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Abstract— Research on sub-optimal Model Predictive Control
(MPC) has led to a variety of optimization methods based
on explicit or online approaches, or combinations thereof.Its
foremost aim is to guarantee essential controller properties,
i.e. recursive feasibility, stability, and robustness, atreduced
and predictable computational cost, i.e. computation timeand
storage space. This paper shows how the input sequence of
any (not necessarily stabilizing) sub-optimal controller and
the shifted input sequence from the previous time step can
be used in an optimal convex combination, which is easy to
determine online, in order to guarantee input-to-state stability
for the closed-loop system. The presented method is thus able
to stabilize a wide range of existing sub-optimal MPC schemes
that lack a formal stability guarantee, if they can be considered
as a continuous map from the state space to the space of feasible
input sequences.

I. INTRODUCTION

The growing complexity of modern control systems and
the increasing availability of powerful hardware has extended
the scope of applications for Model Predictive Control
(MPC). Unlike traditional control methods, it requires the
solution of an optimization problem (MPC problem) over a
receding finite prediction horizon at every time step.

For linear systems with fast dynamics and high sampling
rates, which are the subject of this paper, restricted hardware
capacities—both in terms of computation speed and storage
capacity—remain a critical limiting factor. One approach to
reduce the computation efforts is explicit MPC (see [2]),
where the polyhedral piecewise-affine solution of the MPC
problem is pre-computed and stored for every relevant initial
condition. For systems of small dimension, the storage space
for the solution remains small, and the online procedure
reduces to a fast look-up operation. However, as its worst-
case complexity grows exponentially with the problem size,
explicit MPC loses much of its effectiveness for larger
systems, where it is outperformed by appropriately tailored
online algorithms.

The need for increased efficiency has led research to
focus on sub-optimal MPC, for which essential properties
such as recursive feasibility, stability, or robustness, however,
are often difficult to establish. For online MPC, a common
approach is to stop an iterative algorithm early, e.g. as in [15]
for interior point methods, [3] for active set methods, or [11]
for fast gradient methods. In explicit MPC, approximations

∗Automatic Control Laboratory, Eidgenössische Technische Hochschule
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to the exact solution, but having a lower complexity, are
constructed.

Most recent explicit MPC approaches partition the state
space into regions of a predefined shape, like hypercubes (see
[6], [13]) or simplices (see [14]), and interpolate the stored
solution at its extreme points (see [7]). While they permit
MPC controllers of very low complexity, they only guarantee
feasibility, but not stability, in the general case. This paper
presents a small add-on scheme, to be used in conjunction
with many sub-optimal (especially explicit) methods, that
recovers this flaw by providing robust stability. Its only key
requirement is that the controller represents a continuousmap
from the state space into the space of feasible full-horizon
input sequences.

The method is based on conventional Lyapunov stability
theory for sub-optimal MPC, as described in [12]; however
the decrease in the cost function is achieved not by close
approximation of the optimal solution, but by a combination
of (a) the current sub-optimal input sequence and (b) the
shifted input sequence of the previous time step. The idea has
originally been proposed by [14], yet only for the nominal
case and without robustness properties. In this paper, it is
modified so as to yield input-to-state stability (ISS) in the
presence of state disturbances.

The method makes minor modifications to the MPC
problem and introduces a simple and fast online procedure
(Section III), which usually amounts to a few matrix-vector
multiplications. It admits a rigorous proof of ISS in the
presence of state disturbances (Section IV). Finally, practical
application of the method is demonstrated for a single mass
oscillator (Section V).

II. NOTATION & PRELIMINARIES

A. Notation

N = {0, 1, 2, ...} denotes the set of natural numbers and 0,
R the set of real numbers, andR+ (R0+) the set of positive
(non-negative) real numbers. In the product spaceR

n, Bn is
the closed unit ball in the Euclidean norm‖ · ‖. The space
of real sequences{tn}n∈N is denoted byRN.

A polyhedronis the finite intersection of closed half-spaces
in R

n, and apolytopeis a bounded polyhedron.
For some indexk ∈ N, non-bold letters indicate vectors

xk ∈ R
n, and bold lettersxk := {xk|k, xk+1|k, ..., xk+N |k}

an ordered collection of vectorsxk+i|k ∈ R
n that can also

be considered as a large stacked-up vectorxk ∈ R
(N+1)n.

