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Abstract

In this paper, we present a novel deep learning based

approach for addressing the problem of interaction recog-

nition from a first person perspective. The proposed ap-

proach uses a pair of convolutional neural networks, whose

parameters are shared, for extracting frame level features

from successive frames of the video. The frame level fea-

tures are then aggregated using a convolutional long short-

term memory. The hidden state of the convolutional long

short-term memory, after all the input video frames are pro-

cessed, is used for classification in to the respective cate-

gories. The two branches of the convolutional neural net-

work perform feature encoding on a short time interval

whereas the convolutional long short term memory encodes

the changes on a longer temporal duration. In our network

the spatio-temporal structure of the input is preserved till

the very final processing stage. Experimental results show

that our method outperforms the state of the art on most re-

cent first person interactions datasets that involve complex

ego-motion. In particular, on UTKinect-FirstPerson it com-

petes with methods that use depth image and skeletal joints

information along with RGB images, while it surpasses all

previous methods that use only RGB images by more than

20% in recognition accuracy.

1. Introduction

A new and vast array of research in the field of human

activity recognition has been brought about with the recent

technological advancements in wearable cameras. Majority

of the human activity recognition techniques till now were

concentrated on videos captured from a third person view.

Developing techniques for the automatic analysis of ego-

centric videos has immense application potential ranging

from assistance during surgical procedure, law and order,

assisting elderly citizens, video summarization, etc. But

most of the existing research deal with activities carried out

by the camera wearer, not interactions and reactions of oth-

ers to the observer (person wearing the camera). The in-

teraction recognition problem is different and difficult com-

pared to the action recognition problem. This is because

egocentric video captures a huge variety of objects, activ-

ities, and situations, and sometimes the person interacting

with the observer can move out of the field of view as the

person approaches the observer. Presence of ego-motion

adds more complexity to the problem as it can interfere with

the analysis of motion taking place in the scene. The appli-

cations of a method capable of automatically understanding

interactions from egocentric view include surveillance, so-

cial interaction for robots, human machine interaction, etc.

Regardless of the recent advancements in deep learning

techniques for addressing problems such as object recog-

nition, caption generation, action recognition, etc., it has

never been applied in the problem of first person interac-

tion recognition. All the existing methods use hand-crafted

features or processing stages for recognizing interactions in

first person videos. End-to-end deep learning techniques

require no prior information regarding the data and it is ca-

pable of achieving high degree of generalization compared

to hand-crafted features based approaches. As a result, we

propose to follow a deep learning approach for addressing

the problem under study. To the best of our knowledge, this

is the first time a deep learning based method is proposed

for solving first person interaction recognition problem.

Our contributions can be summarized as follows:

• We develop an end-to-end trainable deep neural net-

work model for recognizing interactions from a first

person perspective

• We propose a novel architecture that can utilize convo-

lutional neural networks pre-trained on image datasets,

for processing video data
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Figure 1. Basic block diagram showing the proposed method

• We experimentally evaluate the effectiveness of the

proposed method on four publicly available first-

person interaction recognition datasets

The remaining of the paper is organized as follows. A

brief idea about the relevant state of the art techniques is

provided in section 2. The proposed deep neural network

architecture for addressing the concerned problem is dis-

cussed in section 3. Section 4 discusses the experimental

results obtained as part of the performance evaluation and

the document is concluded in section 5.

2. Related Works

An extensive amount of exploratory studies has been car-

ried out in the area of first person activity or action recog-

nition. They concentrate on the activity that the camera

wearer is carrying out. These methods can be divided in to

two major classes: activities involving object manipulation

such as meal preparation [7, 20, 8, 19, 16, 3] and activities

such as running, walking, etc. [30, 32, 18, 33, 27]. The for-

mer relies on information about objects present in the scene

for classifying the activity while the latter concentrates on

the ego-motion and the salient motion in the scene.

