
The Development of a Parallel Database Environment

for use with

Corporate Geographic Information Systems

by Mette Tranter B.Sc., M.Sc.

This Thesis is Submitted for the Degree of Doctor of Philosophy

in the Department of Geography

The University of Edinburgh

May 1999

Abstract

This research proposes that the use of general purpose parallel architectures combined with

parallel relational database technology provides a solution for rapid retrieval and analysis of

geographic data in a corporate environment. Changes in corporate IT strategies have made

the inclusion of parallel architectures viable, vendor support for parallel database software is

evident, and research into parallel geographic information system (GIS) functions make

commercial versions likely. To that end a substantial parallel GIS/database environment was

developed to test the suitability of parallel processing for corporate GIS.

The parallel GIS environment brought together parallel relational database management

systems and GIS applications on a parallel machine (Meiko Computing Surface) to

investigate the ability of the system to support three corporate requirements: the ability to

manage and analyse large volumes of data with reasonable response times, the provision of

efficient access for GIS to integrated corporate databases, and the successful support of both

transaction processing and longer, more complex transactions in the same environment. A

series of performance tests were devised and split into two phases. Databases were

constructed for each of the testing phases, including a substantial corporate database of some

15 million rows of real data.

Experimental results from the performance tests undertaken showed that the parallel system

successfully supported both the GIS and parallel relational database management system

software. It also provided insights into the use and configuration of the environment, the

construction of complex queries using GIS/database interfaces, and the ability to support

both transaction processing and complex queries in the a single environment. Finally, the

implications and applications of the results are discussed.

11

Table of Contents

ABSTRACT...II

DECLARATION..III

TABLEOF CONTENTS .. iv

LISTOF FIGURES .. VII

LISTOF TABLES ... VIII

LISTOF GRAPHS .. vm

LISTOF DIAGRAMS .. viii

ACKNOWLEDGEMENTS... IX

1. INTRODUCTION...1

1.1 THE MOVE TOWARDS PARALLEL CORPORATE GIS ...1
1.2 EXPLOITING PARALLELISM ..5
1.3 AIMS ..6
1.4 OVERVIEW OF PROJECT STAGES ..7
1.5 ANALYSIS AND REPORTING OF RESULTS ...8
1.6 ORGANISATION OF DISSERTATION...9

SECTION 1: BACKGROUND

INFLUENCING FACTORS FOR CORPORATE GIS...13
2.1 THE GIS "PUSH" FACTORS ..14
2.2 THE IT MANAGEMENT REVOLUTION... 19
2.3 COMPUTING DEVELOPMENTS ..25
2.4 FUTURE MOVES FOR CORPORATE GIS...27

PARALLEL PROCESSING IN GIS...29
3.1 PARALLEL ARCHITECTURES ..30
3.2 MEMORY ... 34
3.3 PARALLEL PERFORMANCE...39
3.4 PARALLEL PROGRAM DECOMPOSITION..41
3.5 LOAD BALANCING TECHNIQUES ..43
3.6 PARALLEL GEO-PROCESSING ... 44
3.7 BENEFITS OF PARALLEL COMPUTING FOR CORPORATE GIS ..45

DATABASE MANAGEMENT SYSTEMS FOR GIS...47

4.1 INTRODUCTION ..48
4.2 RELATIONAL SYSTEMS ..50
4.3 OBJECT-ORIENTED DBMS ..53
4.4 HYBRID AND INTEGRATED APPROACHES TO GIS DATABASE MANAGEMENT........................55

lv

4.5 STRUCTURED QUERY LANGUAGE (SQL)... 57
4.6 SUMMARY..65

SECTION 2: FUNCTIONALITY AND PERFORMANCE
CONSIDERATIONS FOR PARALLEL DATABASES

PARALLEL DATABASE MANAGEMENT SYSTEMS FOR GIS69

5.1 HARDWARE..69
5.2 SOFTWARE...72
5.3 PARALLEL QUERIES ...75
5.4 IMPLICATIONS FOR GIS..76

BENCHMARKING..80

6.1 INTRODUCTION ..81
6.2 PARALLEL ARCHITECTURE BENCHMARKS ...83
6.3 DATABASE BENCHMARKS..86
6.4 A PARALLEL DATABASE BENCHMARK..91
6.5 SUMMARY..92

SECTION 3: DEVELOPING A TEST ENVIRONMENT

DEVELOPING THE TEST ENVIRONMENT..98

7.1 INTRODUCTION ..98
7.2 MEIKO COMPUTING SURFACE..101
7.3 ARC/INFO...112
7.4 SMALLWORLD..120
7.5 SUMMARY..123

PHASE I - PILOT DATABASE ..125

8.1 BACKGROUND.. 125
8.2 DESCRIPTION OF THE PILOT DATABASE...132

PHASE II- CORPORATE DATABASE DESIGN..136

9.1 THE DATA MODEL BACKGROUND ...137
9.2 THE DATA MODEL FOR GAS 'R' Us LTD . .. 148
9.3 DATABASE CREATION.. 159
9.4 THE GAS MAIN NETWORK...162
9.5 SUMMARY..172
 PERFORMANCE MEASUREMENT ..174

10.1 INTRODUCTION ..174
10.2 DATABASE PERFORMANCE TESTING HARNESS ..178
10.3 GIS/DATABASE INTERFACE PERFORMANCE HARNESS ..184
10.4 CONSTRAINTS AND LIMITATIONS...187
10.5 PROCESSING RESULTS .. 187

V

SECTION 4: PERFOMANCE TESTS AND RESULTS

PHASE ITESTS ...189

11.1 SOFTWARE AND HARDWARE TESTS .. 190

PHASE II TESTING AND RESULTS..213

12.1 INTERFACE PERFORMANCE TESTS ...214
12.2 VIEWS ..219
12.3 TRANSACTION PROCESSING IN A GIS/DATABASE ENVIRONMENT221
12.4 SUMMARY..224

CONCLUSION AND DISCUSSION...226

13.1 PERFORMANCE TEST SUMMARY - PHASE I AND PHASE II ... 226
13.2 CONCLUSIONS..230
13.3 DISCUSSION ...232
13.4 CORPORATE GIS/DATABASE ISSUES..233
13.5 BENCHMARKING DATA WAREHOUSING AND WEB-BASED APPLICATIONS235

REFERENCES...230

APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix B
Appendix F

V1

List of Figures
FIGURE 3-1: TYPICAL SHARED MEMORY MIMD ARCHITECTURE (AFTER EPCC, 1992)34
FIGURE 3-2:SCHEMATIC ARCHITECTURE OF A DISTRIBUTED MEMORY MIMD MACHINE (AFTER EPCC,

1992) ...36
FIGURE 3-3: A VARIETY OF TOPOLOGIES WITH 4-LINK TRANSPUTERS (AFTER EPCC, 1992)37
FIGURE 4-1: RELATIONAL TABLES WITH A RELATIONAL JOIN - SIMPLIFIED EXAMPLE FROM THE GAS

MAIN DATABASE ...52
FIGURE 4-2: THE HYBRID GIS MODEL (AFTER HEALEY ETAL., 199 1) ..56
FIGURE 4-3: THE INTEGRATED GIS MODEL (AFTER HEALEY ETAL., 1991)...57
FIGURE 5-1: MULTI-INSTANCE DATABASE SYSTEM (AFTER ORACLE CORPORATION, 1997B)...............74
FIGURE 7-1: FLOW DIAGRAM OF PERFORMANCE TEST DESIGN AND ANALYSIS98
FIGURE 7-2: MEIKO COMPUTING SURFACE ...101
FIGURE 7-3: ARCHITECTURE OF ED[N .. 104
FIGURE 7-4: MULTI-INSTANCE ORACLE ON THE MCS (AFTERHOLMAN & BARTON, 199 1)108
FIGURE 7-5:A CONCEPTUAL VIEW OF A RELATE ENVIRONMENT (AFTER ESRI, 199 1)114
FIGURE 7-6: STACKED RELATES: AN EXAMPLE OF HOW THREE TABLES ARE RELATED (AFTER ESRI,

1991) ...115
FIGURE 7-7: A SCHEMATIC EXAMPLE OF A CURSOR BEING USED TO ACCESS A SELECTED SET OF ARCS IN

ARCEDIT (AFTER (ESRI, 1991) ...117
FIGURE 7-8: AN ILLUSTRATION OF THE RELATIONSHIPS BETWEEN THE DATA, THE SOFTWARE MODULES

AND THE SOFTWARE SYSTEMS (AFTER (ESRI, 199 1)) ...118
FIGURE 8-1: THE HARDWARE PLATFORM FOR DISTRIBUTED DATABASE PERFORMANCE TESTS (AFTER

CHAN, 1993)..127
FIGURE 8-2: DIAGRAM TO SHOW THE LINK BETWEEN A SPATIAL TABLE AND AN ORACLE VIEW (AFTER

CHAN, 1993)..130
FIGURE 8-3: PILOT DATABASE DATA MODEL..133
FIGURE 9-1: CENTRAL HQ AND DISTRICT STRUCTURE ...141
FIGURE 9-2: AN EXAMPLE OF A CASE*DESIGNERTM E-R DIAGRAM ..146
FIGURE 9-3: CROW'S-FOOT SYMBOL ...147
FIGURE 9-4: TYPES OF RELATIONSHIP IN CASE*DESIGNERTM 147
FIGURE 9-5: DATABASE MODEL OVERVIEW..148
FIGURE 9-6: ENTITY RELATIONSHIP MODEL FOR THE GAS MAINS ENTITY ..150
FIGURE 9-7: GAS MAIN ATTRIBUTES...151
FIGURE 9-8: ATTRIBUTES FOR STREET ENTITY..152
FIGURE 9-9: ENTITY-RELATIONSHIP MODEL FOR THE STREET ENTITY ...153
FIGURE 9-10: ATTRIBUTES FOR STREETWORK ENTITY ..153
FIGURE 9-11: ENTITY-RELATIONSHIP MODEL FOR THE STREET WORKS ENTITY154
FIGURE 9-12: ENTITY-RELATIONSHIP DIAGRAM FOR BUILDING ENTITY...155
FIGURE 9-13: ATTRIBUTES FOR CUSTOMER ENTITY.. 155
FIGURE 9-14: ENTITY-RELATIONSHIP MODEL FOR CUSTOMER ENTITY ...156
FIGURE 9-15: ENTITY-RELATIONSHIP DIAGRAM OF EMPLOYEE ENTITY.. 157
FIGURE 9-16: ENTITY-RELATIONSHIP DIAGRAM FOR THE APPLIANCE ENTITY....................................158
FIGURE 9-17: EXAMPLE OF A STREETWORK NOTIFICATION FORM ..162
FIGURE 10-1: PERFORMANCE PROGRAM FLOW DIAGRAM...179
FIGURE 11-1: THE MEIKO COMPUTING SURFACE KNOWN AS HYDRA..190
FIGURE 11-2: ELAPSED TIME PERFORMANCE OF NODES ON HYDRA ...192
FIGURE 11-3: PERFORMANCE OF NODES SHOWING DIFFICULTIES ..193
FIGURE 11-4: MEAN ELAPSED TIME FOR HYDRAO AND THE OTHER NODES ..194
FIGURE 11-5: MEAN SYSTEM TIME ...195
FIGURE 11-6: MEAN USER TIME .. 195
FIGURE 11-7: MEAN MEMORY USAGE FOR HYDRAO AND THE OTHER NODES196
FIGURE 11-8: A GRAPH SHOWING PERFORMANCE BEHAVIOUR OF DATA DISTRIBUTION USING

DIFFERENT LOCAL AND REMOTE NODES (AS CHAN, 1993)...198
FIGURE 11-9: A GRAPH SHOWING THE PERFORMANCE BEHAVIOUR OF DATA DISTRIBUTION USING

