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Abstract

Friction is a nonlinear and complex phenomenon. It is unwanted at the biped joints
since it deteriorates the robot’s walking performance in terms of speed and dynamic
behavior. On the other hand, it is desired and required between the biped feet and the
walking surface to facilitate locomotion. Further, friction forces between the feet and the
ground determine the maximum acceleration and deceleration that the robot can afford
without foot slip. Although several friction models are developed, there is no exact model
that represents the friction behavior. This is why online friction estimation and
compensation enter the picture. However, when online model-free estimation is difficult, a
model-based method of online identification can prove useful.

This thesis proposes a new approach for the joint friction estimation and slip
prediction of walking biped robots.

The joint friction estimation approach is based on the combination of a measurement-
based strategy and a model-based method. The former is used to estimate the joint friction
online when the foot is in contact with the ground, it utilizes the force and acceleration
measurements in a reduced dynamical model of the biped. The latter adopts a friction
model to represent the joint friction when the leg is swinging. The model parameters are
identified adaptively using the estimated online friction whenever the foot is in contact.
Then the estimated joint friction contributes to joint torque control signals to improve the
control performance.

The slip prediction is a model-free friction-behavior-inspired approach. A
measurement-based online algorithm is designed to estimate the Coulomb friction which is
regarded as a slip threshold. To predict the slip, a safety margin is introduced in the
negative vicinity of the estimated Coulomb friction. The estimation algorithm concludes
that if the applied force is outside the safety margin, then the foot tends to slip.
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The proposed estimation approaches are validated by experiments on SURALP
(Sabanci University Robotics Research Laboratory Platform) and simulations on its model.
The results demonstrate the effectiveness of these methods.

vii



Iki Bacakl Yiiriiyen Robotlar igin Eklem Siirtiinmesi ve Ayak Kayma Tahmini
lyad F.I. Hashlamon
ME Doktora Tezi, 2014
Tez Danigsmani Dog. Dr. Kemalettin ERBATUR
Ozet

Siirtiinme dogrulsa olmayan ve olduk¢a karmasik bir olgudur. Insansi robotun
eklemlerindeki siirtlinme, robotun yiirime performansimt hiz ve dinamik davranig
bakimindan olumsuz etkilemektedir. Bu sebepten dolay1 robot eklemlerindeki siirtiinme
istenmeyen bir durumdur. Diger yandan robotun ayaklar1 ile robotun iizerinde bulundugu
yiizey arasindaki siirtiinme, hareketin gergeklesebilmesi igin gerekli olan ve istenilen bir
durumdur. Robotun kaymadan hareket edebilmesi i¢in gerekli olan azami hizlanma ve
yavaglama, bu surtinme kuvveti ile belirlenir. Gunimizde bir ¢ok strtinme modeli
gelistirilmis olsa da, gercek siirtinme Ozelliklerine tamamen sahip olan bir siirtiinme
modeli hentz yoktur. Bu eksiklik ¢evrimigi strtinme tahminini ve telafisinin 6nemini
arttirmaktadir. Ancak gevrimici serbest model tahmini zor olsa da, online model tabanli
tanimlama yontemleri oldukga kullanisl olabilirler.

Bu tez, eklem siirtlinmesi tahmini ve insansi robotlarin kayma Ongoriisii tizerine
yeni bir yaklagim sunmaktadir.

Eklem surtinmesi tahmini yaklasimi, model tabanli yontem ve O6l¢me tabanh
stratejinin birlesimleri baz alinarak olusturulmustur. Ilki ayak ye rile temas ettiginde eklem
stirtlinmesini ¢evrimig¢i tahmin etmek ic¢in kullanilmaktadir. Biped’in kiigiiltiilmiis dinamik
modelindeki yik(kuvvet) ve ivme 6latimlerini kullanmaktador. Ikincisi ayak sallanirken
eklem sirttimesini temsil etmek icin bir siirtinme modeli adopte etmektedir. Robotun ayagi
yerle temas ettigi anda, ¢evrimici siirtinme tahminleri yardimiyla, model parametreleri
uyarlamali olarak tanimlanmaktadir. Tanimlama islemi sonrasinda eklem siirtiinmesi
tahmini, eklem tork kontrol sinyaline, kontrol performansini iylestirmek icin katkida
bulunmaktadir.

Kayma 6ngorisii model bazsiz siirtiinme davraigi giidiimlii bir yaklasimdir. Olgme
tabanli ¢cevrimici algoritma, kayma esigi olarak kabul edilen Coulomb siirtiinmesini tahmin
etmek icin tasarlanmigtir. Kaymayr 6ngérmek i¢in, giivenlik payr tahmin edilen Columb
stirtlinmesinin negatif ¢evresinde tanimlanmistir. Tahmin algoritmasi, uygulanan kuvvetin
givenlik paymin disinda olmasi durumunda ayagin kayma egilimi gosterecegi sonucuna
varmaktadir.
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Tezde sunulmus olan tahmin yaklasimlarin, SURALP (Sabanci Universitesi Robotik
Arastirma Laboratuvart Platformu) lizerinde yapilan deneyler ve modeli iizerinde yapilan
benzetimler ile dogrulugu onaylanmistir. Sonuglar, kullanilan metodlarin gegerliligini
kanitlamaktadir.
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Chapter 1

1 Introduction

The interest in biped walking robots has been increased dramatically in the last three
decades. The bipeds can operate in human environment [1], human assisting applications
[2] and they are helpful to replace the humans in the hazardous environments [3]. Apart
from its superior characteristics in obstacle avoidance and dexterity, the biped has many
coupled degrees of freedom to be controlled. Further, the structure exhibits a highly
nonlinear and complex to be stabilized dynamics.

An extensive research is going on about biped robots walking. Research focuses on

adaptive, efficient, and robust walking [4-10, 11 ].

The mechanical structure of the biped makes the control challenge harder. In general,
the structure contains transmissions or drive mechanisms to transfer the power from the
actuator to the robot link through the joint [12]. Therefore friction is observed at the joints.
Friction has a considerable effect on the robot behavior. It may deteriorate the robot
walking performance. Typical consequences of joint friction are steady state errors, limit
cycles and poor dynamic response [13-15]. Therefore, joint friction compensation received
a considerable interest [16, 17].

Balance preserving of the biped robot while walking is a complicated task. It is
highly desirable for the robot to adapt to the ground conditions. A walking pattern resulting
in a stable gait is required. Generally, the biped walking depends on generated stable
trajectories. The linear inverted pendulum model LIPM is widely used for walking
trajectory generation [18]. As a stability criterion, the Zero Moment Point ZMP stability
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criterion [19, 20 ] is widely employed. However, the foot contact with the environment
poses a critical problem. The balance and locomotion ability of the biped walker is
constrained by the friction forces between the foot and the contact surface [21]. If the forces
or torques applied by the robot legs exceed certain thresholds, then the biped might lose it
stability [22].

The friction is a complex phenomenon under research. Researchers work on
mathematical models that can describe this behavior [23]. Although static and dynamic
models are obtained, there is no exact model that represents the friction behavior. This
poses a challenge for the friction estimation and compensation. Therefore, online model-
free friction estimation based on measurements has certain virtues. It avoids the friction
modeling problems by using some measurements [24, 25]. However, this approach is not

always applicable.

1.1 Motivation

Friction forces are undesired in some applications while desired and required in other
applications. Joint friction is undesired. While the friction force between the biped foot and

the contact surface is required so that the robot can walk.

Joint friction is an unwanted phenomenon. It has undesirable effects on the system
response which may deteriorate the biped robot performance. Joint friction becomes more
significant when power transmission modules are used to transfer the actuator power to the
joint. More precisely, when the transmission modules are Harmonic drive reduction gears
with high reduction ratios. In this thesis, the actuation mechanisms of the considered biped
are constructed with DC motors, belt -pulley system and Harmonic drive reduction gears

with reduction ratios ranging between 100 and 160, depending on the joint of the leg [26].

Minimizing the effects of the joint friction through friction compensation requires
information about the friction. For bipeds, a few studies are reported and can be categorized
into three approaches. One approach uses friction models with offline identified parameters
to compensate for the friction [27-30]. Another approach considers the friction as a
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disturbance among other disturbances [31]. Or generally the joint friction is neglected [32-
35].

Contrary to the joint friction, foot-ground friction is a useful phenomenon that
facilitates walking. Even when stable walking trajectories (for example, once that satisfy
the ZMP stability criterion) are employed, the robot may tend to tip over in real life. This
is because of the environmental uncertainty and change. Among the parameters that affect
the stable walking are the contact parameters between the robot feet and the ground.
Friction forces have a significant role. They determine the maximum acceleration and
deceleration that the robot can achieve, and hence the maximum forces allowed to be
applied to the robot without foot slipping. By estimating the walking surface friction

parameters, the biped walking can adapt its motion so that it preserves its stability.

Researchers conducted experiments on walking on arbitrary surfaces, and with
arbitrary coefficients of friction. In mass of the studies, the coefficient of friction is
considered to be known. In real life, however, the coefficient of friction is unknown or is
only inaccurately known. Assuming a too high value of the coefficient of friction may lead

to foot slipping. On the other hand, low value constrains the motion conservatively.

Therefore, this thesis is motivated to develop an online joint friction estimation
method for walking bipeds. This method is based on the available force and acceleration
measurements along with the reduced biped model. It is applied when the robot foot is in
contact with the ground. Although it is inapplicable when the leg is swinging, it can be
integrated with a friction model that works only when the leg is swinging. The model
parameters are identified adaptively.

Also, this thesis is motivated to develop an online friction estimation method to
estimate the friction parameters between the foot and the contact surface. In addition to the

estimated friction parameters, this method will be able to predict the slip ahead.



1.2  Related work

Joint friction compensation is studied intensively for industrial robots. Here we will
divide the compensation of the joint friction into three categories: Friction model-based,

model-free and actuator fault-based.

In the first category, the friction behavior is represented by a mathematical model
[36, 37]. The model parameters are identified offline. Then the model with the identified
parameters is used to compensate for the joint friction [29, 38-42]. However, the friction is
a complex phenomenon that depends on factors including joint position and load [16, 43].
Moreover, the friction model parameters vary due to the environmental changes .To
overcome these problems, model-based adaptive methods were developed. In these
methods the friction model parameters are tuned online to obtain a satisfactory
compensation action [44-48]. However, friction modeling is a challenge since the friction

behavior is highly nonlinear.

The second category is the model-free one. Here several strategies are used to
compensate for the friction. The measurement-based friction compensation is considered
one strategy [24, 25]. The transmitted torque to the manipulator’s link is measured by
torque sensors and used in the feedback torque control loop. Although its performance is
shown to be effective in practice [24, 25], the torque sensors should be added in the design
process. The drawback of mounting extra torque sensors was solved for the fixed base
robots by using the base sensor control BSC method [43]. It considers that the robot base is
equipped with a force/torque sensor. It projects the sensor readings on the robot links to
compute the manipulator’s link torque. This torque is then used in the feedback torque
control law. However, the biped robot is not fixed in the ground.

Another strategy is based on the disturbance observer (DO) theory [49, 50]. In this
strategy, the friction, external disturbances, system model uncertainty, gravity torque and so
on are regarded as disturbance. The DO is used to eliminate the effects of this disturbance
based on the frequency band [31, 51, 52]. It is assumed that the observer dynamics are
faster than the disturbance. Combining the DO with the model category is reported to

improve the system performance as they complement each other [53].
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The Friction Approximator is a system which uses the soft computing techniques.
Neural networks (NN) are characterized by the parallelism and low level learning. They are
able to approximate nonlinear functions. Using this property, they are used to build
compensators with friction models [54-56]. They are also used to handle the unknown
dynamics including friction discontinuity [45]. However, the approximation error exists
and depends on the structure of the NN. Heavy computation is the result of an
overdetermined NN while low approximation accuracy will be obtained with an
underdetermined NN. Approximators are locally applicable and sensitive to the NN
initialization [57]. Fuzzy systems are used for friction approximation too. They are
characterized by the linguistic information and the high level of logic. They are universal
approximators for nonlinear functions and functionally equivalent to feed-forward NNs.
This property gives them the ability to build models to represent the friction behavior [58-

63]. However the approximation error exists.

The third category considered the friction as an actuator fault with time varying
characteristics. The friction is compensated based on the robust fault estimation theory. To

accomplish this, the fault-tolerant control (FTC) scheme is used for linear systems [64].