A function α : R0+ → R0+ is a K-function if it is
continuous, strictly monotonically increasing, andα(0) = 0;
it is a K∞-function if in additionα(r) → ∞ as r → ∞.
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A function β : R0+ × R0+ → R0+ is a KL-function if
for any fixed t ∈ R0+ β( · , t) is a K-function and for
any fixedr ∈ R0+ β(r, · ) is monotonically decreasing and
β(r, t) → 0 as t→ ∞.

Let (X, dX) be a metric space andS be a subset, written
S ⊂ X . The point-to-set distanceof somex ∈ X to S is

dX(x, S) := inf
s∈S

dX(x, s) ;

the distance to the empty setdX(x, ∅) := ∞ by convention.
For anyε > 0, the ε-neighborhoodof S is denoted by

UεS := {x ∈ X | dX(x, S) < ε} .

B. Control System with State Disturbance

Consider a linear time-invariant system in discrete-time

xk+1 = Axk +Buk + wk , x0 ∈ X , (1)

whereA ∈ R
n×n andB ∈ R

n×m, whose trajectory of states
xk ∈ R

n must be kept in the state constraint setX ⊂ R
n for

all k ∈ N. Hereuk ∈ U ⊂ R
m is the external control input

andwk ∈ W ⊂ R
n a random state disturbance at stepk.

Assumption II.1 (System Dynamics).(a) The pair of ma-
tricesA, B is stabilizable. (b) The state is measured at every
stepk. (c) Thestate constraint setX is convex and contains
the origin in its interior. (d) The set ofadmissible controls
U is compact, convex, and contains the origin in its interior.

Assumption II.2 (Disturbances).Thedisturbance setW is
compact and contains the origin; neitherW nor the proba-
bility distribution ofwk are known for controller design.

For closed-loop controllers,control sequences{uk}k∈N

are provided by astate feedback lawκ : Xκ → R
m on

some domainXκ ⊂ X, assigninguk := κ(xk).

Definition II.3 ((Robustly) Feasible Controls). A control
sequence (or state feedback law) is said to be(recursively)
feasible forx0 if (a) it is admissible and (b) the resulting
state trajectory satisfies the state constraints at all times
k ∈ N. It is called robustly (recursively) feasible forx0 if
the above conditions are met for all possible outcomes of
the disturbance sequence{wk}k∈N ∈ W

N.

Definition II.4 ((Robustly) Positively Invariant Set). A set
Xκ ⊂ X is called positively invariant (PI) for (1) under
κ if for all ξ ∈ Xκ it holds that: (a) κ(ξ) ∈ U and (b)
[Aξ +Bκ(ξ)] ∈ Xκ. It is called robustly positively invariant
(RPI) for (1) underκ if, moreover,[Aξ +Bκ(ξ)]⊕W ⊂ Xκ.

In this paper, a more generalparameterized feedback law
κ : P × Xκ → R

m will be considered. Namely, it allows
for uk := κ(pk, xk) to depend also on a specific sequence
of parameterspk in some compact setP. The sequence
is recursively defined for allk ∈ N by some non-linear
transition mapf : P× X → P:

pk+1 = f(pk, xk), p0 ∈ P .

Note that these ‘dynamics’ use the state trajectory as ‘inputs’.
Definitions II.3 and II.4 hold analogously.

C. Point-to-Set Mappings

Let X and Y be metric spaces andΛ be a point-to-set
mapping fromX into the power set2Y ; in shortΛ : X ⇒ Y .

Definition II.5 (Continuity). [1, p. 25]Λ : X ⇒ Y is
(a) closed atx ∈ X if for any two sequences{xt}t∈N and
{yt}t∈N, whereyt ∈ Λ(xt) for all t ∈ N and

xt → x and yt → ȳ

as t→ ∞, it holds thatȳ ∈ Λ(x);
(b) Hausdorff upper semicontinuous (H-u.s.c.) atx ∈ X if
for everyε > 0 there existsδ > 0 such that

Λ(x) ⊂ UεΛ(x) ∀ x ∈ Uδ{x} ;

(c) Hausdorff lower semicontinuous (H-l.s.c.) atx ∈ X if
for everyε > 0 there existsδ > 0 such that

Λ(x) ⊂ UεΛ(x) ∀ x ∈ Uδ{x} .

If Λ is both H-u.s.c. and H-l.s.c. atx ∈ X , then it is H-
continuous atx ∈ X . The qualifier ‘atx’ is omitted if a
property holds for allx ∈ X .

Proposition II.6 . [1, p. 26] If the mappingΛ : X ⇒ Y is
H-u.s.c. atx ∈ X and the setΛ(x) is closed, thenΛ is
closed atx.