TWO NODES OF HYDRA AS LOCAL AND REMOTE NODES ..198

Vii

FIGURE 11-10: PERFORMANCE DIFFERENCE BETWEEN SQL QUERY ON ONE NODE AND Two NODES 200
FIGURE 11-11: EFFECT OF CACHING ON ELAPSED TIME ..205
FIGURE 11-12: EFFECT OF CACHE ON SYSTEM TIME ...206
FIGURE 11-13: CACHE CONTENTION AND LRU LIST..209
FIGURE 11-14: PERCENTAGE PERFORMANCE IMPROVEMENT USING BUFFER CACHE..........................210
FIGURE 12-1: EXAMPLE OF AN ARC/INFO RELATE...215
FIGURE 12-2: PROCESSING TIME FOR AN INTERFACE QUERY...216
FIGURE 12-3: PROPORTION OF ELAPSED TIME SPENT ON INDIVIDUAL PROCESSING PHASES...............216
FIGURE 12-4: CPU USAGE FOR GIS/DATABASE INTERFACE QUERIES ..217
FIGURE 12-5: GRAPH TO SHOW THREE APPROACHES TO USING VIEWS - ELAPSED TIME....................220
FIGURE 12-6: GRAPH TO SHOW THREE APPROACHES TO USING VIEWS FROM GIS - CPU USAGE220
FIGURE 12-7: GRAPH TO SHOW EFFECT OF TRANSACTION PROCESSING ...222
FIGURE 12-8: PROCESSING TIME FOR QUERIES RUN IN DIFFERENT ENVIRONMENTS...........................223
FIGURE 12-9: COMPARISON OF Two QUERIES...223
FIGURE 12-10: COMPARISON OF A SINGLE QUERY RUN IN FOUR DIFFERENT ENVIRONMENTS...............224

List of Tables
TABLE 7-1: PARALLEL ENVIRONMENT COMPONENTS ...100
TABLE 7-2: FILE LOCATIONS ON EDIN... 105
TABLE 7-3: APPLICATION HOME DIRECTORIES ON EDIN ... 105
TABLE 7-4: FSUTIL REPORT USING COMMAND FSUTIL DEVS' ...106
TABLE 7-5 :DISK CONFIGURATION ON HYDRA...106
TABLE 8-1: EXAMPLE OF INDEXING EFFECT ON ELAPSED TIME USING A FIXED NUMBER OF RETURNED

Rows (AFTER CHAN, 1993)...129
TABLE 8-2: ATTRIBUTES FOR PILOT MODEL ENTITIES ..134
TABLE 8-3: LIST OF TABLES FOR THE PILOT DATABASE (AFTER CHAN, 1993).................................... 135
TABLE 9-1: LIST OF ENTITIES THAT COMPRISE THE DATABASE MODEL..149
TABLE 9-2: EXAMPLE OF MINE DATA ...151
TABLE 9-3: LIST OF TABLE NAMES AND SIZE.. 159
TABLE 10-1: ORACLE L000N ARRAY ...182

Viii

Acknowledgements
This thesis has been completed due to the efforts, guidance and bullying tactics of many

people over the years it has taken to complete. Although it is impossible to name them all,

there are a number of people who have given their unstinting support during many moments

of stress. I would like to extend a grateful thanks to the following individuals and

organisations:

• to Richard Healey and Bruce Gittings, who were my supervisors throughout the research

period. With suitable prompting, and despite a move down south Richard was a source

of inspiration. I would like to thank him for his encouragement and enthusiasm. While

left behind to carry the can, Bruce has bullied and harried me at every turn to complete

this thesis. I would like to thank him for his perseverance and for his patience and help;

• to the Ordnance Survey, who provided the financial support throughout the research;

• to British Gas (Scotland) for the supply of data and documents which made the

performance tests possible. I would particularly like to thank Murray McLundie for all

his patience while I sorted out my supergrid pipes from my inlet valves;

• to the Department of Trade and Industry and all the industrial partners in the Parallel

Applications Program who provided the machinery and software which made the

research possible;

• to Smaliworid, for their substantial technical support in setting up and managing a

Smallworld application. I would particularly like to thank Dick Newell for his

overwhelming enthusiasm and support for the project;

to Mr Terry Pratchett, who kindly agreed to allow the streets of Ankh-Morpork to be

incorporated into the large corporate database, and thus lightened the days spent creating

large quantities of data for the data base;

• and to both Steve Dowers of the Geography Department, University of Edinburgh, and

Scot Telford at EPCC, who each spent many a weary hour trying to solve technical

problems at my insistence and remained cheerful and helpful while doing.

My final thanks must go to my partner Gavin who has supported me throughout the research

project, and managed not to nag when progress was slow. His assistance is truly appreciated.

All trademarks are hereby acknowledged.

lx

1. Introduction

1.1 The Move Towards Parallel Corporate GIS

The role of Geographic Information Systems (GIS) over the last fifteen years has changed

dramatically from

"a Cinderella subject ... untouched by all but the most quantitatively
avant-garde of Geography Departments..." to "...a multi-billion dollar
industry and a major player within the broader field of information
technology." (Healey et at., 1998a).

Initially, most GIS implementations were effectively pilot projects with limited data sets, and

were often developed without detailed consideration of their potential linkages to wider

management information system requirements within an organisation (Healey et at., 1998b).

However, it became very obvious that for many, particularly the utility companies and

Government, a large percentage of the data underpinning their organisations was spatially

referenced and these data was not being exploited to its full potential. To manipulate these

data resources effectively, and to facilitate both strategic decision making and operational

planning based on geographic information (GI), GIS technology would be necessary. This

movement of GIS from the fringes of the business to its very core spawned Corporate GIS.

Corporate GIS is a term developed to describe GIS implementations within an organisational

environment that play a central role in the IT strategy and are available to all those who have

a need of spatial analyses. The term encompasses all levels of adoption from desktop GIS

using off the shelf applications such as Mapinfo and ArcView to bespoke systems consisting

of various high performance hardware platforms and software applications.

The dramatic increase in corporate GIS projects focused attention on how to manage a GIS

implementation successfully. There are two main elements to the introduction of corporate

GIS into an organisation, the organisational implementation and the technological

implementation. The organisational implementation, encompassing the culture and structure

of the business, is of great importance and has received a great deal of attention in the

literature over the previous 10 years (Openshaw et at., 1990; Alla & Trow, 1990; Campbell,

1991, 1994; Padding, 1991; Campbell & Masser, 1992; McLaren & Healey, 1992; Mahoney,

1992; Sahay & Waisham, 1996, Peel, 1997a, 1997b). The challenge of introducing GIS into

an organisation is in large part people-related and centred around building up an awareness

and appreciation of the need for a GIS (Peel, 1997a). It is the attitude and support from

within the organisation that will ultimately determine the success or failure of the

implementation. It is often inextricably wound up in a complex process of managing change

within an environment where uncertainty, entrenched institutional procedures and individual

staff members with conflicting personal motivations are the norm (Campbell & Masser,

199 1) and should not be underestimated. For these reasons the majority of literature

available has concentrated on the success and failures of the organisational implementation,

while assuming that shortcomings in the technology will be overcome at some point in the

near future.

The technological implementation may take second place during the initial phases of

implementation, but it is a vital part of the long term success of corporate GIS and should

not be taken for granted in the haste to sort out other shortcomings in the organisation. If the

GIS is unable to deliver all that is expected of it because it is slow, difficult to use, unable to

produce the level of information required by the users in a usable form and unable to expand

to meet the increasing demands made of it as users identify new applications and analysis,

then it will simply not be used and the implementation will have failed. The evolution of GIS

has shown the innovative ability of researchers, vendors and users to overcome a multitude

of technological problems. These have encompassed the restrictions of limited processing

power, mass storage of data, manual data input, and fledgling software (Healey et al., 1998a)

to become a technology of value to the business community, placing it at the heart of the

organisation rather than as a novelty piece stored in the broom cupboard.

Of the two elements, the organisational implementation has been seen to be the province of

the commercial world, and IT development that of the academics. However, as more

demands are made of corporate GIS, users become more sophisticated, ever increasing levels

of data become available, and technology such as the internet increases user numbers, then

the focus of corporate GIS must shift from the introductory stages to concentrate on

providing a sophisticated, user-oriented service that fulfils all the organisational

requirements and expectations. To provide the service vendors, industry and academia will

have to unite to embrace new technologies.

The very success of corporate GIS has exposed the need for a shift of focus from

implementation to service provision. The introduction of GIS to the workplace has

heightened awareness of spatial data available within the organisation to the extent that the

volume of data, already large, is rapidly growing to unmanageable proportions. The storage

facilities and analysis capabilities of GIS on such volumes of data are now scarcely adequate,

even with the latest advances in processor speed and graphics capabilities (Healey, 1998a)

and will really struggle to process the large datasets that are now becoming available. The

advent of real time GIS applications (Xiong & Marble; 1996, Raper et al., 1997), requiring

sub-second responses on large, dynamic datasets, and the increasing use of GIS across the

internet with its high levels of users and data traffic, will pose very serious IT problems for

the business communities managing corporate GIS. These problems are looming and there is

a real need to consider just how they are to be tackled.

Organisations will also have to provide support for increasing numbers of users, with a

requirement to use large spatial data resources. These users will come from various sources

and most will be unaware, and further will not care, how GIS provides a service, concerned

rather with processing speed and response time. Carefully designed user front-ends to

software hide underlying GIS applications from the user to the extent that the user is

unaware that they are even using GIS technology. Examples can currently be found in the

fire service with their emergency response units, which hold detailed plans of all large

business premises, and in-car navigation systems. The internet is a major source of users

expected to make huge demands of GIS. They pose serious problems because of the very

large numbers of people it is possible to have requiring simultaneous access. Internet sites

providing access to static documents such as government reports have been brought to

breaking point by the sheer numbers of people trying to download files. Internet grid lock is

already occurring and can only get worse as larger volumes of data are transported around

the world. Therefore it is important that large volumes of data can be moved quickly from

one place to another to reduce the time spent clogging up various networks.

One solution to these corporate GIS problems is the use of parallel computing. Parallel

computing and parallel applications already available, such as parallel relational database

software, can provide many of the facilities that current serial technology lacks.

Firstly, they can significantly improve the performance of large, computationally heavy, or

data swamped tasks. The availability of multiple processors provides the ability to distribute

3

the individual components of a large problem across a number of processors. This spreads

out the work load, resulting in an increased throughput and quicker response time, than that

of a single processor (Nicol & Willard, 1988). This ability will allow GIS applications to

tackle the larger datasets while maintaining or improving the response times users have come

to expect. The multi-processor environment, as well as manipulating much larger datasets,

can also increase the capacity of the system by supporting far larger numbers of users. The

users can be spread across a number of processors along with their tasks, again spreading the

work load across the computing platform and improving response times for individual users.

The current move towards distributed computing is supporting this. The distributed or

clustered system is connected by a network, such as ethernet, to provide a parallel (MIMD)1

platform. Clustered computing is very attractive to industry because it makes use of

resources that may spend a considerable amount of time standing idle otherwise. For

example, by linking the workstations together large batch jobs can be processed more

quickly. Although inferior in performance to the 'tightly' coupled MIIMD machines, network

technology is improving, with Asynchronous Transfer Mode (ATM) technology capable of

transfer rates in excess of 155 Mbytes per second. With support for such configurations

reaching maturity, and some vendors marketing workstation clusters as dedicated parallel

platforms, the boundaries of what constitutes a parallel MIMD machine are becoming

blurred (Sawyer, 1998). Industry is already beginning to take a few steps down this road and

those steps taken towards true parallel computing are becoming shorter.

Secondly, it is known that there exists a point where the fundamental limits to the speed-up

of serial processors must be reached, even though new X-ray lithographic methods of

etching chips are pushing this point further away. Regardless of when this occurs, any

performance gains achieved in serial processors are multiplied substantially when the

processors are run in parallel. Therefore, parallel platforms will always be able to outstrip the

performance of the best of the serial processing machines. Thirdly, parallel computers are

fully scalable, allowing the corporate IT systems to adjust and expand as the organisational

requirements increase, while maintaining good response times for users. This also allows the

size of corporate investment to be incremental. Fourthly, the move towards the use of

commodity processors in parallel computers, not only makes them more maintainable and

reduces their cost (Healey, 1998a), it neatly bridges the gap between the accumulated store

'Multiple Instruction Multiple Data (MIMD) computer is an example of a massively parallel
computer. A more detailed description can be found in chapter three.

of serial applications upon which the organisation depends and the development and

acquisition of new applications designed to take full advantage of the parallel environment.

The final point to be made is the increased interest in parallel GIS applications and the work

that has begun to define suitable algorithms (Healey et at., 1998b).

In the last few years the practical application of parallel processing in corporate IT has

become both accessible and visible due to symmetric multi processing (SMP) machines like

the DEC VAX 6000-340 and now DEC Alpha, Sun Servers and Sequent Symmetries. These

machines contain a small number of reasonably powerful processors that can either be used

together, in parallel, to improve the performance of a single program, or used as individual

processors to increase the throughput of a number of sequential programs. This configuration

of processors permits the utilisation of existing code and applications which form the IT

bedrock of an organisation, with little or no modification. The next obvious move is to more

massively parallel systems, supplying a mixture of custom developed parallel software and

existing serial software, where the benefits of parallel applications run on a greater number

of processors can be felt. The ability to provide support for both these types of application

has increased the appeal of massively parallel machines for organisations wishing to upgrade

their hardware and software.