Although joint friction compensation is of great significance and reported intensively
for the industrial robots, for bipeds it is generally neglected [32-35]. The model-based
method with offline identified parameters is reported in [27-30]. In a model-free approach,
the joint friction is regarded as disturbance, and the DO is used to eliminate it [31].

However, these techniques have the aforementioned drawbacks.

The friction force between the feet soles and the ground has a significant role. It
determines the maximum acceleration and deceleration and hence the maximum forces
allowed to be applied to the robot [22, 65]. Friction forces can be measured by sensors
embedded in the feet of the humanoid robot as in [66, 67]. Or they can be computed based
on other measurements like the foot ankle forces and foot acceleration. When the foot is in
contact with the ground, the foot slips if the relative velocity between them is not zero. This
leads to define the slipping forces as the difference between the total forces applied at the
foot and the friction forces. The slipping forces are not measured directly, however they can

be calculated.



Slip prediction, if can be performed successfully, can be a valuable asset [5]. It may
prevent the robot from falling. Although it is significant, only a few studies were reported.
In biped walking, often, the non-slipping case is assumed, In other words, the coefficient of
friction is either considered to be very high such that the slip never happens [28, 68-70] or
accurately known [71]. The maximum applied torque is constrained accordingly [72, 73].
For the single support phase of a biped, a method for calculating the slipping force and
torque and predicting their most possible slipping direction is proposed [74]. However a
known friction coefficient assumption is impractical and the environment changes a lot (the

walking surface varies a lot during the walk).

For an unknown floor coefficient of friction, a method for slip detection is proposed
by [75]. It depends on enlarging the walking step gradually until the biped slips, then it is
used later as an upper limit for the trajectory planning. However, this requires several steps

to learn the limit.

A slip observer is introduced in [76] where the slip force is calculated as the
difference between the desired reaction force and the measured one. The desired force is
calculated using the 3D linear inverted pendulum model with known ZMP . However, the
desired reaction force does not include the external and inertial forces, thus it is not
necessarily that the difference is due to higher desired reaction forces, and the slip may

occur even the desired reaction force is less than the measured.

Sensor-based slip detection methods are reported too. Slip is detected for a quadruped
during the supporting phase using the leg acceleration [77]. The slip is detected when the
integration of the acceleration (obtained from an accelerometer) exceeds certain threshold.
For slip-related falls, intelligent shoes were introduced for slip detection [78]. It is based on
the human postural instability based on information from in-shoe pressure sensors and
optional rate gyros. An insole sensor system for biped slip detection is introduced in [79]. It
utilizes force and acceleration measurements for slip detection. The detection algorithm is:
slipping exists when the force and acceleration readings are larger than certain threshold,
otherwise there is no slip. A slip detection approach is developed in [80]. It is based on
searching in the acceleration signal for high amplitudes before, during and after the slip

spike. In the same contest, the acceleration and gyro readings with unscented Kalman filter
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(UKF) are used for slip detection [81]. The UKF innovation is used for slip detection.
However, the previous works are for slip detection not prediction.

Friction models and estimators are reported to prevent slip [82, 83]. However it is
difficult to model the friction as explained before. Moreover, low velocities and the stiction
friction pose more challenges. In our work, the slip is predicted without using friction
models. Thus friction modeling problems are avoided.

1.3 Problem definition

Although joint friction compensation has considerable effect, it is generally neglected
for walking bipeds [32-35]. In some cases it is regarded as a disturbance and tried to be
eliminated by a DO [31], or compensated using friction model with the offline identified

parameters [29, 30].

Slip may cause the robot to tip over. Therefore, it has critical importance. Although
some studies are reported to compensate for the slip, they in general work when the slip
occurs. Beyond this, using models for slip prevention poses problems. This is due to the

discontinuity at the low speed and the stiction behavior of the friction.

Among the model-free strategies, the measurement-based strategy is fruitful. It avoids
friction modeling and approximation problems. However, it can’t be applied on bipeds for
joint friction estimation if there are no mounted joint torque sensors. Moreover, the bipeds
are not fixed in the ground, and therefore, the background developed for fixed-base
industrial robots is not fully applicable for biped robot joint friction estimation. While
walking, the biped switches its legs from the double support phase (DS) to the single
support phase (SS) and so forth. The model-based category of joint friction estimation is
characterized by having better precision friction compensation if the identified parameters
have very small uncertainty [84]. High accuracy can be achieved by adaptive model
parameter tuning. However, it requires information about the friction to update the model
parameters. The biped dynamical model includes the body position, orientation and their



derivatives in addition to the joint angles and their derivatives. This adds more challenge to

the friction estimation and compensation problem.

Therefore, for joint friction estimation, we are looking for a method that has the
advantages of the measurement-based strategy and the adaptive model-based category. This
method must also be able to overcome the unmeasured body velocity and joint angular
accelerations in the biped dynamics model.

It is the idea of this thesis that, the measurement-based strategy, based on the
available measurements, can be employed for slip prediction. It can be used to estimate the
Coulomb friction between the foot and the ground, and thus it can be used to estimate
allowed forces and accelerations. These can be used to predict the slip ahead. However, at
least two measurements are required at the foot. The options for the two measurements are:
1) Ankle forces and foot accelerations, 2) ankle forces and the reaction forces at the foot
sole, or 3) acceleration of the robot body and the reaction forces at the foot sole. For the last
case, a model of the biped is required too.

Based on the above considerations, an adaptive online measurement-based algorithm
is sought in the thesis. This algorithm must be able to estimate the friction and update the
estimated variables when the surface changes. Also, the algorithm must predict the slip
ahead, so that a control action can be executed.

1.4 The proposed method

In this paper, we are proposing two new methods. The first one is for joint friction

estimation and compensation and the second one is for slip prediction.

The first method combines the model-free approach with the model-based
compensation. More precisely, the measurement-based strategy is combined with the
model-based approach of compensation. First, the body attitude is estimated by utilizing the
IMU readings through a sensor fusion approach. Then the robot body (called the base later
on) velocity is estimated using the linear inverted pendulum model LIPM [85]. This model



relates the robot base position, velocity and acceleration with the measured foot reaction
forces. To accomplish this estimation, the joint accelerations are required. This challenge is
solved in two ways: In the first one, walking use of the non-slipping foot assumption, the
joint accelerations are estimated using a pseudo inverse. The second way is based on using
a stable first order filter to obtain the robot filtered dynamic model [86]. First the biped
model is reduced. Then a reduced filtered dynamic model is obtained by taking the
convolution of the impulse response of the stable filter with each equation in the reduced
biped model. Using this way, with integration by parts technique, the explicit calculation of

the angular acceleration is avoided.

The measurement-based strategy works only when the foot is in contact with the
ground without slipping. This strategy is employed for two purposes. The first one is to
provide online joint friction compensation. The joint friction is estimated by using the robot
link torque and the applied joint control torque. The robot link torque is computed (not
measured) using a reduced dynamical model of the biped. This reduced model utilizes the
ground reaction forces GRF and the IMU readings. It also utilizes the estimated base
velocity and attitude and joints accelerations. However, when the foot loses the contact
with the ground, the online friction compensation is no longer applicable. For this case, a
friction model is adopted. The second purpose of the measurement-based strategy is to
update the adopted friction model parameters. Thus the model parameters are adaptively
identified whenever the foot is in contact with the ground. Hence, the proposed method is
measurement-based online friction compensation when the foot is in contact and model-
based adaptive method when the leg is swinging. The proposed method makes use of their
advantages and overcomes their disadvantages. Since this method uses the foot and base

measurements, we will call it: Foot- base sensor estimation (FBSE).

The measurement-based strategy is also used for the slip prediction. Here, based on
the friction behavior, an online model-free algorithm is designed to estimate the Coulomb
friction. This algorithm updates the estimated friction online adaptively. Based on the
friction behavior, the Coulomb friction is the minimum friction beyond which slip will be
observed. Therefore it is used to decide whether the foot is going to slip or not. This is

achieved by considering the Coulomb friction as a slip threshold. To predict the slip, a



safety margin is subtracted from the Coulomb friction to define a slip risk band. Hence,
whenever the applied force is below this band, we will assume that the foot will not slip. If
the applied force is within the safety margin, then the foot tends to slip. Finally if the
applied force is larger or equal to the Coulomb friction, we will conclude that the foot is
slipping. Different measurement scenarios are discussed. The experiments are based on the

foot acceleration and ankle force measurements.

1.5 Contribution

The estimation in this thesis is based on Kalman Filter. Therefore the first contribution
is developing a Kalman Filter by adding two rules to update its process and noise
covariances recursively. The result is an adaptive Kalman Filter which is summarized in the

preliminaries chapter.

A new state space form for the linear inverted pendulum model to estimate the biped
center of mass (CoM) position and its derivatives is proposed. This form is for the case
where the measurements are the biped acceleration and the ZMP with modeling
uncertainty in the measurement of the ZMP . This form estimates the modeling error in the

ZMP and compensates for it.

A novel method for the joint friction estimation for a walking biped robot is
proposed. It combines the model-free method with the adaptive model-based method. The
model-free method is measurement-based and wuses the acceleration and force

measurements with a reduced dynamical model of the biped.

A new method for predicting the slip occurrence of walking biped is proposed. This
method is measurement-based and model-free. The foot accelerations and ankle forces are
used to detect the slip occurrence. Then an online algorithm is designed based on the
friction behavior to estimate the Coulomb friction which in turn is used as a slip threshold.
To predict the slip, a safety margin is subtracted from the estimated Coulomb friction to
define a slip risk band. Hence, the foot will not slip whenever the force is below this band.

If the applied force is within the safety margin, then the foot tends to slip.
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1.7 Thesis organization

This thesis is organized as follows.

In Chapter 2, preliminary concepts are introduced. The friction phenomenon, least

squares algorithm, Kalman and adaptive Kalman filter equations are reviewed.

In Chapter 3, the biped CoM position and velocity are estimated in the presence of
disturbance. The linear inverted pendulum model is written in two forms. These forms are

discussed and tested for disturbance rejection and estimation.

In Chapter 4, the joint friction is estimated and compensated. The estimation is
measurement-based when the foot is in contact with the ground and adaptive model-based
when it is swinging. Since the joint angular accelerations are required, two methods are
used: While the first one uses the foot non-slipping constraint to calculate the joint angular
acceleration, the second method uses a low-pass filtering technique with the biped model to

avoid the explicit calculation of the angular accelerations.

In Chapter 5, the slip occurrence is predicted. An online algorithm is designed based
on the friction behavior to estimate the Coulomb friction which is used for slip prediction.

Finally Chapter 6 contains the conclusion and future research.
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Chapter 2

2 Preliminaries

This thesis is about friction estimation. Therefore the friction phenomenon is
explored and discussed in this chapter first. Then, the least squares algorithm and
integration by parts are listed as system identification and mathematical tools. After that,
Kalman filter (KF) and adaptive Kalman filter (AKF) are reviewed. Finally, a summary of

attitude estimation approach is discussed.

2.1 Friction

Friction is the motion resistance phenomenon that appears between two surfaces in
contact. The friction appears also when there are mechanical systems such as gears,

transmissions and wheels.

The friction is required and useful in such applications such as brakes, cars and
walking robots. For example, the friction force between the biped foot and the contact
surface determines the maximum allowable acceleration the robot can have. On the other
hand, the friction forces at the robot joints have undesirable effects on the robot

performance.

Therefore, for control purposes, it is important to understand the friction behavior and

its effects on the closed loop control system.
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2.1.1 Friction behavior

Consider the object in Figure 2.1.a, the friction force is the tangential reaction force

F, in the opposite direction of motion. The applied tangential force is F, and the normal

reaction force is F > 0. The Friction force F, can be either a static force, denoted by F

fs 1

or kinetic one, denoted by F,, as in. Figure 2.1.b. These forces are respectively defined by
Ffs < :ustatic I:N ! (21)

and

Fo=uFy (2.2)

where u... IS the static coefficient of friction and g, the kinetic coefficient of friction.

: 2 Kinetic friction

T N Motion direction

=
| Static friction is larger
i thanKinetic friction

f -— Object FR—

.
>

F F

max f

(a) (k)

Figure 2.1: (a) Object free body diagram (the object weight is in the normal force), (b)
Friction force behavior, and (c) the friction cone.

When the object is at rest, it resists the initial motion with a larger frictional force
than it does when the motion starts. This can be stated by the coefficients of friction as

Heaic = My - AS Shown in Figure 2.2.b, the value of F is at its maximum when the relative
motion starts, and then the friction force decreases. We denote the maximum value of F
by F,. At F,, the maximum applied force called F, is observed. The region where the

object is in static condition of no motion is referred to as the static region. In this region
14



F. <F,. The phase of motion with nonzero velocity is called the kinetic region. In the
kinetic region F, > F,. Equivalently, the allowable force F, such that the object is in no

motion must be inside a cone with radius F, and height F, as shown in Figure 2.1.c.

