configurations (minimum to maximum slat/flap extensions), and with up and down landing
gear positions. For the static flight case, the pilot stick command is held at 0 deg. For the dynamic manoeuvre
the pilot stick command is a doublet signal which varies from −1 deg to +1deg. The simulation data for various
operating conditions has been harvested from the functional engineering simulator (FES) [36] developed by the
other industrial partner of the project, Deimos; and used to test the performance of the observer.

D. Simulations
An existing controller has been used to maintain the load factor at the required reference command [32]. The

faults in α and Vg are assumed to be (a) step signals, occurring at 10 s; (b) oscillatory (sinusoid) signals occurring
at 10 s; (c) drift faults which starts from 10 s. The simulations have been performed using the scheme proposed
in the paper with imperfect scheduling parameters (ρ̂). In all the simulations the observer has been implemented
based on a 0.01 s sampling time. Note that the LPV observer design is based on the operating range given in
Section V-A, but the simulation data it is tested on covers a much wider range.

1) Static manoeuvres: In this section, simulation results are shown when the pilot stick command is held at
0 deg.

a) Imperfect Scheduling parameters (ρ̂): In this subsection it is assumed that ρ is prone to faults and is
imperfectly measured. More specifically, the conventional airspeed, Vcas, is prone to faults and is perturbed by 30%
of its correct value. For the proposed SMO design the scheduling parameter set is ρ̂ = [w c.g. 0.7Vcas Mach].
The pilot stick commands and the corresponding load factors are shown in Fig. 2(a). The zero pilot stick command
translates to a load factor of 1g. The initial conditions for the aircraft states are shown in Fig. 2(b): the observer
initial conditions are the same as that of the plant. The observer states and altitude of the aircraft are shown in
Fig. 3(a). The elevator and stabiliser deflections are shown in Fig. 2(c); the elevators are trimmed at 0 deg, whereas
the stabilisers are trimmed based on the corresponding operating points. Since, for the static manoeuvres the pilot
stick is held at 0 deg, the control surfaces and the states are in steady state, except when the fault is injected in Vcas

and α at 10 s. The results with imperfect scheduling parameters are shown in Fig. 2(d). Note that Vcas in Fig. 2(d)
is 70% of the true Vcas value. The actual step faults (dotted line) and estimated step faults (solid lines), and the
norm of the output estimation error using the proposed SMO with imperfect scheduling parameters are shown in



THIS PREPRINT APPEARS IN ITS FINAL FORM IN EUROPEAN JOURNAL OF CONTROL, DOI: HTTP://DX.DOI.ORG/10.1016/J.EJCON.2016.12.001 11

0.2 0.4 0.6 0.8 1

50

100

150

200

Mach

vc
as

 (
m

/s
)

50 100 150 200

0

1

2

3

4

5

Flight operating points

S
la

t/F
la

p 
co

nf
ig

ur
at

io
ns

50 100 150 200

0

1

Flight operating points

La
nd

in
g 

ge
ar

 p
os

iti
on

30 35 40 45
low

low
mid

high
mid

high

w
ei

gh
t

cg (%)

Fig. 1. Flight envelope; solid line represents the valid LPV region and dashed line represents the regions in which non-linear aircraft
simulations are performed

Fig. 3(b). The proposed scheme has further been tested for oscillatory and drift faults. The states, in the presence
of oscillatory and drift faults, are shown in Figs. 4(a) and 5(a) respectively. The corresponding fault reconstructions
and the norm of the output estimation errors are shown in Figs. 4(b) and 5(b) respectively. The fault reconstruction
errors for the step, oscillatory and drift faults are shown in Figs. 3(c), 4(c) and 5(c).

For all the three types of faults, the norm of the output estimation error is close to zero, which shows sliding
is maintained in spite of the faults and imperfect scheduling parameters using the proposed SMO. The good
performance of the proposed SMO, in the presence of imperfect scheduling parameters, is due to the fact that the
uncertainty in ρ has been considered at the design stage, and the SMO gains have been synthesised directly in such
a way that the effect of ρ̂− ρ on the fault reconstruction is minimised.