More recent studies have focussed on the analysis of in-

teraction recognition in the egocentric vision context. One

of the pioneering work in this area is carried out by Ryoo

& Matthies in [29]. They extracted optical flow based fea-

tures and sparse spatio-temporal features from the videos

and a bag of words model as the video feature representa-

tion. Narayan et al. [22] use the TrajShape [37], MBH [4]

and HOF [37] as the motion features followed by bag of

words approach or Fisher vector encoding [26] for generat-

ing the feature descriptor. Wray et al. [40] propose graph-

based semantic embedding for recognizing egocentric ob-

ject interactions. Instead of focussing on the objects [5],

Bambach et al. [2] investigate the use of strong region pro-

posals and CNN classifier to locate and distinguish hands

involved in an interaction.

Another line of research in this area was influenced by

the development of Kinect device which is capable of cap-

turing depth information from the scene together with the

skeletal joints of the humans present in the scene. Meth-

ods exploiting this additional modality of data have been

proposed by Gori et al. [11], Xia et al. [43] and Gori et

al. [10]. Gori et al. [11] use the histogram of 3D joints,

histogram of direction vectors and depth images along with

the visual features. Xia et al. propose to use the spatio-

temporal features computed from the RGB and depth im-

ages [41] together with the skeletal joints information as

the feature descriptor. Gori et al. [10] propose a feature

descriptor called relation history image which extracts in-

formation from skeletal joints and depth images.

Several deep learning based approaches have been devel-

oped by researchers for action recognition from third person

view. Simonyan & Zisserman [31] use raw frames and op-

tical flow images as input to two CNNs for extracting the

feature descriptor. Donahue et al. [6] and Srivastava et

al. [34] use an architecture consisting of CNN followed

by long short-term memory (LSTM) RNN for action recog-

nition. A variant of the LSTM architecture, in which the

fully-connected gates are replaced with convolutional gates

(convLSTM), have been proposed by Shi et al. [44] for ad-

dressing the problem of precipitation nowcasting prediction

from radar images. The convLSTM is found to be func-

tioning with improved performance compared to the fully-

connected LSTM. The convLSTM model has been later

used for predicting optical flow images [25] and anomaly

detection [21]. The results show that the convLSTM model

suits applications involving spatio-temporal data such as

videos. For this reason, we propose to use convLSTM as

one of the important blocks in the proposed model for first

person interaction recognition.

3. Proposed Method

Figure 1 illustrates the basic idea behind the proposed

approach. During each iteration two successive frames from

the video will be applied to the model, i.e., frames 1 and 2

in the first time step, frames 2 and 3 in the second time step,

etc. until all the video frames are inputted in to the network.

The hidden state of the RNN in the final time step is then

used as the feature representation of the video and is fed to

the classifier.

Simonyan & Zisserman [31] have previously proposed

to use optical flow images along with RGB images, as the

inputs to CNN, for performing action recognition which has

resulted in improved performance. The optical flow images

will provide information regarding the motion changes in

the frames which will in turn help the network in learning

discriminating features that can distinguish one action from

another. Inspired from this, we also evaluate the perfor-

mance of the network when the difference between adja-

cent frames are applied as input. The difference of frames

can be considered as an approximate version of optical flow

images. Sun et al. [35] and Wang et al. [39] have also ex-
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plored the possibility of using difference images as inputs

to a deep neural network for action recognition. By apply-

ing frame difference as the input, the network is forced to

learn the changes taking place in the video, i.e., the motion

changes which define the actions and interactions occurring

inside the video.

3.1. Convolutional Long ShortTerm Memory

Convolutional long short-term memory (convLSTM)

is an extension of the popular long short-term memory

(LSTM) RNN [12]. In this the fully-connected gates of the

LSTM module are replaced by convolutional gates thereby

making it capable of encoding spatio-temporal features.