D. Lyapunov Stability Theory

This section briefly introduces input-to-state stability (e.g.
[10], [5]), in particular for constrained systems (e.g. [9]).

Definition II.7 (Input-to-State Stability). Consider the dy-
namic system(1) under a feedback lawκ that is robustly
recursively feasible on some RPI setΓκ ⊂ Xκ. The origin is
input-to-state stable (ISS) onΓκ if there exist aKL-function
β and aK-functionτ such that

‖xk‖ ≤ β
(

‖x0‖, k
)

+ τ
(

sup
i≤k−1

‖wi‖
)

∀ k ∈ N ,

for x0 ∈ Γκ and any disturbance sequence{wk}k∈N ∈ W
N.

Definition II.7 reduces toasymptotic stability (AS) of the
origin on Γκ if {wk}k∈N = 0. The stability analysis of a
system under a parameterized feedback lawκ(pk, xk) entails
the dependence of the Lyapunov function on the parameters
pk ∈ P; it shall therefore be referred to as aparameterized
Lyapunov function(a similar concept is used in [12]).

Definition II.8 (Parameterized ISS Lyapunov Function).
V : P×Xκ → R0+ is called aparameterized ISS Lyapunov
function for system (1) underκ on Γκ, if Γκ ⊂ Xκ is a RPI
set for(1) underκ, andV satisfies the following conditions:
(a) There exist twoK∞-functionsα1 andα2 such that

α1(‖ξ‖) ≤ V (pk, ξ) ≤ α2(‖ξ‖) ∀ pk ∈ P, ∀ ξ ∈ Γκ. (2)

(b) There exists aK∞-functionα3 andK-functionσ with

V (pk+1, xk+1) ≤ V (pk, xk)− α3(‖xk‖) + σ(‖wk‖) (3)

for all k ∈ N, anyx0 ∈ Γκ, and any{wk}k∈N ∈ W
N.



Definition II.8 reduces to anISS Lyapunov functionif the
dependence on the parameterspk ∈ P is removed; it reduces
to aparameterized Lyapunov functionif the termσ(‖wk‖) is
removed in equation (3); and it reduces to a classicLyapunov
function if both of these simplifications are made.

The following theorem is a straightforward extension of
ISS Lyapunov theory for parameterized systems (see [8]).

Theorem II.9 (ISS Lyapunov Stability). [4, p. 2131]Let κ
be a parameterized feedback law andΓκ be a RPI set for(1)
underκ. If there is a parameterized ISS Lyapunov function
for (1) underκ on Γκ, then the origin is ISS onΓκ.

Corollary II.10 . [12, p. 649] Let κ be a parameterized
feedback law andΓκ be a PI set for(1) underκ. If there is
a parameterized Lyapunov function for(1) underκ on Γκ,
and if {wk}k∈N = 0, then the origin is AS onΓκ.

III. PROPOSED SUB-OPTIMAL MODEL
PREDICTIVE CONTROLLER

A. MPC State Feedback

This section briefly introduces the MPC state feedback
κoN which, with some abuse of the term, is referred to as the
optimal state feedback law. It is based on a finiteprediction
horizonN > 0 and astage cost functioǹ : X×U → R0+,
penalizing the state and the control input at every predicted
step over the horizon (for more details see e.g. [10]).

Assumption III.1 (Cost Function). The stage cost function
` is continuous,̀ (0, 0) = 0, and it has some lower-bounding
K∞-functionαl,

`(ξ, υ) ≥ αl (‖ξ‖) ∀ ξ ∈ X, ∀ υ ∈ U .

Assumption III.2 (Terminal Set). (a) There exists a termi-
nal setXf ⊂ X which is compact, convex, and contains the
origin in its interior.
(b) On Xf , there is aterminal state feedback lawκf such
that Xf is a PI set for(1) underκf .
(c) There exists aterminal cost functioǹ f : Xf → R0+

which is continuous,̀ f (0) = 0, and it has some upper-
boundingK∞-functionαu,

`f (ξ) ≤ αu (‖ξ‖) ∀ ξ ∈ Xf .

Moreover,`f is a control Lyapunov function for system (1):

min
υ∈U

{

`f (Aξ +Bυ)− `f(ξ) + `(ξ, υ)
}

≤ 0 ∀ ξ ∈ Xf .