Over the last decade the focus of corporate GIS has been fixed on ensuring the successful

implementation of software within the organisation. However, the time has come to move

beyond implementation considerations and concentrate on the corporate GIS challenges of

the foreseeable future. These involve, as mentioned above, the manipulation of very large

spatial datasets, a greatly increased number of users, challenges posed by interactive GIS

services over the internet, and real time GIS.

1.2 Exploiting Parallelism

Research into the use of parallel computing in Geographic Information Systems (GIS) spans

at least ten years, but has for the most part concentrated on exploiting parallelism to improve

the speed and efficiency of particular algorithms, or the use of custom built parallel

databases, with limited functionality and capacity, to improve the retrieval of data. However,

it had only been possible since 1992/1993 to construct a parallel GIS environment from

hardware and software available over-the-counter. This development is of great interest to all

5

investors in corporate GIS because it has the potential to provide solutions to a number of IT

limitations that are becoming very evident.

The appearance of parallel architectures such as the Meiko Computing Surface (MCS) and

commercial parallel relational database management systems (RDBMS) is so recent that

little is known of the performance characteristics of this combination of hardware and

software, and benchmark statistics from official bodies such as the Standards Council are

few and far between. Further, the lack of literature available on designing benchmarks for

GIS in a parallel environment, particularly on what to measure and how to go about it, means

there are no agreed rules and regulations for comparing the performance of parallel GIS

environments against either existing serial environments or environments using other parallel

hardware and software.

Benchmarking and performance testing play a very important role in both the public and

private sector when purchasing new systems and software, because the expenditure has to be

J ustified not only to the senior management of an organisation but also to shareholders and

government (where appropriate). Therefore, there is a need to establish whether there is a

requirement for a parallel GIS environment in corporate computing, and then investigate the

establishment of a series of calibrated performance tests to establish whether the parallel GIS

system would be suitable as a corporate GIS engine. The research in this thesis intends to

take a number of initial steps towards addressing these issues.

1.3 Aims

The research project aims to investigate alternative approaches to the integration of GIS and

corporate database management systems in a parallel environment. Particular emphasis is

placed on the identification of potential commercial benefits, but these must be balanced by

consideration of technical and organisational risk factors.

The research project includes:

Interfacing of GIS software running in serial mode with a parallel database management

system.

Interfacing of GIS software running in serial mode with databases mounted on both

massively parallel and symmetric multi-processor architectures, linked via Fast Digital

no

Data Interface (FDDI) over optical fibre connections. This will allow evaluation of a

multi-platform data centre type configuration.

Examination of the above in both user parallel and application parallel modes.

• With user parallelism the database is exploited to support a high throughput of

individual users, each assigned to a particular database instance on a single node.

Some of the transactions may be generated from within the GIS, but many others

may be external to it, as in the case of management information systems (MIS) type

queries. All database instances can access the same database on disk.

In application parallel mode individual database queries are broken down and

the components distributed across multiple database instances on different nodes, to

optimise the response times for complex searches involving large data volumes.

Examination of the potential for storage, manipulation and retrieval of digital

cartographic data using normalised structures within the parallel database.

The preliminary development of performance testing methods.

The alternative approaches and interfacing techniques are investigated using two databases.

The first, a small pilot database is used to determine the working of Oracle on the MCS, GIS

applications and their communication links. The second, is a substantial demonstrator

database based on Cumbernauld, one of the Scottish New Towns. The basic data layers are

derived from 100 1:10,000 scale Ordnance Survey digital map sheets, together with utility

data supplied by British Gas (Scotland). The utility data were provided in raster scanned

format for the cartographic information and as standard data tapes for the attribute

information from the MINE database, held on a mainframe computer. The MINE database is

a database developed and owned by British Gas and contains detailed information about

every existing gas main. Gas mains are accessed using unique mains identifiers.

1.4 Overview of Project Stages

The research project was broken up into a number of stages:

Installation of compatible versions of the Oracle RDBMS on the Meiko Computing

Surface and the VAX 6000-340 symmetric multi-processor.

Identification of requirements for Corporate GIS that could be addressed using parallel

processing technology.

7

Design of demonstration GIS and its associated attribute/MIS database.

Conversion of raw digital or master data into GIS/database format so it could be used by

different applications.

Testing of appropriate interfaces between Oracle and the different GIS applications, on

the MCS and evaluation of alternative communication pathways (ethernetlTCP-IP or Meiko

CSN). The first step was to determine whether technical problems existed and if so how they

might be circumvented. The second step was to examine the extent to which the available

interfaces could support multi-instance queries for application parallel as opposed to single

instance user parallel queries.

Design of two performance test harnesses, for Oracle and Arc/Info, to collect

performance statistics for the whole of the system rather than for individual components or

single nodes.

Design of a test suite to evaluate performance across a wide range of functionality,

including combined and GIS and TP type access to the parallel database.

Construction of the test suite.

Profiling of a range of operations run against the demonstrator system.

1.5 Analysis and Reporting of Results

For practical purposes the research was split into two phases. The first phase of the research

was concerned with setting up the experimental parallel GIS environment to ensure the

individual components would work together in the same environment and that the database

links were functional. A suite of tests were designed for this phase to evaluate the

performance of the database, under a number of different conditions, in its normal state. A

performance test harness was devised to collect performance statistics from across the whole

of the environment as well as from individual components. Results from the performance

tests were stored in Unix files, and later transferred to Microsoft Excel for further analysis.

The second phase has concentrated effort on the interfaces existing between the GIS

applications and the parallel version of Oracle RDBMS. Using the large demonstrator

database for both transaction processing and large and complex queries, a range of functions

have been examined. A second suite of performance tests were devised to explore different

methods of submitting SQL queries generated from the GISs to the database to examine

effects on performance. SQL queries were also developed to provide both transaction

processing and complex query loads on the database. These were submitted to the database

using a number of different strategies, to test the suitability of the parallel environment for

supporting both transaction processing and complex query loads simultaneously. A second

performance test harness was developed to collect performance statistics from tests initiated

from GIS applications.

Descriptions of the test environment and the two databases are located in chapters seven,

eight and nine. Results and analysis of both phase I and phase II can be found in chapters

eleven and twelve.

1.6 Organisation of Dissertation

The thesis is organised into thirteen chapters, which have been split into four separate

sections to aid the clarity of the presentation.

The first four chapters cover the introduction and background to the research project,

detailing the recent history of the involvement of corporate GIS and relational DBMS with

parallel computer architectures. They consider the origins of these three separate strands,

their progress to date and the pressures and developments that have made it possible to unite

them in this research.

The second section contains chapter five and chapter six. Chapter five describes the

development of parallel databases from the initial database machines through to database

management software designed to run on massively parallel hardware. Chapter six is

concerned with configuration and functionality issues to do with benchmarking. It provides

an overview of existing benchmarks available during the lifetime of the research project, and

details the elements necessary to consider when designing and constructing performance

tests and benchmarking exercises. The chapter provides the rationale behind developing a

suite of performance tests used in later chapters rather than adapting existing benchmarks.

More importantly it lays down the ground rules for performance testing in the later chapters.

Section three consists of four chapters, detailing the development of the parallel GIS

environment and the design of two databases for use in the performance testing process.

Chapter seven describes in detail the Meiko Computing Surface, and the GIS interfaces for

two mainstream GIS packages Arc/Info and Smallworld. Chapter eight describes the pilot

database used for testing purposes in phase I of the testing program. This is a small database

of artificial data required for tests to characterise the system and check that all the separate

entities were functional. Chapter nine continues the database theme, and describes the

substantial corporate database that was designed and built for use with phase II of the testing

procedure. The purpose of this database was to provide facilities to examine the performance

of GIS/database interfaces, the use of views for representing tables in the database and the

ability of the system to support different transaction work loads from both MIS and GIS.

The final section contains chapters ten, eleven, twelve and thirteen, and presents the

measurement environment and the results and discussion concerning the research project.

Chapters eleven and twelve detail the results and analysis from Phase I and Phase II

respectively, with the results from Phase I feeding into Phase II. Chapter thirteen draws the

conclusions of the research together, and considers the implications of those conclusions for

corporate GIS users, GIS vendors, parallel architectures vendors and database vendors. It

details some of the advances in parallel architectures and software since the end of the

research project and finally considers topics for future research.

10

SECTION 1

Background

Corporate GIS has become more attractive to organisations, both large and small, due to a

combination of factors. These include: increasing business pressures forcing organisations to

maximise use of all information available to maintain a competitive edge, a management

shift away from a compartmentalised organisation to one of cohesion, communication and

co-operation, and the IT revolution which has provided the capacity to manage and analyse

the available corporate information at a more affordable price. However, corporate GIS is

becoming a victim of its own success as organisations attempt to progress from the

implementation of pilot projects to fully fledged, organisation wide information facilities.

Users are becoming both more sophisticated in their employment of strategic and operational

data and more demanding in their requirements, needing faster environments with improved

analysis capabilities, on larger datasets, that are accessible to a much wider audience than

was ever envisaged previously. Although IT capabilities are progressing rapidly, the

demands of corporate GIS always seem to outstrip their abilities, as larger datasets are

becoming more widely available and use of the World Wide Web increases.

Research into the use of parallel architectures and parallel processing techniques concerning

GIS algorithms has shown that there are many benefits for GIS users. One obvious one is the

ability to break down algorithms and datasets to run on a parallel machine to improve the

throughput and response time for specific GIS functions. Conversely, this also allows much

larger datasets to be analysed in an acceptable time frame because more data can be

processed faster. Secondly, parallel architectures allow support for a much larger number of

users because they can be spread across a number of processors so throughput is much

greater and no single user causes a bottleneck. Although there are currently no parallel GIS

applications commercially available, able to incorporate parallel processing techniques such

as raster-to-vector conversion or polygon overlay into GIS functions, parallel computers

constructed from commodity processors e.g. Alpha, SPARC or 386/486 processors, exist,

which can run both existing software designed for a single processor only or specialist

parallel software designed to take full advantage of the parallel environment. These

11

machines are able to integrate with corporate IT strategies because they can run existing

software in which the organisation invested both time and money, while providing an

upgrade path to full parallel processing and much improved performance.

Changes in business focus have brought the need for high quality, reliable strategic and

operational corporate information to the fore. Growing appreciation of its value has led to

huge investments in corporate database management systems that are able to store and

manipulate very large volumes of data. The systems need to be fast, robust and secure to

provide suitable access to data while retaining flexibility to change with the organisation. To

provide the required support for an organisation processing very large volumes of data daily

(e.g. Utility companies processing bills), database vendors, such as Oracle, have spent much

time and money researching and developing parallel database management systems to run on

parallel machines, particularly machines like the Meiko Computing Surface (MCS) -

constructed from commodity processors. Relational database management systems have

proved particularly amenable to parallel processing on these machines because they are

composed of similar operations that are applied to consistent data, and therefore, the work

load can be successfully spread across a number of processors. The work load can be

composed of multiple users accessing a single database or complex queries broken up into

small sections and spread across a number of processors.

The improvements in database technology, particularly the speed of data retrieval, the ability

to store many different data types, the robust security and recovery mechanisms, and the

capacity to handle very large volumes of data are features that have attracted many corporate

GIS users. The need to store and manipulate large volumes of co-ordinate data, linked to

large comprehensive attribute datasets, has become more urgent as data providers make

larger and more complex datasets available, and organisations, realising the potential of their

in-house datasets, require the ability to perform spatial analysis on them.

The following three chapters contain a review of these three separate strands that comprise

the key elements of this research, namely corporate GIS, parallel architectures and relational

DBMSs.

12

2. Influencing Factors for
Corporate GIS

Geographic information is an important piece in the Information Resource Management

jigsaw - dealing with the creation, production, collection, management, distribution and

retrieval of information (Antenucci et al., 1991). The uptake of Geographical Information

Systems as a business information tool has been increasing more rapidly since the early

1990s as private and public sector organisations search for the keys to remaining successful

and viable operations.

Tools such as Management Information Systems - for managing all types of corporate data

from the operational to the strategic, and Executive Information Systems (EIS) - providing

simple front end, user driven access to data, have been in use for a number of years and have

a history of success in organising and disseminating strategic information in a timely

fashion. MIS and EIS are extremely useful tools for summarising information to make it

more accessible and digestible to the management of an organisation. They are created and

maintained by experts who bring together departmental datasets to provide the high level,

up-to-date information required by an organisation. These information systems provide

expertise in a specific corporate sphere, fitting snugly within the organisational IT strategy

while requiring little internal co-operation and few organisational changes. The success of

these information systems in providing timely information in a succinct format fuelled a

need for systems where the user had much more control over the environment, the data, and

the analysis. This would allow the user to explore and analyse data in a much more flexible

manner, without having to be a programming expert.