The equations governing the functioning of convLSTM are:

it = σ(wi
x ∗ It + wi

h ∗ ht−1 + bi)

ft = σ(wf
x ∗ It + w

f
h ∗ ht−1 + bf )

c̃t = tanh(wc̃
x ∗ It + wc̃

h ∗ ht−1 + bc̃)

ct = c̃t ⊙ it + ct−1 ⊙ ft

ot = σ(wo
x ∗ It + wo

h ∗ ht−1 + bo)

ht = ot ⊙ tanh(ct)

where ‘*’ and ‘⊙’ represent the convolution operation and

the Hadamard product. In this all the gate activations and

the hidden states are 3D tensors as opposed to the case with

standard fully-connected LSTM which are vectors.

3.2. Network Architecture

The architecture of the entire model used in the proposed

approach is given in figure 2. The model can be divided in

to the following parts:

1. Deep feature extractor: A Siamese like architecture

constituting of the AlexNet model [14] is used for ex-

tracting the frame level features. The fully-connected

layers of the AlexNet model are removed. The two

branches of the AlexNet model share their parameters

and are pre-trained using the ImageNet dataset.

2. Spatio-temporal feature aggregator: This consists

of a 3D convolution layer followed by the convLSTM

explained in section 3.1. The output of the two

branches of the previous module are concatenated to-

gether and is applied to the 3D convolution layer. The

3D convolutional layer uses a kernel of size 2× 3× 3
and a stride of 1 in both the temporal and spatial di-

mensions. The output of the 3D convolution layer (256

feature planes) is then applied to the convLSTM layer

for feature aggregation. The convLSTM layer uses 256

filters in all the gates with a filter size of 3×3 and stride

1. The hidden state, which contains the representation

of the input video, consists of 256 feature planes.

3. Classifier: Once all the input frames are applied to

the first two stages of the network, the video repre-

sentation, which is the hidden state of the convLSTM,

is applied to the classifier. The classifier consists of

a spatial convolution layer followed by global aver-

age pooling. The convolution layer generates an out-

put with feature planes corresponding to the number of

classes. It uses 3× 3 kernels with stride 1. Global av-

erage pooling is performed on each of the feature map

generated by the convolutional layer and is applied to

the softmax layer. This is inspired from the network in

network (NIN) model [17] and the SqueezeNet model

[13] proposed for image classification task.

The two branches of the AlexNet extract relevant frame

level information consisting of the objects present in the

frame. This will help the network in understanding a frame

level context of the video. By using two branches of the

AlexNet together with the 3D convolution layer, informa-

tion in a short temporal duration is encoded. An advan-

tage of following this approach evolves from the fact that

in this way existing powerful CNN architectures that are

pre-trained on large scale image datasets can be used, along

with the capability to take in to consideration the temporal

context. The convLSTM layer maintains a memory of all

the previous information it has seen which will result in the

encoding of information in a longer extend of time. This

is very relevant in the case of ego-centric videos. This is

because, unlike in the case of third person views observing

the scene from a distance, the objects or humans present

in the video can move out of the field of view once they ap-

proach closer to the observer for physical interaction, which

necessitates the requirement for a memory. Also, the con-

volutional gates present in the convLSTM helps the model

to analyze the local spatial and temporal information to-

gether as compared to the fully-connected LSTM. This has

a significant importance in the analysis of videos because

the network should be capable of understanding the spa-

tial and temporal changes occurring in the video. By re-

moving the fully-connected layers of the AlexNet and using

the convLSTM, the network achieves this capability. More

specifically, we maintain spatial structure in the propagated

memory tensor and generated video descriptor. This is in

contrast e.g. to LRCN [6] and the many CNN-LSTM ar-

chitectures that fully convolve into a vector before temporal

aggregation with standard LSTM, propagating a memory

vector. This late spatio-temporal aggregation is distinguish-

ing and more effective in representing spatial structure in

videos. Furthermore, prior to classification we maintain the

spatial structure till the very final layer of our architecture

by applying spatial convolution to obtain class-specific ac-

tivations that are directly associated to local receptive fields

in the input. By following the classifier used in the proposed

approach, a significant reduction in the number of parame-
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Figure 2. The architecture of the network. The convolutional layers are shown in red followed by normalization layer in gray. The 3D

convolutional layer is shown in yellow and the convLSTM layer in green. We also experiment with a variant where, instead of raw frames

we input difference-images obtained from pairs of successive frames.

ters is achieved thereby minimizing the propensity to over-

fit. On top of that, the global average pooling by itself can

be considered as a regularization [17], thereby avoiding the

usage of other regularization techniques.

