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COMPUTATIONAL COST REDUCTION OF ROBUST CONTROLLERS 

FOR ACTIVE MAGNETIC BEARING SYSTEMS

ALICAN SAHINKAYA

ABSTRACT

This work developed strategies for reducing the computational complexity of 

implementing robust controllers for active magnetic bearing (AMB) systems and 

investigated the use of a novel add-on controller for gyroscopic effect compensation to 

improve achievable performance with robust controllers.

AMB systems are multi-input multi-output (MIMO) systems with many interacting 

mechanisms that needs to fulfill conflicting performance criteria. That is why robust 

control techniques are a perfect application for AMB systems as they provide systematic 

methods to address both robustness and performance objectives. However, robust control 

techniques generally result in high order controllers that require high-end control 

hardware for implementation. Such controllers are not desirable by industrial AMB 

vendors since their hardware is based on embedded systems with limited bandwidths. 

That is why the computational cost is a major obstacle towards industry adaptation of 

robust controllers.

Two novel strategies are developed to reduce the computational complexity of single­

rate robust controllers while preserving robust performance. The first strategy identifies a 

dual-rate configuration of the controller for implementation. The selection of the dual­

rate configuration uses the worst-case plant analysis and a novel approach that identifies 

the largest tolerable perturbations to the controller. The second strategy aims to redesign 
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the controller by identifying and removing negligible channels in the context of robust 

performance via the largest tolerable perturbations to the controller. The developed 

methods are demonstrated both in simulation and experiment using three different AMB 

systems, where significant computational savings are achieved without degrading the 

performance.

To improve the achievable performance with robust controllers, a novel add-on 

controller is developed to compensate the gyroscopic effects in flexible rotor-AMB 

systems via modal feedback control. The compensation allows for relaxing the robustness 

requirements in the control problem formulation, potentially enabling better performance. 

The effectiveness of the developed add-on controller is demonstrated experimentally on 

two AMB systems with different rotor configurations. The effects of the presence of the 

add-on controller on the performance controller design is investigated for one of the 

AMB systems. Slight performance improvements are observed at the cost of increased 

power consumption and increased computational complexity.
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Active magnetic bearings (AMBs) are mechatronic devices that require feedback 

controllers to support or levitate rotors via attractive electromagnetic forces. They are an 

alternative to conventional bearings, such as ball-bearings and fluid-film bearings. Some 

of the advantages of AMBs over conventional bearings include contact-free support, 

higher achievable rotational speeds, reduced bearing losses at higher rotational speeds, 

lower maintenance costs, configurable rotordynamic characteristics, and built-in health 

condition monitoring capabilities. Due to their various advantages over conventional 

bearings, they are used in various fields such as medical devices like heart pumps [1], 

turbomachinery [2-4], or machine tools [5-7]. They also have their disadvantages as well, 

such as lower load capacity and higher capital investment [8]. However, in most cases, 

AMBs are an attractive option.

Adequate controllers are necessary for safe and reliable operation of AMB systems. 

The purpose of the controller is to maintain the rotor in the center of the bearing 
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clearance while gravity and machine specific operational forces are acting on the rotor. 

However, the design of such controllers is a challenging task due to the inherent unstable 

nature of AMBs, nonlinear dynamics of AMB actuators, speed dependence of the rotor 

dynamics, and non-collocated sensor-actuator pairs. For this reason, the research in the 

past few decades has focused on model-based robust control techniques to address the 

challenges in the controller design for AMB systems [9].

Robust control methods have been studied extensively in the literature for AMB 

system control [10-18], mainly due to their ability to address the control problem in its 

general form, i.e., specific performance objectives must be met with a controller 

synthesized from an imperfect model. Among the robust control methods, Hm/^ control 

results in highly robust controllers where the theory is highly applicable to complex 

MIMO systems, such as AMB rotor systems [19]. Furthermore, the parameters of the 

controller design procedure are precisely the performance specifications, and the 

controller design procedures involve tuning these specifications to synthesize a feasible 

controller that achieves an acceptable compromise between performance and robustness. 

This is a much more direct approach compared to hand-tuning parameters of a 

proportional-integral-derivative (PID) controller coupled with notch filters and lead-lag 

filters for phase adjustment, where the relation between the achieved performance and 

tuning parameters are difficult to derive [20].

Sawicki et al. [21] experimentally demonstrated the advantages of ^-controllers over 

industry standard PID type controllers by comparing achieved tool-tip compliances on a 

high-speed machining spindle supported by AMBs. Maslen and Sawicki [19] discussed 

the rationale behind using ^-controllers where they point-out the potential of the ^- 
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controllers in providing well-formulated and systematic controller design processes that 

can enable automated commissioning. Many examples in literature show the superior 

performance of robust controllers compared to industry-standard PID type controllers, 

e.g., see [22-24].

Even though the literature shows the superiority of robust control techniques, the 

industry still relies heavily on PID type controllers due to the complexity of robust 

controllers. First, the robust controller design requires in-depth mathematical and 

physical knowledge to formulate and solve the control problem [25]. Moreover, an 

accurate system model is necessary to design a robust controller. That’s why an 

experienced engineer is essential in the commissioning of AMB systems. Second, the 

robust controller design techniques result in high-order controllers which have high 

computational cost, hence require powerful hardware for implementation [26, 27]. The 

need for powerful hardware increases the cost of the necessary equipment to implement 

such controllers. These two aspects are the major obstacles towards the adaptation of 

robust controllers for AMB systems in the industry.

The first aspect has been addressed by the ongoing research on automated 

commissioning for AMB systems, which involves obtaining a high-fidelity model of the 

AMB system and designing a robust controller [20]. Lösch [28] presented one of the first 

works on the systematic identification of AMB systems with a stepwise procedure. The 

first step in the proposed procedure is to identify the rigid modes via the response of the 

uncontrolled system to current step inputs. Then, a simple stabilizing controller that does 

not excite rotors’ flexible modes is designed. With the rotor levitated by the simple 

controller, the open-loop plant model is fully identified via measured transfer functions.
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Balini et al. [29] applied predictor-based subspace identification (PBSID) method to 

obtain a linear model of an AMB system. Gahler et al. [30] presented a linear least 

squares algorithm to generate a fixed-order and fixed-structure model of AMB systems 

using experimentally obtained frequency response data. Noshadi et al. [31] casted the 

AMB model identification problem as a weighted least squares problem using pre­

obtained frequency response data and solved the problem using the genetic algorithm. 

Wroblewski et al. [32] used an optimization algorithm to tune the physical parameters of 

an AMB system model to match the experimental data, where the parameters to be tuned 

were determined via engineering judgment. Sahinkaya and Sawicki [33] formulated the 

system identification problem of AMB systems as a nonlinear least squares optimization 

problem using a parametrized AMB model in the modal domain and applied their method 

to an AMB test rig. They used the identified model along with their approach from [34] 

that automatically tunes the weights used in Hm control problem formulation to design a 

stable and robust controller. The use of Hm/^ control is a popular approach for 

automated controller design for AMB systems since they explicitly deal with modeling 

uncertainties [26]. Jastrzebski et al. [35] implemented a gain-scheduled signal-based Hm 

controllers to an AMB system where the weighting filters in the problem formulation 

were tuned via genetic algorithm.

The second aspect of using robust controllers, which is also a significant obstacle for 

industry adaptation of model-based robust controllers for AMBs due to the increase in 

hardware costs, have not been studied extensively for AMB systems. However, the 

computational cost of controllers has been a research interest for a very long time due to 

the limited hardware capabilities [36]. Three main factors are affecting the computational 
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cost of implementing a controller, i.e., the order of the controller, the state-space 

realization of the controller, and the algorithms used to perform the matrix-vector algebra. 

The state-space realization of the controller and the algorithms for the required matrix­

vector algebra are closely related since algorithms that can be used heavily depend on the 

realization of the controller, i.e., the structure of the controller system matrices.

A variety of techniques are presented in the literature to reduce the controller order 

while preserving the same robustness and performance. Goddard and Glover [37] 

presented a method to reduce the order of the controller while maintaining the robustness 

and performance of the closed-loop system by searching within a weighted Lm ball of the 

high-order controller. The method was applied to a HIMAT advanced fighter aircraft 

model with 8 states. The DK-iteration method was used to design a controller resulting in 

a controller with 20 states. The controller was reduced to 7 states with the proposed 

method without losing robust performance. Enns [38] developed a technique to reduce 

the order of a controller via the use of so-called weighted balanced realization. The idea 

of the method is to scale the system with weights to give emphasis to relevant dynamics 

and perform balanced truncation on the scaled system. There are many examples of the 

application of this approach in the literature on AMB systems, e.g., [39-41], as well as 

some extensions to the method and it is one of the most popular methods. Dijk et al. [39] 

used a closed-loop balanced truncation method described in [42] to reduce the order of u - 

controllers that were designed for chatter control in a high-speed milling process with an 

AMB as an actuator positioned close to the cutting end. They designed two controllers 

for different rotational speed intervals with orders 40 and 36. The orders were reduced to 

24 and 16, respectively, with the method. The orders were chosen by iteratively 
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calculating the achieved u-values with the reduced controllers. The idea of closed-loop 

balanced truncation is to determine the states of the controller that has the least effects on 

the closed-loop dynamics and remove them until an acceptable trade-off between closed- 

loop performance and controller order is achieved. Fittro and Knospe [40] designed a p- 

controller of order 138 to minimize the compliance of a rotor supported by AMBs with 

an achieved p-value of 1.00. Then, an iterative balanced truncation procedure was 

performed where the order of the controller was reduced, and the peak p-value with the 

reduced controller was calculated. The procedure reduced the controller order to 26 while 

achieving a p-value of 1.03.

The state-space realization of controllers has not been studied in the context of 

computational cost. However, the topic is slightly trivial, where sparse matrices are 

preferred to represent the controller system matrices since there exist efficient algorithms 

for sparse matrix-vector algebra, and discussion on the algorithms can be found in [43­

45]. With the sparse matrix-vector algebra algorithms, the computational cost of realizing 

a controller in terms of the necessary number of multiply-accumulate (MAC) operations 

becomes proportional to the number of non-zero entries of the controller matrices. 

Moreover, sparse matrices require a lot less memory to be stored compared to fully 

populated matrices. That is why an attractive option for controller realization is the modal 

canonical realization [26]. It is trivial to show that for a digital controller with n states, m 

inputs and k outputs, the number of non-zero terms in the modal form for A matrix is 

between n and 2n, B matrix is between m and nm, C matrix is between k and nk, and D 

matrix is between 0 and mk.
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Although the computational cost of high-order controllers can be reduced significantly 

via order reduction techniques, along with employing sparse matrix algebra algorithms, it 

is highly case dependent. There might be cases where any order reduction might degrade 

the robustness and performance to unacceptable levels, hence prevent any computational 

cost reduction.

A different perspective has been the focus of research in the context of the 

computational cost of controllers for hard disk drives (HDD), where single-rate 

controllers are implemented as multi-rate controllers [46, 47]. Wu and Tomizuka [48] 

proposed this idea by using the knowledge that most controllers contain modes that are 

spread out in a wide range of frequencies. This implies that the modes can be separated 

into slow and fast modes, and slow modes can be implemented at a slower rate and still 

provide accurate response. By implementing some of the modes at a slower rate, the 

necessary matrix-vector algebra at each time step would be reduced uniformly with the 

help of the interlacing technique, which distributes the algebra for the slow modes to 

multiple time steps. Bhattacharya and Balas [36] investigated the effects of the dual-rate 

implementations of single-rate controllers. They developed a framework for closed-loop 

stability analysis with dual-rate controllers. They compared different decompositions of 

single-rate controllers into dual-rate controllers and showed the effects via the use of 

lifting technique described in [49]. López- López et al. [50] proposed a two-stage H» 

optimization for dual-rate controller design. In their method, the first stage designs the 

single-rate controller, and the second stage modifies the slow modes to maintain similar 

closed-loop dynamics.
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The literature on the dual-rate implementation of single-rate controllers does not offer 

much in the analysis of robust performance. That is why two novel methods were 

developed to determine the closed-loop robust performance with dual-rate 

implementations. The first method utilized the worst-case plant analysis along with the 

lifting technique to select the dual-rate configuration that would achieve most 

computational savings while maintaining the desired robust performance. The second 

method introduced a novel controller perturbation block that defined bounds on the 

controller frequency response. The bounds were then used to select the dual-rate 

configuration. Furthermore, a novel method for redesigning a single-rate controller to 

achieve computational savings in single-rate implementation was introduced. The method 

identified negligible channels of MIMO controllers in the context of robust performance 

using the bounds defined by the controller perturbation block. Then, the controllers were 

redesigned by removing the dynamics of the negligible channels to reduce the 

computational cost of the controller while maintaining robust performance. The 

developed methods were demonstrated on three different AMB systems, both in 

simulation and experiment. For all three AMB systems, the methods achieved significant 

computational savings without degrading the performance to unacceptable levels.

In the literature, a common approach to improve the achieved performance and 

robustness of the system with a given controller is to design an add-on controller to 

address a specific task, e.g., rejection of periodic disturbance forces and compensation of 

gyroscopic effects to eliminate the source of instability. The topic of periodic disturbance 

rejection is studied extensively for AMB systems where repetitive control [51, 52], 

generalized notch filters [53, 54], and disturbance observers [55, 56] are the primary 
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considerations. As for the gyroscopic effect compensation, mostly the cross-feedback 

control introduced by Ahrens and Kucera [57] for rigid rotor-AMB systems is studied in 

the literature. Hutterer et al. [58] applied the cross-feedback controller idea to cancel-out 

the gyroscopic effects on tilting mode and eliminated the instability caused by the 

gyroscopic effects. However, the cross-feedback control, as presented in [57], is not 

applicable to AMB systems with flexible rotors. That is why a novel add-on controller 

design strategy for gyroscopic effect compensation was developed in this research with 

the aim of improving the achievable performance with robust controllers. The 

compensation of gyroscopic effects reduces the robustness requirements in the robust 

controller design. In theory, the reduced robustness requirements increase the achievable 

performance due to the well-known trade-off between robustness and performance. The 

approach was demonstrated on an AMB test rig with a highly gyroscopic rotor, and the 

feasibility of the approach was discussed.