GIS are a category of information system that provide just such an environment. Being

essentially an end user technology, they are used by people who are often not computer

specialists (Openshaw et al., 1990) and hand complete control of data and analysis to the

user. However, this type of information system brings a number of corporate challenges with

it. The first challenge is that GIS will not slot simply into the existing information strategies

of an organisation. This is because a GIS is a complex system: it is resource intensive - from

both a processing (compute and 110 intensive) and storage view point and uses complex data

structures with varying numbers of variable length data records, spread across potentially

13

huge linked files (Gittings et al., 1991; Healey et at., 1991). Many IT strategies designed to

support particular corporate functions e.g. transaction processing type functions, could not

support the onslaught of resource requirements made by GIS, so the GIS did not perform to

expectation and the other functions were disrupted. GIS also requires data from many

different sources, often in a variety of formats (Healey et at., 1998b), which are often either

not available or too complex to translate.

The second challenge is the tremendous level of communication and co-operation required

from the human elements of the organisation in order to make GIS function effectively and

efficiently. GIS is usually described as an integrating technology because it is able to

manipulate data from disparate sources provided they have some form of spatial link,

however obscure. This ability is often quoted as one of the main benefits for an organisation.

However, it also implies that the organisation is ready to participate in a data sharing culture

and that its employees feel secure enough in the company, and in their own positions, to

advance a policy that may otherwise be viewed as diluting control over resources and thus

weakening their positions (Mahoney, 1992). Changing the way data are used in an

organisation often has knock-on effects. To allow for the integration of information from all

parts of an organisation it might be necessary to change its structure to accommodate this.

Thus data integration may provide a route for integrating the organisation itself to allow for

the improved communication and data exchange (Padding, 1991). In today's climate where

response to market place changes need to be fast, the ability to share and integrate data

across traditional boundaries becomes a critical measure of how well an organisation can

compete and survive (Dhillon, 1992).

2.1 The GIS "PUSH" Factors

The rapid uptake of corporate GIS seen in the 1990s is a response to a combination of

environmental and business factors. They made it worthwhile to invest in software that was

known not only for its costly nature in terms of computing, data conversion and expert

operation, but also for its need for high level organisational co-operation and

communication.

14

Some of the influencing factors have been:

• the Chorley Report (Department of the Environment, 1987) (and the subsequent

AOl report 10 years on) (Heywood, 1997)

the changing financial climate

the utilities - their successes and the effects of privatisation (Roberts, 1989).

• activity of 015 vendors - a move away from large, complex mainframe/

workstation applications to desktop GIS for PC, and the design of many spatial

applications purposefully developed for the user e.g. pipeline GIS applications,

NHS applications

• increased availability of digital data

• OS data converted to digital format e.g. Strategi, and the development of

new digital datasets e.g. Meridian

• satellite imaging

• lifestyle data, address lists and other corporate data

• the realisation of the importance of good, reliable data for all aspects of

organisational planning from day-to-day decisions to long term planning.

The following subsections consider in detail the effect of the Chorley Report, the changing

financial climate and the utility companies.

2.1.1 Chorley Report

The Chorley Report was an influential document resulting from a committee headed by Lord

Chorley. The report was published by the Department of the Environment (1987) and

examined many issues involving the use of GIS and GI. It brought GIS to the attention of

many organisations through the publicity it received and highlighted a number of major

difficulties associated with the introduction of GIS. Three recommendations from the report

that prospective users of corporate GIS should heed were: that information should be

regarded as a corporate resource; that a corporate strategy was essential to ensure that the

project did not fly off at a tangent; and finally that there was a need for a realistic appraisal

of the costs and benefits of investing in GIS (Mahoney, 1992).

15

The report also highlighted four GIS projects based on utility companies or local government

where GIS was being implemented to improve services. These were: the Dudley Digital

Records Trial; the Taunton Joint Utilities trial; British Gas South Eastern Region GIS

implementation; and the GIS project undertaken by Wessex Water Authority. They were

projects that not only pointed towards the internal organisational benefits of using GIS data

but also the possibilities for sharing data between organisations to make the process of

exchanging information required by legislation, more efficient.

It has to be said that the Chorley Report did not prevent many of the mistakes made during

the implementation process and a number of issues identified by the report are still

outstanding (Heywood, 1997). However, it was a good advertisement for both GI and GIS.

2.1.2 Changing Financial Climate

The most powerful incentives for the adoption of corporate GIS have been based on financial

considerations: the need to cut costs to survive; the need to manage and integrate data more

effectively to control management and asset expenditure; the need to comply with

government legislation or targets to avoid penalty costs; and finally, the need to provide

acceptable returns for shareholders. The requirements for cost effective management and

profit maximisation hold true across industry and commerce, national and local government,

utilities and statutory authorities (Callaghan, 1989). To be successful all areas of an

organisation have to be competitive, constantly trying to exploit advantages that will produce

additional profit. Failure to be cost effective and produce a satisfactory commercial return on

the assets employed is likely to put an organisation out of business or attract heavy funding

penalties (Callaghan, 1989).

There are two main methods of reducing costs: the first is to make the work force more

productive (Clegg, 1992), and the second to reduce the number of staff, as staffing costs

account for a large percentage of organisational costs. The advantage of corporate GIS for an

organisation is that it can contribute to both these strategies. By managing the spatial assets,

reducing maintenance costs and improving efficiency, it reduces the need for both

duplication of data (Homer & Watson, 1992) and extensive management of labour intensive

paper-based map libraries (Morgan, 1991) to either free staff time for other activities or

allow the organisation to reduce the number of staff employed. There is evidence that drastic

reductions in the work force, known as "down sizing", have been made partly possible by the

16

efficiency savings GIS enabled, allowing staff to be deployed more rationally and staff time

to be used more productively (Rauen, 1993), manage stock precisely and locate problems

more quickly and accurately.

Turning organisational data into digital format and making them available as a corporate

resource has increased accessibility and made infinitely more flexible than the "frozen

image" of paper systems (Webb & Todd, 1991). The sheer volume of paper, the costs

incurred in managing the paper datastore, and the complexity and time involved in extracting

useful data from it fuelled the drive for conversion to digital format. The aim was to reduce

operating costs, improve returns on assets and improve customer service, to make the data

more accessible and more manageable, enabling better decision making (Fanner, 1997).

However, the conversion process was not without its problems and could in itself be a

financial constraint on the organisation (Denness, 1997). Despite its restrictions the paper

map actually represented a highly efficient means of storing data. A very large number of co-

ordinate pairs are required to describe the complexity of topographic features, together with

information describing the relationships between these features (Dowers etal., 1991). To

convert it costs both time and money to transfer detailed information, and money to acquire

sufficiently powerful hardware and software to store and manipulate the data.

External pressure provided further impetus for GIS implementation and data conversion.

Privatisation of the gas, electricity and water companies (in England and Wales) and

regulatory pressure of government bodies such as OFGAS and OFFER changed the focus of

management from the supply of the product towards a much higher level of customer

service. The utility companies have very strong financial incentives to invest in corporate

GIS in order to integrate and co-ordinate their spatial data, because the success of their

business hinges on geographically-based assets i.e. mains/cables and customers. Although,

some of the service is still related to delivery, much more attention has to be placed on the

customer interface (Hobson, 1992) to encourage customers to remain with a particular

company, locate potential customers with the desired social and spending profiles and then

persuade them with low product prices and evidence of high customer satisfaction to become

customers.

The regulatory bodies also play an active part in creating financial incentives for corporate

GIS by constantly regulating the price of the product. If they make a recommendation for

17

either a price freeze or reduction savings have to be made through efficiencies, redundancies

or expansion of business.

2.1.3 The Utilities

The importance of the utility companies in promoting the use of GIS as part of the corporate

IT strategy can not be under-estimated. In Britain and America the utility companies and

local government have pioneered many of the system experiences that are relevant to

contemporary GIS development (Antenucci et al., 1991). They were able to demonstrate

significant business advantages and cost savings for managing spatial data using IT, and

demonstrated that when properly managed, data conversion from paper to digital format

could enhance access and make its use much more flexible. For example:

Reduced operating costs through increased efficiency

Better return on assets through increased product throughput

Reduced or deferred capital expenditure

Improved service to customers (Webb & Todd, 1991)

The success of utility based GIS projects (Ives, 1992) and local government usage (Campbell

& Masser, 1992; Dermess, 1997) have had a major impact on the subsequent spread of GIS

pilot projects found running in many business sectors. These range from financial institutions

(Hornby, 1990; Branagan, 1995; Nitsche & Reuscher, 1997) to the retail and leisure sectors

(Callingham, 1995) to rural conservation (Rideout, 1992).

The utility companies were one of the first to see a potential for corporate GIS to manage

their vast spatial databases. GIS brought the potential for integration of many information

management systems both within the organisation and externally through joint data exchange

programs with other utilities and local government. This was driven, in part, by legislation in

the form of the Street Works Act (1950, 1991) which required the exchange of information

pertaining to the laying of cables or mains. In a world where the utility companies were

facing many changes including, privatisation, operating in a competitive market place, and

working within financial constraints placed upon them by regulatory bodies, GIS offered a

means of managing change. GIS also provided a solution to manage the over stretched paper

information systems that required a large, dedicated work force to maintain them.

1I

The initial aims of the GIS projects were to increase efficiency within the organisation and

the usability of the information. Improved spatial data handling presented many

opportunities to the utilities for efficiency savings, from the laying and repairing of mains

and cables to enhancing customer support, from integrating internal systems to facilitating

the exchange of data with other utilities and external organisations such as Local

Government (Homer & Watson, 1992; Gadd, 1992; Webb & Todd, 1991).

The utility companies are in a unique position because their main business is based on assets

that extend the length and breadth of the country, delivering essential services to almost

every home and business. Between them the utility companies were responsible for over 1.65

million kilometres of underground mains in 1987 (Department of the Environment, 1987), a

figure which is greatly increased due to the government-led building policy to make more

housing available at an affordable price, the escalating demand for telephone lines

(particularly second lines for use of the internet and e-mail), and the introduction of optical

fibre networks. In 1987 the Chorley Report calculated that the mains and cable networks had

a replacement value of over £117 billion, which will be substantially more in today's market.

The largest spatially referenced databases held by the utilities relate to distribution networks,

customer records and street-work notices and were therefore candidates for conversion and

integration.

2.2 The IT Management Revolution

In the last fifteen years the IT landscape has undergone a series of radical changes. IT

responsibility has, rather like a pendulum, swung away from a rather rigid centralised

approach based around the mainframe computer, over to one based on departments with

stand alone PCs and workstations, and then back again towards the centralised control of

distributed networks of PCs and workstations. These shifts in strategy have been mirrored in

the development and growth of corporate GIS.

2.2.1 Centralised Control (I)

IT management of the 1970s and early to mid 1980s was a product of the computer systems

available to large organisations. The IT strategy was based mainly on large mainframe

19

computers that served the needs of the whole organisation. It was maintained centrally and

accessed through a network of dumb terminals. The GIS applications available reflected this

structure. They were centrally managed programs, designed for specialist users, and

command driven. Many of the GIS installations were bespoke applications which were good

at their intended job but had poor integration with rest of the IT system. Many GIS functions

had to be performed in batch mode overnight because processing time took hours, and crash

recovery was extremely important because many of the systems were unstable.

Many of the reasons for the failure of GIS projects in these early systems stemmed from a

mixture of inadequate technology, badly designed software and an inability to manage GIS

Projects effectively. Users were put off by the poor response times, the inflexibility of the

system, the complex commands it was necessary to learn, and the lack of usable data

(Openshaw et al., 1990). Organisations were less than enthusiastic because their large

mainframes and databases were set up for transaction processing and could not cope with the

load GIS imposed. This was largely due to the large CPU and 110 demands the applications

made upon IT, and was confounded by an inexperience of GIS requirements.

The final compounding factor was that the hardware peripherals and storage media were all

very expensive, and often did not live up to the expectations raised by the vendor (Openshaw

et al., 1990). Quite often it was easier to return to the paper systems, which although

cumbersome, could be an easier and faster option than the mainframe and could be much

cheaper!

2.2.2 Departmental Control

The haste to move away from a centralised management style and its cumbersome

centralised IT approach with large mainframes and dedicated transaction processing

applications, pushed both management and IT responsibilities out to individual departments.