3.3. Training

The implementation of the proposed method is done us-

ing the Torch library. We used RMSProp [36] optimization

algorithm for training the network and a fixed learning rate

of 10−5 with a batch size of 12. The network is run for 10k

iterations. The weights of the 3D convolution, convLSTM

and the final spatial convolution layer are initialized using

Xavier method [9]. The whole network is trained together

to minimize the cross-entropy loss.

Since it is a generally accepted consensus that deep neu-

ral networks tend to overfit in the absence of large amount

of training data, we used several data augmentation tech-

niques for minimizing the possibility of overfitting. In the

proposed approach, all the video frames are first rescaled to

a dimension of 256 × 340. We follow the corner cropping

and scale jittering techniques proposed by Wang et al. [39].

In this, during each training iteration, a portion of the frame

(four corners or the centre) is cropped and is applied as in-

put to the network. The dimension of the cropped region is

selected randomly from the following set {256, 224, 192,

168}. The cropped region is then rescaled to 224 × 224.

The selected regions are then horizontally flipped randomly

during each training iteration. It is to be noted that the same

augmentation techniques are applied to all the frames com-

ing from a video during a particular training iteration. All

the video frames in the training set are normalized to make

their mean zero and variance unity.

4. Experiments and Results

The performance of the proposed approach is evaluated

by testing it on four publicly available standard datasets.

From all the videos, 20 frames equidistant in time are se-

lected as the input to the network. The performance is eval-

uated in terms of recognition accuracy. During evaluation,

the mean of the training frames are subtracted from the test-

ing frames and is divided by the variance of the former. Im-

age crops of dimension 224×224 are extracted from all four

corners and the centre of each frame and are applied to the

network. The horizontally flipped versions of the frames are

also used during evaluation. Thus, for each video in the test

set, 10 different samples (5 crops and their horizontal flips)

are generated during inference. The outputs of all the crops

and their flipped versions are then averaged together to find

the class of the input video.

4.1. Datasets

The following four datasets are used for validating the

proposed first person interaction recognition approach.

JPL First-Person Interaction Dataset (JPLFPID) [29] :

The dataset consists of videos of humans interacting with

a humanoid model with a camera attached on top of its

head. The dataset consists of 7 different interactions which

include friendly (hugging, shaking hands, etc.), hostile

(punching and throwing) and neutral (pointing fingers)

behaviors. There are 84 videos in the dataset and the

evaluation method is done following existing approaches.

During each evaluation instance, half of the videos are

chosen as training and the remaining half as testing. Mean

of the recognition accuracy obtained after each evaluation

is reported as final accuracy.

NUS First Person Interaction Dataset (NUSFPID) [22] :

This dataset, captured by placing the camera on the head of

a human, consists of both actions (opening door, operating

cell phone, etc.) and interactions (shaking hands, passing

objects, etc.) with other humans from a first person view

point. The dataset contains 152 videos. Random train-test

split method is used for evaluation and the mean of the

accuracies obtained after all the runs is used for reporting.
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JPLFPID NUSFPID
UTKinect First Person Dataset

Humanoid Non-humanoid

Ryoo & Matthies [29] 89.6 - 57.1 58.48

Ryoo [28] 87.1 - - -

Abebe et al. [1] 86 - - -

Ozkan et al. [24] 87.4 - - -

Narayan et al. [22] 96.7 61.8 61.9 57.6

Wang and Schmid [38] - 58.9 - -

HOF [29] - - 45.92 -

Laptev et al. [15] - - 48.46 50.83

LRCN [6] (raw frames) 59.5 68.9 72.6 71.4

LRCN [6] (difference of frames) 89.0 69.1 63.1 67.8

Proposed Method (raw frames) 70.6 69.4 79.6 78.4

Proposed Method (difference of frames) 91.0 70.0 66.7 69.1

Table 1. Comparison of the proposed method with existing techniques, on various datasets. Results are reported in terms of recognition

accuracy in %. [22] on UTKinect are our reproduced results following the paper description. LRCN [6] results are produced from the

authors’ code following same training/testing protocol used with our method. All other results are those available from the authors’ papers.