1.2 Structure of This Work

Chapter 2 briefly describes the AMB system modeling procedure, along with the 

models of the AMB systems used in this research. Chapter 3 presents the tools of robust 

control theory with a focus on the structured singular value u, describes the 

computational cost of controllers, reviews the dual-rate implementation of controllers for 

computational saving, and presents the developed strategies to reduce the computational 

cost of MIMO model-based robust controllers for AMB systems. Chapter 4 discusses the 

controller design for the AMB systems used in this research and shows the results of 

applying the proposed methods for computational savings. Chapter 5 investigates the use 

9



of gyroscopic effect compensation on the controller design procedures and performance.

Chapter 6 concludes the work presented in this dissertation research.
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CHAPTER II

MODELING OF AMB SYSTEMS

2.1 Overview of AMB System Modeling

Active magnetic bearing (AMB) systems, as defined by ISO [61], consists of a rotor, 

position sensor, controller, power amplifier, and electromagnets. The controller adjusts 

the amount of current supplied to each electromagnet using the information provided by 

position sensors to generate the necessary attractive magnetic forces to levitate and 

support the rotor. Figure 1 shows the block diagram of an AMB system with the 

controller, where the solid blocks represent the open-loop AMB system.

Figure 1: Block diagram of AMB system
11



2.1.1 Rotor Modeling

A common method to obtain a free-free rotor model is via the finite element method 

(FEM) [62]. By using FEM, the structure of the rotor is divided into several shaft 

elements. Each shaft element has two nodes, one at each end of the element, and the disks 

and bearings can be attached to the shaft at these points. Mathematical descriptions of 

each element, in terms of mass, stiffness, and gyroscopic matrices, are derived using one 

of the three beam theories, i.e., Euler-Bernoulli beam theory, Rayleigh beam theory, and 

Timoshenko beam theory, depending on exclusion or inclusion of rotary inertia and shear 

effects [62]. Damping is generally hard to model analytically, and modal damping is 

usually experimentally identified for rotor models.

For the radial dynamics of AMB systems, which was the main consideration in this 

research, only transverse motions are considered. This results in each node to have four 

generalized coordinates; transverse displacement in x- and y-directions and rotation about 

the x- and y-axes, assuming z-axis is the rotation axis. That is why, as the number of shaft 

elements increases, the order of the resulting model increases as well. Figure 2 shows the 

degrees of freedom of a shaft element in a single plane. For symmetric rotors, equations 

describing xz-plane and yz-plane are identical.

Figure 2: Degrees of freedom of a shaft element in a single plane
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The mass, stiffness, and gyroscopic matrices for each shaft element can be obtained 

via any beam theory that is appropriate for a given rotor structure. For slender beams, the 

Euler-Bernoulli beam offers accurate results. As for relatively thick rotors, the 

Timoshenko beam theory, which includes the rotary inertia and shear effects that the 

Euler-Bernoulli beam neglects, is more appropriate. The derivation of the matrices is 

based on the geometry and material properties of the beam elements. For the exact 

derivation and equations for the mass, stiffness, and gyroscopic matrices, see [62].

Once the mass, stiffness, and gyroscopic matrices are derived, the state-space model 

of a rotor can be expressed as shown in (1), where qff is the vector for the states of the 

free-free rotor (i.e., position and velocity states of the nodes). Aff, Bff, Cff and Gff are the 

state-space matrices describing the motion of the free-free rotor in a single plane, where 

Gff is the gyroscopic matrix to present the gyroscopic effects in the system dynamics. The 

output matrix Cff is chosen as an identity matrix to have flexibility in defining 

performance criteria for controller design as well as to ease the process of connecting the 

rotor model with the other AMB system components. The term 0 is the rotational speed 

of the rotor. The motion of the rotor in two perpendicular planes, depicted with x and y 

subscripts, are coupled due to gyroscopic effects. An important effect of gyroscopic 

coupling is the bifurcation of natural frequencies. The inputs, uff, to the rotor model are 

the forces and moments applied at each node. The outputs of the model are the 

displacements and rotations of each node. That is why it is crucial to choose the shaft 

elements such that a node is located at every AMB sensor and actuator positions, as well 

as any point of interest, such as tool locations in an AMB supported spindle.
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if = Aff 
tqffyj I^Gff

-nGff]iqM + [Bff
Aff qff,y 0

0 ruff,x 1 
Bff uff,y (1)

qff,x Cff 
tqff,yj = 0

0 mx) 
Cff qff,y

Although the procedures are relatively well defined for rotor modeling, the rotor 

models generally do not match with experimental data due to structurally unknown 

features and engineering simplifications [63]. That is why either model refinement, which 

redefines the equations of the model, or model updating, which redefines the parameters 

of the model, strategies are applied to match the model with experimental data. Generally, 

model updating strategies are preferred since they do not require exhaustive research 

campaigns to redefine the physics of a particular model. In rotor model updating, 

parameters that correspond to structurally ambiguous parts of the rotor, such as shrink fits, 

tapered fit connections, and multi-layer material parts, are updated via an optimization 

algorithm. The optimization algorithms use the error between the frequency response of 

the model and the frequency response data of the physical system as the cost function. 

Alternatively, a black-box approach can also be used to model the rotor. Sahinkaya and 

Sawicki [33] used nonlinear least squares optimization to tune a fixed structure modal 

model to generate the rotor model instead of optimizing the physical parameters that 

defined the beam elements.

After obtaining a reliable model of the rotor, the order of the model needs to be 

reduced since high order models pose difficulties for both controller synthesis and 

simulation studies. For this purpose, the model derived in the nodal domain is converted 

to the modal domain by a simple change of coordinates via the use of eigenvectors [64].
14



Then, only the low-frequency modes are kept in the model by truncating the high- 

frequency modes. Modal truncation is common in rotor dynamics because, generally, 

only the low-frequency modes are excited in rotor systems [65].

2.1.2 Active Magnetic Bearing Model

Active magnetic bearings (AMBs) are electromagnetic actuators with built-in sensing 

capabilities. The magnetic field generated by the electromagnet creates an attractive force 

on the ferromagnetic rotor, regardless of the direction of the current. That is why a 

second electromagnet is positioned at the opposite side of the rotor to apply forces in both 

positive and negative directions. These two electromagnets, combined with the relevant 

position sensors and amplifiers, constitutes a control axis of an AMB. Figure 3 shows a 

schematic for a single control axis of an AMB.

Figure 3: AMB concept in a single axis
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The AMB model can be separated into two parts to capture its dynamics, i.e., AMB 

force model and AMB electronics model. AMB force model relates the current running 

through the coils to the attractive force applied to the rotor. AMB electronics model 

defines resistor and inductor dynamics of the AMBs.

The attraction force of the electromagnet is generated at the boundaries of differing 

permeability, and the magnetic force equation is derived based on the field energy. The 

magnetic force equation for one AMB axis is a nonlinear function of the rotor position 

and the currents supplied to each coil, as shown in (2).

1 ( i2 i2 \
F = - ep0N2Acos(a) I -------- — - -------- I (2)4 "0 ' (\(- - x)2 (g + x)2J v 7

where

F = magnetic force on rotor [A]

x = rotor position [pm]

g = nominal gap [pm]

i1 = current supplied to top coil [X]

i2 = current supplied to bottom coil [X] 

p0 = permeability of air [A/X2]

N = number of coil windings

A = pole face area [pm2]

a = pole angle[rad]

e = derating factor
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Equation (2) shows two control inputs, namely ¿1 and i2, are necessary to control a 

single axis of the AMB. However, this is not desirable since it would complicate the 

controller design problem. That is why most AMB systems are modeled assuming 

differential control [26], where a single control current, ic is added to one coil and 

subtracted from the opposing coil while a positive bias current, ib is applied to both coils, 

i.e., i1 = ib + ic and i2 = ib — ic. The block diagram of the differential control is shown 

in Figure 4 for a single control axis of AMB.

Figure 4: Differential control of an AMB axis

In differential control, the control current magnitude should not exceed the bias 

current magnitude for the linear force equation to hold. After applying differential control, 

the magnetic force equation is linearized using Taylor approximation of first order at an 

operating point, i.e., x = 0, ib = constant, to obtain the linear magnetic force equation 

as shown in Eq. (3).

F(x, ic) = kxx + ktic (3)
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In Eq. (3), k, is the current stiffness in Newton per Amp and kx is the position 

stiffness in Newton per micrometer. Both stiffnesses are obtained by the partial 

derivatives from the Taylor series expansion and have positive values. This means that 

when the rotor is at the operating point, i.e., x = 0 and ic = 0, the rotor remains still 

since the net force acting on the rotor is zero. However, a small displacement of the rotor 

would result in a net force along the direction of the displacement; hence AMB systems 

are unstable without active control.

2.1.3 Position Sensors

A non-contact displacement sensor is integrated with most AMBs to measure the 

position of the rotor. The bandwidth of the sensors is usually chosen beyond the 

operational range of the AMB system and can be modeled as a constant gain. However, 

in the case that the bandwidth is within or close to the bandwidth of the system, a model 

that represents the dynamics of the sensor is derived, which is usually a second-order low 

pass filter.

2.1.4 Amplifiers

Each electromagnet in the AMB requires its own power amplifier, which converts the 

low power control input, usually in the units of Volts, to high power current. The 

dynamic behavior from the input voltage to output current is referred to as 

transconductance, or sometimes mutual conductance. Switching amplifiers are the 

commonly used type of amplifiers for industrial applications due to their lower losses 

compared to analog amplifiers [66]. The idea of switching amplifiers is that the output 
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voltage alternately switches between positive and negative voltages Vs, resulting in the 

current in the coils of the AMBs to alternately increase and decrease. The mean current 

supplied to coils in a given period is adjusted by adjusting the amount of time the positive 

voltage is supplied. One of the disadvantages of switching amplifiers comes from the 

oscillation of the current in the coils, which results in remagnetization losses. The 

remagnetization losses can be minimized by reducing the switching period [26].

The model for amplifiers for the AMBs generally can be defined as second-order low 

pass filters. However, since the linear model of AMBs uses only one input per control 

axis, instead of the physical two inputs per control axis, a single-input-single-output 

(SISO) amplifier model is used for each AMB control axis by assuming identical 

behavior. Sometimes the transconductance is identified by defining the current running 

through the AMB coils as the output current, which then implies the AMB electronics to 

be part of the amplifier model.

2.1.5 Control Hardware

The control hardware, i.e., the DAC and ADC, introduces time delays to the system 

model. The time delays can be represented as rational models via Pade approximates.

2.2 AMB System Models

This section provides the models of the AMB systems used in this research. The 

models include an AMB test rig, a 300 kW turbine generator supported by AMBs, and a 

high-speed machining (HSM) spindle supported by AMBs.
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2.2.1 AMB Test Rig

The experimental AMB test rig manufactured by Revolve Magnetic Bearings Inc., a 

subsidiary of SKF, is pictured in Figure 5. The test rig consists of a configurable rotor, 

two identical radial bearings to control the radial position of the rotor, and one thrust 

bearing to control the axial position of the rotor. The dynamics of radial and axial 

directions are decoupled, and there is no significant axial load in the system. That is why 

only radial dynamics were derived for the system. The radial magnetic forces are applied 

to the rotor at a 45-degree angle due to the structure of radial AMBs, which distributes 

the gravitational load equally to both axes of control in a single bearing. The radial 

AMBs are also equipped with rolling element touch-down bearings with a clearance of 

around 190 pm to provide resting place for the rotor when the AMBs are not powered, as 

well as to provide safety in case of instability. A flexible coupling element provides the 

connection between the rotor and brush-type DC motor that drives the system.

Figure 5: AMB Test Rig

The rotor configuration used in this study consisted of two identical radial AMB 

rotors with laminated surfaces for driven-end (DE) and nondriven-end (NDE) AMBs, one
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thrust AMB rotor, two balance disks with 1” and 0.5” thickness, and one coupling 

element, as shown in Figure 5. The solid shaft is made of stainless steel and had a 

diameter of 9.525 mm with a length of 457.2 mm. The rotors are attached to the shaft via 

tapered sleeves. The free-free rotor model was obtained by discretizing the shaft into 36 

Timoshenko beam elements and adding the rotor components as lumped masses at their 

respective nodes. The FE discretization of the rotor is shown in Figure 6, where the 

elements were chosen to make sure a node corresponded to the connection points of the 

rotor components, and radial AMB sensor and actuator positions.

Figure 6: FE discretization of AMB test rig rotor

Since 37 nodes were present in the rotor model, the order of the resulting rotor model 

was 148 for a single plane and 296 for both planes. This is a high order model that is not 

convenient for neither controller synthesis nor simulation. That is why the rotor model 

was reduced via modal truncation to keep the two rigid modes and the lowest four 

flexible modes in the model. The order was chosen based on the bandwidth of the AMB 

actuators. The reduced-order modal model of the rotor was of order 24.

The AMB force model was obtained by linearizing the magnetic force equation at an 

operating point that was the bearing center with 1 A bias current. This yielded the linear 
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magnetic force equation, which is shown in Eq. (3). The resulting position stiffness and 

current stiffness values with 1 A bias current were 0.064 N/ pm and 25.33 N/A, 

respectively. The AMB electronics model was embedded in the amplifier model, where 

the amplifier model was identified experimentally as a second order low pass filter. The 

sensors of the AMBs were modeled as a constant gain since their bandwidths are beyond 

the operational region.

The open-loop plant model of the AMB test rig was obtained by appropriately 

connecting the rotor model, AMB force model, and the amplifier model, which included 

the dynamics of AMB electronics. The resulting model was a 4-input 4-output 32-order 

model. Closed-loop system identification described in [20] was performed to extract the 

open-loop frequency response data from closed-loop measurements with careful design 

of the excitation signal to validate the model. For this purpose, a simple PID controller to 

stabilize the system and a pseudorandom binary sequence (PRBS) signal as the excitation 

signal was designed.

Figure 7 shows the frequency response comparison of the model and experimental 

data in the nonrotating case, after manually tuning the model to match the experimental 

data. There are some differences between the model and data, such as the dynamic 

coupling between the x-axis and the y-axis. However, the difference can be covered by 

assigning relatively low magnitude uncertainties to the parameters of the model. The 

discrepancies can be explained by the neglected dynamics, e.g., the cross-coupling 

stiffness introduced by the coupling element. Figure 8 shows the frequency response 

comparison of the model and experimental data at 3,000 rpm case to show the model 

captures the dynamics related to gyroscopic effects. The bifurcation of flexible mode
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frequencies of the model closely matches the experimental data, indicating the accuracy 

of the modeled gyroscopic matrix. That is why the model is acceptable for both controller 

synthesis and simulation study. Due to the symmetry of the rotor, the y-axis outputs are 

not shown.