The MPC cost functionJN : X× U
N → R0+ is

JN
(

xk|k,uk

)

=

N−1
∑

i=0

`
(

xk+i|k, uk+i|k

)

+ `f
(

xk+N |k

)

,

where thepredictive model dynamics

xk+i+1|k = Axk+i|k +Buk+i|k ∀ i = 0, ..., N − 1 (4)

are understood to be substituted recursively in order to
remove the dependence on all states other thanxk|k. This
‘sequential approach’ is chosen to facilitate the notation.

Remark III.3 . From Assumptions III.2(c) and III.1, and
the continuity of the predictive dynamics(4), it follows
immediately that the MPC cost functionJN is continuous.

All of this is assembled into theMPC Problem:

min
uk

JN (xk,uk) (5a)

s.t. xk+i+1|k = Axk+i|k +Buk+i|k, xk|k = xk, (5b)

uk ∈ U
N , (5c)

xk ∈ X
N ×Xf , (5d)

where i ∈ {0, ..., N − 1}. Problem (5) represents an opti-
mization problem parameterized by the initial statexk; it
is solved for a(full-horizon) input vectoruk of the lowest
possible cost. LetXN denote the set of all initial states for
which there exists a solution;Π : XN ⇒ U

N be thefeasible
set mapandΦ : XN ⇒ U

N be thesolution map, i.e. Π(xk)
and Φ(xk) are the sets of feasible and cost-minimal input
vectors, respectively. Moreover, defineφ : XN → R0+ as
the extreme value map, i.e.φ(xk) is the minimal cost atxk.

The MPC state feedback lawκoN (xk) returns the first
element (a vector of dimensionm) of some input vector
from Φ(xk) (a vector of dimensionNm).

B. Suboptimal State Feedback

Consider a feasible solution maps : SN → U
N for the

MPC Problem, defined onSN ⊂ XN , i.e. for ξ ∈ SN s(ξ)
returns a feasible (yet not necessarily optimal) point of (5).
It is assumed that the evaluation ofs is much cheaper than
solving the MPC Problem, in terms of computation time
and/or storage space.

Assumption III.4 (Sub-Optimal Solution Map). (a) The
map s : SN → U

N is defined on a compact setSN ⊂ XN

with the origin in its interior, (b)s(ξ) is feasible for all
ξ ∈ SN , and (c)s is a continuous function.

Assumption III.4 does not suffice to guarantee stability
of the closed-loop system if (in analogy to optimal MPC)
the sub-optimal controller were to use the first element of
s(xk), as it does not ensure a cost decrease. Feasibility
implies stability, in the sense of [12], only if a cost decrease
can be ensured—e.g. by further iterations of some descent
algorithm. As discussed in [14], in the nominal case a
convex combination of the sub-optimal input trajectory with
the shifted input sequence from the previous step always
achieves a cost decrease. However, this only works if the
shifted input sequence remains feasible, which does not hold,
in general, in the presence of state disturbances. Therefore
some alterations to this approach are introduced in the next
section that allow to establish input-to-state stability.

C. Affine Combination Feedback

Definition III.5 (Shift Operator). For a givenxk|k ∈ XN ,
the shift operatorσxk|k

: Π(xk|k) → U
N removes the first

input element from an input vector and adds a terminal
feedback input at its tail:

σxk|k
uk =

{

uk+1|k, ..., uN−1|k, κf (xk+N |k)
}

.



Noteσxk|k
uk is feasible forxk+1|k, asuk is feasible for

xk|k andκf(xk+N |k) ∈ Xf . For clarity of notation, the index
of σxk|k

will be omitted, as it is understood from the context.
The modifications proposed to the approach of [14] are

twofold. First, the MPC Problem for which the sub-optimal
maps (satisfying Assumption III.4) provides a feasible solu-
tion is modified. Namely, the state and terminal constraints
are tightened by someδ > 0, i.e. X andXf are replaced by
X	 δBn andXf 	 δBn, respectively.

A formulation of the resulting problem, referred to as the
Tightened MPC Problem, is omitted. Note that the terms
‘state constraint set’, ‘terminal constraint set’, or ‘feasible’
shall remain with respect to the original MPC Problem.

Remark III.6 . δ can be regarded as a design parameter.
Together with properties of the system and the sub-optimal
solution, it determines the ‘ISS gain’ in a trade-off against
the (maximum) size of the controller domain.