2.1.2 Friction models

There is no exact model that represents the friction force. In general, the dominant
friction components are the Coulomb friction F,, Stribeck friction F,, F, and viscous
friction F, as illustrated in Figure 2.2. Several friction models to represent the friction

behavior were developed [36]. The models are either dynamic or static. In a typical static
model, the basic structure contains the Coulomb and viscous friction components and the

friction effect is expressed by

F, =F.sgn(v)+F, , (2.3)

with
F,=uFy (2.4)

and
F,=Fv. (2.5)

Here, u, and F, are the coefficients of coulomb and viscous friction respectively,

and v is the velocity of the moving object.
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Figure 2.2: Friction components

An early dynamic model is the Dahl model [87]. It was inspired by the stress-strain
curves to explain the friction behavior. This formulation does not model the velocity
dependent terms or the Stribeck friction behavior. However, it was the basis for LuGre
model [88] which modified the Dahl model by adding the velocity dependent terms. Also
LuGre model is further modified to the Leuven model [89] by using a stack mechanism to
implement the pre-sliding hysteresis. [89] is also modified in [90] by replacing the stack
mechanism by the Maxwell slip model. A recent continuous model is proposed in [23]. The
friction expression in [23] is

Fo =7 (tanh (7,0)—tanh (739)) + 7, tanh (7:0) + 740, (2.6)

where y,,i=1,---,6 are positive constants. The model has the viscous dissipation term .6

and the coulomb friction term y, tanh(;/sé). It captures the Stribeck effect by the term

tanh (,0) —tanh ( ;6. The static coefficient of friction can be approximated by 7, +7,.

In this thesis, the model in (2.6) will be used as a friction generator, while the model

in (2.3) will be used for friction estimation.
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2.2 The least squares algorithm

In an identification problem, where the model parameters are to be identified, a cost
function is introduced. This cost function measures how the model fits the experimental
data. The least squares method minimizes the sum of the square of the errors. Lets consider

the linear model

y(k)=a3 (k)+---+a,3 (k)=9" (k)¢ , (2.7)
where
&
g=|: |, (2.8)
an
and
4 (k)
g= + | (2.9)
8, (k)

Here, y is the observed or measured data, ¢ the unknown parameter vector, 4 the
known regression variable vector and i {1, n} . n is the number of unknown scalar

parameters.

Then, for a number of samples N, , the estimated parameters vector (/3 is

¢ = arg¢min %(Y —yg)(Y —://¢)T (2.10)
where
y(1)
Y= |, (2.11)
y(N,)
and
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w=| (2.12)

The dimensions of the above vectors and matrices are: Y : N x1, d:nx1, w:N xn

and ¢: nx1. Then the parameters vector is calculated by
~ -1
d=(v"v) v'Y . (2.13)
The term (V/Tz//)_l w" is called the pseudo inverse of i .

The above discussion is for one model with n parameters and N, samples. For

N models, combined matrices can be expressed as

)
o= (2.14)
dy
Yl
Y=|:|, (2.15)
YN
and
[ 4
Y =diag|| : || (2.16)
Yn
Then the estimated models parameters vector ® is then obtained by
2 T\ Tyt
O=(¥'Y) WY (2.17)

For real time applications, the recursive least squares (RLS) is more preferable than

(2.17). Here with N, =1, the RLS algorithm [91] is

D(K)=D(k—1)+Kps (K)ens (k) (2.18)

18



eus (K) =Y (k)= (k)P (k-1) , (2.19)
Kes (K) = Pas (k=2)®7 (K)(1+¥ (k) Pys (k-1)¥7 (k). (2:20)

Pacs (K)=( 1= Kgys ()W (K) ) Pas (k1) . (2.21)

where the matrix P, s can be interpreted as the covariance of the parameter vector.

2.3 Integration by parts

Integration by parts will be used to avoid the explicit calculation of the joint angular

acceleration. Given two continuous functions f(r) and g(r), then the integral

f (r)g (r)dr can be evaluated using the integration by parts technique as

D —y T

:—i f(r)g(r)dr

D C— T

f(r)g(r)dr="f(r)g(r)

f(r)g(r)dr

=f(b)g(b)-f(a)g(a)-

D — T

where the dot notation represents the derivative of the function [92].

2.4  Kalman filter

Kalman filter KF is among the most popular and famous estimation techniques. That
is because it merges the observer theory and the Bayesian approach. It is a statistically
optimal estimator that estimates the instantaneous state of a dynamic system perturbed by
noise using noisy observation that are related to the state [93]. Basically, KF depends on
two models: The plant dynamic model which describes the system behavior over time and
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the stochastic models which describe the process and observation noise properties [94, 95].
Consider the discrete-time linear state space model

X, =AX,_,+Bu, ,+w, , (2.23)
Y, =CX, +V, ’ '

where x,eR" is an n— dimensional state vector with initial state value x, that has
Gaussian distribution of mean m, and covariance P, (i.e. x,~N ( m,, PO)), AeR™" is the
state matrix, BeR™™ is the input matrix, ueR"™ is the system input, weR" is the
Gaussian process noise with zero mean and constant covariance Q (i.e. w~N(0,Q)),
veR? is the Gaussian measurement noise with zero mean and constant covariance R (i.e.
v~N(0,R)), yeR? is a d - dimensional measurement vector, CeR®" is the output
matrix, and k is the time index. For this system, the matrices A,B, and C are considered
to be known at the time instant k, and a random initial state mean m, and covariance P,

are given before applying KF. The state estimation is carried out under the following

assumptions:

Assumption 1: The process and measurement noises are assumed to be independent

and mutually uncorrelated with the given means and covariances

()()E( )

, (2.24)

with

1 i=k
5“={o i¢k}’ (229

where E (") stands for the expectation of (*).

Assumption 2: The inputs are considered to be piecewise constant over the sampling

time interval T ,i.e. u(t)=u, ,, t_, <t<t =t _,+T.

Assumption 3: The noise covariances are considered to be constant.

20



Assumption 4: The process and measurements have the same sampling time.

Under these assumptions for the system in (2.23), the conventional KF algorithm is

composed of the prediction step

X, =AX_,+Bu,_,

: (2.26)
R =AR, A +Q s
and the measurement update step
K,=P CT(CPR CT+R,)"
% =% +K, (z,-C%,) . (2.27)

P, :(I —KkC)Pk_

In (2.26) and (2.27), the following notation is employed: (.) and (=) stand for the

prior and posterior estimates, respectively. P is the estimation error covariance matrix and
K is the Kalman gain. | is the identity matrix, X is the estimated state and z is the

measurement vector with the same dimension as y .

For the best performance of KF, both the system dynamic model and the noise
statistic model parameters must be known. However, in many applications, the stochastic
model parameters may be unknown or partially known. As a result, KF performance
degrades or may even diverge [96, 97].

The values of Q and R have an important effect on Kalman filter estimates, the

estimated state X, will be biased if the value of Q is too small with respect to the correct
value, and X will oscillate around the true value if the value of Q is too large with respect

to the correct value [98]. The KF algorithm uses the noise statistics to influence the KF gain
that is applied on the error between the available process information and the most recent
obtained measurements. The filter gain projects this error to the process information to get
the best estimate. Thus, noise characteristics have a significant importance on KF
performance. This motivates the research of developing and improving KF such that it can
adapt itself to the uncertainty in the noise statistical parameters, thus reduce their effects.

This type of KF is well known as Adaptive Kalman Filter AKF.
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An AKF is developed in the framework of this Ph.D. study [99]. It uses the idea of
the recursive estimation of KF to develop two recursive updating rules for the process and
observation covariances respectively. The design is based on the covariance matching
principles. Each rule has a tuning parameter which enhances its flexibility for noise
adaptation. The proposed AKF proved itself to have an improved performance over the
conventional KF and in the worst case, it converges to the KF.

25 Adaptive Kalman filter

In this section the proposed AKF is briefed. It is based on developing two recursive
updating rules R1 and R2 for noise covariances R and Q, respectively. Consider that the
assumptions 1 - 4 hold for the discrete-time linear state space model given in (2.23), then

for a given initial value matrices R, and Q,, there are constants O<e, <1 and O<e«, <1,
positive constants N, and N, and noise covariance errors AQ and AR such that the KF

performance is improved by updating the observation and the process covariance matrices.

The adaptive Kalman filter algorithm is summarized in (2.28) - (2.38). For given
initial values @, ,€,,X,,P,,Ng,N,,Q, and R, , the priori estimate of the state vector X,

is given by
%-=A%_,+Bu,_,, (2.28)
with a priori estimated covariance P~
P =AP_ A" +Q.,. (2.29)
The measurement residual e and its mean & are defined as
e, =2, —-CX, (2.30)
and

g =a, Ek_1+Niek, (2.31)
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respectively, where N is a positive tuning constant and

The measurement noise covariance matrix R is updated as
R, :| diag (@, R, ,+AR, )| :
where diag stands for the diagonal matrix. AR is given by

1

AR =—— (6,8, )(&,~§, ) ~——(CP~CT),.

N, -1 N, ‘

The posteriori estimate X is obtained using the update rule

X, =X +K, e

k Yk

where K is Kaman filer gain and expressed by
K,=P CT(CR C"+R )",
The posteriori covariance P is updated by

P =(1-K.C)PR,

where | is the identity matrix. The process covariance matrix Q is updated by the

expression
Q, =|diag (@, Q. ;+AQ, -
Here AQ is defined by

1

AQk:N_( P —ARLA )+ - (A=A (AR, )T’

Q NQ

where N, is a positive tuning constant and

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



A and A are the state error and its mean respectively. They are defined by

A

A =% —X, 241
k=R A

and

A

Ac=a, N +—A,, (2.42)

1
NQ

respectively. This AKF is used throughout this thesis for estimation purposes.

2.6 Base attitude estimation

In a previous work of the author a sensor fusion approach to estimate the attitude of
robots by utilizing the IMU readings was developed [100]. This approach is independent of
the robot model and it can be applied for the bipeds too. It employs two sequential
estimators. The first one is for the gravity estimation and uses KF. The second one is for the

attitude estimation and uses an Extended Kalman Filter EKF (Figure 2.3).

KF is employed for the gravity estimation mainly based on acceleration readings. KF
states are the gravity acceleration, linear acceleration and the acceleration bias. The
accelerometer output consists of the gravity acceleration, linear acceleration, bias and noise.
The gravity acceleration vector contains information about the roll and pitch angles of the
body. To initialize KF states, the accelerometer output signal has to be decomposed. By
ignoring the noise, the values of the accelerometer signal terms are predicted using the
pseudo inverse matrix multiplication. The predicted values are used as initial values for KF.
The gravity acceleration estimate from KF is used for the computation of the x- and y-Euler
angles. The computed Euler angles are transformed into quaternion representation to be
considered as a “measured quaternion” for the correction stage in the EKF. To accomplish
this transformation, the z-Euler angle is also required. It is borrowed from the quaternion

estimate of the EKF and initially it is considered to be zero.
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Figure 2.3: Attitude estimation approach

The EKF uses the measured quaternion and the gyroscope readings to produce the
correct quaternion vector. Since the quaternion has the unity norm constraint, this
correction is followed by a numerical norm correction to keep the unity magnitude of the
quaternion. Then the normalized estimated quaternion is converted to represent the attitude.
The two estimators feed each other cyclically: The EKF provides the z-Euler angle for the
gravity estimator, whereas the gravity estimator produces the measured quaternion for the

attitude estimator. The noise covariances initializations are provided for both estimators.

The resulting attitude matrix A" represents the attitude of the IMU frame O, with

respect to the world frame O,
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Chapter 3

3 Linear Inverted Pendulum Model for State Estimation

An on-line assessment of the balance of the robot requires information of the state
variables of the robot dynamics. However, modeling errors, external forces and hard to
measure states pose difficulties to the control systems. This chapter presents a method of
using the motion and force information to estimate the center of mass CoM position and its
derivative and the disturbance effects on a walking biped robot. The motion (acceleration
and angular velocity of the robot body) is acquired from the inertial measurement unit IMU
and the force is measured from force sensors at the robot feet. An AKF is employed for the
states estimation based on the Linear Inverted Pendulum Model LIPM. Two types of
disturbances are estimated, the modeling errors and external accelerations. To estimate
these disturbances, the LIPM is written in two forms, which we call form 1 and form 2, and
each form has its own advantages. The former is well known and has better performance
when external accelerations exist, however it fails in case of modeling errors. Therefore, we
introduce the latter, its performance is better when modeling errors exist. Both forms are

equivalent when no disturbance exists.