Figure 7: Comparison of model response (red) and open-loop FRD (blue), 0 rpm
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Figure 8: Comparison of model response (red) and open-loop FRD (blue), 3,000 rpm
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2.2.2 300 kW Turbine Generator Model

A 300 kW turbine generator for a natural gas pressure letdown was reported by Khatri 

[67] and used in this research in simulation as an industrial example. The AMB system 

consists of two permanent magnet biased, homopolar magnetic bearings for radial axis 

and one thrust bearing that is integrated with one of the radial bearings. The schematic of 

the system is shown in Figure 9. The rotor of the system is fully supported by two radial 

AMBs, named Combo Endbell bearing on the impeller side and Radial Endbell bearing 

on the other side. The impeller is not shown in the picture.

Figure 9: Schematic of the 300 kW turbine generator without the impeller [67]

The AMB system model was recreated from the information provided by Khatri [67]. 

The FE of the rotor model provided in the paper was reconstructed using XLRotor 

software. The reconstructed FE model of the rotor is shown in Figure 10. The impeller 

mass and inertia parameters were modeled as lumped masses at their respective nodes, 

whereas the stiffness contribution due to diameter increase was modeled via the Young’s 
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modulus parameter of the impeller material, as was done in [67]. Not all parameters were 

reported in [67]. That is why some parameter values were tuned to match the flexible 

mode frequencies with the reported values. The AMB sensor and actuator position were 

also defined in the FE discretization.

Axial Location, mm

Figure 10: FE discretization of the rotor for modeling

The generated model closely matched the one from [67] with some discrepancies for 

the flexible mode frequencies. The main reasons behind the discrepancies are: 1) the 

dimensions of the rotor were extracted from a picture, which is a procedure that is prone 

to errors, and 2) the parameters for the lumped mass at the Radial Endbell side of the 

rotor was not mentioned in the paper. However, the errors between the natural 

frequencies of the generated model and the natural frequencies reported in [67] were less 

than 6%.
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XLRotor software does not provide state-space matrices. That is why a MATLAB 

script was written to obtain the state-space matrices of the rotor based on the FEM matrix 

descriptions shown in [62] for Timoshenko beam elements. A modal truncation was 

applied to the rotor model to keep the two rigid modes and the lowest five flexible modes 

where 0.5% modal damping was applied to each flexible mode. Amplifiers were assumed 

to have a sensitivity of 2.8 A/V, and sensors were assumed to have a sensitivity of 19,685 

V/m. The axial and radial dynamics were assumed to be decoupled, and only radial 

dynamics were considered, which resulted in a 4-input 4-output 44 state model. Figure 11 

shows the frequency response of the model in one plane from the control input voltage to 

amplifiers to the position output voltage. The Radial Endbell side AMB is referred to as 

B1 and the Combo Endbell side AMB is referred to as B2. The rotor exhibits high 

gyroscopic effects due to the overhung impeller. This is apparent from the significant 

bifurcation of flexible mode frequencies.

Figure 11: The 300 kW turbine generator model response, 
nonrotating (blue) and rotating at 32,000 rpm (red)
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2.2.3 High-Speed AMB Machining Spindle

The high-speed AMB machining spindle (HSM AMB spindle), pictured in Figure 12, 

is located at Cleveland State University’s Center for Rotating Machinery Dynamics and 

Control (RoMaDyC) lab. It is a prototype spindle system for boring operations. The high­

speed spindle is supported by two radial AMBs and one thrust AMB. The control of the 

AMBs are done either by the manufacturer supplied control unit, which allows the 

implementation of industry-standard PID-type controllers, or dSPACE control unit, 

which allows the implementation of advanced control strategies.

Figure 12: High-speed AMB machining spindle

The model of the system was previously obtained by Wroblewski et al. in [68] and the 

same model was used in this work after adjusting the AMB force constants based on the 

bias current of 4 A. The modeling procedure followed in [68] for the spindle system 

followed the same steps described in the previous sections. The FE model of the rotor 

was tuned via an optimization using experimental data to adjust for complex interactions 
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due to various interfaces present in the spindle rotor. For this purpose, Young’s modulus 

parameter for the beam elements that corresponded to the hard-to-model parts, e.g., the 

motor section due to squirrel cage structure for the induction motor, the tool holder 

connection section due to the tapered fit, and both front and back radial AMB sections 

due to shrink fitted laminations, were adjusted to match the rotor model response to the 

experimental data obtained via a sine-sweep experiment on all four axis of the radial 

AMBs. After the optimization, the mass, stiffness, and gyroscopic matrices were derived 

for the rotor. Then the nodal model was converted into modal coordinates, where a modal 

truncation was applied to keep the two rigid modes and the lowest three flexible modes. 

The FE model of the rotor and its dimensions are shown in Figure 13. More information 

on the exact parameters used in each beam element is described in [69]. The AMB model 

was obtained via manufacturer supplied specifications. The amplifier model was 

experimentally identified and included the dynamics of the AMB electronics. Figure 14 

shows the frequency response comparison of the AMB system model and the open-loop 

system response in the nonrotating case. The model accurately captures the dynamics of 

the physical system. The flexible mode frequencies, as well as the zeros of the system, 

match almost perfectly.
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FE Discretization and Model Inputs and Outputs
Front Radial Thrust Rear Radial

Tool input 
and Output

Front AMB 
Sensor Output

Front Magnet 
Input and Oulput

Rear Magnet 
Input and

Oulput

Rear AMB 
Sensor 
Output

Figure 13: FE discretization of the spindle rotor with model inputs and outputs [69]
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Figure 14: Comparison of HSM spindle model response (blue) 
and experimental data (red)
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CHAPTER III

ROBUST CONTROL OF AMB SYSTEMS

3.1 Introduction and Background

In control theory, robust control refers to controller design techniques that account for 

inherent uncertainties in the plant model. The main goal of robust control is to design a 

controller that provides desired performance to a system in the presence of modeling 

uncertainties and disturbances. Robust control offers many powerful tools to describe 

plant uncertainties, analyze robustness, and synthesize robust controllers. The robust 

control techniques used in this research the H» control and u-control, both of which rely 

on H» control theory and is the focus of this subsection.

3.1.1 Uncertainty

Uncertainties in plant models arise from many sources, e.g., imperfect plant data due 

to manufacturing tolerances, sensor noises, non-linearities, and neglected high-frequency 

dynamics. There are two ways to model the uncertainties in literature; parametric 

uncertainty and dynamic uncertainty [25]. Parametric uncertainties are used when some 
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of the parameters of a known structure of the plant are not known precisely. In parametric 

uncertainty, the model parameter is defined as an interval that has the value of the 

physical parameter. On the contrary, dynamic uncertainties do not require the knowledge 

of the structure of the plant model and are used to define frequency response bounds that 

encapsulate the frequency response of the physical system.

There are different representations for either class of uncertainty. The most common 

ways of representing uncertainty are in feedforward form as an additive or a 

multiplicative uncertainty [25]. Figure 15 shows the block diagram of three common 

uncertainty representations, where G is the model part with uncertainty, w is the weight 

that defines the magnitude of the uncertainty, and A is the so-called perturbation matrix 

where o( A(jrn)) < 1 for mathematical convenience. For parametric uncertainty, G 

represents the uncertain parameter, w is a scalar that defines the magnitude of the 

uncertainty, and A is any real scalar satisfying |A| < 1. For dynamic uncertainty, G 

represents the nominal plant model, w is usually a stable and minimum-phase transfer 

function of appropriate dimension that defines the magnitude of the uncertainty at each 

frequency, and A is any stable transfer function of appropriate dimension with ||A||ro < 1.
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Figure 15: Block diagram of different uncertainty representations; (a) input multiplicative 
uncertainty, (b) output multiplicative uncertainty, (c) additive uncertainty

The uncertainties associated with each subsystem that is a part of the plant model are 

generally lumped into one uncertainty block [25]. The moving of uncertainties to a single 

uncertainty block is done via linear fractional transformation (LFT). Figure 16 shows the 

uncertainty representation for a plant model formed by upper LFT (i.e., Fu(.,. ) operator) 

with respect to the overall uncertainty block, △. If the overall uncertainty block, △, is a 

fully populated matrix of appropriate dimensions, it is called unstructured uncertainty. If 

△ is a block diagonal matrix of appropriate dimensions, it is called structured uncertainty.

Figure 16: Uncertain plant representation as upper LFT
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In Figure 16, P22 is the nominal plant model, u is the control input to the plant model, 

y is the output of the plant model, and the rest of the entries of P represent the relations 

between uncertainty channels and input-output channels of the plant model. It is common 

practice to lump the weights of uncertainties into the model, P, for mathematical 

convenience. It is trivial to show that the transfer function from u to y is

Tyu = Fu ([£11 £2] , a) = P22 + P21W - P11A)-1P12 (4)

The overall uncertainty matrix for the plant model is always structured, whether the 

uncertainty matrices of the subsystems are structured or unstructured. The difference in 

the presence of structured and unstructured uncertainty is significant in the analysis of 

robustness, which is discussed in the next section.

3.1.2 Robust Stability and Robust Performance Analysis

After representing the uncertain set of plants in PA-form shown in Figure 16, the 

controller to be analyzed for robustness is connected to the system to form the so-called 

MA-structure, as shown in Figure 17. MA-structure is used to determine robust stability, 

i.e., determine whether the closed-loop system is stable for all the plant models defined 

by the uncertainties.

Figure 17: MA-structure for stability analysis
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If the uncertainty block, A, is a full complex matrix satisfying ||A||ro < 1, which is 

often referred to as unstructured uncertainty, it can be shown via small gain theorem that 

the MA-system is stable if

ct(M(/^)) <1, Vw ^ |M|W <1 (5)

The condition in Eq. (5) is sufficient for robust stability in the case that the uncertainty 

block is unstructured. However, for structured uncertainty, which is commonly used in 

practice, the condition is conservative. For structured uncertainty, the fact that the 

uncertainty block is block diagonal, i.e., A = diag{A[}, can be exploited to obtain tighter 

robust stability condition. This is done by rescaling the inputs and output of the M and A 

blocks of MA-structure with a block diagonal matrix D of appropriate size and structure, 

as shown in Figure 18.

Figure 18: Scaled MA-structure

The scaling matrix D has no effect on the stability of the MA-system. Since the D 

matrix is chosen as block diagonal that is appropriately constructed for a given A, it can 

be shown that Aj = djAd-1, hence A = DAD-1. This means that the condition shown in 

Eq. (5) also applies to the rescaled case. The MA-system is stable if
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ct(D(/^)M(/w)D(/w) 1) < 1, Vm (6)

The condition in Eq. (6) applies to any scaling matrix D that corresponds to a 

particular A structure. That is why a less conservative robust stability condition for any 

MA-system, as shown in [25], is

3D(jm) G D s. t. o(D(/m)M(/m)D(/m) 1) < 1, Vm (7)

where D represents the set of block diagonal matrices that have a compatible structure to 

the given A block, i.e., AD = DA . This scaling is also applicable to unstructured 

uncertainty, however in the case of unstructured uncertainty, o(DMD-1) = o(M). When 

the uncertainties have structure, there are more degrees of freedom in the D matrix and 

o(DMD-1) has the potential to become much smaller than o(M). This is the main 

difference between the robustness analysis in the presence of structured uncertainty and 

unstructured uncertainty, i.e., the ability to obtain tighter robust stability conditions.

The robust stability condition in Eq. (7) for structured uncertainties motivated the 

development of the structured singular value [70, 71], which is a function that provides a 

scalar value to determine the robust stability. For a given MA-structure, where M is a 

complex matrix and A is a block diagonal complex matrix with o(A) < 1, the real non­

negative function ^(M), which is called the structured singular value, is defined as

1-“CM) a —————————-- .--- .-- _____
mm{ km | det(\ — kmMA) = 0 for structured A, o(A) < 1} (8)

A ^(M) value of 0 implies that it is not possible to destabilize the system with the 

given uncertainty structure, and a ^(M) value of 1 means that there exists a perturbation 
36



with (j(A) = 1 that is large enough to make I — MA singular. That is why the goal of ^- 

synthesis is to minimize the ^(M) value to be less than 1 to make sure of the robustness 

of the closed-loop system to the defined ranges of uncertainty. The ^-value cannot be 

calculated directly. However, it can be easily shown that ^(M) < min ((DMD-1), where 

the optimization is convex in D [25]. Moreover, the inequality is an equality if A block 

consists of three or fewer blocks.

The structured singular value can also be used in robust performance analysis. Robust 

performance means that the performance specifications are satisfied for all possible plant 

models defined by the uncertainties. Robust performance analysis is an extension of 

robust stability analysis. For robust performance analysis, first, the system is put into PA- 

form, meaning the uncertainties are pulled out of the system. Then, the channels for the 

performance criteria are added along with weights that define the frequency content of 

the channels. The goal of the control is to keep the Hm norm of the transfer function for 

the performance channels to be less than unity for all possible plant models defined by 

the uncertainty. Assessment of robust performance via the structured singular value 

requires a modified MA-structure that is formed by closing the performance channels 

with a fictitious full complex “uncertainty” block, AP. After forming the modified MA- 

structure, the structured singular value can be calculated to determine the robust 

performance, where the ^ is computed with respect to A = diag{A, AP}. The block 

diagram of the modification is shown in Figure 19.
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Figure 19: Robust performance analysis

3.1.3 Robust Controller Design

One of the most powerful control design techniques for plants with uncertainties is the 

p-synthesis [25]. As the name suggests, the technique finds a controller that minimizes 

the p value of the closed-loop system. The controller design procedure is performed by 

the so-called DK-iterations, which is a two-step optimization problem. The D 

optimization part tries to find the scaling matrices mentioned in the previous section that 

minimizes the maximum singular value of the closed-loop model M. The K optimization 

is the controller synthesis part where an Hm controller is synthesized for the scaled 

system. The following steps are followed in a DK-iteration algorithm.

1) Design an initial controller, K (usually Hm controller for the unscaled system)

2) Form M = Fi(P, K) where Fi refers to lower LFT operator

3) Find discrete values for D matrix at each frequency of interest that minimizes the 

upper bound on ^, i.e., min^DMW-1^^

4) Fit a rational transfer function to the frequency data of D found in step 3
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5) Design an Hm controller for the scaled system, i.e., mm||£Fz(P, K)D 1Hoo
K

6) Go to step 2 until some convergence criteria are met

If DK-iteration results in a controller that achieves a ^-value that is less than unity, 

then the controller provides robust performance to the system assuming the plant model 

with uncertainties encapsulates the dynamics of the physical system.