The second modification is to solve the followingAffine
Combination Problem(similar, but not identical to [14])
online at every step to obtain the sub-optimal control input:

min
α

JN (xk,uk) (6a)

s.t. uk = ασxk−1|k−1
uk−1 + (1− α)s(xk) , (6b)

|α| ≤ 1 , (6c)

xk+i+1|k = Axk+i|k +Buk+i|k, xk|k = xk, (6d)

uk ∈ U
N , (6e)

xk ∈ X
N ×Xf , (6f)

where i ∈ {0, ..., N − 1}. Its decision variable is a scalar
α ∈ [−1, 1] that determines an optimal combination of the
sub-optimal input vectors(xk) with the shifted input vector
σuk−1. Problem (6) can be initialized by settingσu−1 := 0.

Problem (6) includes the parameterσuk−1 ∈ U
N in

addition to xk. Indexed by this parameter, letΞσuk−1
:

SN ⇒ B
1 andΨσuk−1

: SN ⇒ B
1 denote itsfeasible set

map and itssolution map, andψσuk−1
: SN → R0+ be its

extreme value map. The sub-optimal parameterized feedback
law κsN (σuk−1, xk) returns the first element of the input
vector obtained from some element ofΨσuk−1

.

Remark III.7 . (a) Unlike the state feedback lawκoN , κsN is
a parameterized feedback law with the shifted input vectors
being the parameters with their own dynamics and contained
in a compact set, namelyUN (compare Section II-B).
(b) Depending on the disturbancewk−1, σuk−1 ∈
Π(xk|k−1) may or may not be feasible forxk, i.e. it is not
necessarily an element ofΠ(xk).
(c) By virtue of the constraint system of(6), any feasible
solution to(6) corresponds to a feasible input vector for(5).
Moreover, a feasible solution to(6) always exists, because
s(xk) (corresponding toα = 0) is feasible for(5), and even
for the Tightened MPC Problem, by Assumption III.4.

Remark III.8 . In many practical cases(6) can be solved
analytically. More details on this are found in Section V for
the numerical example.

AS for the proposed controller when{wk}k∈N = 0 follows
from the existing theory (e.g. in [14]); moreover, it is a
special case of Theorem IV.7. The next section is concerned
with proving ISS for the proposed controller.

IV. INPUT-TO-STATE STABILITY

A. Continuity of the Cost Function

The key to obtaining ISS is to prove continuity of the
extreme value function, to which this section is dedicated.
Note that for the existing approach of [14], the optimal cost
may be discontinuous as a result of the shifted input sequence
becoming infeasible.

Theorem IV.1. Choose anyuσ ∈ U
N . The extreme value

function of the Affine Combination Problem

ψuσ
: SN → R0+

is continuous at anyx0 ∈ SN .

The proof is based on Theorem 4.2.1 (1,2) and Lemma
2.2.1 in [1]. Indeed, for any givenuσ ∈ U

N it is sufficient
that the cost functionJN ( · ,uσ) be continuous, and that the
feasible set mapΞuσ

: SN ⇒ R and the optimal solution
mapΨuσ

: SN ⇒ R be closed (and their images non-empty).
These results shall be proven in a sequence of lem-

mas, whose proofs are based on a certain geometric per-
spective on the problem which is now described. Let
xσ,0(x0), ..., xσ,N (x0) denote the predicted state trajectory
starting atx0 and driven by the input vectoruσ,0, ..., uσ,N−1.
Note that while the inputs are fixed (and admissible),
each state of the trajectory is a continuous function of
x0 ∈ SN , and not necessarily insideX. Similarly, let
uπ,0(x0), ..., uπ,N−1(x0) be the feasible input vector pro-
vided by s(x0), andxπ,0(x0), ..., xπ,N−1(x0) be the corre-
sponding state trajectory. Note that each input and state isa
continuous function ofx0, and the trajectory is feasible (by
Assumption III.4).

Consider the state spaceRn at any stepk ∈ {0, ..., N}.
The state (or terminal) constraint set is convex and contains
xπ,k(x0) (with a distance to the boundary of at leastδ, due
to the constraint tightening), while not necessarily contain-
ing xσ,k(x0). By virtue of the linear dynamics, the affine
combination parameterα defines a closed line segment

Lx
k := {αxπ,k(x0) + (1− α)xσ,k | |α| ≤ 1} ⊂ R

n . (7)

A similar view holds for the input spaceRm at any step
k ∈ {0, ..., N−1}.U is convex, containing bothuπ,k(x0) and
uσ,k(x0) in its interior or on its boundary. Again, the affine
combination parameterα defines a closed line segment

Lu
k := {αuπ,k(x0) + (1− α)uσ,k | |α| ≤ 1} ⊂ R

m . (8)

For the purpose of clarity, but without loss of generality,
assume thatU andXf are polytopes and thatX is a polyhe-
dron, i.e. described by a finite number of linear inequalities.