Departments became almost autonomous units with responsibility for their own IT strategies,

budgets and data management. However, the move to a departmental IT approach did not

bring about the information revolution that was anticipated because there was no over-

arching control of the IT strategy. Individual departments invested in hardware and software

with little reference to the strategies of other departments. The result was a series of

incompatible systems, a reduced level of communication, a protectionist attitude towards

20

resources - due to the need to recover costs from other departments - and an unwillingness to

co-operate with other departments to sort out problems.

The GIS applications developed for large mainframes were of little use in a departmental

situation, requiring both specialist knowledge and expertise to operate them. They were slow

at producing information and were inflexible, unable to respond quickly to the changing

information requirements of a department. The departmental approach encouraged the

development of small GIS projects based on departmental data, which although successful in

their way, were very much stunted in growth due to restrictions on funding, expertise and

access to organisation wide data. It also encouraged the development of more slim-line GIS

leading, eventually, to the desktop systems available today.

The move to departmental management of projects and the use of work stations and PCs

revolutionised the working environment and brought corporate GIS tantalisingly within the

reach of organisations. IT did not require a battery of programming experts to use it,

hardware and software were more flexible and costs were beginning to come down.

However, another set of obstacles to corporate GIS became apparent and were based not on

IT failure but the inability to define a GIS project, justify the cost to management, or

successfully manage the project. The problem stemmed from the fact that most projects were

justified on a purely financial basis. The following list sums up the frustrations for those

trying to start a GIS implementation (Openshaw et al., 1990):

' difficult to justify GIS by cost/benefit analysis only - many of the benefits are

hidden or difficult to quantify in monetary terms. The reliance on cost/benefit

analysis made it difficult to write a meaningful project structure;

the structure and scope of pilot projects were not thought out sufficiently and

there were no clear views of what the requirements really were;

• the scope was either:

too large: so much time and money were spent converting data for GIS

use that the expected benefits might not materialise for several years. By

that time the management had lost interest and withdrawn support;

too limited: the project was not representative of the real life system

requirements so when it was scaled up it did not work properly e.g.

response time was extremely poor which frustrated users;

21

little or no support from higher up the management structure;

• hardware/software did not do what the vendor promised most faithfully that it

would. There was no real comparison of different systems to find most suitable;

scant GIS skills.

The uncoordinated approach to IT acquisition and data acquisition, and the rising costs of

maintaining a multitude of different systems has swung the pendulum back towards

centralised control.

2.2.3 Centralised Control - the sequel

The move back to centralised control began as the need to remain competitive became

paramount and businesses, realising the benefits of all departments pulling in the same

direction, attempted to combine resources from different areas of the business. This new

centralised approach to IT, fuelled by changes in management and advances in technology, is

not the restrictive control of the past, but rather an attempt to ensure organisational

compatibility with extensive use of networks to link the business together. It is in this

climate that corporate GIS has really begun to flourish.

Two organisational developments in particular are pertinent to the continued development

and expansion of corporate GIS. These are the concept of a Data Warehouse and the rapid

expansion and use of networks, in particular organisational intranets and the Internet, to

provide a means of flexible communication and data sharing. They are of great significance

because they identify roles and functions for corporate GIS within the organisation that can

be clearly understood by both management and project teams and, therefore, move the

justification process for corporate GIS implementation away from cost/benefit analysis.

2.2.3.1 Data Warehousing

Since 1997 the concept of the Data Warehouse has emerged. This is an information strategy

that links together disparate systems and information sources from different locations, co-

ordinates diverse data formats (often incompatible with each other), and integrates them in a

central location known as the warehouse. The warehouse is accessible to a multitude of

22

applications to exploit the resulting database, from a strategic level to day to day running of

the business. GIS is one application that will benefit greatly from such a strategy. It has long

been recognised that successful corporate GIS implementations require integrated data

sources to produce the results expected of them, and that GIS is the catalyst for that

integration process. However, this has been proved problematic because GIS is usually

viewed as a software application rather than an information strategy and has therefore

struggled to reach its full potential because of the lack of will to change without senior

management clout. Data warehousing frees GIS from the burden of the role of data

integrator, allowing it instead to concentrate on producing results.

Secondly, data warehousing is important because it provides a corporate framework for GIS

to sit within. In the past it has not always been clear to managers just how GIS could fit into

their organisation and what benefits it could bring them because they have relied on

'Cost/Benefit' analysis (Ives, 1992; Lodwick & Cushnie, 1990; Webb & Todd, 1991). This,

as is mentioned in the previous section, is a mechanism through which it is very difficult to

justify the expenditure for GIS because while the costs are patently obvious, many of the

benefits are of the 'intangible' variety and therefore can not be quantified. Data warehousing

goes some way to solving these perception problems by giving GIS visible roles as both a

data provider to the warehouse, contributing value-added spatial data, and as a data

consumer application using the combined data available. Data warehousing is a very

valuable strategy because it can place corporate GIS at the heart of the IT strategy making it

a truly organisation-wide tool, while boosting the business case for organisation-wide

implementation.

2.23.2 Orgaiiisational Intranets and the Internet

The rapid development of network based communication through intranets, extranets and the

internet have had a very positive effect on the desire to share information at both a

department and individual level. The change in attitude has come about for several reasons.

Firstly, both staff and departments can quickly feel the benefits of data exchange using web-

enabling technology, because others reciprocate and provide access to data they manage.

Secondly, encouraging the publication of data through the web does not reduce or weaken

the position of those who produce and manage it. Rather, it tends to strengthen their position

as more people become aware of the resource and depend on the accuracy and reliability

being maintained. Finally, software suites such as Active Intranet make the publication of

23

data a simple process and encourage individuals and groups to take possession and become

responsible for their own areas of the organisational intranet. By giving individuals a vested

interest in sharing and maintaining information, web technology is beginning to succeed in

developing an organisational culture built on facilitating communication rather than stifling

it.

This is beginning to have an impact on corporate GIS. Not only is it making many more data

sources available for research and analysis, it is providing a means for publishing results, and

further, providing interactive access to spatial data. It also provides an excellent medium for

providing access to a wide variety of GIS front-end applications that are simple to use by

anyone familiar with a mouse, are user-friendly, and gently guide the user through a series of

choices to the final result and with acceptable response times. These applications can be

designed such that the user is not even aware that the underlying software driving the front-

end is GIS.

The internet opens up access to spatial information and analysis to a much larger audience

making it a truly corporate information system. With access to GIS widened through the use

of internet/intranets, it allows many new types of application to be built e.g. real time

mapping, making it available minute by minute, anywhere in the world. On a world-wide

scale it could prove very useful in disaster planning and management. Closer to home, gas

meter readers could use the internet to control their daily work from down-loading details of

the next job, to shortest route planning, to traffic information, to the constant recording of

their position making deployment easier.

However, there are still many difficulties to be overcome before web technology provides

the perfect solution. With the increasing use of real time mapping and analysis in

conjunction with the World Wide Web (WWTW), and the existence of millions of potential

users that the web enables, GIS web activity will very soon result in enormous demands for

multi-streamed performance. Already many web-servers are receiving tens of thousands of

accesses every day. As the sophistication of these accesses develops, with demands for

complex database queries and the mapping of results, so the performance of the systems

servicing those requests must be able to react rapidly to satisfy a user community at present

frustrated by lack of network band width. Websites such as Digital's Alta Vista search

engine use powerful, multiprocessor servers to satisfy the current level of demand - which

consist of simple and unsophisticated queries. It can not be long before the demands made of

24

GIS software, customised into vertical markets such as tourist information systems, reach

and rapidly exceed those levels (Healey et at., 1998b). Software is currently available to

launch GIS onto the web through applications such as AutoDesk, ArcView and Mapinfo.

The availability of GIS web technology is beginning. Maps on the internet are not a new

phenomenon: in 1997 there were approximately 200 sites with bit map images that could be

viewed and queried using standard on-line browsers (Ireland, 1997). Using vector data in a

similar fashion is very attractive as it would make the maps dynamic and reduce network

transactions.

2.3 Computing Developments

2.3.1 Hardware

A tidal wave of innovation, driven by advances in PCs and compounded by the Internet, has

broken over the IT scene (Barr, 1998). Moore's Law, that computer power will double every

eighteen months, is still very much applicable. Advances in PC systems are such that the top

end PCs overlap significantly in power with the bottom end of the traditional UNIX

workstation market - at a much lower price (Barr, 1997).

Advances in processing power, memory, storage technologies, networking (including the

Internet) are making GIS more widely accessible to businesses. Improved manipulation of

graphics through standards such as OpenGL, and PC graphics handling using the

Accelerated Graphics Port (AGP) (Toon, 1997), in conjunction with hardware and

networking advances, have developed a demand for desktop GIS as demonstrated by a

survey of GIS in the business sector (Grimshaw, 1997). The falling price of PC technology

has ensured that there are few businesses that do not have a local PC network of their own

and there are few employees who do not routinely use computers as part of their job.

2.3.1.1 GIS Limitations

Despite all of the advances in PC and processor technology there are still significant

limitations to corporate GIS. Power on the desktop has brought excellent interactivity to the

user interface, but has yet to be harnessed enterprise-wide for cost-effective GIS processing

25

(Healey et al., 1998a). Processing, memory, disk and network constraints still abound,

forcing a compromise between the performance of a corporate GIS and the size and

complexity of geo-datasets used. This is exacerbated by contract deadlines for corporate GIS

projects that are too tight to accommodate the processing time required to manipulate or

analyse large geographic datasets. Even with the various technological advances which have

gone some way to meeting the increased demand for processing, performance will still

eventually be limited by the speed at which millions of electron switches contained within a

processor can be operated (Sawyer, 1998). Predictions vary, but most estimate that within

the first quarter of the 21st century further increases in the performance of a single processor

will be impossible.

The total costs of ownership of PC networks are only now being realised. Powerful but

inexpensive PCs still require substantial system support, which has become increasingly

complex and expensive because it is spread over numerous distributed machines rather than

a few centralised servers, with little support for standard configurations. It is apparent that in

a corporate environment the support costs for PCs exceed their original purchasing price

every year of their life (Barr, 1998).

2.3.1.2 Networking Developments

There are a number of initiatives to develop less costly environments, two of which are being

designed by Oracle/Sun Micro Systems and Microsoft. The Network Computer (NC),

supported by Sun and Oracle, is a device with limited local processing and storage capacity

which will act as an intelligent client to a server. It offers the relative ease of use and

interactiveness of a PC, but without the support costs. Similarly, the 'zero administrative

cost' initiative from Microsoft transfers the costs from supporting individual machines to

providing facilities on servers to maintain each machine remotely. In either case the role of

the client computer is much reduced and has become known as a thin client (Bytes

Technology Group, 1997). The desire for thin clients has been further fuelled by the

aspirations of information providers on the World Wide Web, particularly those who would

like to provide active content, i.e., content that users can interact with rather than just view. It

is highly feasible that parallel processing will have a strong part to play in these

configurations providing parallel server capabilities to serve thin clients.

26

These developments all make IT and computing more accessible to all employees in the

organisation, allowing very sophisticated applications to manipulate larger volumes of data

than were ever dreamed possible in the early 1990s. However, these advances in IT have

created problems as well as solving them, raising user expectations about the levels of data

that can be manipulated and the speed of processing, and have created networks that are

costly in both time and money to maintain.

2.4 Future Moves for Corporate GIS

While the market place demand for corporate GIS is expanding and changes in both

organisation management and IT structuring are beginning to facilitate the adoption of

corporate GIS, there are still many challenges for corporate GIS to overcome. For the

foreseeable future those challenges are of the technical variety, for example: processing very

large data sets at an acceptable speed; supporting and managing large user groups; real time

GIS and web-based GIS. One solution to these difficulties is parallel processing, using

multiple processors to speed-up the processing and analysis of very large datasets, or

spreading large numbers of users over many processors.

The technology of symmetric multi processing, be it with Pentium, SPARC or Alpha

processors, has gone some way towards this, bringing about a quiet revolution in the file

servers of numerous academic institutions and commercial organisations. The number of

processors are usually much smaller than those in massively parallel machines, often

between 4 and 16 processors. However, the gains in throughput are considerable (Healey,

1996).

The move towards centralised servers and thin client technology outlined above also

supports a move to parallel processing. By managing PC environments through a centralised

server or small group of servers using thin client technology, there is a ready-made place in

the IT structure for parallel servers to provide the processing power and network speed

required to process and analyse large data sets. The advantage of this strategy is that by

locating the parallel server at the centre it insulates the main body of users from the

complexities of parallel processing, while providing a much improved service. If demand for

parallel architectures increases sufficiently, it should also provide the necessary impetus for

GIS software vendors to take full advantage of the technology and consider the

implementation of parallel algorithms and data storage.