There are a few disadvantages to ^-synthesis. First, although the two-step 

optimization, namely finding the D and K, are convex optimizations individually, it is not 

the case for the whole procedure. That is why sometimes, DK-iteration does not converge. 

The common practice to mitigate this problem is to run the DK-iterations multiple times 

with different initial controllers. Second, because the D matrix is found by fitting a 

rational transfer function to a frequency response data, it can result in high order transfer 

functions, which increases the resulting controller order. High-order controllers are not 

desirable from a practical implementation point of view. Lastly, the synthesized 

controllers can be unstable controllers, which introduces additional challenges for 

implementation.

3.2 Computational Cost of Controllers

The computational cost of controllers refers to the amount of necessary computational 

power to run a controller in real-time on hardware. There are three main factors that 

affect the computational cost of controllers, i.e., the order of the controller, the structure 

of the matrices that define the discrete-time matrix difference equations of the controller, 

and the algorithms used in performing the necessary matrix-vector multiplications. The 
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state-space realization of the controller and algorithms for matrix-vector algebra are 

closely related since the structure of the system matrices determine the available 

algorithms.

3.2.1 Controller Order Reduction

In the implementation of linear model-based MIMO controllers, it is common practice 

to employ a controller order reduction technique to reduce the overall computational cost 

of implementing the controller. The most common technique for AMB controllers that 

has been reported in the literature is the balanced truncation method introduced in [72] 

and its variations. The idea behind balanced truncation is to remove the states of a 

balanced realization of the controller that correspond to small Hankel singular values. In 

other words, the balanced truncation is a method that removes the states with energies 

below a chosen threshold. One of the reasons for the popularity of the method is its 

ability to provide error bounds between the full order model and the reduced-order model. 

Some application examples of balanced order reduction in AMB systems can be found in 

[39-41]. However, there is a limit on the achievable reduction in controller order before 

the closed-loop robustness and performance degrade to an unacceptable level.

3.2.2 Controller Realization and Algorithms for Matrix-Vector Algebra

The implementation of a controller on hardware can be made optimal by exploiting 

the structure of the state-space matrices since the state-space representation of a system is 

not unique. For this purpose, any state-space realization that gives matrices with high 

sparsity is a good choice (e.g., modal canonical form), since the sparsity of the matrices 
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allows the use of algorithms developed for sparse matrix-vector multiplication that are 

much more efficient compared to naive algorithms. In sparse matrix algebra, the zero 

entries of matrices are ignored completely, reducing not only the necessary number of 

multiply-accumulate (MAC) operations to calculate the output of the controller, but also 

the amount of space necessary to store the controller matrices.

There are different methods of implementing a sparse matrix-vector algebra, mostly 

due to the different types of available data structures. Common data structures for sparse 

matrices are coordinate format (COO), compressed sparse row format (CSR), compressed 

sparse column format (CSC), and diagonal format (DIAG) [43]. Simulink Coder also 

utilizes the sparse matrix algebra in implementing the discrete state-space blocks. A few 

more possible optimizations in sparse matrix-vector multiplication algorithms are 

discussed in [45].

3.2.3 Dual-rate Implementation of Single-rate Controller

Dual-rate implementation of a single-rate controller has been investigated in the 

literature to reduce the computational cost of implementing controllers, where 

computational cost refers to the necessary number of MAC operations to be performed at 

each time step. The early works on the topic mostly involve hard-disk drives [46-48]. 

Bhattacharya and Balas [36] developed a theoretical framework to analyze the stability of 

closed-loop systems with the dual-rate controller implementations, along with a 

comparison of the effects of different dual-rate configurations.

The modes of controllers, especially model-based controllers, are generally distributed 

in a wide range of frequencies. That is why the main idea behind the dual-rate 
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implementation of a single-rate controller is the fact that the controllers can be 

decomposed into fast modes and slow modes, where slow modes can be implemented at a 

slower rate to reduce the computational cost. Let K(z) be a digital controller with a 

sampling rate of Ts for a continuous plant P(s). K(z) can be represented as the sum of its 

modes, as shown in Eq. (9), where K, (z) represents the individual modes of the controller 

with frequencies in ascending order.

K(z) = ^\ (z) (9)

A threshold frequency can be chosen relatively arbitrarily such that n modes have 

frequencies less than the threshold and referred to as slow modes and r — n modes that 

have frequencies higher than the threshold frequency and referred to as fast modes. Then, 

the controller can be decomposed in a parallel form as

K(z) = Ks(z)+ Kf (z) (10)

where Ks (z) = 21=1^1 (X) and K^ (z) = £[=^+1^ (X). The dual-rate implementation of 

the controller K(z) is shown in Figure 20, where Sp and Ss are fast and slow samplers 

that convert continuous-time signal to discrete-time signal using a low sampling period 

and high sampling period, respectively, and H is the zero-order hold operator.
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Figure 20: Dual-rate implementation of a controller

The slow modes, Ks(z), in Figure 20, can be accurately implemented m times slower 

than fast modes, where m is an integer. This would mean that the calculations to update 

the states of Ks (z) do not need to be performed at each time step, hence reducing the 

computational cost of the controller. However, at every mth time step, the computational 

cost would be equal to the computational cost of the single-rate implementation, which 

would create periodic spikes in the computational cost. The spikes can be avoided by 

distributing the slow modes computations over m time steps to achieve a uniform 

reduction in the computational cost, which is referred to as interlacing. One method to 

distribute the computations of slow modes to multiple time steps is to further decompose 

the slow modes into the individual modes (assume m = n for simplicity).

Ks (z) = Ki(z) + K2(z) + - + Kn (z) (11)

Then, computations for each mode can be distributed over the m time steps, which 

would equalize the number of MAC operations at each time step. The performed 

algebraic operations of the single-rate implementation, along with the dual-rate 

implementation with and without interlacing, are shown in Table I, assuming each mode 
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requires the same number of MAC operations, and the slow modes are implemented m 

times slower.

Table I: Performed algebra at each time step for different implementations
Time Step 0 1 2 .. m-1 m m+1

Single-rate Kf, Ks Kf, Ks Kf, Ks „ . Kf, Ks Kf, Ks Kf, Ks

,o g Dual-rate w/o interlacing Kf, Ks «f «f ■■ ■ «f Kf, Ks «f
<L> Q.

Dual-rate w/ interlacing Kf, Ki Kf, K2 Kf, K2 „ . Kf, Kn Kf, Ki Kf, K2

At this point, there are a couple of options for the actual implementation. One can 

choose to update the output of the slow modes as soon as K, updates or wait until the nth 

time step to combine all updates to K!. This decision affects the representation of the 

dual-rate controller for analysis purposes. In this document, it is chosen to update the 

output of Ks all at once at every nth time step.

Since the dual-rate controller includes two systems with different sampling rates, it is 

not possible to connect them directly. That is why a technique called lifting technique is 

commonly used to analyze the response of the dual-rate implementations [49].

Lifting technique is a powerful method that enables the use of tools developed for 

single-rate LTI systems in multi-rate systems. The main idea behind the technique is to 

represent a signal/system with a high sampling rate at a low sampling rate by increasing 

the dimensions of the signals. Assume a continuous-time signal v = {v(0), v(1), v(2), ... } 

is sampled at every h seconds. The same signal can be represented as if it is sampled at 

every nh seconds, where n is an integer, via the lifting technique. The lifted signal, v, can 

be rewritten as
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V =

v(0) 
v(1)

v(n-1)

v(n) 
v(n+1)

v(2n-1)

(12)}

It is trivial to show that the operator, called lifting operator, that maps v to v is norm 

preserving, i.e., ||v||2 = ||v||2. A system can also be lifted by simply adjusting the system 

matrices to match the lifted signals. A discrete-time finite-dimensional system G 

implemented with a sampling time of h seconds can be lifted to correspond to a sampling 

time of nh seconds and the lifted system G can be written as

r a" A"-1B An-2 B • B

G = [A D G =
C 

CA

D

CB
0 
D

0
(13)

CA''-1 CAn-2B
'

CAn-3B •
' D

3.3 New Strategies for Selecting the Optimal Dual-rate Configuration

The literature on dual-rate implementation of controllers for computational savings 

does not provide much information on robust performance analysis. That is why two 

novel methods are proposed where the lifting technique and p-analysis are used to assess 

the closed-loop performance. The first method uses the worst-case plant model in the 

analysis of the robust performance of a dual-rate configuration of a single-rate controller. 

The second method defines perturbation on the controller response that is large enough to 

compromise robust performance. The magnitudes of the perturbations at each frequency 

are found utilizing the p-analysis.
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3.3.1 Optimal dual-rate configuration via worst-case plant

The dual-rate implementation can reduce the computational cost significantly, as 

shown in the literature [36, 46]. However, There is no systematic procedure to select the 

dual-rate configuration that maintains robust performance. That is why a method is 

developed and presented in this section that uses lifting technique along with the worst­

case plant to determine the optimal dual-rate configuration to maximize computational 

saving while maintaining robust performance.

In robust control, the worst-case plant model refers to the uncertain plant parameters 

that result in the largest Hœ norm with a given controller. In other words, the worst-case 

plant is the most challenging plant model within the uncertain set of plants for the 

controller to provide robust performance. The worst-case plant parameters can be found 

via a simple search algorithm. In this study, the Matlab function wcgain [73] is used.

After identifying the worst-case plant model, possible dual-rate configurations need to 

be determined using some engineering knowledge. This involves selecting the number of 

modes to be included in the slow modes and the rate at which the slow modes are going 

to be implemented. Other than the choices limited by the control hardware, the possible 

configurations are relatively easy to determine. They are determined by calculating the 

lower bounds on the implementation rate for each mode of the controller and choosing 

the possible configurations by making sure high enough discretization rates are used for 

each of them. For each dual-rate configuration of the controller, a lifted closed-loop 

system is formed by appropriately lifting the worst-case plant model, fast modes of the 

controller, and slow modes of the controller to match the sampling rate of the slow modes.
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Then, since the lifting operation is norm preserving, the largest singular value analysis is 

performed on the lifted closed loop system to determine if the analyzed dual-rate 

implementation of the controller still maintains the robust performance, i.e., is the largest 

singular value of the lifted closed loop system less than unity. It is also worth mentioning 

that aliasing issues are a common problem in the dual-rate implementation of controllers. 

However, the issue would show up in the singular value analysis, and the proposed 

method would yield unsatisfactory results for any dual-rate configuration that might 

cause significant aliasing, see [74] for more information. The number of multiply- 

accumulate (MAC) operations can be used to estimate the computational cost in terms of 

the CPU time for the hardware to perform the required controller algebra.

The proposed method to select the optimal dual-rate configuration can be summarized 

with the following five steps.

1. Synthesize a robust controller.

2. Find the worst-case plant model.

3. Form the lifted closed-loop system with possible dual-rate configurations and 

calculate the largest singular value for each of them.

4. Identify the dual-rate configuration that maintains robust performance and 

achieves the largest reduction in computational cost in terms of the number of 

MAC operations.

5. Implement the chosen dual-rate controller in step 4 in modal canonical form 

while utilizing the sparse matrix algebra. Apply the interlacing technique to 

decrease the computational cost uniformly.

This approach was applied to the AMB test rig. The results are presented in Section 4.1.
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3.3.2 Optimal dual-rate configuration via controller perturbation

The worst-case plant approach for selecting the dual-rate configuration has one major 

assumption that might not be true for some systems. The approach assumes that the 

difference in the dynamic response between the single-rate and dual-rate implementations 

of the same controller has the most significant effect in the worst-case plant. The main 

idea behind the assumption is that the worst-case plant would be the first plant model to 

lose robust performance due to the changes in the controller dynamics. However, this 

might not be true for some systems. That is why a more general approach is proposed to 

identify the optimal dual-rate configuration via defining controller perturbation.

The developed approach first finds the largest perturbation to the controller that 

pushes the p-value to unity at all frequencies. This perturbation defines bounds in the 

frequency domain for the controller, where if the response of an implemented controller 

is within the bounds, the implemented controller maintains robust performance. Similar 

to the worst-case plant approach, the different dual-rate configurations are identified first. 

Then, their frequency responses can be compared to the bounds to determine whether 

they are feasible or not to maintain the desired robust performance. Figure 21 shows the 

block diagram of the approach where w and z are the exogenous inputs and performance 

outputs, respectively, u and y are the control input and sensor outputs, respectively, P is 

the nominal plant, K is the robust controller, A represents the plant uncertainties, Ak 

represent the controller perturbation that pushes the p-value to unity at each frequency, 

and the red dashed part represents the uncertain set of plants. The introduced controller 

perturbation block can be thought of as a fictitious modeling uncertainty.
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Figure 21: Block diagram of a controlled system with the proposed controller 
perturbation block

Since all inputs to the controller, signal y, goes through the same dual-rate sampling 

procedure, their frequency response would be altered similarly. That is why the structure 

of the controller perturbation block is chosen as an input multiplicative diagonal complex 

perturbation with different magnitudes at each frequency. A simple bisection algorithm is 

used to find the magnitudes of the perturbation block.

This method is applied to the 300 kW turbine generator and HSM AMB spindle, 

where the results are shown in Section 4.2 and Section 4.3, respectively.

3.3.3 Comments on the proposed methods

The first method, i.e., the worst-case plant approach, is relatively straight-forward to 

apply to any system. The challenging parts of the method are the identification of the 

worst-case plant model, which can be done with MATLAB function wcgain [73], and the 

determination of possible dual-rate configurations, which relies on engineering 

knowledge in the effects of sampling rate in the dynamic system discretization. The 

method has one major assumption that any closed loop system formed with the worst- 
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case plant model has the maximum largest singular value regardless of the dual-rate 

configuration used for the controller. This assumption considers the difference between 

the single-rate and dual-rate implementations of the controller to be representable by an 

increase in the uncertainty magnitudes in the plant model. Although the assumption holds 

for most AMB systems since various sources of uncertainty exist in the models that can 

cover the difference, there might be cases where the uncertainties cannot represent the 

difference between the single-rate and dual-rate implementations of the controller 

responses. This is what motivated the second method, i.e., finding the largest perturbation 

to the controller that pushes the p-value to unity. Since perturbations are defined directly 

on the controller, the assumption to represent the difference in the controller response 

with the model uncertainties is not needed in the second method. However, with the 

second method, the structure of the perturbation block needs to be defined. The choice of 

the structure of the perturbation block, which is chosen as diagonal perturbation in this 

research, has an impact on the results since it defines the magnitude and direction of the 

bounds on the controller response.