This chapter introduces the LIPM, estimation methodology and the results of

estimation.
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3.1 LIPM dynamics

In this model, the biped base is modeled as a point mass concentrated at the CoM.
This mass is connected to a stable contact point on the ground using a massless rod which
is an idealized model of the supporting leg [101] as in Figure 3.1. The swinging leg is

assumed to be massless too. The CoM has fixed height z, and position coordinates in the

. . T
three dimensional space c=[c, ¢, z,] .

Figure 3.1: LIPM

The LIPM is frequently used to generate walking trajectories [18]. Yet another
requirement is that the walking trajectories must be stable. As a stability criterion, the Zero
Moment Point stability criterion [19, 20 ] is widely used. Referring to Figure 3.1, the ZMP,

P,uwe 1S the point on the sole (x—y plane) where the moments M around the x— and y—
axes are equal to zero. In other words M, =M =0. These moments are due to the ground

reaction forces. For the biped to be stable, the p,,,, must lie in the supporting polygon. The

e Can be calculated using the normal reaction force measurements F, to form p5,.as

[102]

“F.p, + “Fyp
p;NMP = ,\|I_F': + RFE R ’ (31)

where ™F, and p,, are the normal force and the p,,,, position vector for the foot m with

(3.2)

L  fortheleft foot
R fortheright foot
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The LIPM relates the p,,,, with the CoM dynamics as

C:Zg(c_pzw’)' (3.3)

where g is the constant gravity acceleration and ¢ the CoM acceleration. This model is

convenient since it can be written in a discrete state space representation. Also, linear
methods of estimation can be implemented on it.
The biped base is assigned the frame O, as in Figure 3.2. The IMU consisting of

triaxial accelerometer and a triaxial gyro unit has the frame O, and located at a position T,

and attitude A with respect to O, . Bearing in mind these frames, the acceleration of O,
can be calculated using the IMU readings. And hence the CoM acceleration can be

calculated if it is at O,. However, the CoM frame origin is not necessarily to be the same as

the base frame. The CoM may have an offset ¢ An example of this offset is shown in

offset *

Figure 3.2, the CoM has x_.. from the base frame which has to be considered. Note that

offset
O, and O, are two points on the same rigid body, thus their angular velocities are the
same. Accordingly, the IMU output acceleration v, and angular velocity o, are utilized to

compute ¢ in the world frame O, as

& = A, + Ao, x(Ato, (1 el ) )+ A, (R +el ), (B4)

w
offset

where r" and c, are respectively r, and c.,, asexpressed in the world frame.

offset

Assumption: c ... isassumed to be constant in the body frame.

offset
The computed acceleration from (3.4) is expressed in the body frame as
c=AlC", (3.5)

Here A, is the attitude of the frame O, with respect to world frame O,, and defined by

A, =A"A. (3.6)
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The acceleration expression ¢ is utilized for the state estimation in the next

subsection

CoM

<0

s ‘— xaﬂ.‘ser

Figure 3.2: Base frame offset, O, is the body base frame origin.

3.2 Estimation of CoM variables

The CoM position, velocity and acceleration are estimated using (3.3). The LIPM can
be written in several discrete state space models depending on the considered states, inputs

and measurements [69, 103, 104]. Here, the available data are the IMU acceleration and
poY., then (3.3) can be written in two state space forms: Form 1 and Form 2. Each has its

own characteristics and conditions. The former is known in the literature; however the latter

is introduced in this thesis work to be used in cases where the former fails.

3.2.1Form1

This form considers the states as x= [cT ¢t ¢ ]T . With this state description, (3.3)
can be written [69] as
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g C 0, I; Ogfjc| |0,
m ¢|=0, 0, I,|l¢|+|0,]|C, (3.7)
¢ 0, 0, 0,]¢ I,
and
C
Y=[|3 0, —ils} ¢l (3.8)
9 ¢
In discrete from, (3.7) and (3.8) correspond to
c I, 1,T 1,05T%][c 0,
¢l =|0, I, I,T ¢| +|0,|C +w,,, (3.9
¢l 10, O, I, ¢l LTl
and
c
Yk:{ls 0, —il3} ¢l +v, (3.10)
| 9 "]l
c €l
with
. G —C
= 3.11
G = (3.11)

Here k is the time index, Y the measurement vector and ¢ the CoM velocity. The

input ¢ is piecewise constant over the sampling time interval T, ..
¢t)=¢, t <t<t,=t+T. w and v are the process and measurements noises

respectively and they are defined as in (2.24). This form is observable one and preferred

when:

. C is known and the IMU location is known too. Thus the pf,. is correctly

offset

measured. Then, the model (3.9) and (3.10) along with (3.11) are used directly in the stable

AKF (2.28) - (2.38) with the state vector x= [CT ¢ ¢ ]T to estimate the states. After
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that, the base frame position p, and velocity v,, as expressed in the world frame O,,, are

calculated using the estimated states ¢ and ¢ as:

P = Ay (E+Copear) (3.12)
and
v, =A, (6+(A,bm, )xcoﬁset) : (3.13)
respectively.
o poy. is correctly measured while the accelerometer position has some uncertainty.

err

This leads to an error in the p,,,, called p3.. This error is used to estimate this

err

uncertainty as shown later. If there is no position error or uncertainty, the p3,,, represents

the external force applied on the biped.

3.2.2 Form 2

This form differs from form 1 in terms of inputs, outputs and states. Here the
measured time derivative p3,. is the input and the output is the CoM acceleration. p% . is
included in the states. This model is used when the measured acceleration is correct while

the measured p3i,, has uncertainty. One advantage of this form is that the uncertainty is

reduced when using p3y,.. This can be explained as follows: the measured ptY,. has
position and acceleration errors, since the position error is constant in the body frame, i.e.
Comset (K) = Conee (K —1), then this error is canceled by using the derivative. The form is built

first by taking the time derivative of (3.3) as

¢ =%(C—D§“Mp), (3.14)
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then, by using the backward Euler method with sampling time T, the acceleration at the

current time instant k for the discrete form of (3.14) is

cﬂ)=T§{qk—n—p%Pw—i»+qk—n, (3.15)

c

where

Fn _nM —
D;T\Ap(k—l)= 2w (K) TZMP(k 1) (3.16)

T\T ) i
Let (cT ¢ ¢ (IO;”MP) ) be the states, then the discrete state space is

. 1 T 05T% 0 . 0
. 0 1 T o . .
; (k)= 0_%T 1 oof (k-—1)+_?gc_T Priee (K-1)+w(k=1) 5,5
Pzmp 0 0 0 1 Pzmp T
and
C
Y=[0 0 1 0] ¢ |+ (3.18)
PzZie

Then, the model (3.17) and (3.18) along with (3.16) and (3.1) are used directly in the
T
stable AKF (2.28) - (2.38) with the states vector x:(cT ¢ ¢ ?;,,P)T) to estimate
the states.

However, the estimated velocity state ¢ requires post processing due to the noise and

peaks that show up. It is filtered with a filter constant g, e(O,l). Calling the filtered
version éfi,tered , then it can be expressed as
Cfiltered (k) = g3C(k)+(1— gS)Cfiltered (k _1) ' (319)

after that, the velocity v, , as expressed in the world frame, is calculated using Efi,tered as
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A

vy (k)= A, (k)(Cﬁ,tmd (k) +( Ao, ()% Cye (k)) (3.20)

This form is preferred when the measured p5,. has modeling error. This is because

the modeling error is constant and its time derivative is equal to zero. Thus its effect is

canceled.

3.3 The error in the p,,,»

The p,,,» trajectory can be measured using the force sensors as in (3.1). Also, it can

be calculated from (3.3) as
Z. ..
Pzmp :C_EC, (3.21)

In the ideal case the results of both (3.1) and (3.21) are the same. However, modeling

and acceleration errors lead to p3,,.. Two errors are possible, position modeling error like

C.ee @Nd acceleration error AC. The position error c ., exists if the body frame position

offset

p, is considered without including X, as in Figure 3.2. The acceleration error At exists

offset
if the accelerometer has uncertainty in its position with respect to the CoM or an external

acceleration is applied. Considering the frame O, as the origin of the body, then p,,,, IS

stated mathematically as
z . .
Pzwe :(Agpb _Coﬁset)_é(Agpb _AC)' (322)

err

Accordingly, p3,,, is expressed as
err ZC .. .
Pzve = ;R/IP - ((Agpb ~ Coteet ) _E(Agpb - AC)] : (3.23)

This error has both the position and acceleration errors. In terms of estimated states,

the error can be written as
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e ()=l () 6002801 |. 629

measured

where the p%y,, in (3.24) is the measured one from (3.1). This equation can be interpreted

err Fy

as follows: The error p3,,, is the difference between the measured p},, based on force
sensor readings and the measured p,,,, based on acceleration sensor measurements. As

clear from (3.23) and (3.24), the error signal p3,, is composed of modeling and

acceleration errors. In this thesis the modeling error is assumed to be the low frequency

err

component of p3,,.. Therefore, a low pass filtering approach is used to estimate the

modeling error and then the estimated error is used to correct the estimated states.
3.4 Results

Experimental and simulation tests are conducted on SURALP ( Sabanci University
Robotics Research Laboratory Platform (Figure 3.3)) [26] and its model while walking.
SURALP is equipped by force/torque sensors located at the feet ankles and a three-axes
accelerometer located at the base frame. The force/torque sensors are used to calculate

poy.. . While walking, the biped was not subjected to external forces. The simulation model

is a 12 degrees of freedom DOF biped model. It consists of two legs, each has 6 DOF, and
a trunk connecting them. The hip has three joint axes, the ankle has two joints and the knee
has one joint (Figure 3.4). The dimensions are taken to match SURALP. The details of

contact modeling and simulation algorithm are in [105]. The body frame has an offset
(Xye ) OF 35 mm. The IMU is located with attitude A) =1,, where 1, is a 3x3 identity
matrix. In the simulations, the three-axes IMU which is available in MATLAB simulink is
used. It is composed of three-axes accelerometer and three -axes gyroscope with
contaminated noise. Each foot has four triaxial force sensors. These sensors are located at
known positions with respect to the foot frame [26]. The experimental and simulation

parameter values and the initialization of AKF for the x— and y— directions are identical.

They are presented for one direction in Table 3.1.
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Figure 3.4: The kinematic arrangement of SURALP

Table 3.1: Experimental and simulation parameters values and the initializations of
AKF
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Form 2 Forml
Parameter Value Value
Experimental Simulation Experimental Simulation
0.001 sec 0.001 sec 0.001 sec 0.001 sec
0 2000 2000 2000 2000
N, 1000 1000 1000 1000
Xo [0 0 0o |[[0o0o00| [00 0 [0 0 of
Qo l, l, I l5
R, 1 1 1 1
P, 1001, 1001, 1001, 1001,
A, [0 0 0o |[[0o0o0¢0| [000f [0 0 o]
g, 0 0 0 0
g, 0.0025 0.002 : :

To measure the performance, the root mean square error (RMSE) is used. It is

defined as

> (B()-=())

RMSE = |- v , (3.25)

where = and Z are the estimated and true variables respectively.

The tests are conducted to examine four conditions: Uncertain acceleration

measurements due to position uncertainty with correct py,, measurement; uncertain

acceleration measurement due to external acceleration with correct p5. measurement;

correct acceleration measurements with uncertain p3\,, measurements; and correct

acceleration and p5y,, measurements.
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3.4.1 Uncertain acceleration measurements due to position uncertainty (experiments)

In this experiment, the accelerometer position has uncertainty while the measured
o o is correct. The CoM position must follow the pZ:,.. Therefore, the estimated CoM

position is compared with the p5:,.. Figure 3.5 shows the p%,, and the estimated position

in the x— direction using the two forms introduced in the previous sections. Initially, the
biped is not walking as observed from the constant p5,. =p,,, trajectory. After that the

biped starts walking, the measured pY,. =p.,,» trajectory is shown as the blue dashed line.

Form 1 tracks the p3y,.. This is expected since it uses the correct p5,. in the correction
stage of the AKF. Form 2 estimation has a constant offset, this offset is due taking the first

derivative of p3i,.. The value of the offset is estimated as in Figure 3.6.a using form 2.