UTKinect First Person Dataset-humanoid (UTKFPD-

H) [43] : In this dataset, a kinect sensor is mounted

on a humanoid robot and the video of various humans

interacting with it is captured. This dataset also contains

friendly (hugging, shaking hands, etc.), hostile (punching,

throwing objects, etc.) and neutral behavior (standing up,

running, etc.) behaviors. There are 177 video samples

from 9 different classes present in the dataset. The results

reported are using the provided train-test split. For the

experiments related to the proposed method, only the RGB

videos are used and the depth information is not used.

UTKinect First Person Dataset-non-humanoid

(UTKFPD-NH) [43] : This is similar to the above

dataset with exception of the type of the robot used for

capturing the video. A non-humanoid robot is used for

capturing the videos in this dataset. The types of the

interactions are also different from the previous dataset.

There are 189 videos in the dataset and 9 different classes.

Here also, the depth information available with the dataset

is not used in the experiments.

All four datasets considered in this work is of significant

difference from each other. For instance, the observer in

each case is very much different so that the ego-motion that

can occur to the video is different from one another. In the

first dataset, the observer is stationary so that ego-motion

can take place only if someone interacts with it physically.

The NUSFPID and the UTKFPDH are more or less similar

to each other but still the extend to which the interactions

can affect their respective ego-motion is different, since the

robot being more stable compared to a human. The type

of interactions that are carried out in the datasets are also

different. In this way, we did the experiments to evaluate

the performance of the proposed method in identifying in-

teractions with different levels of ego-motion and different

variety of interactions.

4.2. Results and Discussions

The results obtained for each of the dataset is reported

and compared with the state of the art techniques in table 1.

As already mentioned, this is the first time a deep learning

technique is proposed for recognizing first person interac-

tions. Most of the existing deep learning based methods use

gaze information or hand segmentations for identifying the

objects being handled by the user which in turn is used for

recognizing the action [16, 32]. Since first person interac-

tion videos differ from such action recognition videos dras-

tically, we are not considering these methods for comparing

the performances. It is evident from the table that the pro-

posed method is suitable for recognizing interactions from

first person videos. Our method outperforms the state of the

art methods except in one dataset (JPL first-person interac-

tion dataset), where it came as the second best method. All

the state of the art methods listed in table 1, except LRCN,

use hand-crafted features as opposed to the proposed ap-

proach which is based on deep learning. As mentioned

in the previous section, the videos in the JPL first-person

interaction dataset contain limited ego-motion as the cam-

era is placed on a static object. Therefore, the ego-motion

present in the videos is strongly correlated with the action

that is occurring (for example, vertical motion when shak-

ing hands, a sudden horizontal jerking motion in the punch-

ing action, etc.). Thus the ego-motion present in videos in

the JPL dataset is part of the motion pattern that defines

the action. In contrast to this, the rest of the datasets con-

tain videos with strong ego-motion that may also arise occa-

sionally and independently from the performed action. This

may explain our findings that on the JPL dataset, we obtain

improved performance when the difference of frames are

applied as the input to the network since the difference op-

eration will force the network to model the motion changes

between frames (including the ego-motion that depends on
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the action class). On the other hand, the performance of the

network on the UTKinect dataset is the highest when the

raw frames are applied as input. The videos in the UTKinect

dataset contains strong ego-motion. The presence of ego-

motion that is uncorrelated with the action being performed

will act as a sort of noise when the frame difference is taken

as input: the network should be able to distinguish between

the random ego-motion and the motion caused by the ac-

tion, thereby making it more difficult for the network to

isolate the salient motion patterns occurring in the video.