3.4 Redesign of Robust Controllers for Computational Savings

The idea of using the largest perturbation to the controller that maintains the robust 

performance is introduced in the previous section to identify the feasible dual-rate 

configurations. Another use is to assess the importance of each controller channel. In 

other words, negligible channels of the controller in the context of robust performance 

can be identified. Then, the controller can be redesigned by removing the negligible 

channels.

50



To determine if a controller channel can be ignored is equivalent to determining if 

removing the channel would alter the controller response to an extent where the response 

would lie outside of the bounds defined by the largest perturbation. Although not 

necessary, two assumptions are made to ease the analysis procedure: 1) isotropic 

behavior is expected in the AMB bearings, and 2) disturbance forces are not dominant in 

one plane. These assumptions can be removed by appropriately scaling controller 

channels such that the inputs to the scaled controller satisfies the assumptions. The rest of 

the section explains the proposed method of controller redesign based on a generalized 

MIMO controller to achieve computational saving.

For a given 4-input 4-output controller K that achieves robust performance (which is 

the case for most AMB systems with two radial AMBs to support the rotor), the output of 

the controller, y, is calculated by the transfer matrix algebra shown in Eq. (14).

1711 ^11 ^12 ^13 714 ’Uf
y2
y3

= K21

k31
^22
732

^23

^33

K24

K34 uU3 (14)

74. -741 ^42 ^43 ^44- u4

The transfer matrix elements Ktj defines the effects of the input signal Uj on the output 

of the controller yt. Previously mentioned largest perturbation to the controller defines 

bounds on each element, which in return defines bounds on the singular values of the 

frequency response of the controller. The assessment of whether the effect of a channel is 

negligible or not is based on whether the singular values of the frequency response of the 

controller lies within the bounds after removing the channel. The diagonal channels 

cannot be removed since they represent almost collocated actuator-sensor interaction.
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The proposed approach analyzes each row of the controller individually to determine 

the channels that can be removed in that row. This is done by checking if neglecting a 

channel causes the singular value of the frequency response of that row to go over the 

bounds defined by the controller perturbation. The two assumptions stated earlier is 

useful because, with the assumptions, the expected magnitudes of each input signal to the 

controller is similar. This allows direct comparison of the controller singular values when 

a channel is removed, instead of the need to scale certain channels.

To illustrate the proposed method, let Kin be the ith row of the controller where certain 

channels are equated to zero, hence removed. Then, if the singular values of the response 

of Kin stays within the bounds defined by the perturbation, the said channels are deemed 

negligible and can be removed from the controller. This can be checked easily by 

comparing the error between the singular value of the ith row of the controller and Kin to 

the bounds defined by the perturbation. Let p^ (w) be the magnitude of the bounds on the 

singular values of the ith row of the controller defined by the controller perturbation block, 

a (co) = ff([^i1 Ki2 Ki3 ^¿4]), and b(w) = a(Kin), where a refers to the singular value 

response of a system. Then the removed channels in Kin have negligible effects on robust 

performance if following inequality holds

PiO) > |a(w) -b(^)\ (15)

The negligible channels then can be found by a simple trial-error based method where 

each channel can be removed one at a time, and the inequality (15) can be used to assess 

their importance, repeating the same procedure for all the rows of the controller. For

AMB systems, starting from off-diagonal channels of the controller, i.e., channels for x-
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output y-input and y-output x-input, is a good starting point. Also, the diagonal channels, 

i.e., the same control axis input-output channels, are always non-negligible.

Although the method finds the negligible channels in the controller, it is not simple to 

remove the effects of an input on a particular output in a MIMO system. For this reason, 

after the negligible channels are identified, a decision on how to fit a dynamic system to 

the remaining channels needs to be made. For most AMB systems with symmetric rotors 

and AMBs, the perpendicular axes of the same radial bearing are almost identical. This 

results in controller synthesis procedures to generate similar, if not identical, control 

dynamics for the perpendicular axes of the same bearing. With this knowledge, 

depending on how many channels are deemed negligible, there are system-specific 

choices.

There might be cases where none of the controller channels might be negligible. In 

that case, a desired order controller might be fitted within the bounds defined by the 

MIMO controller and the perturbation block. The model-fitting approach is a tedious and 

trial-error based approach which might not even result in any computational savings.

This method is applied to the 300 kW turbine generator and HSM AMB spindle, 

where the results are shown in Section 4.2 and Section 4.3, respectively.
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CHAPTER IV 

APPLICATION OF THE PROPOSED METHODS

The proposed methods to reduce the computational cost of robust controllers were 

demonstrated on three AMB systems, i.e., the AMB test rig, 300 kW turbine generator, 

and HSM AMB spindle.

4.1 AMB Test Rig, Worst-Case Plant Approach

As a first step in the control problem formulation for the AMB test rig, standard 

uncertainties for AMB systems were defined, as shown in Table II. The uncertainties for 

flexible mode frequencies and damping were determined by a simple examination of the 

frequency response comparison between the model and the data shown in Figure 7. The 

uncertainties for the AMB force constants were identified analytically such that the 

linearized AMB force model would encapsulate the non-linear force model within the 

operating region. Lastly, the uncertainty for the rotational speed was chosen arbitrarily as 

from 0 to 3,000 rpm for this study, since 3,000 rpm was chosen as the highest operating 

speed.
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Table II: Uncertainties for the AMB test rig
Parameter Nominal Value Uncertainty Type

Flexible modes [94,721,506,721] Hz ±1.5% Complex
Current stiffness 25.33 N/A ±10% Real
Position stiffness 0.064 N/um ±15% Real
Rotational speed 1500 rpm ±100% Real

The second step in the control problem formulation is to define the desired 

performance via the weights that represent the frequency contents of performance outputs 

and exogenous inputs in the frequency domain. For this reason, exogenous inputs were 

chosen to be sensor noise and general disturbance forces acting on AMB locations that 

represent unbalance forces and forces that arise due to misalignment between the rotor, 

motor, and bearing centers. The performance outputs were chosen to be vibration 

amplitudes at sensor locations to control orbit sizes and control current magnitudes to 

prevent actuator saturations. The parameters that were used to describe the frequency 

content of these signals are shown in Table III.

Table III: Parameter describing the performance criteria

Weights Low 
frequency

High 
frequency

Cross-over 
frequency

Roll-off
frequency

Disturbance force 6 N 4 N 0.01 Hz 90 Hz
Noise level 0.6 ^m 0.6 ^m - -
Vibration amplitude 3 |im 30 ^m 1 Hz -
Control current magnitude 1 A 1 A - 750 Hz

The method described in [34] was applied to solve the signal-based H» control 

problem, which uses the genetic algorithm (GA) to tune the weights to synthesize a stable 

controller that satisfies the desired robust performance. In summary, the method separates 

the weights used in controller synthesis, referred to as synthesis weights, and weights
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used in performance analysis referred to as performance weights. The synthesis weights 

are then tuned via GA where the cost function is the ft-value of the closed-loop system 

with performance weights plus a penalty term for unstable controllers. The order of the 

resulting controller with this method is always equal to the order of the plant model plus 

the order of performance weights. With the given plant model and performance weights 

for the AMB test rig, the synthesis resulted in a 52-order controller with an achieved p- 

value of 0.94. Controller order reduction was tried, however removing two states of the 

controller pushed the achieved p-value to unity. That is why the 52-order controller was 

used as the single-rate implementation.

For the second step of the worst-case plant approach, wcgain function of Matlab was 

used to obtain the uncertain parameters of the AMB system model that resulted in the 

largest singular value of the closed-loop system with the designed controller. The third 

step requires engineering judgment to identify possible dual-rate configurations. 

Considering the hardware of the AMB system, which allowed a maximum of 10 kHz 

sampling rate, up to 5 times slower sampling rates were considered for the slow modes. 

The considered slow modes sampling rates were chosen based on the natural frequencies 

of the controller modes, where the first 14 lowest frequency modes required at least 2 

kHz sampling rate. Then, a table was created for the considered dual-rate configurations, 

and is shown in Table IV.

The largest singular values for each dual-rate configuration, as well as the normalized 

computational costs, were analytically calculated using the lifting technique. The rows of 

Table IV represent the number of modes considered in the slow modes at ascending 

frequency. The columns represent the frequency ratio between the fast modes and the 
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slow modes of the controller. The dual-rate configurations in the first row and first 

column are practically identical to the single-rate implementation of the controller. The 

computational cost was calculated by determining the necessary number of MAC 

operations to perform the necessary matrix-vector multiplications for a given 

implementation using the modal canonical form and sparse-matrix algebra. The number 

of MAC operations of each dual-rate implementation was then normalized with respect to 

the single-rate implementation. For reference, the single-rate implementation of the 

designed robust controller using modal canonical form along with sparse-matrix algebra 

required 520 MAC operations at each time step.

Each considered dual-rate configuration was implemented experimentally. Peak-to- 

peak vibration amplitudes at various rotational speeds, as well as the control currents, 

were compared to the performance specifications. The experimental assessment of each 

dual-rate configuration are shown with colors in Table IV, where green color represents 

satisfactory performance, orange color represents satisfactory performance up to a 

rotational speed below the maximum design speed, and red color represents the 

configuration cannot stabilize the system, even in the nonrotating condition. The 

experimental results match with the analytical results, demonstrating the feasibility of the 

proposed method in choosing the dual-rate configuration.
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Table IV: Robust performance analysis with dual-rate controllei

Number of 
Modes in 

Slow Modes

Highest 
Frequency in 
Slow Modes 

[Hz]

Maximum Singular Value / Normalized Computational Cost

1x
10 kHz

2x
5 kHz

3x-r- .3.3 kHz
4x

2.5 kHz
5x

2 kHz
0 - 0.94/1.00 0.94/1.00 0.94/1.00 0.94/1.00 0.94/1.00
4 1.5 0.94/1.00 0.94/0.92 0.94/0.89 0.94/0.88 0.94/0.87
9 227 0.94/1.00 0.94/0.82 0.94/0.77 0.94/0.74 0.94/0.78
10 235 0.94/1.00 0.94/0.80 0.94/0.74 0.94/0.71 0.94/0.69
11 525 0.94/1.00 1.36/0.78 3.60/0.71 6.33/0.68 5.76/0.66
12 557 0.94/1.00 1.98/0.76 - /0.69 - /0.65 - /0.63
26 2386 0.94/1.00 - /0.50 - /0.33 - /0.25 - /0.20

From Table IV, it is clear that the configuration 5x-10 achieved the most 

computational saving while maintaining robust performance and was chosen to be 

compared in performance with the single-rate implementation of the controller. Both 

single-rate and dual-rate controllers were implemented using dSPACE MicroLabBox. As 

a first test, the computational cost of single-rate implementation and dual-rate 

implementation with and without interlacing was compared and is shown in Figure 22. 

As mentioned in previous sections, without the interlacing technique, the computational 

cost of dual-rate implementation would be equal to the single-rate implementation at 

every mth time step, which can be observed in Figure 22 where m is equal to 5. The 

interlacing simply distributes the overhead calculations to multiple time steps. That is 

why the CPU time for dual-rate implementation with interlacing is slightly higher than 

without interlacing, with the exception of every 5th-time step. The average CPU time for 

single-rate implementation is around 1.14 ^s, and the dual-rate implementation is around 

0.74 ^s, which implies a 35% reduction in computational cost. There is a slight 

discrepancy between analytically determined 31% reduction, which can be explained 
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either by the way the average times are determined and/or the low-level optimization the

software used to program the hardware.

Figure 22: Computational cost comparison of single-rate (blue -x), dual-rate without
interlacing (red-star*), and dual-rate with interlacing (black-dot.) implementations 

of the controller

The second test was performed to observe the step response of the system with the 

single-rate and the dual-rate implementations. For this reason, the trajectory at initial 

levitation was compared. Figure 23 shows the trajectories at each AMB axis. Before the 

tests, the rotor was manually positioned at similar initial positions to have a meaningful 

comparison, since the resting position of the rotor can be anywhere on the backup 

bearings, which have a clearance of 190 pm when the rotor is at the center of the bearing. 

The overall step response was similar, if not identical, with both controllers. The coupling 

element between the rotor and the motor provided a slight lift to the DE side. However, 

the main reason behind the faster settling time between DE and NDE side was the larger 

stiffness provided by the controller. On the NDE side, the stiffness did not seem to be 

enough to push the rotor to center, and the modes that provide high-stiffness at low 
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frequencies slowly drove the rotor towards the center of the bearing. There is high 

overshoot at both bearing responses. The reason is that the performance criteria were 

determined by assuming the rotor would be positioned at the center of the bearing, which 

was not the case during initial levitation. The overshoot can be overcome by providing a 

ramp reference input for levitation instead of a step reference input.

Lastly, AMB system orbit sizes and shapes at various speeds were compared. For this 

reason, data was collected at 1,000, 2,000, and 3,000 rpm. Figure 24 shows the achieved 

orbits with single-rate and dual-rate implementations. Both controllers achieved similar 

orbits, with the exception of NDE bearing at 3,000 rpm. However, the dual-rate 

implementation still kept the orbits within the desired magnitude with a reduced 

computational cost.

Figure 23: Initial levitation comparison of single-rate implementation (blue) 
and dual-rate implementation (green)
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Figure 24: Orbit sizes with single-rate implementation (blue) 
and dual-rate implementation (green)

4.2 300 kW Turbine Generator, Dual-rate Controller Implementation and
Redesign of Robust Controller via Controller Perturbation [76]

The approaches presented in Sections 3.3.2 and 3.4 were applied to the model of 300 

kW turbine generator [76]. A robust controller for the model was first designed. For this 

purpose, standard uncertainties for AMB systems were defined for the 300 kW turbine 

generator model, i.e., 1% uncertainty on flexible mode frequencies, 15% uncertainty on 

flexible mode damping, 10% uncertainty on current stiffness, 5% uncertainty on position 

stiffness, and rotational speed to cover the whole operating range from 0 rpm to 32,000 

rpm. Then, the performance weights were constructed in a disturbance rejection scheme 
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where the goal was set to keep the vibrations at AMB sensor locations within a certain 

magnitude without saturating the AMBs while the system was under the influence of 

sensor noise and disturbance forces. Although there are multiple sources of disturbance 

forces acting on the system, they were assumed to act at AMB actuator positions to 

simplify the problem formulation. Special attention was given to the magnitude of the 

weights such that the closed-loop sensitivity magnitude would be less than 10 dB as per 

ISO standards [61]. The robust controller was synthesized using dksyn function of 

MATLAB, which resulted in a stable 62-order controller with a ^-value of 0.91. Figure 

25 shows the closed-loop sensitivity functions at each bearing with the full-order 

controller. As per the design requirement, the sensitivity function never goes above 10 dB.

