90 research outputs found

    Direct Differential Photometric Stereo Shape Recovery of Diffuse and Specular Surfaces

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s10851-016-0633-0Recovering the 3D shape of an object from shading is a challenging problem due to the complexity of modeling light propagation and surface reflections. Photometric Stereo (PS) is broadly considered a suitable approach for high-resolution shape recovery, but its functionality is restricted to a limited set of object surfaces and controlled lighting setup. In particular, PS models generally consider reflection from objects as purely diffuse, with specularities being regarded as a nuisance that breaks down shape reconstruction. This is a serious drawback for implementing PS approaches, since most common materials have prominent specular components. In this paper, we propose a PS model that solves the problem for both diffuse and specular components aimed at shape recovery of generic objects with the approach being independent of the albedo values thanks to the image ratio formulation used. Notably, we show that by including specularities, it is possible to solve the PS problem for a minimal number of three images using a setup with three calibrated lights and a standard industrial camera. Even if an initial separation of diffuse and specular components is still required for each input image, experimental results on synthetic and real objects demonstrate the feasibility of our approach for shape reconstruction of complex geometries.The first author acknowledges the support of INDAM under the GNCS research Project “Metodi numerici per la regolarizzazione nella ricostruzione feature-preserving di dati.

    制約付き回帰に基づく照度差ステレオ

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 山﨑 俊彦, 東京大学教授, 相澤 清晴, 東京大学教授 池内 克史, 東京大学教授 佐藤 真一, 東京大学教授 佐藤 洋一, 東京大学教授 苗村 健University of Tokyo(東京大学

    A efficient and practical 3D face scanner using near infrared and visible photometric stereo

    Get PDF
    AbstractThis paper is concerned with the acquisition of model data for automatic 3D face recognition applications. As 3D methods become progressively more popular in face recognition research, the need for fast and accurate data capture has become crucial. This paper is motivated by this need and offers three primary contributions. Firstly, the paper demonstrates that four-source photometric stereo offers a potential means for data capture that is computationally nd financially viable and easily deployable in commercial settings. We have shown that both visible light and less ntrusive near infrared light is suitable for facial illumination. The second contribution is a detailed set of experimental esults that compare the accuracy of the device to ground truth, which was captured using a commercial projected pattern range finder. Importantly, we show that not only is near infrared light a valid alternative to the more commonly xploited visible light, but that it actually gives more accurate reconstructions. Finally, we assess the validity of the Lambertian assumption on skin reflectance data and show that better results may be obtained by incorporating more dvanced reflectance functions, such as the Oren–Nayar model

    The radiometry of multiple images

    Get PDF

    Surface analysis and visualization from multi-light image collections

    Get PDF
    Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination that provides large amounts of visual and geometric information. Over the last decades, a wide variety of methods have been devised to extract information from MLICs and have shown its use in different application domains to support daily activities. In this thesis, we present methods that leverage a MLICs for surface analysis and visualization. First, we provide background information: acquisition setup, light calibration and application areas where MLICs have been successfully used for the research of daily analysis work. Following, we discuss the use of MLIC for surface visualization and analysis and available tools used to support the analysis. Here, we discuss methods that strive to support the direct exploration of the captured MLIC, methods that generate relightable models from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that estimate normal map from MLIC and we point out visualization tools used to do MLIC analysis. In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC and discusses available benchmark for validation of photometric algorithms that can be also used to validate other MLIC-based algorithms. In chapter 4, we evaluate the performance of different photometric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and SynthRTI have been used to evaluate the performance of (Neural)RTI method. Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. In this method using a simple autoencoder architecture, we show that it is possible to obtain a highly compressed representation that better preserves the original information and provides increased quality of virtual images relighted from novel directions, particularly in the case of challenging glossy materials. Finally, in chapter 6, we present a method for the detection of crack on the surface of paintings from multi-light image acquisitions and that can be used as well on single images and conclude our presentation
    corecore