Accordingly, the true state ¢, . of From 2 is

true

Bune (K) = 8(K) + e (K) . (3.26)

01 T T T T

|}

0.05

(m)

-0.05

-0.1

ES
= —

_0. 15 | | | |
0 5 10 15 20 25

Time (sec)
Figure 3.5: CoM position in the x— direction

The offset estimation converges exponentially and starts even though the biped is not

walking. This is due to that the measured p%",. depends on the force measurements not the
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body acceleration. Furthermore, the measured p3,. is used directly to calculate the p%y,,

and hence to estimate the offset.

Figure 3.6.b shows that when the offset is compensated as in (3.26), both forms have
similar position estimation behavior. One observation is that when the biped starts walking,
the RMSE of Form 1 increased dramatically while the RMSE of Form 2 has much less
increment. The estimated CoM velocity using the two forms is shown in Figure 3.7. As
observed, Form 2 has zero estimated velocity while the biped is not walking. Further, at the
end of the walking period (25 sec), the velocity converges to zero. However, Form 1 has a
nonzero velocity value even the biped is not walking and the velocity converges to a

nonzero value at the end of the walk. While walking both forms have similar behavior.

It can be conclude that Form 1 and form 2 have similar behavior for this case.

Position error in x-direction Position RMSE in x-direction
. . . . 0.025 y y T T
------------------- Form 2
0 0.02 Form 1
-0.005st | Form 2| |
. Form 1 0.015 ,
E -001 |
0.01}
-0.015 X
-0.02 J 0.005 N T e ———
10,025 : - : - 0 - -
0 5 10 15 20 25 15 20 25
@) (b)
Time (sec) Time (sec)

Figure 3.6: (a) Position error in the x — direction from both forms. and (b) position
RMSE in the x— direction from both forms
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Estimated CoM velocity in x-direction
0.2 T T T T

Form 2
0.15

e Eorm L

m/sec

-0.2 1 1 1 1
0 5 10 15 20 25

Time (sec)

Figure 3.7: Estimated CoM velocity in x— direction

The same discussion is valid for the estimation in the y— direction. The position

estimate is shown in Figure 3.8, the error performance in Figure 3.9 and the estimated

velocity in Figure 3.10.

CoM position estimation in y-direction

0.2 p

0.15f

Form 2

0.05F

(m)

-0.05f

_01 -

-0.15f

0.2+

-0.25
0 15 20 25

Time (sec)

Figure 3.8: CoM position in the y— direction
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0.02

0.015¢

0.01p

0.005

(m)
o

-0.005

-0.01

-0.015F

-0.02
0

Figure 3.9: (a) Position error in the y— direction from both forms. and (b) position
RMSE in the y— direction from both forms

Position error in y-direction
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Form 1
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Form 2
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Estimated CoM velocity in y-direction
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Figure 3.10: Estimated CoM velocity in y— direction
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3.4.2 Uncertain acceleration measurement due to external acceleration (simulation)

In this simulation, a constant acceleration error A¢ =0.5m/sec’® is considered in the

x— direction. Since Form 1 has the input ¢, then the constant acceleration error is

canceled. Hence it will not affect the estimation. Furthermore, Form 1 can estimate it

(Figure 3.11), the estimated acceleration error AE =0.45. Form 2 fails in this case. This is

expected since the wrongly measured acceleration is used in correcting the final states in

the AKF. The estimated AG diverges with time as observed in Figure 3.11. Since no offset

errors are introduced, the estimated error converges to zero. The velocity estimation

performance is shown in Figure 3.12. Although the RMSE of form 1 is larger, it decreases

with time. However, the RMSE of Form 2 increases.

Coffset (m)

0.6

0.4t

0.2t

2
acc,, (m/s”)

0.6

Error Estimation

X-acC,, Form 2

0.04
__________ Y-Costset Form 2 - ¥-Ctret Form 2
0.021 memmmee Y€ ey FOTM 1 x-acc, Form1
y-acc  Form1 == Y-Cppeer FOrM 1
0 v ahagidete st in sl falh e amecvrar | X-Co oot FOMM 2
B X-C oot Form 1
-0.02} T y-acc_ Form1
B True x-acc
-0.04 L : ! -
0 5 10 S y aCCerr Form 2
| | | | | I I
0 2 4 6 8 10 12 14 16
Time (sec)

Figure 3.11: Error estimation with A¢, =0.5.
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Estimated velocity in x-direction Velocity RMSE in x-direction

0.4

0.25

0.2}

0.15¢

m/sec

0.1}

0.05

0 5 10 15
(b)

Time (sec) Time (sec)

Figure 3.12: (a) Estimated velocity in x— direction and (b) the corresponding RMSE

3.4.3 Uncertain piy,, measurements (simulation)

In this simulation, the accelerometer has a known position and no external

acceleration. The measured p5y,. has position uncertainty. In these tests, a modeling error

in the x-direction of 0.035m is added. It is expected that this error will not affect Form 2
since p&Y. is considered as an input and thus the constant modeling error is canceled. Form

1 is affected since it uses py,, with the error in the correction stage of the AKF. This is

confirmed in Figure 3.13; form 2 compensated for this modeling error and estimated it,
while Form 1 failed. This modeling error has limited effect on the velocity estimation and

both forms have similar estimated velocity behavior (Figure 3.14).
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Figure 3.13: Error estimation with X .. =0.035
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Figure 3.14: RMSE in both directions for both forms
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3.4.4 Correct measurements

Here, neither modeling errors nor external accelerations are added and both the

accelerometer and the measured ply,. are assumed accurate. Both of the forms have the

same performance as shown in the error plot in Figure 3.15. The estimated offset and

acceleration error converge to zero.

Estimation error
ir l T T T T

X-C o trot Form 2
0.8 0.8f Y Cofreer FOTM 2 .
X-C o tret Form 1
0.6 0.6 = Y-Cofreer FOIM 1 b
x-acc Form 2
04r 0.4r y-acc,,, Form 2 7
x-acc_Form 1
02f _ 02f o .
= o y-acc,,, Form 1
= of £ o2 T e e e
3 o
o o
02F © 02 -
0.4} 0.4} .
0.6 -0.6 1
-0.81 -0.81 B
4L 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Time (sec)

Figure 3.15: Estimation error

35 Conclusion

A method to estimate the center of mass CoM position and its derivative and the
disturbance effects on a walking biped robot is proposed. The method utilizes the robot
body acceleration and the reactions forces at the robot feet. An AKF is employed for the

states estimation based on the Linear Inverted Pendulum Model LIPM.

The LIPM is written in two state space forms: Form 1 and form 2. The former is well

known and considers the CoM position and its first and second derivatives as the states.

The input to this form is the CoM jerk and the output is the p,,,,. The latter is introduced
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in this thesis, it considers the CoM position and its first and second derivatives and p5,. as

the states. The input to the form is pSy,, and the output is the acceleration.

Two types of disturbances are estimated, modeling errors and external accelerations.
The results demonstrate that both forms are equivalent when the measurements are correct
and no disturbance exists. Also there are equivalent when the accelerometer has position

uncertainty. However, Form 2 fails when there exists an external acceleration. On the other

hand, form 1 fails when there are modeling errors in the measured p%,. .
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Chapter 4

4 Joint Friction Estimation for Walking Bipeds

The joint friction of a non-slipping walking biped is estimated. A measurement-based
strategy is used to estimate the joint friction online when the foot is in contact with the
ground. This strategy does not necessitate a friction model. To estimate the friction, it
employs a reduced dynamical model of the biped and utilizes the measured ground reaction
forces and the IMU readings. It uses the estimated body attitude, body velocity and joint
angular accelerations. However, when the leg is swinging, this strategy is inapplicable.
Therefore, a friction model is adopted to represent the joint friction. Its parameters are
identified adaptively using the estimated online friction whenever the foot is in contact. The

estimated joint friction is used in the feedback torque control signal.

Joint angular accelerations have a significant role in the joint friction estimation.
Therefore, two methods of joint angular acceleration estimation are employed: The first one
uses the constraint of non-slipping walking and the other one uses a filtered dynamics

model.

The method depends on the robot foot and base measurements, so we call it: Foot
base sensor estimation FBSE. This chapter introduces the biped model, joint angular

acceleration estimation methods, joint friction estimation methodology and the results.
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41 Biped dynamical model

The biped, which is considered here, consists of a body and two legs which are

connected to it as in Figure 4.1. Its motion is defined in the fixed world frame O,. The
body is considered as the base link with the base coordinate systemO,. The hips and feet
soles have coordinate frames too.

For this work, it is assumed that the biped is equipped with contact force sensors with
frame origin O, assembled at the feet soles [7], joint encoders attached to the joint

actuators and an IMU with a frame originO,. The IMU is composed of a 3-axes

accelerometer and a 3-axes gyroscope.

Body
Coordinate
Frame

i

N/

I\

ik, "

=Y
=8
| G Co0rdinate
A Frame
Right H r';:/ ;
Coordinat {
9 Frame
World ™ b Lo/t Foor
Coordinate " Right Foot 2,
Frame Coordinate x, oordinate
Frame Frame

Figure 4.1. Coordinate systems. O, and O, stand for the origins of the world and
body coordinate frames, respectively. The feet coordinate frames are fixed to the feet soles

[8].
The biped interacts with the ground and is modeled as a free-fall manipulator. For a

biped  with N joints, and the  defined generalized  coordinates
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x" =[p;,Al,0"] e R*xSO(3)xR", generalized velocities v' =[v],®],®'] € R®*xR*xR"

and generalized forces u’ =[f],n],t"] € R*xR*xR", the robot model is
H(X)V+C(X,V)V+g(X)+U:. =u+Ug, (4.1)

where 8cR"and 6=w<eR" are the joint displacement and angular velocity vectors,
respectively. A, € SO(3) is the transformation matrix describing the orientation of body
frame axes relative to the world axes. p, and p, = v, are the position and linear velocity of
the robot base-link coordinate frame center. ®, is the angular velocity of the robot body
coordinate frame. f, e R® and n, e R® are the force and torque vectors generated in the
base-link by the legs, and t is the generalized joint control vector. u.is the joint frictional
forces vector. The matrix H represents the inertia, the C(x,v) matrix specifies the
centrifugal and Coriolis effects and the g(x) vector stands for the gravity effect. For

simplification, let’s use the term b as b = C(x,v)v+g(x) and rewrite (4.1) as

Vb bl uF1 fb uE1
® b u n u
H L0 (4] 2 (4] 2= |+ &, (4.2)
0, b, Ue T, Ug,
9R bR UFR TR UER
with
Hll H12 H13 H14
H: H21 H22 H23 H24
H31 H32 H33 0
H41 H42 0 H44

where H; for (i, j) e{1,2,3, 4} are sub-matrices of the robot inertia matrix. ug is the net
force effect and u. the net torque effect of the reaction forces on the base. ug and
ug, stand for the effect of reaction forces generated by environmental interaction on the
robot joints for the left and right legs respectively. The subscripts ( ) and ( ), stand for

the left and right legs respectively.
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For joint friction estimation, (4.2) can be reduced as

(Hﬂ Hy, Hs;p O j ?b +(bL]+ Ue :(TL]+ Ue, , 4.3)
H4l H42 0 H44 9L bR uFR TR l"IER
which will be used as the basic equation for the joint friction estimation.

4.2 Joint friction estimation

In the proposed approach, the joint friction estimation depends on the knowledge of

the applied joint control torque T and the transmitted torque to the link t'. It can be stated

(Tsz{UFL]_i_[T:L] | (4.4)
T, U, TR

where T} and tj are the transmitted torque to the manipulator’s left and right leg links

mathematically as

respectively. Referring to (4.2), the links torque vector can be represented by the reduced

biped model as

v,
| _ - b u
[TILJZH o +[ LJ— =, (4.5)
Tr 0, b Ug,
0
with
H:(H3l H32 H33 O j . (46)
H, H, 0 H,

In (4.5), the right hand-side is the response due to the vectors t| and T}, from the

total applied joint control torque vector. Moreover, it explains that the reaction forces are

the net transmitted forces and torques to the robot’s links.
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The basic idea of the friction estimation is to compute the right hand-side of (4.5).

The bias term components b, and b, contain the gravity and coriolis effects. Hence, the

bias term can be formulated as
b, =f. (A,,0,,0,,0,v,) . (4.7)

m represents here either L or R, for the left and right feet, respectively. All of the

variables required to compute b are known either by direct measurements or estimation
explained in Sections 3.2 and 2.6.