Frequency [Hz]

Figure 25: Sensitivity function of 300 kW turbine generator with the 
designed ^-controller; B1 (blue) and B2 (green)

After synthesizing the controller, the order of the controller was reduced to 42 via 

balanced truncation, which was the smallest order the controller could be reduced to 

while keeping the ^-value below unity. The reduced-order controller had 42 states, 
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corresponding to 21 modes, and required 418 MAC operations, which is the number used 

to normalize computational cost.

As a first step for the proposed methods, the controller perturbation block that pushed 

the ^-value to unity was identified via a simple bisection algorithm. The controller 

perturbation block was assumed to be input multiplicative diagonal complex perturbation. 

Figure 26 shows the ^ plot of the closed-loop system with the full order controller with 

and without the controller perturbation block, which indicates robust performance if the 

value stays below unity. The found perturbation block does not exactly make the ^-value 

equal to unity at all frequencies, as seen in Figure 26. There is a slight chatter, especially 

around the natural frequencies of the AMB system. The amount of deviation from unity 

can be controlled by defining lower tolerances in the bisection algorithm.

Figure 26: ^-value comparison of the closed loop system w\ (blue) and w\o (green) 
the controller perturbation block

The bounds defined by the controller perturbation block is shown in Figure 27 for one 

of the controller channels. If a controller’s dynamic response lies within the region, the 

said controller achieves robust performance once implemented.
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Frequency [Hz]

Figure 27: Bounds on the controllers B1-B1 channel defined by the perturbations

Once the perturbation block is defined, the next step was to determine the feasible 

dual-rate configurations by checking the frequency responses of possible dual-rate 

configurations to the bounds defined by the perturbation block. Table V shows the 

considered dual-rate configurations, along with the normalized computational cost. The 

dual-rate configurations with dynamic responses within the bounds are highlighted green, 

and outside the bounds are highlighted red. From Table V, the configuration that 

achieved the most computational saving while maintaining robust performance was 

identigied as the 40x-2 configuration with a 9% reduction in computational cost, where 

the two modes that are considered in the slow modes are the low-frequency modes that 

were meant to mimic integral action. In addition, up to 40 times slower rates were 

considered as the maximum ratio between fast and slow mode implementation rates since 

only 40 MAC operations were necessary for the first two modes.

64



Table V: Dual-rate implementation feasibility and computational cost
________________ for 300 kW turbine generator________________

Number of 
Modes in Slow 

Modes

Highest Natural 
Frequency in 

Slow Modes [Hz]

Maximum Singular Value / Normalized 
Computational Cost

1x
12.5 kHz

2x
6.25 kHz

3x
4.16 kHz

40x
312.5 Hz

0 - 1.00 1.00 1.00 1.00
2 1.16*10’5 1.00 0.95 0.94 0.91
3 419 1.00 0.93 0.90 0.86
4 528 1.00 0.90 0.87 0.81

21 3843 1.00 0.50 0.33 0.03

For the redesign of the controller approach, each row of the controller transfer matrix 

was examined to identify the negligible channels in the context of robust performance. 

The procedure is demonstrated below for the first row.

Let a (co) = ^([^11 K12 K13 ^14]) be the singular values of the first row of the 

controller. The first thing to check is if including only the diagonal element would satisfy 

inequality (15). For this purpose, let b1(w) = ^([^11 0 0 0]). Figure 28 is the graphical 

representation of the inequality. The figure shows that neglecting everything but the 

diagonal term of the controller is sufficient to achieve robust performance for the first 

row of the controller. For demonstration purposes, let b2(w) = ^([^11 0 K13 0]), where 

K13 is the channel for the other AMB in the same plane. The graphic representation of the 

inequality (15) for b2(w) is also shown in Figure 28. This demonstrates that including 

more channels reduces the magnitude of the error, as expected.

The same analysis was repeated for the rest of the rows of the controller, which 

resulted in similar conclusions where only the diagonal terms were deemed necessary to 

achieve robust performance. This implied that a decentralized controller that has the same

dynamic response as the diagonal channels of the ^-controller could provide the same 
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robust performance. For this reason, although the controllers’ order was reduced 

previously, balanced truncation was applied again to each diagonal channel of the ^ - 

controller individually to further reduce the controller order. In the first application of the 

model reduction, the model needed to match all 16 channels simultaneously, whereas in 

this case, it only needed to match one channel at a time. Each diagonal channel transfer 

function was reduced to orders 18, 22, 17, and 21 with minimal distortion to the dynamic 

response. The orders were chosen by manual inspection of the frequency responses. The 

redesigned controller was 72-order and required 306 MAC operations. Although the 

order of the controller increased, the necessary MAC operations decreased due to the 

decoupled nature. Figure 29 shows the ^-value plot of the 42-order controller and the 

redesigned 72-order controller.

Figure 28: Graphic representation of inequality (15) for the first row of the controller; 
bounds ±p(w) (red), error a(w) — b1 (w) (blue), and error a(w") — b2 (w) (green)
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Figure 29: ^-value of the closed-loop system with the 42-order controller (blue) and with 
the redesigned controller (green)

There is a slight increase in the ^-value with the redesigned controller. However, the 

overall ^-value does not significantly change. More importantly, it always stays below 

unity, indicating robust performance. The increase in the ^-value at low frequencies can 

be explained by the lack of crosstalk. Figure 30 shows the achieved sensitivity function 

with the redesigned controller using the nonrotating nominal plant model. There are some 

minor differences in the achieved sensitivity function compared to the original controller. 

However, the difference does not violate the performance criteria, as concluded with the 

proposed method.
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Figure 30: Sensitivity function of Calnetix turbine generator with the redesigned 
controller; B1 (blue) and B2 (green)

A Simulink model was created to compare the system response with the three 

controllers presented so far, i.e., the 42-order controller obtained via balanced truncation, 

the 40x-2 dual-rate implementation, and the redesigned controller. Each controller was 

discretized at 12.5 kHz, while the slow modes were discretized at 312.5 Hz. MATLAB 

built-in solver ode15s was used to simulate the system responses.

The first test was performed to compare the closed-loop system response to a step 

trajectory input to drive the system to 1 V. This is analogous to the initial levitation of the 

rotor. A random nonrotating model was chosen from the set of uncertain models, and the 

same model was used for all three controllers. The responses of the closed-loop systems 

are shown in Figure 31. The response of the 42-order controllers single-rate and dual-rate 

implementations are identical, whereas the redesigned controller differs from them 

significantly for the B1 bearing. Both 42-order controller and dual-rate controller seems 

to have a more aggressive response, but the settling time of each controller seems to be 

similar. Steady-state error is slightly larger with the redesigned controller. The steady­
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state error can be reduced by feeding the trajectory signal to a low order filter before 

supplying it to the closed-loop system to adjust the DC gain of the closed-loop system. 

This would slightly increase the overall computational cost due to the computations for 

the additional filter.

Figure 31: Step response of the closed-loop 300 kW turbine generator model with 42- 
order controller (blue-line), dual-rate controller (green-star), and redesigned controller 

(red-cross)

The second test was performed to compare the closed-loop system responses to 

periodic disturbance forces, analogous to unbalance force. A random plant model with 

100 Hz rotational speed was chosen from the uncertain set of plant models to form the 

closed-loop systems. The disturbance forces were applied at actuator positions at a 

frequency of 100 Hz and a magnitude of 1 V with a 90-degree phase difference between 

the perpendicular control axes of AMBs. The same model was used for all three 

controllers. The outputs of each closed-loop system are shown in Figure 32. The single­
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rate and dual-rate implementations of the controller gave identical results, as expected 

since the change in the dynamic response of the controller due to dual-rate 

implementation was negligible for this case. The redesigned controller differed from 

them in both magnitude and phase. Given the difference in achieved sensitivity functions 

between the 42-order controller and the redesigned controller, identical closed-loop 

behavior was not expected.

0 10 20 30 40 50
Time [ms]

Figure 32: Force response of the closed-loop 300 kW turbine generator model with 42- 
order controller (blue-line), dual-rate controller (green-star), 

and redesigned controller (red-cross)

Significant computational cost reduction was achieved with the proposed methods 

without losing robust performance, especially with the redesigned controller. The 
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necessary number of MAC operations to run the controller was reduced by 9% with the 

dual-rate implementation and 27% with the controller redesign approach. Both proposed 

approaches provided similar desired robust performance and are a viable option.

4.3 HSM AMB Spindle, Dual-rate Controller Implementation and Redesign of 
Robust Controller via Controller Perturbation

A p-controller was synthesized for the HSM AMB spindle. First, model uncertainties 

that are common for AMB systems were defined as the model uncertainties, i.e., 1% for 

flexible mode frequencies, 30% for flexible mode damping, 5% for current stiffness, 10% 

for position stiffness, and the rotational speed to cover the whole operating range from 0 

rpm to 50,000 rpm. System-specific performance criteria were defined in a disturbance 

rejection scheme using signal-based control problem formulation. For this purpose, 

disturbance forces were defined at AMB actuator locations and tool-tip, and the vibration 

levels at sensor locations and tool-tip were chosen to be regulated without saturating the 

actuators. The dksyn function of MATLAB was used to synthesize the controller, which 

resulted in a controller of order 72 with an achieved p-value of 0.71. Through balanced 

truncation, the order of the controller was reduced to 32, which was the smallest order of 

the controller that kept the p-value below unity. 320 MAC operations were necessary for 

the single-rate implementation of the controller in modal canonical form and using the 

sparse matrix algebra. The number was used to normalize the computational cost.

After designing a controller to achieve the desired performance, dual-rate 

implementation was investigated first to realize computational savings. For this purpose, 

the controller perturbation magnitudes at each frequency were found via a bisection 
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algorithm. Figure 33 shows the bounds defined by the controller perturbation block on 

the V13-V13 channel. As stated before, if the response of a dual-rate configuration of the 

controller stays within these bounds, the said controller would achieve robust

performance.

Figure 33: Bounds on the controllers V13-V13 channel 
defined by the controller perturbation

The next step in the dual-rate implementation approach was to identify the feasible 

dual-rate configurations and to check the dynamic responses of the dual-rate 

configurations with the bounds to determine if they maintain the robust performance. 

Table VI shows the considered dual-rate configurations with their normalized 

computational cost. The configurations which had their response lie within the bounds 

are highlighted green, and the ones that lie outside at some points are highlighted red. 

From Table VI, it was concluded that the configuration 40x-2 would result in the most 
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computational savings, a 12% reduction in computational cost, while maintaining robust 

performance.

Table VI: Dual-rate implementation feasibility 
and computational cost for the HSM AMB spindle

Number of 
Modes in Slow 

Modes

Highest Natural 
Frequency in Slow 

Modes [Hz]

Maximum Singular Value / Normalized 
Computational Cost

1x
10 kHz

2x
5 kHz

3x
2.5 kHz

40x
250 Hz

0 - 1 1 1 1
2 0.0014 1 0.94 0.91 0.88
3 877 1 0.91 0.86 0.82
4 880 1 0.87 0.81 0.76
16 3811 1 0.50 0.25 0.03

The redesign of the controller approach was also applied to HSM AMB spindle. The 

channels that were not necessary for robust performance were identified via removing 

one channel at a time from each row of the controller and using inequality (15) for robust 

performance assessment, similar to the previous study on the 300 kW turbine generator. 

Through repeating the procedure for all four rows of the controller, it was found that the 

crosstalk channels between the perpendicular planes, V- and W-planes, of the system 

were not necessary. Moreover, the controller for V-plane was identical to the controller 

of W-plane. That is why a controller model was fit to the V-plane control channels 

through the application of balanced reduction to the controller once again. This process 

resulted in a 16-order controller for V-plane, and an identical controller was used for the 

W-plane. The order was chosen such that distortions to dynamic response for the 

respective channels were minimal by manual observation. The new controller was of 

order 32 and required 188 MAC operations. Although the order stayed the same, the 
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required number of MAC operations decreased by 41% due to the decoupled nature of 

the redesigned controller.

The theoretical results indicated that all three controllers, i.e., single-rate and dual-rate 

implementation of 42-order controller, and the redesigned controller, would maintain 

robust performance, while each of them having a different computational cost. 

Experimental verification of the theoretical results was done via comparison of CPU time, 

transfer function at tool-tip via impact hammer test, and orbit sizes at 20,400 rpm. For 

this purpose, each controller was implemented via dSPACE 1005 system using 10 kHz 

sampling rate, where the slow mode of dual-rate configuration was implemented at 250 

Hz with interlacing technique.

The first test was performed to compare the computational cost of each controller via 

the amount of CPU time spend for their respective matrix-vector algebra, as shown in 

Figure 34. The single-rate implementation of the controller took around 1.67 |is, dual-rate 

implementation took around 1.51 |is, and the redesigned controller took around 0.83 |is. 

The experimental results are in line with the theoretical results, with slightly better results 

for the redesigned controller. The discrepancy in the theoretical reduction and observed 

reduction can be explained by the low-level optimization done by the software in 

implementation.
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Figure 34: CPU time comparison of the single-rate (green-dot) and dual-rate 
implementation (blue-plus), the redesigned controller (red-cross)

The second test was performed to compare the tool-tip compliance with each 

controller. Since the system is a machining spindle, tool-tip compliance is an important 

performance indicator and provides feasible machining operation parameters. The 

compliance of the tool-tip was measured by using an external capacitance-based 

displacement sensor, along with an impact hammer. The setup for the experiment is 

shown in Figure 35. The force and displacement measurements were fed to an HP 25670 

signal analyzer to convert the readings to transfer functions, where an average of 10 

measurements was used for each controller. Figure 36 presents the resulting frequency 

responses of the closed-loop system at tool-tip with the three controllers, along with their 

respective coherence plots. Identical compliances were observed with all three controllers, 

indicating each controller resulted in the same closed-loop dynamics.
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Figure 35: Impact hammer test setup

Figure 36: Closed-loop tool-tip frequency response with single-rate (green) and dual-rate 
(blue) implementation of the controller, and redesigned controller (red)

The last experiment was performed to observe the orbit sizes and shapes while the 

rotor was rotating at 20,400 rpm, without machining. The chosen rotational speed is 

above the first two rigid mode critical speeds but below the first bending mode critical 
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speed. The main disturbances acting on the system during the experiment were the 

unbalance forces due to mass eccentricity and the unbalance magnetic pull due to 

asymmetry in the magnetic field between the rotor and motor stators. The orbits are 

shown in Figure 37. All three controllers achieved similar size and shape orbits, with 

single-rate implementation slightly differing from them at the front bearing. The 

difference might be due to the nature of experimental work. However, slight differences 

are expected with the proposed methods since the methods are meant to make sure robust 

performance is maintained rather than achieving identical dynamics.