PIVA

These developments are highly significant for parallel computing in both the GIS and

business communities. The uptake of parallel computing, particularly in the business

community, has been slow due to the rather chequered history of failed hardware companies

and unsatisfactory hardware tools (Healey, 1996). The literature has for some years been

drawing attention to the promise of general-purpose parallel computing (Hack, 1989) and its

ability to distribute components of a large computational task across a number of processors

producing (theoretically) more rapid throughput than that of a single processor (Nicol &

Willard, 1988). The trend towards commodity processors, even if their interconnects are

custom built, has made parallel machines more maintainable, more affordable and able to run

versions of standard systems software such as UNIX (Sawyer, 1998).

3. Parallel Processing in GIS

In the GIS community it is recognised that the developments in high performance computing

technology have had a significant impact on scientific progress (Ding & Densham, 1996).

The importance of geo-processing is increasingly recognised and it has been suggested that

parallel processing is one of the most significant trends in hardware for GIS (Dangermond &

Morehouse 1987). Many spatial problems are inherently parallel (Armstrong, 1994). The

majority of spatial analysis problems require substantial quantities of data, which are usually

more readily broken down for parallelism than the processing tasks (Xiong & Marble, 1996).

There are a number of reasons why parallel processing is appropriate for GIS. Firstly, GIS

operations are multi stage, requiring the application of several algorithms in turn - these

algorithms may contain sequential components. Secondly, computation and 110 may be

interleaved during the same operation - this may be due to the function itself or the very

large size of the datasets - it is not safe to assume the datasets will all fit into memory.

Finally, a GIS algorithm may require to link to a proprietary database manager to allow the

storage and manipulation of co-ordinates or attributes (Healey et at., 1998b). A large

proportion of data required for analysis may be held in databases located externally to the

GIS. Examples of such databases are those used to store finance, sales, marketing, and stock

control information.

The increase in availability of both GIS and remote sensing data (Healey et at., 1998a) and

the trend towards real time GIS applications (Xiong and Marble, 1996) adding sub-second

response times to analytical operations on large and highly dynamic datasets require greater

processing power than is currently available. The need for new, much larger datasets,

particularly in image processing will require not only more processing power in order to

manipulate and analyse the images, but also new processing techniques to allow this to

happen in a realistic time frame. There are significant steps being made in the business

community towards the use of parallel servers to boost processing speed for an increasing

user population as the demands of both the users and the software continue to increase.

There are two initiatives of significant interest concerning GIS and parallel processing: data

warehousing and thin client technology. Both these initiatives (as explained in Chapter two)

29

require a powerful server, or a small network of powerful servers at their core to provide

their respective services (Lee, 1995; Sybase, 1999; Wong, 1998). As a corporate resource,

access to parallel processing for GIS can be made through these mechanisms. It also

provides a solution to a number of problems that corporate GIS has been struggling with, by

providing the processing power and storage capacity long sought after, while removing the

burden of justifying the expense of specialist hardware for GIS use alone. It is therefore

essential that, as these initiatives become more fully fledged, GIS is in a position to make the

best use of the processing power available.

In this chapter, the applicability of parallel processing for GIS is explored. The chapter is

divided into a number of sections describing the different classifications of parallel

architectures, methods of measuring the performance of algorithms designed for parallel

platforms, parallel geo-processing and finally some of the benefits that have attracted the

business world towards parallel processing.

Parallel processing offers two benefits to GIS: the opportunity to investigate new ways of

representing, manipulating, analysing and exploiting space and spatial relations; and greatly

increased computational throughput (Ding & Densham, 1996).

3.1 Parallel Architectures

Serial computers have, for the most part, followed the Von Neumann model of computation,

which describes the functionality of a computer in terms of a single processor, freeing users

from questions as to the programming model of a particular machine and hardware designers

from questions about the potential use of their designs. The simplicity of the model is

attractive to designers of both hardware and software. Machines are simpler to build and

simpler to program if they have one of everything (Sawyer, 1998). It has long been

emphasised that a similar model is required for parallel computing although it has never been

obvious how to implement the abstract computing models. However, in the last few years

researchers have started to try to bridge the gap between theory and practice by providing

high level models of parallel computation that can easily be implemented on current

technology.

In 1972 Michael Flynn proposed a taxonomy for computer architectures (Flynn, 1972) as

follows:

30

SISD - single-instruction single data-stream. This is the architecture for the

traditional serial computers that have only one program operating on a single set

of data at a time.

• SIMD - single instruction multiple data-streams. In this architecture many

processors simultaneously execute the same instructions on different data

elements. This is the basis for the massively parallel machines, the three most

significant being the AMT Distributed Array Processor (DAP), Thinking

Machines Connection Machine (CM), and MP-1 from MasPar (Trew & Wilson,

1991). These machines use many thousands of simple processors and can

achieve supercomputer performance on problems which involve little or no

interaction between operations e.g. image processing.

• MISD - multiple instruction single data-stream. A machine of this nature would

apply many instructions to each datum fetched into memory. To date no such

computer has been constructed that fits strictly into this model (Trew & Wilson,

199 1) and there are no applications that have required this architecture (Sawer,

1998).

• MIMD - multiple instruction multiple data-stream. A MIIMD computer is an

evolutionary step forwards from SISD computers. They contain a number of

independent processors (normally more powerful than the individual processing

elements in SIIIMD) each executing an individual program. There are several

methods of building MIMD computers, depending on how the processors are

linked together for communication and memory. Examples of MIMD computer

are the Meiko Computing Surface, and the Cray Y-MP/832, Sequent Balance,

Cray T3D.

Of these classes the SIMD and MIMD are relevant to parallel computing for GIS.

3.1.1 SIMD Machines

SIMD parallel computers consist of a number of identical processors, each with its own local

memory where data and programs can be stored. All of the processors operate under the

control of a single instruction stream which is issued by a master processor. The processors

operate synchronously, that is, at each step all processors execute the same instruction, each

31

on a different data portion (Aki, 1989). This type of architecture is particularly suited to

problems that can be divided up into a number of similar sized parcels of work, each of

which contain a similar volume of work, said to be inherently load-balanced.

Spatial data are complex but have unique characteristics that can be exploited for SIMD

parallel processing. Firstly, spatial data are about particular locations and their attributes in

space, and secondly, they contain information about spatial relations, for example, spatial

correlation among different geographical objects at the same place and spatial auto-

correlation over different locations (Xiong & Marble, 1996; Peuquet, 1988, 1994;

Goodchild, 1992).

The sub-division of space is the main method used for representing locations. The study area

is usually sub-divided into numerous small cells, mostly of regular shape, with attributes

recorded for each of the cells. Data in this format will often naturally decompose along these

spatial subdivisions (Xiong & Marble, 1996). For example, raster based processes such as

image processing involve performing the same operations on each pixel of the image, such

as taking a weighted average of its value and the value of the four nearest neighbours. If each

pixel is mapped to a separate processor a SIMD machine can process calculations for each

pixel simultaneously, producing the clean image in much less time than a serial machine

could manage (Trew & Wilson 1991; Tomlin, 1990).

However, the restriction of executing the same instruction on every processor limits the

applications that can be run efficiently on a SIMD machine (Sawyer, 1998). This has proven

so for database applications. The multi-user, 110 intensive requirements of database

processing do not lend themselves to this particular type of architecture and so SIMD

computers have not gained acceptance as database machines (Healey et al., 1998b).

3.1.2 MIMD Machines

MIMD machines consist of a number of processors working simultaneously on different data

sets using different instructions. They are more general purpose and flexible than SIMD

architectures (Ding & Densham, 1996). The basic model can be composed in many different

ways. The main distinction made between the different types of MIMD computer lies in the

power and numbers of processors. They range from those with a small number of powerful

32

processors through to those with large numbers of less powerful processors, and of course all

the stages in between. MIMD computers fall into three main categories.

3.1.2.1 Small Numbers of Powerful Processors

These have tended to evolve from existing computers. All the parallelism is produced by the

compiler allowing the sequential code from other computers to run without adaptation. An

example of this is the Cray Y-MP machine. The main restriction of this type of computer is

that automatic parallelisation is only applicable to certain well defined problems and

produces well below optimal results.

3.1.2.2 Moderate Numbers of Standard Microprocessors

The processors in these machines (e.g. Sequent, Alliant) are often attached to a single

memory store by bus-based links. The machines can be constructed from a variety of

different processors and, while custom-made processors are still being constructed, the

majority of machines make use of commodity processors e.g. 386/486, SPARC or Alpha.

This produces a computer that provides coarse grain parallelism.

Multi-processors that are constructed from commodity processors are a way of allowing

existing applications to take advantage of parallel architectures with no extra effort on the

part of the organisation/business. They are also commercially appealing because they

provide a transition to full parallelism. The principal draw-back with this type of MIMD

computer is that there is an upper limit on the number of processors that can be used with

bus-based processor to memory links, although this restriction does seem to be reducing over

time.

3.1.2.3 Large Numbers of Processors

Large numbers of processors linked together usually avoid the memory bottlenecks of the

last two categories by giving some memory to each processor - known as distributed

memory. The principal challenges with this approach occur because processors have to

communicate with each other to locate data not stored locally (EPCC, 1992). This is thought

of as medium grain parallelism.

33

3.2 Memory

There is a further classification of parallel computers based on how the processors are able to

access memory. With single processors all memory has to be addressable by the processor.

With multiple processors there is a choice between allowing each processor access to the

whole memory and allowing each processor access to a certain part. The former is known as

shared memory, the latter is known as distributed memory. Both styles have advantages and

disadvantages.

3.2.1 Shared Memory

One natural approach, when using multiple processors, is to give all the processors access to

a single, global memory space, usually through a common bus. This is known as shared

memory (see Figure 3-1).

Figure 3-1: Typical Shared Memory MIMD Architecture (after EPCC, 1992)

In this arrangement processors communicate through objects placed in global memory. The

single memory space brings the shared memory model closer to serial programming than the

distributed memory model and is a very stable paradigm. Its attractiveness is that it is

relatively simple to program because only the algorithm is parallelised and the data are left

undivided in global memory (Fox et al., 1988). With sophisticated compilers, applications

are relatively easy to run on MIMD-SM computers - loop constructs in programs might be

automatically shared across processors by the compiler. Most techniques developed for

multi-tasking computers can also be used directly on shared memory computers.

34

However, there are limitations using this configuration. Firstly, performance is limited by

contention for the bus (the greater the message traffic the more contention becomes a

problem) and by problems with memory access control (which process should update an

item of memory when two wish to do so concurrently). Secondly, synchronisation is required

to ensure two processors can not simultaneously update a single memory area (this

synchronisation is typically implemented with hardware locks). Thirdly, individual memory

modules can only be accessed by one processor at a time, so all but one of the processors

seeking access to a given module will be blocked for the duration of an individual

processor's access (Ding & Densham 1996). And finally, these machines can not be scaled

up infinitely. It can be difficult to optimise controlled memory access such that the

application performance is scalable (increases linearly with the number of processors). As

the number of processors trying to access memory increases, so do the odds that processors

will be contending for such access. This quickly becomes a bottleneck to the speed of the

computer (Ragsdale, 1991). A way round this is to introduce memory caches on each

processor. However, this is the first step on the road to fully distributed memory machines!

3.2.2 Distributed Memory

In distributed memory configurations each processor has its own private memory, known as

local memory. The processors are each connected to a small subset of the total number of

processors and the method by which they communicate with each other is known as message

passing. Message passing occurs when an operation on one processor requires data located in

the private memory of another processor. Thus, an explicit message must be sent from one

processor to another through an interconnecting network (see Figure 3-2).

The main consideration is how the processors will be connected and how they will

communicate, as these have implications for both performance and efficiency. There are a

number of options, but to connect all of the processors to all of the others is completely

infeasible - for a large number of processors the number of connections required would

comprise the square of the number of processors. It therefore makes sense to connect each

processor to a subset of the total number of processors.

IN

Pn H-E

Figure 3-2:Schematic Architecture of a Distributed Memory MIMD Machine (after EPCC,
1992)

There are two options. Some computers, such as hypercube based machines, have a fixed

topology of processors. Others use switching chips between processors which allow the user

to adapt the technology to suit the particular program being run. Using four links per

processor is fairly common practice, which allows the creation of many topologies such as

processor trees, meshes and 3-D and 4-D hypercubes (see Figure 3-3). This approach is more

efficient if local memory is accessed more frequently than other types of access because

message exchange is proportional to message length (Denning & Tichy, 1990)

The need to perform explicit message passing is a feature of these machines that makes them

harder to program and makes it difficult to produce a compiler. However, the crucial

advantage is, if the application code is written to minimise the amount of message passing

(and make message passing local whenever possible), then scalability is very good and large

scale MIIMD-DM machines offer a realistic route to Teraflop computing power, i.e. 1012

Floating Point Operations Per Second (FLOPS) (EPCC, 1992). By providing both uniform

and fast memory access time, distributed memory systems offer higher absolute performance

than shared memory systems for many scientific applications (Ragsdale, 1991). Designers of

parallel algorithms favour distributed memory architectures as the majority of parallel

algorithms can be designed to localise the data depending on each processor (Denning &

Tighy, 1990).