Lemma IV.2 . The feasible setΞuσ
(x0) is a non-empty

closed interval[α(x0), α(x0)] ⊂ [−1, 1] containing{0} for
anyx0 ∈ SN .



Proof: For each stepk ∈ {0, ..., N}, the intersection of
the closed line segmentLx

k (or Lu
k) with the closed state or

terminal constraint set (or input constraint set) is a closed line
segment of smaller or equal size. Hence the set of feasible
α, with respect to stepk, is some closed interval in[−1, 1].

The result is immediate, since the set ofα that are
feasible with respect to all constraints is given as their
(finite) intersection; moreover,α = 0 is always feasible, as
mentioned in Remark III.7(c).

Next, it is shown that the interval’s upper and lower bound
vary continuously withx0 (Lemma IV.3), which is used to
establish H-continuity of the feasible set map (Lemma IV.4).

Lemma IV.3 . The limitsα(x0) and α(x0) of the feasible
interval in Lemma IV.2 are continuous functions ofx0.

Note that the conditions thatα be contained in a compact
interval and is upper bounded by1 are crucial for this proof.
Despite all continuity assumptions stated above, there exist
simple examples in which the limitsα(x0) andα(x0) are
discontinuous if this assumption were not satisfied.

Proof: Again, for clarity the limitations onα(x0)
and α(x0) imposed at each stepk ∈ {0, ..., N} by the
state[αx

k(x0), α
x
k(x0)] and by the input[αu

k(x0), α
u
k(x0)] are

considered separately. If each of them can be shown to be
a continuous function ofx0, then so are the maximum and
minimum of a finite number of them:

α(x0) = max
k

max{αx
k(x0), α

u
k(x0)} ,

α(x0) = min
k

min{αx
k(x0), α

u
k(x0)} .

The input line segmentLu
k is such thatuσ,k (whereα =

1) is feasible and fixed with respect tox0, and uπ,k(x0)
is feasible and varies continuously withx0. This allows to
deduce the following: (i) Clearly,αu

k = 1 for anyx0. (ii) By
virtue of the lower bound at−1, αu

k(x0) varies continuously
with x0, possibly as the intersection ofLu

k with the boundary
of the convex setU, even if the pointsuσ,k anduπ,k coincide.

The state line segmentLx
k is such thatxπ,k(x0) (where

α = 0) varies continuously withx0 and always remains
feasible with a distance of at leastδ to the boundary of
the (state or terminal) constraint set. On the other hand,
xπ,k(x0) (whereα = 1) varies continuously withx0, yet
may become infeasible. By virtue of these continuities, both
αx
k(x0) andαx

k(x0) vary continuously withx0, possibly as
the intersection ofLx

k with the boundary of the convex set
X (or Xf ), even if the pointsxσ,k andxπ,k coincide.

Corollary IV.4 . The feasible set mapΞuσ
: SN ⇒ B

1 is
H-continuous at anyx0 ∈ SN .

Proof: Straightforward extension of Lemma IV.3.

Corollary IV.5 . The feasible set mapΞuσ
: SN ⇒ B

1 is
closed at anyx0 ∈ SN .

Proof: Immediate consequence of Proposition II.6,
given thatΞuσ

(x0) is closed (Lemma IV.2) and H-u.s.c.
(Corollary IV.4).

Lemma IV.6 . The solution mapΨuσ
: SN ⇒ B

1 is closed
at anyx0 ∈ SN .

Proof: In this case, the requirements for closedness of
a set-valued map by Definition II.5(a) are verified directly.

Consider any two sequences{xt}t∈N ⊂ SN and
{αt}t∈N ⊂ B

1 such thatxt → x0 andαt → α0 as t → ∞
and αt ∈ Ψuσ

(xt) for all t ∈ N. It must be proven that
α0 ∈ Ψuσ

(x0).
Notice first thatα0 is feasible, becauseαt ∈ Ξuσ

(xt) for
all t ∈ N and thereforeα0 ∈ Ξuσ

(x0) becauseΞuσ
is closed

(Corollary IV.5). It remains to be shown thatα0 minimizes
the cost (6a). Suppose there existsα? 6= α0 inducing a lower
value in the cost functionJN , i.e.

JN (x0, α0s(x0) + (1− α0)uσ)

− JN (x0, α
?s(x0) + (1− α?)uσ) = ε > 0 .