The effect of the reaction forces u. can be calculated based on the contact force
sensors readings F. and F. . These forces F. are mapped to the links by using the

Jacobian J. as
ue =J¢ (X)F . (4.8)

The Jacobian J. computation depends on the robot geometry which is known. The
matrices H; for je{1,2,34},ic{34} depend on 6 and A, only and they are both

known too. The main difficulty is the existence of the angular acceleration terms which are
in most cases not measured directly. One solution is using offline numerical differentiation
[12]. However, it is inapplicable in the real time applications. This thesis proposes two
methods: The application of the foot non-slipping constraint; and the application of the
filtered dynamic model [86, 106].

4.2.1 Non- slipping foot constraint

The non-slipping foot constraint is used to calculate the angular accelerations. Bipeds
are not fixed to the ground, while walking they are switching from the double support (DS)

phase to the single support (SS) phase and so forth. The acceleration of the foot frame p

can be obtained by double differentiating the position of the foot frame p,, as
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J ()| @y [+, (x)| 0, | =P, (4.9)

where J,. is the Jacobian of the foot frame origin and it can be expressed in terms of its sub

matrices J,,, ,i=1,2,3as
30 =[Iny Imy Iu | (4.10)

J,. is the first derivative of J_. The base acceleration is measured, therefore (4.9) can be

m

written as

Yy

[Jn, ng]{gb}:pmdm(x) o, |-d,¥,. (4.11)
" 0

m

The biped has two different phases. The estimation formulations for these phases are

as follows:

4.2.1.1 DS phase

In the DS phase, bearing in mind that there are neither feet accelerations nor

slipping, i.e. p, =pr =0, then (4.11) can be written for the left and right feet as

o] .
3., JLS][B.[’}:-JL(X) o, |-J_Vy, (4.12)
) .
0L
and
. Vb
(0] .
[ Je, JR3]L’.b}:-JR(x) o, |-Jg ¥y, (4.13)
. .
9R

respectively. The above two equations i.e. (4.12) and (4.13) are written as
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_ " )
o -J (X))@, |[-J_ v,
J 0 | ." 0
. o, |= - . (4.14)
Jr, 0 Jg, b A
R
_‘]R(X) (f)b —Jr Vy
L —BR— .

Then the angular accelerations can be calculated as

o,
. -1
0, =JTDS (JDSJTDS) Tos, (4.15)
0q
where
- v, -
=J_(x) Oy =LV,
0
Y - o , (4.16)
b
—Jr (%) Oy —Jg, Vo
L —BR— .
and
J J 0
Jos {JLZ 53 ; } , (4.17)
RZ R3

This fulfills the requirements to calculate the link torque in (4.5). Then the friction is
estimated from (4.4) as

~ |

U =T, —Tn, (4.18)
where U is the estimated friction vector.

The estimated friction torque can be used in the control loop to compensate for the
friction. However for the SS phase, the friction for the swinging leg can not be estimated in
this strategy. For this reason, it is necessary to use models for the friction and identify their

parameters while the leg is in contact as in Section 4.3.
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4.2.1.2 SS phase

For the SS phase, assuming that there is no foot acceleration nor slipping for the

foot which is in contact, i.e. p,, =0 , then (4.11) is written as

. Vb
o . )
3., ng}[éb}z-\]m(x) ®, |3, V. (4.19)
" 0

m

Then, the angular accelerations can be calculated from (4.19) as

(0 =)
{9 b} :‘]gs (‘]ss‘]gs) Tss (4.20)
where
Vb
Y5 =-Jm (X) @y |- T, ¥y (4.21)
em
and
J=[In, In |- (4.22)
Then the link torque is
Vb
T, =H_ | &, |+b, —uc , (4.23)
0,
where
H = (H31 Hs, Hss)’m:L
; (H41 H. H44)'m:R

The calculated !, is substituted in (4.18) to estimate the joint friction vector for the

leg m.Then the estimated joint friction is used for joint friction compensation and friction

model parameter identification.
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4.2.2 Reduced filtered dynamical model

Equation (4.3) can be reshaped in terms of friction as
u u )y b
T —| ..
FL :( L}-‘r EL _I:I OL _( SIJ‘-Ib_( L] ’ (424)
Ur, TR Ue, 0 H, b
R
with

_ (H,, H 0
H:(H"‘Z 033 9 j (4.25)
42 44

By using the filtered dynamic model approach bellow [86], the explicit calculation of
the angular accelerations is avoided. This is accomplished by filtering both sides of (4.24)
using a proper stable filter. A first order filter transfer function is considered with

parameters K and o as

(4.26)

its impulse response is
z(t)=0"(Z(s))=Ke™, (4.27)
where E’l(.) is the inverse Laplace transform. The multiplication in the frequency domain

is equivalent to the convolution in time domain, and since there are N joint equations in
(4.24), each of them can be filtered by (4.26). Therefore, there will be N filters with

impulse responses which can be organized into a matrix as

K.e 0
z(t)= , (4.28)
0 K e ™

where K, and o, i=12,...,N are the i" joint filter constants. The filtered version of

(4.24) can be obtained as
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t (bb
—Iz(t—r) H| 6, ||dr
0 i

t de
The  term Iz(t—r) H| 6, ||dr can be integrated by  parts
0 éR
K, 0 |
0,(0)=0;(0)=0,(0)=0 and z(0)=K = as
0 Ky |
t (’:)b O, | (:ob (f)b
Jz(t—r) H| 0, ||[dzc=KH]| 0, —jz(t—r)IZI 0, |-z(t—-7)H| 6, |dr ,
° 9R éR ° 0R GR

then (4.29) can be rewritten as

t Ue _ (:ob
Iz(t—r)[ LJdr=—Klj 0,

(4.29)

with

(4.30)

' u | H b
+'[z(t—r) (T"}L " |+H| 0, —( 31]%—[ Lj dr .(4.31)
0 Tr Ue, GR Hy be

t (.ob
+Ii(t—r)E| (?L dr
0 BR

All the terms are filtered using (4.26) except the last term
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which is filtered using

Z,(s)=t{z2(t)} =¢{-Koe "} =K ng ,
or in matrix form
K,oe ™ 0
Z,(t)=-
0 K, o.e ™

(4.32)

(4.33)

By introducing the notation <’7>4 to indicate that the term # is filtered using the filter

A, then the filtered dynamic equation is

U
or]) xertzbars o

where
@,
flz_tl e|_ )
9R
and

u Pl (H b
T ~ | .
Tr Ug, 0 Hau b
R

(4.34)

(4.35)

(4.36)

Then the estimated filtered joint friction is used for joint friction compensation and

friction model parameter identification.
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4.3  Friction model parameter identification

The estimated friction in (4.18) or (4.34) uses the measurement based strategy. It
works only when the foot is in contact with the ground. Therefore, for the swinging leg, a
friction model is adopted to represent the frictional forces at the leg joints [107]. The
estimated friction is used to identify the adopted model parameters. Thus the model
parameters are adaptively identified in every step the biped walks using the RLS algorithm
(2.18)-(2.21).

4.4  Simulation Results

A 12-degrees-of-freedom (DOF) biped model as in Figure 3.4 is used for the

simulations. All measurements and calculations are performed in the world frame. The

IMU is located with a position r, = [0.01 —0.01 0.02]T with respect to the CoM position

in the body frame and attitude A =1,, where I, is a 3x3 identity matrix. In the

simulations we used the three-axes IMU which is available in MATLAB simulink.

4.4.1 Walking trajectory

The foot walking trajectories are shown in

Figure 4.2. The biped has a single support period of 0.6 sec and a double support
period of 0.9 sec. It starts walking after 0.5 sec, left single support (LS) then DS then right
single support (RS) and so forth. The robot stops at the time instant 10.1 sec.
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Figure 4.2: Foott walking trajectories, DS stands for the double support phase, LS

stands for the left leg single support phase, and RS stands for the right leg single support
phase.

4.4.2 Joint friction generation in simulations

Here, the joint friction is generated using the nonlinear model [23]

ug = ;/l(tanh (7,0)—tanh (;/36))+;/4 tanh (750)+ 70 , (4.37)

where y,,i=1,---,6 are positive constants. The model has the viscous dissipation term y.,0

and the Coulomb friction term y, tanh(;/sé). It captures the Stribeck effect by the term

tanh (,0) - tanh (,6) . The static coefficient of friction can be approximated by 7, +7,.

The parameters values of the friction model (4.37) for each joint of the leg are listed

in Table 4.1. The corresponding generated true friction is shown Figure 4.3.
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Table 4.1: True Friction model parameters for each joint of the leg

6, 6, 0, 6, 6, 6,
" 0.7 0.6 0.5 0.4 0.2 0.05
Vs 100 100 100 100 100 100
V3 10 10 10 10 10 10
74 0.6 0.5 0.4 0.3 0.02 0.01
Vs 100 100 100 100 100 100
Ve 0.9 0.9 0.9 0.9 0.9 0.9
- Joint 1
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Figure 4.3: The true generated friction for the left leg joints

59




4.4.3 Joint friction estimation

To be more realistic, (4.37) is used solely for the generation of the joint friction. To
estimate the friction, another model which differs from (4.37) is adopted. Here the adopted
model is linear in its parameters. The Coulomb and viscous friction effects are considered.

For the joint n, the model is written as
Gp =Fsgn(6,)+F'6, , (4.38)
or
<02m >Z(S) =F"sgn(6,)+F0, , (4.39)
where F, is the viscous friction coefficient and F. the Coulomb friction. When the foot is
in contact, the estimated friction OFm from (4.18) or <02m >Z(S) from (4.34) is used in (4.38)

or (4.39) respectively to estimate F, and F. for each joint. Then when the leg is swinging,

the estimated parameters F, and IfC are used to calculate the friction forces for each joint.

(4.38) can be written in a matrix form that includes all the joint friction values for the leg

m as
G, =Yo , (4.40)
where
vy, O 0
0 w, :
P = , (4.41)
0
0 0 Wl
_[pt Fr p2 g2 . p6 ge]
®=[F' F F’ F FPOR ], (4.42)
vi=|san(6) 6], (4.43)

and i=1,2,---,6. The same goes for (4.39), where the equation can be written as
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<0Fm >Z(s) =70 . (444)

The RLS method is used here for the estimation as a real time application with

Y=0. orY= <0Fm >Z(S) . The RLS algorithm was discussed in Section 2.2. The estimation

m

initial values of the RLS algorithm are ®, =0,,,, and P s =101,,.

The joint friction is computed simultaneously for all joints. The switching between
the DS and the SS phases is time based. The two legs are assumed to have the same
frictional models, the same number of joints and the same number of the ground contact
points at each foot. The estimation process is as follows: In the DS phase, the friction
compensation is model-free and the friction is estimated based on the force measurements.

At the same time, the estimated friction is used to identify the friction model parameters

F, and F, for each joint in each leg. At the time instant t=0.5 sec, the robot switches from

the DS phase to the LS phase. At this instant, the friction models with the identified

parameters F, and IfC are used to compute the friction for the right leg joints. For the left

leg joints, the friction estimation is still model-free and the corresponding friction model
parameters are still being identified. At the time instant t=1.1 sec, the robot again switches
to the DS phase. Again the friction estimation is model-free and the friction model
parameters are being identified for both legs joints. Hence the friction model parameters are
adaptively identified and corrected. At the time instant t=2 sec, the robot switches from the
DS phase to the RS phase. At this instant, the friction models with the identified parameters
are used to compute the friction for the left leg joints. For the right leg, the friction
estimation is still being carried on as a friction model-free. The corresponding friction

model parameters are still being identified, and so forth.

4.4.3.1 The estimated friction with non-slipping constraint

The estimated friction values for the left leg joints are shown in Figure 4.4 (solid blue
line). The same goes for the right leg. When the foot is in contact with the ground, the
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measurement-based online friction compensation is used. When the leg is swinging, the
model (4.38) is used to estimate the joint friction. As depicted in Figure 4.4, the estimated
joint friction tracks the true friction for all the friction cases. One observation is that when
the foot is in contact, the estimated friction is noisy. This is due to the measured noisy
forces. However, when it is swinging i.e. when the friction model is used, the friction is
much smoother. In these simulations, small and large frictional forces are used to test the
ability of the proposed method.
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E 0 g Y 7~ SSa st St EIMnast putotgeners |
o -2 ! ! ! ! ! ! !
> 0 2 4 6 8 10 12 14 16
- Joint 2
g 10 T T T T T T
Z o ) - .
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. d _20 | | | | | | |
= 0 2 4 6 8 10 12 14 16
. Joint 4
e 5 T T T T T T T
Z o .
<T -5 ! ! ! ! ! ! !
> 0 2 4 6 8 10 12 14 16
. Joint 5
1S 2 T T T T T T T
Z 0 WW%/\/MW —
T -2 ! ! ! ! ! ! !