2) Dynamic manoeuvres: In this section, simulation results are shown where the pilot stick command is a doublet
signal which varies from −1 deg to +1deg. Note that the LPV observer is designed based on an LPV model with
a limited operating range as given in Section V-A, and covers only the highlighted operating points in Table 1;
which comprises only a clean Slat/Flap (S/F) configuration, with zero landing gear position, and limited altitude
and Vcas range. However, the simulation results cover a much wider operating envelope (from near landing/takeoff
(low altitude and speed) to cruise conditions (high speed and altitude)) consisting of all the 222 operating points
shown in Table 1. The same can be seen in Fig. 1, where the solid line shows the LPV region for which the
observer is designed, and the dashed line shows the operating range in which the observer performance is tested.
Note that the exact value of Vcas, weight and c.g. in Table 1 are not provided due to industrial restrictions.

a) Imperfect Scheduling parameters (ρ): In this subsection it is assumed that the conventional airspeed, Vcas,
is prone to faults and is perturbed by 30% of its correct value. Similar to the static manoeuvres case with imperfect
scheduling parameters, here the scheduling parameter is set as ρ̂ = [w c.g. 0.7Vcas Mach]. The pilot stick
command and the corresponding load factor are shown in Fig. 6(a). The initial conditions for the aircraft states
are shown in Fig. 6(b), and the observer initial conditions are the same as that of the plant. The observer states
and altitude of the aircraft are shown in Fig. 7(a). Similar to the static manoeuvres case, step, oscillatory and drift
faults are added to Vg and α. The elevator and stabiliser deflections are shown in Fig. 6(c); these control signals for
various operating points are obtained from the existing AIRBUS controller [27] through the FES. The results with
imperfect scheduling parameters, for dynamic manoeuvres, are shown in Fig. 6(d). The Vcas in Fig. 6(d) is 70%
of the perfect Vcas. The actual step faults (dotted line) and their estimates (solid lines), and the norm of the output
estimation error using the proposed SMO with imperfect scheduling parameters are shown in Fig. 7(b). Similar to
static manoeuvres case, the proposed scheme has further been tested for oscillatory and drift faults. The states, in
the presence of oscillatory and drift faults, are shown in Figs. 8(a) and 9(a), respectively. The corresponding fault
reconstructions and norms of the output estimation errors are shown in Figs. 8(b) and 9(b), respectively. The fault
reconstruction errors for the step, oscillatory and drift faults are shown in Figs. 7(c), 8(c) and 9(c). Fault estimation
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is retained due to the fact that the uncertainty in ρ has been considered at the design stage and the SMO gains
have been synthesised directly in such a way that the effect of ρ̂− ρ on the fault reconstruction is minimised. The
faults reconstructions for the dynamic manoeuvres are slightly degraded compared to the static manoeuvres case;
this is due to the fact that the operating range for dynamic manoeuvres is much wider than the LPV region where
the proposed observer is built.

VI. CONCLUSIONS

In this paper, a sliding mode observer has been proposed with the aim of reconstructing actuator and sensor faults
for a class of linear parameter varying systems in the presence of imperfect knowledge of the scheduling parameters.
The observer gains are synthesised to minimise the effect of uncertainties, imperfect scheduling parameters and
measurement corruptions on the fault reconstruction in an L2 gain sense. For the actuator fault case, the virtual
fault is first reconstructed and then an estimate of the actual fault is recovered from it; whereas a sensor fault is
directly reconstructed. The efficacy of the proposed approach has been validated based on simulations and data
from the high fidelity RECONFIGURE benchmark model for sensor fault reconstruction. The proposed observer
shows good reconstruction of the sensor faults in the presence of correct and imperfect scheduling parameters.
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Fig. 2. Static manoeuvres: stepped faults with imperfect scheduling parameters (1 of 2)
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Fig. 3. Static manoeuvres: stepped faults with imperfect scheduling parameters (2 of 2)
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Fig. 4. Static manoeuvres: oscillatory faults with imperfect scheduling parameters
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Fig. 5. Static manoeuvres: ramp faults with imperfect scheduling parameters
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Fig. 6. Dynamic manoeuvres: stepped faults with imperfect scheduling parameters (1 of 2)
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Fig. 7. Dynamic manoeuvres: stepped faults with imperfect scheduling parameters (2 of 2)
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Fig. 8. Dynamic manoeuvres: oscillatory faults with imperfect scheduling parameters
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Fig. 9. Dynamic manoeuvres: drift faults with imperfect scheduling parameters
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