As will be proven, this contradicts the optimality of some
combination(xt, αt) that is sufficiently close to(x0, α0).

SinceJN ands are continuous, andx0 ∈ SN andα ∈ B
1

are contained in compact sets, there existsδα > 0 such that

|α− α̃| < δα =⇒
∣

∣JN (x, αs(x) + (1− α)uσ)

− JN (x, α̃s(x) + (1− α̃)uσ)
∣

∣ ≤
ε

6

for any x ∈ SN ; and someδx > 0 such that

‖x− x0‖ < δx =⇒
∣

∣JN (x, αs(x) + (1− α)uσ)

− JN (x0, αs(x0) + (1− α)uσ)
∣

∣ ≤
ε

6

for anyα ∈ B
1. Note that there is no mention of feasibility

here. The H-l.s.c. ofΠ (Corollary IV.4), however, guarantees
existence of someδπ > 0 such that

Ξuσ
(x0) ⊂ UδαΞuσ

(x) ∀ x ∈ Uδπ{x0} . (10)

Pick t large enough such that‖xt − x0‖ < min{δx, δπ} and
also‖αt − α0‖ < δα. Then clearly
∣

∣JN (xt, αts(xt) + (1 − αt)uσ)

− JN (x0, α0s(x0) + (1− α0)uσ)
∣

∣ ≤
ε

3
.

Moreover, equation (10) implies the existence of some feasi-
ble α̃? for xt which is δα-close toα? ∈ Ξuσ

(x0). Therefore
∣

∣JN (xt, α̃
?s(xt) + (1− α̃?)uσ)

− JN (x0, α
?s(x0) + (1 − α?)uσ)

∣

∣ ≤
ε

3
,

establishing the contradiction.
This completes the proof of Theorem IV.1.

B. Input-to-State Stability

Let Γs ⊂ SN be the set of all initial conditions for
which the proposed parameterized controllerκsN is robustly
recursively feasible, i.e. for which the closed-loop trajectory
does not leaveSN for any disturbance sequence{wk}k∈N ∈
W

N. The next theorem (in conjunction with Theorem II.9)
proves ISS of the origin onΓs, for system (1) underκsN .



Theorem IV.7. Let {uk}k∈N be any sequence of feasible
input vectors for{xk}k∈N resulting from (6). The opti-
mal cost functionψσuk−1

, parameterized by the sequence
{σuk−1}k∈N, is a parameterized ISS Lyapunov function for
system(1) underκsN on Γs.

Proof: The parameter sequenceσuk−1 is contained in
the compact setUN . With αl(·) from Assumption III.1 and
αu(r) := sup‖ξ‖≤r J(ξ, s(ξ)), ψσuk−1

is lower and upper
bounded by twoK∞-functions:

αl(‖ξ‖) ≤ ψσuk−1
(ξ) ≤ (‖ξ‖) ,

for all ξ ∈ Γs andσuk−1 ∈ U
N .

Becausex0 ∈ Γs, xk ∈ SN for all k ∈ N. For anyxk ∈
SN , let σuk−1 ∈ U

N be the shifted input vector resulting
from (6). It must be shown that the nominal cost decrease is
upper bounded by a negativeK∞-functionαl,

ψσuk
(Axk +Buk|k)− ψσuk−1

(xk) ≤ −αl(‖xk‖) ,

and an additional cost caused bywk is upper bounded by
someK-functionσ,

ψσuk

(

Axk +Buk|k + wk

)

− ψσuk−1
(xk) ≤

− αl(‖xk‖) + σ(‖wk‖) .

The former statement is equivalent to AS in [14]: asσuk

is feasible for[Axk +Buk|k] (Remark III.7(b)), the optimal
input provided by (6) decreases by at least one stage cost.

The latter statement follows asψσuk
is continuous (by

Theorem IV.1) on the compact setSN for anyσuk ∈ U
N ,

hence it is bounded. Thus the definition

σ(ω) := sup
υ∈UN

(

sup
‖w‖≤ω

{

ψυ(ξ+w)−ψυ(ξ)
∣

∣ξ, (ξ+w) ∈ SN

}

)

yields a desired upper-boundingK-function.