5

= 0 2 4 6 8 10 12 14 16
. Joint 6
E_ 1 T T T T T T
Z o - s T .
© d _1 | | | | | | |
= 0 2 4 6 8 10 12 14 16
Time (sec)

Figure 4.4: The estimated friction (solid blue line) and the true generated friction
(dashed red line) for the left leg joints
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4.4.3.2 The estimated friction using the filtered dynamic model

The estimated friction parameters follow the same idea as mentioned before. The

used filter constants are as listed in Table 4.2. These constant are user selected.

Table 4.2: Filter constants

6, 0, 6, 0, 0, 0,
K 1 2 2 2 4 2
- 1 1 1 2 4 2

The estimation results are shown here for the left leg in Figure 4.5. The dashed red
line is the true friction trajectory that is generated using (4.37) with the parameters listed in
Table 4.1. The estimated filtered friction is the solid blue line. When the leg is swinging,
the estimated friction uses the model (4.39) with the identified parameters. From the figure,
the estimated friction tracks the true friction for all the friction cases. In these simulations,
small and large frictional forces are used to test the ability of the proposed method. The

simulations indicate that it is able to track the friction forces in all cases.
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Figure 4.5: The estimated friction (solid blue line) and the true generated friction
(dashed red line) for the left leg joints

4.4.4 Joint friction compensation approach

To compensate for the joint friction, two control structures are used. The first one is

shown in Figure 4.6. The position controller is a PD controller with proportional gain k
and derivative gain K, . The output of the PD controller t  is

64



k, 0 . :
A%MZ[P yem—eyqem—ey (4.45)
0 Kk,
where 8™ and 0™ are the reference trajectories. Note that 8™ is generated based on the
desired CoM position ¢® . Therefore, we will compare the actual ¢ with ¢c* . The torque
is

controller output

tor

T, = |:ki £:|j‘(rpos —(t —ﬁF))dr : (4.46)

where k;is the integral gain.

T

Position controller e

Torque
i controller

_SURALFJ 3

Figure 4.6: First control structure: Friction compensation using the proposed FBSE
(Foot base sensor estimation) method

The root square error (RSE) is used as a performance measure of the response. The
RSE is defined by

RSE = ,/(c* —c) . (4.47)

The control parameters are: The derivative gain k, =1,,, the proportional gain
kp:diag([G 2 2 33 6]><103), and the integral gain

k=diag([2 2 1 2 2 4]).
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Figure 4.7 demonstrates the improvement due to the proposed method. First the
conventional PD controller is used alone. Its response is compared with the response of the
proposed FBSE method. As shown in Figure 4.7. b and c, the response error of the PD
controller alone is higher than it when the PD controller is combined with the FBSE.

c C, RSE
0.6

des

0.4} CX

= PD controller
PD+FBSE

PD+FBSE
PD controller

5 10 15 0 5 10 15
(@ (b)
c (:y RSE

PD+FBSE
PD controller |

des
C
y

— PD controller
0415} PD+FBSE

5 10 15 0 5 10 15
(c) (d)
Time (Sec) Time (Sec)

Figure 4.7: First control structure response. (a) CoM trajectory in the x —direction c, ,
(b) RSE in c,, (c) CoM trajectory in the y —direction c , and (d) RSE in c, .

The second control structure is presented in Figure 4.8. The estimated friction is
added to the control signal without torque controller. The position response of this structure
is depicted in Figure 4.9. This control structure is simpler than the previous one, however

the first structure has better performance.
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Figure 4.8: Second control structure: Friction compensation using the proposed FBSE

method
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Figure 4.9: Second control structure response. (a) CoM trajectory in the x—direction
¢, (b) RSEin ¢, (c) CoM trajectory in the y —direction ¢ , and (d) RSEin c, .
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45 Conclusion

A novel FBSE method for estimating the joint friction of walking bipeds is proposed.
It utilizes the readings of IMU and foot contact reaction forces into a reduced model of the
biped. It combines a measurement-based strategy with an adaptive model-based approach
to estimate the joint friction. The measurement-based estimation is used when the feet are
in contact, while the adaptive model-based friction is used when the leg is swinging. To
achieve this estimation, the joint angular accelerations are either estimated online using the
non-slipping foot constraint or their computation is avoided by filtering the model. This
method requires the IMU, joint encoders and ground contact force measurements. It does
not require joint torque sensors. The results show that the estimated friction tracks the true
one. Furthermore, using the FBSE method in the feedback torque signal improves the

position response.
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Chapter 5

5 Novel Method for Slip Prediction of Walking Biped Robots

The robot foot, when it is in contact with the floor, is subjected to distributed reaction
forces due to the interaction between the sole and floor surface. The horizontal components
of these forces represent the friction forces. The friction forces are required so that the
biped can walk. They determine the maximum allowable body acceleration the biped can
have without slipping and the maximum allowable forces that can be applied on the biped.
However determining these friction forces is a challenge. Several models were developed
to represent the friction [36, 37]. Although using the walking surface coefficient of friction
is widely used, it is not a solution since the surfaces change and the coefficient is not

necessarily accurate.

In this thesis, based on the friction behavior, a measurement-based model-free online
method is used to develop an algorithm to estimate the Coulomb friction. This algorithm
updates the estimated friction online adaptively. The estimated friction is used to decide

whether the foot is going to slip or not.

This chapter discusses the slip definition and detection, the slip prediction approach,

parameter estimation and the results.
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5.1 Slip definition and detection

Consider one of the robot feet as in Figure 5.1.a. The total force on the foot is F . Its

tangential components in the x— and y- directions are F,_ and Fy, respectively. The
friction force components in the x— and y- directions are denoted by F; and F,

respectively. The normal reaction force is F, >0. The slip is defined as the phenomenon
when the friction force F, between the foot and the contact surface is not satisfactory to

make the relative velocity between them zero. In other words, it is the phenomenon when

|R[ =R +F; >||Ff ||= [F +F¢ , orin terms of components, K, >F, or/fand F, >F, .

This leads to generate a slip force F;, inthe x— direction or/and a slip force F, in the
T
y — direction. The slip force vector F, = [anpx Fs,ipy] can be obtained as
Fslip = Ft - Ff ! (5.1)

with Fo=[F, F ] andF =[F F ].

The analysis for x— and y— directions is identical. Therefore, for convenience, the

subscriptions x and y are dropped. According to (5.1) F, >0, for the case when

slip

Fy, >0 the object is in motion as in Figure 5.1.b. When F,, =0, it indicates that the

slip —
object is either moving in a constant speed as in Figure 5.1.c or the object is static as in
Figure 5.1.d. The situation in Figure 5.1.c poses a problem which will be solved by

assuming that the object was not initially moving at a constant speed.

70



il
Ao BE N T
o~ - ** Motiondirection
y
Vi,

F
Ff — Foot _[)
- >F F i > 0
Motion
(b)
IFM IFV
F S Fr F bl F
€— Foot — <« Foot —I>
I=F f F =F,
Fmp =0 P:vfzp =0
Motion in constant speed No motion

() (@)
Figure 5.1: Slip force conditions

Accordingly, by referring to (5.1) , the foot slips whenever it is subjected to a slip force
F

4ip > 0. Calculating F;; depends on the available measurements. Here, three cases are

lip
discussed. The first case considers that the foot is equipped with force sensors located at the
foot soles, hence the friction force is directly measured. The second case considers that the
robot is equipped with a force/torque sensors located at the ankles and accelerometers

located at the feet, hence F, is directly measured. The third case assumes that the foot is

equipped with force sensors located at the foot soles and force/torque sensors located at the

ankles.
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5.1.1 Measured friction force

Referring to (5.1), the friction force is directly measured by the force sensors located

at the foot sole. F, is unmeasured. However it can be calculated using the base link

acceleration and angular velocity in addition to the legs joints angles.

Assume that there are | force sensors. These sensors are attached to known contact

points at each foot with known positions relative to the foot frame. Their outputs are

grouped in the force vector F. and defined as F, E[FgR Fe. ]T with

.

Fe =["FL "FL "R "RZ "R O"RD - "R "Rl "RI],(52)
where F is the force vector at the foot m, me‘j the friction force component in the
j={x—ory—} direction at contact point i =1,2,...,I of the foot m.

The computed forces at the aforementioned contact points are grouped in the force

— — — T — .
vector FEE[F,;R F;L] . F¢_ represents the computed forces at the foot m and is

expressed as
m ty '[y

3 _ _ _ T
F =|:mFti mth mF;i mthz mFty2 ml:NZ - "R "R mF’\IlJ (5.3)

where ”‘Ft; and ™F, are the tangential and normal force components at contact point

i=12,...,1 of the m foot. This force vector is related to ug in (4.2) using the Jacobian
Je, as
Ug, = J:bEE- (5.4)

In terms of F, we can write

-1

Fe=J¢ (x)(Jlb (x)Je, (x)) Ug, - (5.5)

The computation of the Jacobean J. depends on the robot geometry which is

known. From the first row in (4.2), the net force effect of the reaction forces on the base
Ug, is
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+b, , (5.6)

with
HF:(Hll H12 H13 H14)'

Substituting (5.4) and (5.5) into (5.6) we obtain
+b, (5.7)

with I} =J. (x)(Jlb (x)J5 (x))fl. In (5.7), the bias b, depends on the same variables as

in(4.7)i.e. b,=f,(A,,0,®,0,,v,). These variables are either measured or estimated. H_

is also known. To find the angular accelerations, the same method as in Section 4.2.2 is

used. The stable filter Z_ is used as

(5.8)

with its impulse response

2. (1)=07(Zc (s))=Kee ™", (5.9)
Equation (5.7) is composed of 3x2xI| equations. Each of them is filtered by (5.8).

Therefore, there will be 3x 2x| filters with impulse responses as

Kee ™ 0
z.(t)= (5.10)
2 3oat
0 KF’(3X2XI)e (3x2xl)x(3x2xl)
where K, and A.; i=12,...,3x2x| are the i" equation filter constants. The

multiplication in the frequency domain is equivalent to the convolution in time domain,
thus the filtered version of (5.7) is
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R

a3 w2

t _ t 9
[2, (t-)Fedr = [z, (=)L (Hy HM)[éLJdT
0 0

(5.11)

For simplification, the term & =J[ (Hy,; H,) is introduced. The term

t ,
J.zF(t—r)fF[ngdr can be integrated by parts with 6, (0)=6,(0)=0 and
0 R

Ke, 0
z.(0)=K; = '
O F,$<2><I
as
; 6 6
IZF(t—r)chLéLJdr=KF§F(GL]
0 R R
. ) , (5.12)
t 0, t 0,
—J.ZF(t—r)ng dr—J.ZF(t—z')fFO dr
0 R 0 R
where
éF:JL,,(Hls I_'|14)"".J|T:b(H13 H14)- (5.13)

The filtered version of the force is

]_Izp(t_r); (ng

jtj.zp(t—r)\],ib (Hy, le)(\,/bj+bl]dr. (5.14)

: .
J.ZF (t—7)Fdr =K & (g"
0

R

0,

t
All the terms are filtered using (5.8) except J.ZF (t-7)& (9 ]dr. It is filtered by
0

R

R I
Ze (5)=0{2e ()} = £{-Kp e} = KFs+;tF (5.15)
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or in matrix form, we can formulate

t

Kp, Ae e " 0
z, (t)=- - . (5.16)
0 K ﬂ e_/lF.Mxl t

Faoa " Fau (3x2x1)x(3x2x1)

To write (5.14) in more compact form, the notation <;(>ﬁ is introduced. This

notation means the filtered version of the term y using the filter # . Accordingly, (5.14) is

o),
sl mhe) I8,

From the estimated filtered forces vect0r<ﬁE>Z o the filtered components are

(s

written as

(5.17)

obtained from the vector (F.) ()E<[ﬁ; F ]T> and they are ordered as in (5.3).
RIS i - Ze(s)

Out of these forces, the tangential components are used for the slip detection as in (5.1).

5.1.2 Measured foot acceleration

The slip force can be measured by mounting an accelerometer at the foot. Then, by

using the foot mass m, and the measured foot acceleration p = [ P, py]T , the slip force is

Fslip = mfp ) (5.18)
Hence, the foot slips whenever {>0. Bearing in mind that the F, is measured using the

force/torque sensor, the friction force is calculated from (5.1) and (5.18) as

Fo=F-mp. (5.19)
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5.1.3 Measured friction and tangential forces

If the biped is equipped with contact force sensors at the foot soles and force/torque

sensors at the ankles, then the measured F, and F, are used directly in (5.1) to detect the
slip.
The obtained equations, i.e. (5.18) and (5.1), for the three discussed cases can be used

for slip detection only. However, they can not be used alone to predict the slip due to the

friction behavior. To overcome this challenge, a safety margin is introduced as shown later.