The network performs in a comparable way on the NUSF-

PID dataset when either types of inputs are applied. Even

though the NUSFPID dataset contains ego-motion, some of

the classes include actions performed by the observer such

as using cell phone, typing on the keyboard, writing, etc.

For discriminating these types of actions that contain lim-

ited amount of motion, the network needs to learn the ob-

jects handled by the observer and hence the raw frames can

be deemed as the most suited input modality. As opposed

to this, interactions such as shaking hand, passing object,

etc. contains motion and in this case, difference of frames

performs the best.

We have also compared the proposed method with an-

other deep learning approach proposed for action recog-

nition, LRCN [6], in Table 1. As mentioned previously,

LRCN uses an AlexNet model for extracting frame level

features followed by an LSTM for temporal aggregation.

The results show that the proposed method is more suit-

able for first-person interaction recognition compared to

the LRCN model. The primary reason is the usage of

convLSTM in the proposed model as opposed to the fully-

connected LSTM used in the LRCN. In LRCN, the input of

the LSTM is the output of the penultimate fully-connected

layer (fc6). The local spatial information in the video frame

is lost by using the fully-connected layer, where as the pro-

posed model preserves the spatial information by forward-

ing the convolutional features of the input. The convolu-

tional gates of the convLSTM layer then performs informa-

tion aggregation across both spatial and temporal domain.

This is very important in the case of first-peron interaction

recognition since it is required to memorize the changes oc-

curing in both the spatial and temporal domains. Another

feature of the proposed model that results in its improved

performance is the utilization of the second AlexNet branch

so that the model can process information from a broader

temporal context. Since the parameters of both the branches

are shared, there is no additional complexity added to the

network and in addition to this, the same configuration can

be used with any pre-trained CNN models. It should also

be noted that, the proposed model achieves this improved

performance with fewer number of parameters as compared

to the LRCN model (21.8M ours vs 61.3M LRCN). This

is achieved by eschewing from using fully-connected layers

UTKFPD-H UTKFPD-NH

Xia et al. [41] 72.83 53.25

Oreifej & Liu [23] 52.54 45.55

Xia et al. [43] 85.6 83.7

Xia et al. [42] - 70

Gori et al. [10] - 85.94

Proposed Method 79.6 78.4

Table 2. Recognition accuracy obtained for the UTKinect first per-

son dataset when the raw frames are applied as input to the pro-

posed method. All other methods listed in the table uses either the

depth image or skeletal joints information or both along with the

RGB images for feature descriptor generation

(both in the convLSTM and the classification layers). This

will also enable the proposed model to be trained on smaller

datasets without getting overfit.

Table 2 compares the performance of the proposed

method on the UTKinect dataset with state of the art meth-

ods that use other modalities of information such as depth

image and skeletal joints. It is clearly evident from the ta-

ble that the proposed method performs comparably to these

methods without using any other additional data. The pro-

posed method is able to perform competitively to these

methods by using only the RGB video as input.

5. Conclusions

The paper proposes a novel deep neural network archi-

tecture for recognizing interactions from first person videos.

The proposed model extracts frame level features using a

convolutional neural network followed by feature aggrega-

tion using a convolutional long short-term memory. Two

different types of input modalities have been tested on the

network. The first one uses adjacent frames as input and

the second uses the difference between consecutive frames

as input to the network. The proposed model is evalu-

ated using four publicly available datasets. The network

was able to outperform existing state of the art techniques.

Raw frames is found as the suitable input to the network

for videos with strong ego-motion, where as the difference

of frames resulted in better performance for videos with

less but action-correlated ego-motion. We also show that

our proposed method performs competitively to the tech-

niques that use depth image and skeletal joints information

along with RGB images. As a future work, we will ex-

plore the possibility of training the network jointly on both

raw frames and difference of frames, thereby enabling the

network to adapt by itself depending on the input videos,

regardless of the presence or absence of strong ego-motion.
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