16 research outputs found

    Using a Combination of PID Control and Kalman Filter to Design of IoT-based Telepresence Self-balancing Robots during COVID-19 Pandemic

    Get PDF
    COVID-19 is a very dangerous respiratory disease that can spread quickly through the air. Doctors, nurses, and medical personnel need protective clothing and are very careful in treating COVID-19 patients to avoid getting infected with the COVID-19 virus. Hence, a medical telepresence robot, which resembles a humanoid robot, is necessary to treat COVID-19 patients. The proposed self-balancing COVID-19 medical telepresence robot is a medical robot that handles COVID-19 patients, which resembles a stand-alone humanoid soccer robot with two wheels that can maneuver freely in hospital hallways. The proposed robot design has some control problems; it requires steady body positioning and is subjected to disturbance. A control method that functions to find the stability value such that the system response can reach the set-point is required to control the robot's stability and repel disturbances; this is known as disturbance rejection control. This study aimed to control the robot using a combination of Proportional-Integral-Derivative (PID) control and a Kalman filter. Mathematical equations were required to obtain a model of the robot's characteristics. The state-space model was derived from the self-balancing robot's mathematical equation. Since a PID control technique was used to keep the robot balanced, this state-space model was converted into a transfer function model. The second Ziegler-Nichols's rule oscillation method was used to tune the PID parameters. The values of the amplifier constants obtained were Kp=31.002, Ki=5.167, and Kd=125.992128. The robot was designed to be able to maintain its balance for more than one hour by using constant tuning, even when an external disturbance is applied to it. Doi: 10.28991/esj-2021-SP1-016 Full Text: PD

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Joint friction estimation and slip prediction of biped walking robots

    Get PDF
    Friction is a nonlinear and complex phenomenon. It is unwanted at the biped joints since it deteriorates the robot’s walking performance in terms of speed and dynamic behavior. On the other hand, it is desired and required between the biped feet and the walking surface to facilitate locomotion. Further, friction forces between the feet and the ground determine the maximum acceleration and deceleration that the robot can afford without foot slip. Although several friction models are developed, there is no exact model that represents the friction behavior. This is why online friction estimation and compensation enter the picture. However, when online model-free estimation is difficult, a model-based method of online identification can prove useful. This thesis proposes a new approach for the joint friction estimation and slip prediction of walking biped robots. The joint friction estimation approach is based on the combination of a measurementbased strategy and a model-based method. The former is used to estimate the joint friction online when the foot is in contact with the ground, it utilizes the force and acceleration measurements in a reduced dynamical model of the biped. The latter adopts a friction model to represent the joint friction when the leg is swinging. The model parameters are identified adaptively using the estimated online friction whenever the foot is in contact. Then the estimated joint friction contributes to joint torque control signals to improve the control performance. The slip prediction is a model-free friction-behavior-inspired approach. A measurement-based online algorithm is designed to estimate the Coulomb friction which is regarded as a slip threshold. To predict the slip, a safety margin is introduced in the negative vicinity of the estimated Coulomb friction. The estimation algorithm concludes that if the applied force is outside the safety margin, then the foot tends to slip. The proposed estimation approaches are validated by experiments on SURALP (Sabanci University Robotics Research Laboratory Platform) and simulations on its model. The results demonstrate the effectiveness of these methods

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications
    corecore