4,704 research outputs found

    Potentially Polluting Marine Sites GeoDB: An S-100 Geospatial Database as an Effective Contribution to the Protection of the Marine Environment

    Get PDF
    Potentially Polluting Marine Sites (PPMS) are objects on, or areas of, the seabed that may release pollution in the future. A rationale for, and design of, a geospatial database to inventory and manipu-late PPMS is presented. Built as an S-100 Product Specification, it is specified through human-readable UML diagrams and implemented through machine-readable GML files, and includes auxiliary information such as pollution-control resources and potentially vulnerable sites in order to support analyses of the core data. The design and some aspects of implementation are presented, along with metadata requirements and structure, and a perspective on potential uses of the database

    KBGIS-2: A knowledge-based geographic information system

    Get PDF
    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2

    Developing a labelled object-relational constraint database architecture for the projection operator

    Get PDF
    Current relational databases have been developed in order to improve the handling of stored data, however, there are some types of information that have to be analysed for which no suitable tools are available. These new types of data can be represented and treated as constraints, allowing a set of data to be represented through equations, inequations and Boolean combinations of both. To this end, constraint databases were defined and some prototypes were developed. Since there are aspects that can be improved, we propose a new architecture called labelled object-relational constraint database (LORCDB). This provides more expressiveness, since the database is adapted in order to support more types of data, instead of the data having to be adapted to the database. In this paper, the projection operator of SQL is extended so that it works with linear and polynomial constraints and variables of constraints. In order to optimize query evaluation efficiency, some strategies and algorithms have been used to obtain an efficient query plan. Most work on constraint databases uses spatiotemporal data as case studies. However, this paper proposes model-based diagnosis since it is a highly potential research area, and model-based diagnosis permits more complicated queries than spatiotemporal examples. Our architecture permits the queries over constraints to be defined over different sets of variables by using symbolic substitution and elimination of variables.Ministerio de Ciencia y Tecnología DPI2006-15476-C02-0

    Distributed Model-Based Diagnosis using Object-Relational Constraint Databases

    Get PDF
    This work presents a proposal to diagnose distributed systems utilizing model-based diagnosis using distributed databases. In order to improve aspects as versatility, persistence, easy composition and efficiency in the diagnosis process we use an Object Relational Constraint Database (ORCDB). Thereby we define a distributed architecture to store the behaviour of components as constraints in a relational database to diagnose a distributed system. This work proposes an algorithm to detect which components fail when their information is distributed in several databases, and all the information is not available in a global way. It is also offered a proposal to define, in execution time, the allocation of the sensors in a distributed system.Ministerio de Ciencia y Tecnología DPI2003-07146-C02-0

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Constraint Databases and Geographic Information Systems

    Get PDF
    Constraint databases and geographic information systems share many applications. However, constraint databases can go beyond geographic information systems in efficient spatial and spatiotemporal data handling methods and in advanced applications. This survey mainly describes ways that constraint databases go beyond geographic information systems. However, the survey points out that in some areas constraint databases can learn also from geographic information systems

    Development of a parallel database environment

    Get PDF
    corecore