Figure 37: Orbit size at 20,400 rpm with single-rate (green) and dual-rate (blue) 
implementation of the controller, and redesigned controller (red)
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CHAPTER V

PERFORMANCE-DRIVEN GYROSCOPIC EFFECT COMPENSATION VIA 

ADD-ON CONTROLLER AND ITS EFFECTS ON ROBUST CONTROLLER 

DESIGN AND IMPLEMENTATION

The performance of robust controllers can be improved by introducing an add-on 

controller to address a specific task. For AMB systems, the add-on controllers are 

designed either to reject disturbance forces [51-56] , or to compensate the gyroscopic 

effects for rigid rotor-AMB systems [57, 58]. By introducing an add-on controller for 

gyroscopic effect compensation, the robustness requirements in the performance 

controller design can be relaxed, enabling a potential increase in the achievable 

performance. This section presents a novel approach for gyroscopic effect compensation 

for flexible rotor-AMB systems and investigates its effects on the robust controller design 

and achieved performance.
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5.1 Add-on Controller for Gyroscopic Effect Compensation

The reduced-order equation of motion of an AMB-rotor system in modal coordinates 

can be written as

Mmqm + (Dm + Gm(®))qm + Kmqm = Bm(Kxqm + Kiic )
(16)

y = Cm qm

where qm is the modal states of the rotor, Mm is the modal mass matrix (e.g., identity 

matrix with appropriately chosen coordinate transformation matrix), Km is the modal 

stiffness matrix that presents information on the natural frequencies of the system, Dm is 

the modal damping matrix, Gm is the skew-symmetric modal gyroscopic matrix, Bm is 

the input matrix that defines the effects of inputs on the modes of the system, Kx and Kj 

are the matrices of appropriate size and structure for the AMB force constants, and Cm is 

the modal output matrix that constructs the position of the rotor at the AMB sensor 

positions from the modal displacements.

The effects of the gyroscopic matrix, Gm can be compensated with an appropriately 

chosen control current ic as

ic = (BmKi) 1Gm (^)qm (17)

The control law in Eq. (17) is the basic idea behind the cross-feedback control 

introduced in [57] to compensate the gyroscopic effects in rigid-rotor AMB systems. In 

order to derive the control law, the necessary inverse needs to exist. The inverse only 

exists if the AMB system has the same number of modes as the number of radial AMBs.
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For AMB systems with two radial AMBs, the inverse only exists when rigid rotor 

assumption holds. That is why the control law in Eq. (17) in its current form cannot be 

used for the flexible rotor-AMB systems. However, the control law can be modified to 

remove the effects of the gyroscopic matrix for selected modes of the system. This can be 

accomplished by using a modified Bm matrix, where only the rows corresponding to the 

selected modes remain. The modified version of the control law can compensate the 

gyroscopic effects for n modes of the system, where n is the number of radial AMBs in 

the system. The modified control law can be written as

ic =K-1B™Gm (u)qm = T(ro)qm (18)

+where Bm is the modified Bm matrix, and Bm is the pseudoinverse of the matrix. It is 

important to note that the control law shown in Eq. (18) relies on the modal state 

information, namely q^. However, qm is not readily available from the sensor 

information. That is why a modal state observer is necessary for implementation. Kalman 

estimator is used in this research with the estimator equation as

q = Aq + Bic + L(y - Cq) (19)

with 

-M-1(K - K )X Mm (Dm + Gm (æ))
0

BmKfJ (20)

where q is the estimated modal states, and L is the filter gain designed to achieve optimal 

state estimation with imperfect information which is calculated via the kalman function 
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of MATLAB [73]. The block diagram of the add-on controller and its implementation is 

shown in Figure 38. With the add-on controller, the gyroscopic effects of the selected 

modes are compensated from the controller perspective, i.e., the open-loop system 

dynamics from input u to output y in Figure 38. That is why the performance controller 

can be designed with a modified open-loop system model with a reduced gyroscopic 

matrix to relax the robustness requirements and potentially achieve better performance.

Figure 38: Gyroscopic effect compensation with and add-on controller

There are a few limitations of the proposed method to design an add-on controller for 

gyroscopic effect compensation. First, the method only considers the effects of the add­

on controller on the selected modes of the system, and its effects on the other modes are 

not taken into account in the design process. The add-on controller might get rid of the 

frequency bifurcation at the selected modes as per the design objective at the expense of 

altering the dynamics of other modes. That is why, before implementation, the effects of 

the add-on controller on the whole system dynamics need to be determined analytically to 

make sure the add-on controller does not significantly affect the other modes. Second, the 

method relies on the observability and controllability of the selected modes. That is why 
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if one of the AMBs is located near a node of the system, the necessary inverse might not 

exist. Hence the add-on controller for gyroscopic effect compensation cannot be applied.

5.2 Application of the Gyroscopic Effect Compensation

The proposed add-on controller for gyroscopic effect compensation was applied to the 

AMB test rig shown in Section 2.2.1. For the system, gyroscopic effects had negligible 

effects on the first and second flexible mode of the system, as seen by the lack of 

bifurcation of the first and second flexible mode frequencies in Figure 8. However, both 

third and fourth flexible modes exhibited significant bifurcation. Hence, gyroscopic effect 

compensation was applied to third and fourth flexible modes.

As mentioned previously, the design of the compensation neglects the effects of the 

add-on controller on the other modes. That is why the effects of compensating third and 

fourth flexible modes individually and simultaneously were analyzed analytically before 

implementation. For this reason, a Kalman estimator was designed to estimate the 

necessary state information via choosing a diagonal Q and R matrices with appropriate 

values that represented the variance of the process noise and measurement noise, 

respectively. The Kalman estimator was tested experimentally to confirm the accuracy of 

the estimation by comparing the observer outputs for AMB sensor positions to the AMB 

sensor outputs. The outputs of the estimator and physical system, while the system ran at 

3,000 rpm, is shown in Figure 39 for one of the output channels. The main disturbance 

forces acting on the system during rotation were the unbalance forces due to mass 

eccentricity and forces due to the misalignment of the motor center and bearing centers. 

The error in output estimation stayed below 2 ^m, as seen in the figure. Considering the
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noise levels of the system, which was around 1 gm, it is concluded that the designed 

estimator could provide accurate modal state estimations.

Figure 39: Comparison of estimator output (green) and AMB system (blue) at 3,000 rpm

After the design of the modal state estimator, three cases were examined analytically: 

1) compensating only the third flexible mode, 2) compensating only the fourth flexible 

mode, and 3) compensating both the third and fourth flexible modes simultaneously. For 

each case, the compensated open-loop system was obtained by connecting the Kalman 

estimator and the modal feedback gain to the open-loop system model. The analysis was 

done for both a perfect estimator, where the system matrices used for the AMB system 

and the estimator were identical, and an imperfect estimator, where the AMB system 

matrices were randomly chosen from the set of uncertain plant models.

First, the compensation of the third flexible mode was analyzed. The modal feedback 

gain, T(®), was designed using the fifth row of the Bm matrix. The bode diagram of the 
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open-loop system at 3,000 rpm for the perfect estimator case is shown in Figure 40a for 

one of the planes. The add-on controller eliminated the bifurcation of the third flexible 

mode as expected. The effects of the add-on controller on the other modes can also be 

observed in the figure. The bifurcation of the fourth flexible mode slightly increased with 

the add-on controller. The effects were relatively negligible for the first and second 

flexible modes, where neither the bifurcation amount nor the peak magnitudes changed. 

The bode diagram of the open-loop system at 3,000 rpm for the imperfect estimator case 

is shown in Figure 40b for one of the planes. The figure shows that the add-on controller 

for gyroscopic effect compensation tolerates typical inaccuracies in AMB system models. 

However, a slight change in the modal damping of the fourth flexible mode and a slight 

bifurcation increase in the first flexible mode can be seen due to mismatch between the

estimator and the AMB system matrices.

Figure 40: Analytical results of individual compensation of the third flexible mode at 
3000 rpm; the system w/o the compensation (blue), w/ the compensation (red)
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The same analysis was done for individual compensation of the fourth flexible mode, 

where the modal feedback gain was constructed using the sixth row of the Bm matrix. The 

conclusion of the analysis for compensation of the fourth flexible mode was the same as 

the conclusions from the compensation of the third flexible mode. The add-on controller 

was able to compensate the gyroscopic effect for the fourth flexible mode, where the 

bifurcations were eliminated for the fourth flexible mode without significant effect on the 

other modes. Using a different model for the estimator and AMB system to mimic reality 

did not affect the conclusions significantly.

However, the compensation of the third and fourth flexible modes simultaneously 

significantly increased the bifurcations of the first and second flexible modes, as shown 

in Figure 41. The add-on controller eliminated the bifurcations of both the third and 

fourth flexible modes. However, it significantly altered the dynamics of the first and 

second flexible modes, as seen from the significant increase in the bifurcations and the 

change in the peak magnitudes. This is not desirable since the aim is to reduce the overall 

robustness requirements. This is one of the limitations of the method where each AMB 

system needs to be analyzed individually to determine which modes can be selected for 

the gyroscopic effect compensation.

Given the analytical results, it was clear that individual compensation of the third and 

fourth flexible modes were feasible options, while simultaneous compensation of the 

third and fourth flexible modes was not. That is why two cases, i.e., individual 

compensations of the third and individual compensation of the fourth flexible modes, 

were pursued experimentally. For this reason, a PID controller was designed for the 

system that can provide stable levitation and rotation up to 3,000 rpm. For each case, the 
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closed-loop system identification technique described in the previous sections was used 

to obtain the open-loop FRD for the compensated cases at 2,000 and 3,000 rpm, which 

represents the dynamics from the controllers' perspective, i.e., from input u to output y in

Figure 38.

Figure 41: Analytical results of simultaneous compensation of the third and fourth 
flexible modes with the perfect model at 3000 rpm; the system w/o the compensation 

(blue), the system w/ compensation (red)

Figure 42 shows the open-loop FRD comparison of the AMB system with and without 

the add-on controller for gyroscopic compensation for the third flexible mode at 2,000 

and 3,000 rpm. The experimental results are in line with the analytical conclusions. The 

bifurcation of the third flexible mode frequency was eliminated. The compensation had 

relatively small effects on the other modes. The most significant effect was the increase 

in the amplitude at the fourth flexible mode frequency, an indication of reduced modal 

damping. However, no noticeable increase in vibration amplitudes, instability, or audible 

noise was observed.
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Figure 42: FRD comparison of the AMB system with (red) and without (blue) the add-on 
controller for gyroscopic effect compensation of the third flexible mode

Similar conclusions were obtained for the individual compensation of the fourth 

flexible mode. Figure 43 shows the open-loop FRD comparison of the AMB system with 

and without the add-on controller for gyroscopic effect compensation at 2,000 and 3,000 

rpm. The add-on controller eliminated the bifurcation at the fourth flexible mode 

frequency. However, there were slight amplitude changes in the other modes, an 

indication of reduced modal damping.
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Figure 43: FRD comparison of the AMB system with (red) and without (blue) the add-on 
controller for the gyroscopic effect compensation of the fourth flexible mode

5.3 Effect of Gyroscopic Effect Compensation on Controller Design and 

Implementation

The effectiveness of the add-on controller to compensate the gyroscopic effects for the 

selected modes is shown in the previous section. That is why the controller design 

procedures can be modified to include the effects of the add-on controller on the system 

dynamics by reducing the values in the gyroscopic matrix rows that correspond to the 

compensated modes. This would reduce the robustness requirements in the control 

problem formulation and, in theory, increase the achievable performance.

A new rotor configuration was used for the AMB test rig, as shown in Figure 44, to 

investigate the effects of compensating the gyroscopic effects of selected modes on the 

designed controllers [60]. The new configuration included an overhang disk to achieve a 
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relatively high gyroscopic effect presence. The rotor was still supported by two radial 

AMBs and one thrust AMB. The DE side AMB control axes are referred to as V13-W13, 

and NDE side control axes are referred to as V24-W24. The naming convention is 

changed to make it clear that the system is different from the one used previously.

Figure 44: The new configuration of the AMB test rig

The new configuration of the rotor was modeled by FEM first, and then modal model 

parameters were tuned for the rigid modes and the first three flexible modes to match the 

experimental FRD. For the radial AMBs, 1 A bias current was used, which resulted in 

force constants of 25.33 N/A and 0.064 N/^m. Through the examination of the model 

response and frequency response data, an unknown dynamic was identified around 400 

Hz. The source of the unknown dynamics wasn’t clear but assumed to be related to 

coupling between axial and radial dynamics, given that it is not affected by rotational 

speed. The unknown dynamics were modeled as a lightly damped second order system 

with no speed dependence, and its parameters were obtained via nonlinear least square 

optimization. Figure 45 shows the comparison of the model response and experimental 

FRD for both nonrotating and rotating at 3,000 rpm cases. The model matched the 

frequency response data relatively well, both in nonrotating and rotating at 3,000 rpm 
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cases. The flexible mode frequencies were on-point, the zero locations were accurate, and 

the model of the unknown dynamics at 400 Hz fitted well.

Figure 45: Comparison of the model response (red) and experimental FRD (blue)

The add-on controller was designed to compensate for the gyroscopic effects for the 

first and second flexible modes of the rotor since the first flexible mode frequency is 

around the maximum rotational speed of 10,000 rpm, and the second flexible mode 

exhibited large bifurcations. Figure 46 shows the experimental FRD of the system with 

and without the add-on controller at 4,000 rpm. The bifurcations of the first and second 

flexible modes were significantly reduced. However, the add-on controller did not 

eliminate the bifurcations. This was due to errors in state estimation and speed 

measurements. That is why the gyroscopic effects for the selected modes should not be 

removed entirely from the model but instead should be reduced significantly. In this 

90



research, the values in the rows of the gyroscopic matrix that correspond to first and 

second flexible modes were reduced by 90% to allow a cumulative 10% error in state 

estimation and speed measurement.