36

Binary Tree Tertiary Tree

2D Mesh 3D Hypercube

Figure 3-3: A variety of topologies with 4-link transputers (after EPCC, 1992)

3.2.3 Virtual Shared Memory

Virtual shared memory is a concept that has been introduced to fry to bridge the

programming gap with MIMD-DM computers. In the past, programmers had to specify the

memory configuration in the program or at best write the program for the given memory

configuration. Virtual shared memory frees the program from these constraints. Advances in

technology mean that the distinctions between shared memory and distributed memory are

becoming blurred. The processors in this architecture have access to the whole memory of

the computer but, due to the hierarchical organisation of the memory, different parts can be

accessed at different speeds. This type of access is known as Non-Uniform Memory Access

(NTJMA). There are a number of advantages to this - the ease of programming of shared

memory is retained, without the hardware memory contention problems which ultimately

affect the scalability of the machine. Programs can also be run which require more memory

37

than is physically available on a single processor, allowing memory resources to be used

more efficiently in a multi-user environment (Sawyer, 1998).

The programmer can address global memory space as in the MIMD-SM model, although the

underlying hardware is MIMD-DM and retains the scalability of MIMD-DM architecture.

How closely the programming code reflects the MIMD-DM model becomes a performance

issue rather than one of feasibility.

3.2.4 Shared vs. Distributed Memory

All three of the architectures described have been implemented. Manufacturers of shared

memory machines - often known as symmetric multi-processors (SMPs) tend to use smaller

numbers of more powerful processors. SMPs are made by many leading manufacturers, e.g.

Digital, Silicon Graphics, Bull, Sun Micro Systems and Intergraph. Many vendors of vector

machines have also adopted them. SMPs have made a significant impact on the high

performance computing market used as either parallel machines or servers achieving high

throughput for sequential jobs. Existing software can be run and there is a low cost entry into

the market, making them more attractive (Sawyer, 1998).

Distributed memory machines with thousands of processors have also been built. However,

distributed memory requires more sophisticated configuration software and networking

hardware and this can make small systems seem very unattractive. Clusters of work stations

connected via a network are a distributed memory system - distinctions are made between

distributed machines which are thought of as 'tightly coupled' and a collection of work

stations which are known as 'loosely coupled' (Sawyer, 1998).

Arguments against shared memory machines scaling effectively with large numbers of

processors are becoming less of an issue due to the advances in memory, bus and caching.

Also many real applications will not themselves scale to large numbers of processors

because they contain elements that are inherently sequential and there comes a point where

nothing will be gained by adding further processors (Sawyer, 1998; Sloan, 1998)

1S]

3.3 Parallel Performance

The performance of parallel programs is a complicated issue because there are many factors

involved. The main difference between parallel programming and the more conventional

serial programming is that in parallel programming there are several operations that can

occur at the same time on different data. Therefore, careful consideration should be given

when designing programs to ensure that conflicts for data and resources do not occur. Some

of the complex, inter-related areas for consideration are: data decomposition techniques

used; the communications infra structure between processes and the mapping of processes to

processors; the scheduling of tasks; and the balancing of processor work loads to ensure

minimal overheads and maximum performance. The goal of parallel processing is to produce

a program that balances all of these in such a way to optimise performance.

Parallel performance can be measured using several different criteria. These are:

program latency - the time taken to execute the program.

bandwidth - i.e. the throughput of repeated similar tasks.

• speed-up - the ratio of performance of the parallel program to that of the

sequential program.

• efficiency - the ratio of speed-up to the degree of parallelism.

To realise the full potential of using parallel processing with geographic data there are a

number of factors which must be identified such as, how to measure performance of parallel

processing, how to identify those factors affecting the performance, and lastly how to

achieve high performance (Ding & Densham, 1996).

The following subsections describe methods of measuring performance of speed-up and

efficiency.

3.3.1 Speed-up

The measure of success of parallelisation is often measured in speed-up. This can be

obtained by analysing the proportion of the program that can be run in parallel, and that

which must be run sequentially. Amdahl (1967) discussed the effect of the sequential

39

component of a process and the expression for the maximum speed-up is known as

Amdahl's Law:

S(N)=_
T+T

T+T/N

Where SN is the speed-up with N processors, Ts is the fraction of operations which must be

performed sequentially, and T is the fraction of operations which can be performed in

parallel. The expression shows that speed-up is determined by the sequential components of

the task if the number of processors available is infinite (Sawyer, 1998).

Speed-up can also be defined as the ratio of the time required to complete a given task when

implemented on a single processor and when implemented on a parallel computer using N-

processors

s(1\r) -
-

Tsequentiai

Tparaiiei(N)

Where S(N) is the speed-up with N processors, and T(N) denotes the time elapsed on a

parallel computer with Nprocessors. The sequential time TSEQUENTIAL can be described as

Tsequentiai = TO

This definition of speed-up refers to parallel tasks with a small grain size as real tasks could

not be fully implemented in the memory of a single processor, particularly those used in

distributed processing (Fox et al., 1988). This suggests an important advantage - the ability

of distributed memory computers to handle much larger problems than serial computers

(Ding & Densham, 1996).

3.3.1.1 Scalability

Scalability is the way in which the speed-up of a program increases with the number of

processors. A task is said to have good scalability if there is a roughly linear relationship

between the speed-up obtained and the number of processors used, up to a large number of

processors. The difficulty is in defining just what is thought to be a large number of

processors. One rule of thumb is to assume good scalability if near-linear speed-up can be

maintained up to the largest machine on which the task can be run. Amdahl's Law (19 67)

shows that this can only be achieved if the sequential part of the problem is small in

comparison with that which can be performed in parallel (Sawyer, 1998).

3.3.2 Efficiency

The efficiency of parallel processing is measured as the ratio of speed-up to the degree of

parallelism, and is bounded by 0 and 1. Linear speed-up gives an efficiency of 1:

S(N)

N

where efficiency s of speed-up S using N processors.

3.4 Parallel Program Decomposition

To turn sequential code into a parallel program the code must be broken up into its

component parts, some of which are inherently sequential and some potentially parallel.

Decomposing the potentially parallel parts such that a number of processors can work

concurrently on the problem should result in a decrease of the time the program takes to run.

However, decomposition frequently incurs an overhead usually in the message passing

between processors.

Decomposition can be classified according to whether the problem is divided on the basis of

function or data. This can be further sub-divided according to the extent of the data

dependencies2. Three important decomposition techniques are described below - trivial,

functional and data decomposition.

2There is some ongoing discussion over the nomenclature of decomposition methods especially those

of data decomposition techniques.

41

3.4.1 Trivial Decomposition

This is the simplest technique and does not really involve decomposition at all. A sequential

program that has to be run independently on lots of different inputs clearly has some parallel

potential simply by doing a number of the sequential runs in parallel. Since there are no data

dependencies between the different runs the limit to the number of processors used is the

number of runs required to complete the task. The execution time of the runs will be the

execution time of the most time consuming run in the set. Trivial decomposition can be

exploited to provide almost linear speed-up if runs take a similar length of time.

3.4.2 Functional Decomposition

Functional decomposition is the first true decomposition technique, breaking the program up

into a number of sub-programs. The simplest form of functional decomposition is the

pipeline where input passes through each sub-program in a given order. Parallelism is

introduced by having several inputs moving through the pipeline simultaneously. For

example, the first element of input enters sub-programi and is processed. This element

moves on to sub-program2 to be further processed. As input element one moves to the

second sub-program a second input element enters sub-programl is processed and then

moves on to sub-program2 as the first input element moves onto sub-program3 etc.

Parallelism in a pipeline is limited by the number of stages in the pipeline. For greatest

efficiency all stages of the pipeline should be kept busy - this requires that all stages of the

pipeline take the same length of time. The pipeline is then balanced.

Functional decomposition tends to be very problem oriented and the amount of parallelism is

dependent on the program. This means that as the size of the input data set grows it may not

be possible to exploit further parallelism. Thus, items of data in a large data set are not likely

to be processed any faster than those in a small data set. Further, large datasets will take

proportionately longer to be processed.

3.4.3 Data Decomposition

Data decomposition, as its name suggests, requires that the problem of parallelism is tackled

by splitting a data set up over a number of processors, rather than decomposing a program.

42

Many problems involve applying similar or identical operations to different parts of a large

data set and are ideal for data decomposition. Data decomposition techniques fall into two

classes: those appropriate for predictably balanced problems (Geometric Decomposition) and

those appropriate for unbalanced problems (Scattered Spatial Decomposition and Task

Farming).

If there are no data dependencies in the data set, i.e. the result of an operation on a single

data item can be computed without knowledge of the rest of the data set, then the limiting

factor for parallelism is the number of processors available. However, the results of a

computation usually require reference to other data points - most commonly neighbouring

points.

Typical data decomposed MIMD-DM applications make use of a master and slave

arrangement of processors. Here there are two modules of code - the master and slave

modules. There is a singe processor running the master code, but many processes running the

slave code. The master typically handles all I/O, including the user interface and the file

system. Data are broadcast from the master to the slaves, each of which performs work upon

its domain. The results are then gathered together during or after the run.

3.5 Load Balancing Techniques

Load balancing is the art of breaking a problem down into a series of smaller parts and

distributing them over a number of processors such that all processors are kept busy and will

all finish at roughly the same time. If the processes are distributed to individual processors

then total execution time is dependant on the largest individual task (i.e. if a process is

largely sequential then it will always be the lowest limit for execution - Amdahl's Law).

However, execution time can be improved by better use of the other processors.

Unless the parallelism is trivial there is always the trade off between communication costs

and ease of load balancing as the granularity of a decomposition is varied. Task-farms and

other regularly-decomposed problems will automatically be well balanced for a sufficiently

fine granularity, but other problems are not so simple.

Load balancing can be defined as:

43

load balance= mean(load)/max(load)

where the mean and maximum are taken over the set of processors in the computer.

3.5.1 Functional Decomposition

For functional decomposition load balancing is very much dependent on the nature of the

problem. There are usually two solutions to the load balancing problem. Either the functional

units of a problem are very carefully balanced, or load balancing is achieved by allocating a

suitable number of processors to each functional unit and data are decomposed across the

available processors.

3.5.2 Data Decomposition

There are two types of load balancing - static and dynamic. The former tries to achieve a

good load balance solely by judicious mapping of domains to processes before it broadcasts

them. Dynamic balancing involves the appropriate allocation, or re-allocation, of work to

processes 'on-the-fly' and is in general a difficult technique.

3.6 Parallel Geo-Processing

Whilst the early work on parallel geo-processing focused on SIMD architectures, in the last

few years the concentration has moved much more towards the use of MIMD computers

(Ding & Densham, 1996). The use of parallel concepts and paradigms in the design of more

efficient algorithms for processing geographic data is an important area of research. An

overview of MIMD based research was compiled by Ding & Densham (1996), including

parallel matrix methods for spatial analysis and modelling (Quinn, 1987), the development

of parallel graph algorithms applied to vector based GIS and network analysis problems

(Quinn & Deo, 1984), and image processing and real time image processing (including

image algebra) (Preston & Uhr, 1982). More recently research has explored developing

procedures for line simplification (Mower, 1996), interpolation (Armstrong & Marciano,

1996), and polygon line shading (Roche & Gittings, 1996). Many of the issues concerning

the implementation of GIS algorithms have been explored (Healey & Desa, 1989; Armstrong

& Densham, 1992; Hopkins et al., 1992; Healey et al. 1998a) and are proving surmountable.

The recent developments in parallel relational database systems have brought parallel

computers to the attention of business and research establishments alike. Relational database

queries are suited to parallel processing because they consist of uniform operations applied

to uniform streams of data (DeWitt & Gray, 1992).

The problem of searching a sorted sequence in parallel has attracted a good deal of attention

since searching is an often performed and time-consuming operation in most database

applications (Aki, 1989).

Prominent relational database vendors such as Oracle have been involved in a number of

projects to port their software to various parallel platforms including Sequent, Meiko, Parsys

etc. (Trew & Wilson, 1991).