5.2 Slip prediction

The slip prediction is based on the friction behavior at the low speed. The friction
behavior is explained in Section 2.1.1. For the non-slipping case, F, must be in the static
friction area where F, < F, as in Figure 5.2. Equivalently, the allowable force F, such that
the object is not slipping must be inside a cone with radius F, and height F, as in Figure

2.1.c.

However, F, (or u..) changes with changing walking surfaces. Thus specifying a

value for it limits the motion to one surface or to a limited number of surfaces. One more
challenge originates from the friction behavior. Precisely, it is due to the fact that the
Kinetic friction is less than the static friction. This necessitates looking at the friction

behavior in Figure 2.2. The main frictional components are the Coulomb frictionF_,

Stribeck friction F

st?

viscous friction F, and F,.Since the interest is in the slip prediction
at low speed, F, is out of scope. According to the friction behavior, the minimum friction
force beyond which slip will be observed is F,. This force is used in replace of F, and thus
overcome the aforementioned challenge. To cope with several surfaces, F, is estimated

online in an adaptive way. In this way the walking will not be limited to certain surfaces.
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Figure 5.2: Static and kinetic friction

5.2.1 Slip prediction approach

The slip prediction approach for the two feet is the same. It is based on the estimated
minimum friction value Ifc (or f, ) as a slip threshold. A safety margin with a value F__

is introduced to design the slip predictor. Also, the proposed method defines a sufficient

coefficient of friction p,, with a sufficient friction force F, =y F, such that

Fof +Fp < IfC . Accordingly, the foot never slips if the inequality F, <F,, is satisfied as in

uf
Figure 5.3 . The given safety margin leads to the simple slip prediction scheme: At each

time instant k , if F

4ip =0 Or p=0, then the object will not slip if F <F,

or tends to slip

uf

A

if Fe(F, . F,=F

suf * ' ¢ suf

+Fms), e

7



¢ JFur (k) <Fi(k) < F. (k) tendsjto_slip | (5.20)
F (k)< Fy (k) noslipping

However, F, still unknown. It is estimated online as discussed in the next section.

5lip threshald

F

s

Margin of safety

Wa slip F; EF‘R"

Time

Figure 5.3: Slip prediction regions

5.2.2 Slip prediction threshold estimation

The threshold F, estimation follows whether the foot is slipping or not based on
(5.18) or p=0. For the parameter estimation, we define Ifc and Ifs as the estimated

variables. The estimation is done empirically without using models. The estimation steps

are:

Step l:Initialize F,, F,, F and Ifc
Step 2: Check whether the foot is in contact with the floor or not. If it is in contact go

to step 3, else the variables are

(5.21)



Step 3: Check whether the foot is slipping or not.
Step 4: If it is not slipping, then the friction force is the same as the measured

tangential force as in
F ()=F (k). 5.2
and the estimated static friction Ifs is the maximum value of the friction. It is obtained by
F, (k) = max (|, (K)],|F. (k-1)]) (5.23)

With the knowledge of F, (k —1), the Coulomb friction is estimated as

F, (k)=min(F, (k),F, (k-1)). (5.24)

may  exceed the  threshold, i.e.

However, the  friction  force
|Ff (k)| >F, (k)+F, (k—1). For this case, the Coulomb friction is calculated again as

F () =|F (k)| - Fu (k-1). (5.25)

The sufficient friction F, is calculated as

Fs ()

=FAC (k)_Fms (5 26)
F (k)>0 '

Step 5: If the foot is slipping, then calculate IfC as

F, (k) =min(|F, (K)].|F. (k=1)) (5.27)
Ifs, IfSI and F,, are obtained by
F.(k)=F, (k-1) (5.28)
Ast k):ﬁs(k_l)_FAC(k)’ (529)
F,>0
and
Fsuf (k) = FAc (k)_ Fms (530)
F (k)>0 ’



respectively.

Step 6: Update the variables

)
=F,(K) (5.31)

Step 7: Go to step 2.

53 Experimental results

The proposed method is tested on SURALP. The results are shown for the right leg.
The available measurements are from a six-axes force/torque sensor assembled at the ankle
and from a three-axes accelerometer fixed at the foot. It is checked whether the foot is in
contact with the ground or not using the measured normal force from the force/torque

sSensor.

As an implementation consideration, the accelerometer generates a reading even
though the biped is not moving. Therefore, the slip is detected if the acceleration readings
are larger than a threshold Tr(i.e. if p>Tr). This threshold depends on the initial
accelerometer reading.

The estimated friction terms for the right foot in the x— direction are shown in
Figure 5.4. This estimation is based on the experimentally observed Tr=0.09. The
repeated peaks pattern of the acceleration represents the leg when it is swinging, here there

are four walking steps. The algorithm detects whether the foot is in contact or not and

updates the variables accordingly. When the leg is swinging, the variables values are
calculated as in (5.21). The estimated IfS and IfSt are shown in Figure 5.4.c. Ifc and F,
are presented in Figure 5.4.d. From the figure, the estimated friction terms are observed as:

F.=85N, F, =64N , F,=2IN and F,, =F, —~5=16N where F_ =5N .
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Figure 5.4: Friction parameter update in the x— direction

The estimated values are used for slip prediction. The test is carried on a new walk of

SURALP, hence on new data. According to the algorithm and as shown in Figure 5.5.3,

A

when |F|>|F, F.u|<|FR|<|F

then the foot is slipping, when

then the foot tends to slip,

and when |F|<|F.q

then the foot will not slip. The accelerometer is used to detect the
actual slipping occurrence. The same Tr =0.09 is used as in Figure 5.5.b.
Slip prediction performance analysis:

e DS phase to LS phase: When the right foot starts leaving the ground so that the
biped switches from DS to LS. At the transition period the algorithm detects the
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slip. This is confirmed from the measured acceleration as shown in the beginning of
swinging region in Figure 5.5.

LS phase to DS phase: When the right foot starts landing so that the biped switches
from LS to DS. At the transition period the algorithm detects the slip. This is
confirmed from the measured acceleration as shown right after the swinging region

in Figure 5.5.

As observed from in Figure 5.5, the algorithm predicts and detects the slip. This is
confirmed by the accelerometer readings. i.e. when the acceleration exceeds the
threshold.

False slip alarms: As mentioned before, the tangential force may exceed IfC and still
the foot is not slipping. Therefore, it is expected to have false slipping alarms. These

alarms can be reduced by changing the threshold, i.e. use IfC with a portion of IfSt

instead of using IfC alone. However, this may lead to false non slip deductions.

The accuracy of the prediction depends on the accuracy of the measurements and
thresholds. A very small acceleration threshold leads to a very small IfC which will
result in slip detection all time. On the other hand, a large acceleration threshold
leads to missing the slip detection.

A statistical summary of Figure 5.5 is listed in Table 3.

0 When the foot is slipping, the slip estimation accuracy is 74%. False non-
slipping alarms and tending to slip condition have percentages of 5% and
21% respectively.

o0 On the other hand, when the foot is not slipping, the algorithm accuracy is
59%. False non-slipping alarms and tending to slip condition have
percentages of 37% and 4% respectively.

o This work assumes that there will be a controller to prevent slipping and
compensate for the slip occurrence. Accordingly, the controller utilization

percentage is 54%.
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Figure 5.5: Slip prediction test in the x— direction

Table 3: A statistical summary of Figure 5.5

stimated
Non slipping Slipping Tends to slip
True
Non slipping 37 23 3
Slipping 1 14 4
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54 Conclusion

A novel measurement-based method for online friction estimation is proposed. Based
on the friction behavior, the Coulomb, Stribeck and static friction terms between the foot
sole and the contact surface are estimated adaptively. The estimation is based on
acceleration and force measurements. The Coulomb friction is used as a threshold for slip
detection. To predict the slip occurrence, a margin of safety with Coulomb friction is
considered. Whenever the measured force enters this margin, then the foot is going to slip.
Experimental results demonstrate the applicability of the proposed method. The accuracy of
the algorithm depends on the selected thresholds. Further, while low acceleration thresholds
increase the false slipping alarms, high acceleration thresholds increase the false non-

slipping alarms.
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Chapter 6

6 Conclusion and Future work

A method to estimate the center of mass CoM position and its derivative and the
disturbance effects on a walking biped robot is proposed. The method utilizes the robot
body acceleration and the reactions forces at the robot feet. An AKF is employed for the

states estimation based on the Linear Inverted Pendulum Model LIPM.

The LIPM is written in two state space forms: Form 1 and form 2. The former is well
known. The latter is introduced in this thesis to estimate the CoM variables in the presence
of modeling errors, compensate for the modeling errors and estimate them. Two types of
disturbances are estimated, modeling errors and external accelerations. The results show

that Form 2 fails when there exists an external acceleration. On the other hand, form 1 fails

when there are modeling errors in the measured p3t,. .

A Novel method (FBSE) for the joint friction estimation of non-slipping walking
biped robots is proposed. The proposed approach combines a measurement-based strategy
with an adaptive model-based approach to estimate the joint friction. The former is used to
estimate the joint friction online when the foot is in contact with the ground, while the latter
adopts a friction model to represent the joint friction when the leg is swinging. To achieve
this estimation, the joint angular accelerations are either estimated online using the non-

slipping foot constraint or their computation is avoided by filtering the model.
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The measurement-based strategy utilizes the measured ground reaction forces and the
readings of an inertial measurement unit IMU located at the robot body. Based on these

measurements, the body attitude and velocity are estimated.

The aforementioned measurements and estimates are used in a reduced dynamical
model of the biped. However, when the leg is swinging, this strategy is inapplicable.
Therefore, a friction model is adopted. Its parameters are identified adaptively using the
estimated online friction whenever the foot is in contact. The results show that the
estimated friction tracks the true one. Furthermore, using the FBSE method in the feedback

torque signal improves the position response.

A new measurement-based method for slip prediction of walking biped robots is
proposed. This method is based on the foot acceleration and ankle force measurements.
First, the aforementioned measurements are used for slip detection. Then, based on the
friction behavior, an adaptive algorithm is developed to estimate the Coulomb, Stribeck and
static friction terms between the foot sole and the contact surface adaptively. This algorithm
updates the friction terms based on the measurements and whether slip is detected or not.
According to the friction behavior, the minimum friction force beyond which slip will be
observed is the Coulomb friction. Therefore, the estimated Coulomb friction is used as a
threshold for slip detection. For slip prediction, a margin of safety is introduced in the
negative vicinity of the estimated Coulomb friction. The estimation algorithm concludes
that when the applied force enters the safety margin, then the foot tends to slip.

The accuracy of the algorithm depends on the selected thresholds. Further, while low
acceleration thresholds increase the false slipping alarms, high acceleration thresholds

increase the false non-slipping alarms.
The contributions of this thesis are:

e A new state space form for the LIPM is introduced where the measurements are force
and acceleration. This form estimates the CoM variables in the presence of modeling

errors, compensates for the modeling error and estimates it.

e A novel FBSE method for estimating the joint friction of walking bipeds is proposed. It

utilizes the readings of an IMU and foot contact reaction forces into a reduced model
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of the biped. It combines a measurement-based strategy with an adaptive model-based
method to estimate the joint friction. Using the FBSE method in the control loop

improves the position response.

An adaptive measurement-based online algorithm for slip prediction is proposed. First,
it estimates the friction between the feet and the contact surface. Then, the estimated
Coulomb friction is used as a threshold for slip detection. Finally, this algorithm
predicts the slip occurrence by introducing a safety margin in the negative vicinity of
the estimated Coulomb friction to define a slip risk band. Hence, the foot will not slip
whenever the force is below this band. If the applied force is within the safety margin,

then the foot tends to slip
As a future work, the followings are suggested

e Design a control law that can handle the modeling errors in the ZMP and
acceleration measurements. Further, an integration methodology of the two
state space forms of the LIPM is required to overcome their drawbacks.

e In this thesis, the slip is predicted only. A control action is required in case of
predicted slip. A controller has to be designed so that the applied force is

within the safety region.

e The estimated CoM variables and the computed forces at the feet can be used
to increase the redundancy of the position and force measurements. A fault-
detection and isolation scheme would be necessary to detect the faulty sensors

and compensate for the faults.
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