Figure 46: Effects of the add-on controller on the open-loop system dynamics at 4,000 
rpm, w/o the add-on controller (blue) and w/ the addon controller (green)

Typical uncertainties were assigned to the model of the system for the robust control 

problem formulation, i.e., 1% uncertainty in flexible mode frequencies, 20% uncertainty 

in flexible modes modal damping values, 10% and 15 % uncertainties in the current and 

position stiffness values, and 100% uncertainty in rotational speed with 5,000 rpm 

nominal value to cover the full operating range of 0-10000 rpm. The performance criteria 

were chosen based on standard disturbance rejection problem where the goal was to keep 

the orbits within a certain radius without saturating the amplifiers in the presence of 

disturbance forces and sensor noise. Table VII shows the parameters for the weights.
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Table VII: Performance specification

Weights Low 
frequency

High 
frequency

Cross over 
frequency

Roll-off 
frequency

Disturbances 8 N 1 N 1 Hz 170 Hz
Noise 0.6 ^m 0.6 ^m - -
Vibrations 4 ^m 80 um 1 Hz -
Control Mag. 1 A 1 A - 400 Hz

The plant model was augmented with the performance weights to form the augmented 

plant model for the dksyn function of MATLAB [73]. Two controllers were designed for 

the AMB system: 1) standard u-controller to serve as a benchmark controller, and 2) u - 

controller that was synthesized using a modified plant model that had reduced value for 

the gyroscopic matrix to include the presence of the add-on controller.

For the first controller, the benchmark controller, a standard u-controller was designed, 

which resulted in a controller of order 94 with an achieved u-value of 0.94. The 

controller order was reduced to 62 via balanced truncation, where the order was chosen to 

keep the u-value around 0.92. This controller is referred to as K1. For the second 

controller, the model was modified to include the effects of the add-on controller for 

gyroscopic effect compensation. However, augmenting the add-on controller to the plant 

model increases the order of the model significantly, hence increases the order of the 

controller and the time to synthesize the controller, both of which are not desirable. That 

is why the effects of the add-on controller were mimicked by reducing the values of the 

gyroscopic matrix that correspond to the first and second flexible modes by 90% instead 

of augmenting the add-on controller with the plant model. The modified model was then 

augmented with the same weighting filters shown in Table VII. The modified augmented 
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plant model was then used to synthesize a ^-controller, resulting in a controller of order 

92 with an achieved ^-value of 0.67. The controller order was reduced to 57 via balanced 

truncation, where the order was chosen to keep the ^-value around 0.67. This controller is 

referred to as K2 .

Figure 47 shows the comparison for the V13-V13 channels of controllers K1 and K2, 

which corresponds to one of the DE AMB control channels. The effects of using the 

modified model in the designed controller are apparent in the figure. Controller K1 was 

designed without compensating the gyroscopic effects, hence had a notch filter like 

dynamic around the second flexible mode frequency that covered a broad frequency 

range to handle the bifurcation of the second flexible mode frequency. As for the 

controller K2, the notch filter like dynamic was in a narrower frequency range since the 

bifurcations were reduced with the add-on controller. Moreover, the gain of the controller 

K2 was slightly higher up-to 100 Hz, which might be due to the less restrictive robustness 

requirements. The low-frequency dynamics of both controllers were similar, since the 

add-on controller, or its effects, only affect relatively high-frequency dynamics.

Frequency [Hz]
Figure 47: Frequency response comparison of controller K1 (blue) and K2 (green)
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Both controllers, i.e., K1 and K2 with the add-on controller, were implemented via 

dSPACE MicroLabBox. Controllers K1 and K2 , and the state-observer were discretized 

at 10 kHz using the zero-order hold (ZOH) method, and modal canonical form was used 

for the state-space realization to reduce the computational cost via enabling the use of 

sparse-matrix algebra algorithms.

The initial levitation trajectories achieved with both controllers are shown in Figure 48, 

where the system was energized after 1 sec. The rotor was manually positioned in similar 

initial resting positions before energizing the system to have a meaningful comparison. 

The VW13 channels' initial resting positions were relatively close to the bearing center 

due to the flexible coupling element slightly supporting the DE side. Since both 

controllers had similar low-frequency dynamics, the achieved initial levitation dynamics 

were similar as well. Both controllers provided relatively smooth levitation at each 

channel without significant overshoot or oscillations. Both controllers provided a stable 

levitation in the nonrotating case and achieved a settling time of around 0.75 seconds and 

had a steady-state error of less than 2 |im.

94



Figure 48: Initial levitation trajectory with K1 (blue) and K2 (green)

After confirming the controllers' stability in the non-rotating case, the next comparison 

was a run-up test. A run-up test is a relatively simple experiment that provides 

information on the achieved robustness and performance for the whole operating range. 

For the studied system, the system was run from 0 to 10,000 rpm with 200 rpm/sec 

acceleration while the displacement and control current magnitudes were observed. 

Figure 49 shows the observed displacements at each AMB sensor with respect to time.
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Up-to 20 sec., i.e., 4,000 rpm, controller K2 provided better performance, as indicated by 

the low vibration amplitudes. Then, the performance of both controllers became similar 

up-to 7,000 rpm. The performance of controller K2 degraded significantly between 7,000 

rpm to 9,500 rpm, which corresponds to 37 sec and 47 seconds, respectively. However, 

the performances of both controllers became quite similar at the maximum design speed 

of 10,000 rpm. The main reason behind the performance degradation of the controller K2 

was the error in the state-estimations. For an unidentified reason, the observer did not 

provide accurate output estimation between 7,000 rpm and 9,500 rpm. Figure 50 shows 

the observed control currents during the same run-up tests. For the controller K2, control 

current refers to the sum of the output of the controller K2 and the output of the add-on 

controller for the gyroscopic effect compensation. The main reason behind the relatively 

lower control currents at the VW13 channels, i.e., the DE side control channels, in both 

cases was the slight lift provided by the flexible coupling element that connected the rotor 

to the motor. This connection reduced the necessary current at the VW13 channels to 

overcome the weight of the rotor. Neither controller saturated the actuators during the 

run-up test, where the saturation would have happened if over 1 A control current 

magnitudes were demanded. Both controllers used similar control currents at low 

rotational speeds. However, at high rotational speeds, the control currents used by the 

controller K2 was significantly higher, since control current required to compensate the 

gyroscopic effects increases with the rotational speed. The increased current magnitudes 

for operation was not desirable since it indicates higher power consumption. Also, the 

controller K2 used almost 1 A magnitudes at high rotational speeds. That is why special 

care must be given to the desired control current magnitudes in the control problem
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formulation to account for the necessary control current magnitudes for the gyroscopic

effect compensation.

Figure 49: Displacements at AMB sensor positions during the run-up test 
with K1 (blue) and K2 (green)
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Time [sec]
Figure 50: Control currents during the run-up test with K1 (blue) and K2 (green)

The steady-state response of the system at various rotational speeds are shown in 

Figure 51. The orbits confirm the conclusions of the run-up test. Controller K2 provided 

better performance up-to 4,000 rpm, i.e., smaller radius orbits. Then, the orbits of both 

controllers became similar at 6,000 rpm. After 7,000 rpm, controller K2 degraded in 

performance, and the performance difference became the largest at 9,000 rpm. At 10,000 

rpm, both controllers provided similar performances once again.
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Figure 51: Comparison of orbits at various speeds with K1 (blue) and K2 (green)
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5.4 Discussion on the Deployment of the Gyroscopic Effect Compensation

The feasibility of gyroscopic effect compensation for flexible rotor-AMB systems to 

increase achievable performance is investigated. Compensation of gyroscopic effects on 

selected modes means the bifurcations of the frequencies for the modes are either 

eliminated or reduced significantly. Hence, the robustness requirements in the control 

problem formulation can be relaxed, enabling better performance. However, the use of 

gyroscopic effect compensators not only increase the current magnitudes during 

operation, hence increasing the power consumption of the system, but also increase the 

computational cost of implementing the controller. For the system with the add-on 

controller, the control hardware needs to run both the performance controller and the add­

on controller for gyroscopic effect compensation that require the implementation of a 

relatively high-order state-observer and a modal feedback gain. For comparison, 

implementation of controller K1 required 604 MAC operations, where the system 

matrices were implemented in modal canonical form along with sparse matrix algebra 

algorithms. On the other hand, controller K2 required 885 MAC operation with the same 

implementation method, since it required the algebra for both the controller K2 and the 

add-on controller. This implies that the necessary control hardware for the controller K2 

needs to be ~1.5 times more powerful than the control unit for the controller K1. 

Moreover, the accuracy of the state-estimation significantly affects the performance of 

the system, as seen with the controller K2 where its performance degraded significantly 

due to errors in the state-estimation between 7,000 rpm and 9,500 rpm. Although the 

error only affected the performance, it could also cause instability, since the controller K2 
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was not designed to be robust to state estimation errors. However since the design of 

controller K2 achieved a low u-value, indicating it could provide robustness to larger 

than defined uncertainties, the error did not cause instability.

The study does not justify the use of gyroscopic effect compensation to improve the 

performance of the designed controller by relaxing the robustness requirements. The use 

of the add-on controller improved the achieved performance at low speeds and gave 

similar performances at high speeds at the cost of increased power consumption and 

computational complexity. However, the achieved u-value with the gyroscopic 

compensation (0.67) is a lot less than the achieved u-value with the standard approach 

(0.94). That is why the performance criteria can be made stricter for the case with 

gyroscopic effect compensation, which might improve the achieved performance 

significantly.

A significant performance increase is necessary for the gyroscopic compensation to be 

valuable. In its current stage, the compensation provides slight performance increase at 

the cost of increased power consumption and increased computational cost. From a 

practical point of view, the add-on controller for gyroscopic compensation is not viable.
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CHAPTER VI 

CONCLUSIONS

6.1 Summary

This research has addressed the high computational cost of generalized MIMO 

controllers for AMB systems, which is one of the primary barriers for the industry 

adaptation of model-based robust controllers, and has investigated the effectiveness of 

add-on controllers for gyroscopic effect compensation on achievable performance.

Two novel methods were developed to reduce the computational cost of controllers 

while maintaining robust performance; 1) selecting a dual-rate configuration for the 

controller implementation, and 2) redesign of the controller via identifying and removing 

unnecessary channels for robust performance in MIMO controllers.

Two approaches were developed for choosing a dual-rate configuration for the 

controller implementation to achieve maximum computational savings while maintaining 

robust performance. The first approach used worst-case plant analysis along with lifting 

technique that is used for multirate system analysis to determine the optimal dual-rate 
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configuration. Possible dual-rate configurations of the controller were assembled with the 

worst-case plant model via the lifting technique, and the maximum singular values of the 

closed-loop systems were calculated to determine the feasibility of each dual-rate 

configuration. The computational cost of each dual-rate configuration was assessed by 

calculating the necessary number of MAC operations assuming modal canonical form for 

the controller system matrices and sparse matrix algebra algorithms for the computations. 

Then, the optimal dual-rate configuration was selected as the configuration that achieved 

an acceptable maximum singular value with the least computational cost. The second 

approach introduced perturbations to the controller and identified the maximum 

perturbation magnitudes to the controller that would compromise the robust performance. 

The perturbations defined bounds on the controller response. The responses of the 

possible dual-rate configurations were then compared to the bounds to assess their robust 

performance. Then, the optimal dual-rate configuration was chosen as the configuration 

with the response that stayed within the bounds and required the least number of MAC 

operations for its matrix-vector algebra. Moreover, the same bounds were used to 

determine the necessity of each controller channel on achieving robust performance and 

the controller was redesigned by removing the negligible channels to achieve 

computational savings.

The developed methods for computational cost reduction were demonstrated on three 

AMB systems, i.e., AMB test rig, 300 kW turbine generator, and HSM AMB spindle. 

The results for both dual-rate implementation approaches and the redesign approach 

achieved computational savings without degrading the performance to unacceptable 

levels, where the redesign approach provided better computational savings. These 
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methods for computational savings in controller implementations are applicable to any 

AMB system and might provide an incentive for the industry to consider using robust 

controllers for AMB systems.

Moreover, a novel method has been developed to design a modal feedback controller 

as an add-on controller to compensate the gyroscopic effects at selected modes of a 

flexible rotor-AMB system. The aim was to increase the achievable performance with 

robust controller by reducing the robustness requirements in robust control problem 

formulation. The add-on controller was designed based on the inverse dynamics of the 

AMB system. The proposed method was first validated on an AMB test rig, where the 

add-on controller was designed to eliminate the bifurcations due to the gyroscopic effects 

of the third and fourth flexible modes, individually. The experimental work confirmed the 

reduction in the bifurcations, hence confirmed the compensation of the gyroscopic effects. 

Then, the effects of the add-on controller on the achievable performance was investigated 

on a new AMB system with different rotor configuration. For the new AMB system, the 

add-on controller was designed to compensate gyroscopic effects of the first and second 

flexible modes. A robust controller was designed for the new AMB system using a 

modified model of the system that had reduced gyroscopic effects for its first and second 

flexible modes. The designed controller with the modified model was compared in 

performance with a benchmark controller. Some performance improvements were 

observed at the cost of increased power consumption and computational cost. Also, the 

necessity for a robust observer was realized. The controller for the case with the add-on 

controller had the potential to be designed for stricter performance criteria since it 
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resulted in smaller u-values compared to the benchmark controller, hence could achieve 

better performance.

6.2 Future Work

A natural extension to the work on the computational cost reduction via dual-rate 

implementation is to consider multirate implementations with three or more different 

rates. This would potentially increase the achievable reduction in computational cost due 

to the flexibility it provides in implementing each mode of the controller at a carefully 

chosen rate that is fast enough to obtain accurate response of the mode, but slow enough 

to achieve computational savings. However, there would be many possible options to 

analyze and the developed robust performance analysis strategy to select the multirate 

implementation would take too long. That is why a systematic way of selecting the 

multirate configuration can be addressed.

One of the shortcomings of the developed strategy for gyroscopic effect compensation 

is related to the observer design. The developed controller design strategy for gyroscopic 

effect compensation requires a highly accurate modal state estimation and errors in the 

modal state estimation results in unexpected performance degradation, as seen in Section 

5.3, and might even cause instability. That is why the observer design can be improved 

via robust observer design techniques that can tolerate parameter variations in the system 

dynamics, modeling uncertainties and errors in measurements, e.g., the observer design 

strategies presented in [77-79].
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