9 research outputs found

    Attention is All We Need: Nailing Down Object-centric Attention for Egocentric Activity Recognition

    Full text link
    In this paper we propose an end-to-end trainable deep neural network model for egocentric activity recognition. Our model is built on the observation that egocentric activities are highly characterized by the objects and their locations in the video. Based on this, we develop a spatial attention mechanism that enables the network to attend to regions containing objects that are correlated with the activity under consideration. We learn highly specialized attention maps for each frame using class-specific activations from a CNN pre-trained for generic image recognition, and use them for spatio-temporal encoding of the video with a convolutional LSTM. Our model is trained in a weakly supervised setting using raw video-level activity-class labels. Nonetheless, on standard egocentric activity benchmarks our model surpasses by up to +6% points recognition accuracy the currently best performing method that leverages hand segmentation and object location strong supervision for training. We visually analyze attention maps generated by the network, revealing that the network successfully identifies the relevant objects present in the video frames which may explain the strong recognition performance. We also discuss an extensive ablation analysis regarding the design choices.Comment: Accepted to BMVC 201

    Mutual Context Network for Jointly Estimating Egocentric Gaze and Actions

    Full text link
    In this work, we address two coupled tasks of gaze prediction and action recognition in egocentric videos by exploring their mutual context. Our assumption is that in the procedure of performing a manipulation task, what a person is doing determines where the person is looking at, and the gaze point reveals gaze and non-gaze regions which contain important and complementary information about the undergoing action. We propose a novel mutual context network (MCN) that jointly learns action-dependent gaze prediction and gaze-guided action recognition in an end-to-end manner. Experiments on public egocentric video datasets demonstrate that our MCN achieves state-of-the-art performance of both gaze prediction and action recognition

    Convolutional Long Short-Term Memory Networks for Recognizing First Person Interactions

    Get PDF
    We present a novel deep learning approach for addressing the problem of interaction recognition from a first person perspective. The approach uses a pair of convolutional neural networks, whose parameters are shared, for extracting frame level features from successive frames of the video. The frame level features are then aggregated using a convolutional long short-term memory. The final hidden state of the convolutional long short-term memory is used for classification in to the respective categories. In our network the spatio-temporal structure of the input is preserved till the very final processing stage. Experimental results show that our method outperforms the state of the art on most recent first person interactions datasets that involve complex ego-motion. On UTKinect, it competes with methods that use depth image and skeletal joints information along with RGB images, while it surpasses previous methods that use only RGB images by more than 20% in recognition accuracy

    Seeing and hearing egocentric actions: how much can we learn?

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Our interaction with the world is an inherently multi-modal experience. However, the understanding of human-to-object interactions has historically been addressed focusing on a single modality. In particular, a limited number of works have considered to integrate the visual and audio modalities for this purpose. In this work, we propose a multimodal approach for egocentric action recognition in a kitchen environment that relies on audio and visual information. Our model combines a sparse temporal sampling strategy with a late fusion of audio, spatial,and temporal streams. Experimental results on the EPIC-Kitchens dataset show that multimodal integration leads to better performance than unimodal approaches. In particular, we achieved a5.18%improvement over the state of the art on verb classification.Peer ReviewedPostprint (author's final draft

    Recognition of Activities of Daily Living with Egocentric Vision: A Review.

    Get PDF
    Video-based recognition of activities of daily living (ADLs) is being used in ambient assisted living systems in order to support the independent living of older people. However, current systems based on cameras located in the environment present a number of problems, such as occlusions and a limited field of view. Recently, wearable cameras have begun to be exploited. This paper presents a review of the state of the art of egocentric vision systems for the recognition of ADLs following a hierarchical structure: motion, action and activity levels, where each level provides higher semantic information and involves a longer time frame. The current egocentric vision literature suggests that ADLs recognition is mainly driven by the objects present in the scene, especially those associated with specific tasks. However, although object-based approaches have proven popular, object recognition remains a challenge due to the intra-class variations found in unconstrained scenarios. As a consequence, the performance of current systems is far from satisfactory

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare
    corecore