838 research outputs found

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Arctic air pollution: Challenges and opportunities for the next decade

    Get PDF
    The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone) and particles (e.g. black carbon, sulphate) and toxic substances (e.g. polycyclic aromatic hydrocarbons) that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies). Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1) the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2) increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3) developing improved predictive capability across a range of spatial and temporal scales

    Objectively Optimized Earth Observing Systems

    Get PDF

    MOSAiC Implementation Plan

    Get PDF
    This document is the second version of the Implementation Plan for the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) initiative and lays out a vision of how associated observational, modeling, synthesis, and programmatic objectives can be manifested. The document was drafted during an international workshop in Potsdam in July 2015, and further developed during two additional workshops at AWI Potsdam in December 2015 and February 2016. Support for this planning activity has been provided by the IASC-ICARPIII process, the Alfred Wegener Institute Helmholtz Centre for Polar- and Marine Research, and the University of Colorado/ NOAA-ESRL-PSD. This document provides a framework for planning the logistics of the project, developing scientific observing teams, organizing scientific contributions, coordinating the use of resources, and ensuring MOSAiC’s legacy of data and products. A brief overview and summaries of key science questions are provided in Section 1. Section 2 includes an overview of specific observational requirements, while Section 3 describes the coordination and design of specific field assets. Practical logistics plans are outlined in Section 4. Links with current and future satellite programs and model activities are given in Sections 5 and 6. The MOSAiC data management strategy is given in Section 7. Links to other programs are outlined in Section 8. The appendix (Section 9) lists the parameters to be measured and the participating groups

    The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions

    Get PDF
    This is the final version. Available on open access from Inter Research via the DOI in this recordThe use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa

    Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    Get PDF

    A review of high impact weather for aviation meteorology

    Get PDF
    This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges

    Behavioral Responses Of Breeding Ducks To Unmanned Aerial Vehicle Surveys And Best Practices For Breeding Waterfowl Surveys Using Unmanned Aerial Vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) have become a popular wildlife survey tool. As such, biologists are exploring the use of UAVs for surveying waterfowl. The most cited benefit of using UAVs over traditional methods is the idea of reduced disturbance, but this has had limited formal evaluation across species. We conducted UAV surveys with associated behavioral observations of ducks on wetlands and on nests during the 2019 – 2020 breeding seasons. We found species-specific behaviors among blue-winged teal (Spatula discors), northern shoveler (Spatula clypeata), and gadwall (Mareca strepera) including ducks noticing the aircraft, but reactions were generally less than traditional ground approaches suggesting that as technology increases efficiencies, UAVs may serve as an alternative tool for surveying breeding ducks
    • …
    corecore