V. NUMERICAL EXAMPLE

Consider a single mass oscillator with massm = 1,
stiffnessk = 5, dampingd = 0.01, and controlled by a force
u(t); the sampling time is∆t = 0.2. Let xk := [vk, pk]

>

denote its velocity and position at stepk; then the dynamics
are described by

xk+1 =

[

0.900 −0.966
0.193 0.902

]

xk +

[

0.193
0.020

]

uk + wk . (11)

The disturbance support set is chosen as

[−0.400,−0.004]> ≤ wk ≤ [0.400, 0.004]> ,

and the input and the state constraint sets as

−5.000 ≤ uk ≤ 5.000 , (12a)

[−10,−5]> ≤ [vk, pk]
> ≤ [10, 5]> . (12b)

For a quadratic cost function withN = 20, Q = diag[1, 10],
andR = 2, cost function and constraints can be written as

JN (xk,uk) =
1

2
u
>
k Huk + x>k F

>
uk , (13)

Guk ≤ e + Exk , (14)

for appropriateH � 0, F , G, e, andE (e.g. [2]).
In this particular case the Affine Combination Problem has

an analytic solution, obtained by substitutingαuσ+(1−α)uπ

into (13). This yields a scalar quadratic equation inα with

α?
k =

−
[

u
>
πH + x>k F

]

[uσ − uπ]

[uσ − uπ ]
>
H [uσ − uπ]

as its unconstrained minimizer. Substitution ofαuσ + (1 −
α)uπ into the constraints (14) gives a vector of scalar
inequalities forα (in addition to|α| ≤ 1)

[G(uσ − uπ)]α ≤ e+ Exk −Guπ ,

defining a (non-empty) closed interval forαk ∈ [α, α].
Depending onα?

k, the optimal solution to (6) isα, α?
k, or α.

In this example, a terminal set with the state feedback
of a linear quadratic regulator is employed (e.g. [2]). The
constraints are tightened byδ = 0.1. The sub-optimal
controller s(x) is provided by interpolation of the optimal
solution stored at triangulated sampling points, which are
selected as the union of the extreme points ofS20 together
with 5 randomly placed points inS20 \ Xf .

By the results of this paper, system (11) is input-to-state
stable underκs20 on someΓs ⊂ S20. Whereas for most
practical systems it is prohibitively expensive to compute
RPI sets, the setΓs can be approximated by simple forward
simulation, as illustrated in Figure 1.

−10 −5 0 5 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

velocity v
k

po
si

tio
n 

p k

trajectories in S
20

feasible set
MPC
Problem

feasible set
Tightened MPC

Problem

trajectories
not in S

20

Fig. 1. Initial Conditions Remaining inSN

Figure 1 displays initial conditions on a grid inS20,
marked by a grey cross if all trajectories remained insideS20

within 5 simulated steps, as tested forall possible disturbance
combinations from the extreme points ofW; and by a black
circle otherwise. This approximation proved to be highly
reliable in all further simulations.

Figure 2 compares the closed-loop trajectories of the
optimal MPC controller (grey lines) with those of the sub-
optimal controller (black lines) for some initial conditions in
S20. Both trajectories are subjected to the same disturbance
sequence, selected according to a uniform distribution onW.



−10 −5 0 5 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

velocity v
k

po
si

tio
n 

p k

state
constraints

terminal
set

feasible set MPC
Problem

feasible set Tightened
MPC Problem

trajectories of κ
N
s trajectories of κ

N
o

Fig. 2. Sample Trajectories in Phase Plane

The results of a cost analysis are illustrated in Figure 3. It
compares the closed-loop costsJs

20 incurred byκs20 as excess
percentage over the closed-loop costsJo

20 of κo20. The first
case (light grey bars, referred to as the ‘nominal case’) is
for {wk}k∈N = 0, while in the second case (dark grey bars,
referred to as the ‘robust case’) the trajectories are subjected
to a uniformly distributed disturbance sequence inW. In
total, 100 random initial conditions are selected for each of
50 different placements of the 5 sampling points, and the
simulation was performed for 50 steps.
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Fig. 3. Sub-optimal vs. Optimal Closed-Loop Cost

In some instances, the sub-optimal controller produced
lower costs than the optimal controller, whileon average
the former was outperformed by the latter. The deviations in
the robust case were generally larger, reaching up to 25%,
than in the nominal case, for which 10% was never exceeded.

Figure 4 depicts the corresponding frequency distribution
of the optimal parameter valueα. In the nominal case
the shifted input vector (corresponding toα = 1) was
used extensively, and only little of the stored input vector
(corresponding toα = 0) got mixed into the actually applied
input. The opposite holds for the robust case, where the
controller had to rely more on the stored input vector as a
result of the shifted input vector becoming less advantageous
or infeasible.
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