3.7 Benefits of Parallel Computing for Corporate GIS

Potential users of parallel computers are attracted by a number of benefits:

. Cost/Performance ratio

In cost terms the cost/performance ratio of parallel computers is very good value for

money

• Ultimate performance

The ability to have a much larger computing capacity in order to stay competitive or

tackle new problems. With conventional computing systems the cost may be

prohibitively expensive or just simply infeasible.

• Scalable performance

Many large organisations would like to have access to technology capable of

providing a scalable application solution that could be used flexibly throughout the

organisation. This would allow the provision of large central facilities and smaller

distributed installations all running the software application tuned to the

cost/performance requirements of the site.

45

• General purpose capability

The use of commodity components is seen by many user of MIMD systems as the

basis for high performance systems capable of running common applications such as

spread sheets, word processors and also databases. This provides an attractive business

case for investing in the hardware.

• Entry-level pricing

The entry level cost for parallel computing can be very low. An accelerator board with

supporting software (e.g. compiler and parallel libraries) can be bought for a few

thousand pounds.

The biggest development for parallel computing with corporate GIS is the move away from

specialist components to commodity processors and disks. This has provided the impetus for

research into areas that are likely to benefit corporate GIS customers, such as the

parallelisation of common GIS functions, e.g. raster to vector conversion and polygon

overlay. A project (Healey et at., 1998a), undertaken by the Parallel Architectures

Laboratory and the Edinburgh Parallel Computing Centre (EPCC) at the University of

Edinburgh, was designed to devise parallel algorithms for these common GIS functions. It

was sponsored by the Department of Trade and Industry and leading vendors selling parallel

architectures, relational database management systems, and a number of GIS manufactures

including ESRI, Smallworld and Laserscan,

These small steps towards parallel GIS are coupled with the promotion and uptake of

commercially available parallel databases in many large organisations. It is only a matter of

time before parallel technology is produced and marketed for more modest sized businesses,

which require the speed of data handling developed for the larger sized companies, to

support a smaller work load. If corporate GIS installations are to take advantage of these

moves it is important to establish what requirements GIS has of the parallel architecture and

database, and whether currently available GIS will be able to take advantage of the parallel

environment. To be able to do that it is first necessary to consider what roles databases have

with GIS and to consider what parallel databases can offer.

M.

4. Database Management Systems
for GIS

This chapter on database management systems for GIS has a twofold purpose. The first is to

examine the development of database management systems for corporate GIS, and the

second to introduce the main database components used in this research project. The

investigation into the use of parallel database management systems required the development

of two databases, a small pilot database and a large corporate database. The pilot database

was designed for initial testing of the parallel database system and consisted of a number of

tables containing artificial data. The corporate database was created for the second phase of

testing, and due to the size and complexity of the data model and the data it contained,

became a serious project in database design. Therefore, as well as considering database

developments, the chapter also includes some detailed descriptions of the underlying

structure of relational database management systems and database interface mechanisms.

The structure is useful when understanding the design of the two performance test databases.

The interface mechanisms are required to understand some of the design issues concerning

two database tests harnesses that were created (see chapter ten).

The chapter is divided into three main sections. The first section charts the development of

relational database systems and object-oriented database systems and their use with GIS. The

main focus of this section is the relational database system (RDBMS), due to the extensive

use of this type of database in both GIS and corporate IT. The second section describes two

different approaches to GIS: the hybrid and integrated models, and their associated data

storage mechanisms. This includes a brief description of object-oriented (0-0) systems and

the differences between the 0-0 approach and hybrid and integrated GIS approaches. The

third section focuses on SQL, a relational database language. Several areas are explored:

these include the appropriateness of SQL as an interfacing language between GIS and

relational databases. The rest of the section describes the use of embedded SQL as an

interfacing language between the database and external applications.

47

4.1 Introduction

The importance placed upon database management systems for corporate GIS and MIS has

increased significantly as the need for accurate, timely, pan-organisational data has grown.

The development of data integration strategies, e.g. data warehousing, and data analysis

techniques are broadening data processing requirements of individual database management

systems. There is a move away from concentrating simply on the performance of transaction

processing loads from large financial systems and billing systems to supporting the much

longer, complex, transactions belonging to exploratory GIS and MIS queries. The integration

of corporate datasets for use with a variety of GIS and MIS applications will inevitably lead

to a very mixed work load for databases. Work load mix is known to lead to difficulties in

maintaining the performance of applications accessing a single database, and it is set to

worsen given the increasing size of data sets available, for example legacy systems, satellite

imagery, and the vast number of database hits generated by applications accessible through

the internet.

As corporate GIS requirements grow, a need for the processing power of parallel database

management systems is emerging. Relational database management systems, used by many

businesses, are very well suited to parallelisation (DeWitt & Hawthorn, 1981; Bitton et al.,

1983) and a number of commercially available parallel relational database systems and

parallel database engines are available. The move towards more integrated corporate GIS,

where much of the data would be stored externally, opens the door to the use of parallel

databases and much needed data processing power.

It must however be borne in mind that greatly increased data processing capabilities alone

can not provide the total solution. The GIS models, where data are held outwith the

application in external databases, are heavily reliant on the efficiency of their interfaces

between the GIS software and database management system. A clumsy or inefficient

interface will produce very poor data retrieval performance and form a major bottleneck for

any GIS function requiring data from disk. Performance of GIS/database interfaces will

inevitable become even more critical with the use of larger data sets and increased numbers

of users.

Approaches to corporate GIS are also changing. The requirement to access data from many

different sources has increased demand for efficient database interfaces to many of the most

10

popular, general purpose, data management systems. Conversely, as MIS has become more

sophisticated, and IT strategies deliver more integrated information systems, there is a

growing requirement to access data held in GIS. There is now a demand developing for both

GIS data and MIS data to be available in a common database system.

Prior to the widespread adoption of relational databases and entity-relationship data

modelling approaches (Chen, 1976), a variety of special purpose file formats were used to

store digitised cartographic datasets, although frequently the topological relationships

between cartographic elements were not actually stored in conjunction with co-ordinate data.

In the mid 1980s two approaches to storing GIS data were developed which made provision

for data stored externally to GIS. They were known respectively as the hybrid model

(Morehouse, 1985) and the integrated model (McLaren & Healey 1992). The hybrid model

handled digital cartographic data in a proprietary file system for speed, while attribute data

for map features were managed in a relational framework, for the convenience of the user. In

contrast, the integrated model (as demonstrated by Van Roessel & Fosnight (19 84)) was

able to handle both co-ordinate and attribute data in a database environment external to the

GIS (Healey & Waugh, 1987).

In the mid 1980s there was strong pragmatic justification for using the hybrid approach

despite the additional software layers required to manage the linkages between the digital

cartographic and associated attribute data. This was due to the relatively poor performance of

relational systems at the time. Even a modest sized digital map coverage could involve

millions of (x,y) co-ordinate pairs which would have resulted in extremely large database

tables, whose rows could not be retrieved to the graphics screen for map display in any

reasonable time (Bundock, 1987).

Although, the integrated GIS model fits more readily into the corporate IT data integration

policies being developed and encourages the development of data exchange, hybrid

approaches (e.g. ESRI Arc/Info) still dominate the commercial market place. However, even

those strictly hybrid systems are moving towards a more integrated approach as the

performance of relational database systems begin to outstrip their own in-house database

systems, and demand for external database access has increased. For example ESRI (1999)

has introduced a Spatial Database Engine (SDE) which provides an open interface between

the user and all of the spatial data in an organisation, whether stored in a database

management system or ESRI' s native file structures.

IRS

4.2 Relational Systems

The drawing together of the concepts of digital cartography and database management has

been a key element in the rapid expansion of corporate GIS, from very modest beginnings

through to a major sector in the IT industry (Maguire et al., 1991). The development of GIS

in the 1980s coincided with the rapid adoption of relational database technology (Date,

1986), and thus the adoption of relational methods at an early stage of GIS development.

They continue to be a dominant force for database management in GIS (Healey, 1991)

despite the growth of interest in the use of object-oriented data structures (Worboys, 1992)

and the availability of systems using object technology, such as Smaliworid and Laserscan

Gothic (Chance et al., 1990).

The relational data model was first proposed by Codd (1970) at a time when both

hierarchical and network models dominated the market place. A prototype relational

database management system, System R (Astrahan et al., 1976), was developed by IBM

researchers and was designed to prove the practicality of the relational model by providing

an implementation of its data structures and operations. The implementation proved an

excellent source of information about concerns such as concurrency control, query

optimisation, transaction management, data security, recovery techniques and user interfaces

(Ricardo, 1990). The model has since been used by many other DBMSs in mainframe, mini,

workstation, PC, and now parallel, environments, including applications such as Ingres,

Oracle, DB2 and Access. The popularity of the relational model has encouraged vendors of

non-relational systems to provide a relational user interface, regardless of the underlying

model (Ricardo, 1990).

The relational model is based on the mathematical concepts of relations and sets which have

been expanded to apply to database design. The power of mathematical abstraction and the

expressiveness of mathematical notation has led to the development of a simple but powerful

structure for databases. The simplicity of the model makes it easy to understand at an

intuitive level. It allows a separation of logical and physical considerations such that the

logical design can be performed without concerns about storage. Logical data notions can be

expressed in a manner that are easily understood. Data operations are also easy to express

and do not require users to be familiar with the storage structures used. Finally, the model

uses a few powerful commands to accomplish data manipulations that range from simple to

50

complex (Ricardo, 1990). These are the reasons it has become so popular and also why it has

been adopted by a large number of GIS.

4.2.1 Relational Database Design

4.2.1.1 Relational Data Structures

The relational model is based on the concept of a relation (or set), that is physically

represented as a table. Tables are used to hold information about the objects to be

represented in the database and represent the relationships among all the attributes contained

in the table. Each row in the table (termed a tuple) represents a fact - a permanently related

set of values. Each column represents an attribute, or a single value.

The characteristics of tables result from the properties of relations. As a relation is a set, the

characteristics of the two are similar:

the order of tuples is immaterial

there are no duplicate rows

each element of the tuple is atomic, i.e., contains a single value.

Where the mathematical relation and the table in a relational model differ is that the order of

elements in the tuple of a mathematical relation are important: (1,2) is very different from

(2, 1). In the relational model the order of elements is of little importance because each

column has a heading identifying which attribute the value belongs to. The primary key of

the table is an attribute, or group of attributes, that describes each tuple in the table uniquely,

and so can be used to identify the tuple (Ricardo, 1990).

4.2.1.2 Relational Joins

The mechanism for linking data in different tables is called a relational join. Values in a

column or columns in one table are matched to corresponding values in a column or columns

in a second table. From the second table a further match to a third table can be made and so

on until the necessary data from the requisite number of tables have been retrieved (see

Figure 4-1).

51

Relation Table

MainlD Customer
ID

2 A34-9

4 A26-9

7 B56-O

34 C56-3

86 C45-8

114 G23-4

Gas Main Information

Network
ID

Width Length MainlD

1 25 1276 1

1 25 63 2

2 65 227 3

Customer Table

H
CLIstID Initial Surname

A34-9 M Smith

B37-4 J Jones

Figure 4-1: Relational Tables with a Relational Join - simplified example from the Gas Main
database

One-to-one, one-to-many and many-to-many relationships can be represented in a relational

database. Unlike other types of database, relationship sets describing many-to-many

relationships between entity sets, are also represented by a table of data values. The tables

contain columns which reference the entity sets being related, together with further columns

for any attributes of the relationship itself. Since relationships between entities are directly

represented as tables, there is no requirement for pointers or linkages between data records to

be set up.

4.2.1.3 Advantages of relational systems

The advantages can be summarised as follows:

a rigorous design methodology based on sound theoretical foundations;

all the other database structures can be reduced to a set of relational tables, so

they are the most general form of data;

ease of use and implementation of applications compared to other types of

system;

• modifiability, which allows new tables and new rows of data within tables to be

added without difficulty;

• flexibility in ad hoc data retrieval because of the relational join mechanism and

powerful query language facilities (Healey, 1991).

52

The important advantages of the relational approach and the availability of good proprietary

software systems such as Oracle, Ingres and D132 have contributed greatly to the rapid

adoption of this technology, both in the GIS field and in automated data processing

operations of all other kinds, since the beginning of the 1980s. The relational model has the

flexibility to link GIS models to corporate databases, and the extensibility to provide a base

for other database models such as Object-Oriented systems. Relational systems now

dominate the market for DBMS in the GIS sector and this is expected to continue for the

foreseeable future.

4.2.1.4 Disadvantages of Relational Systems

Many of the disadvantages identified in relational systems were in comparison with the

performance of hierarchical and network systems, which for the most part have been

dropped in favour of relational database management systems. For example, the

manipulation of data in relational tables, based on matching values, was a much more time

consuming operation than using physical pointers or links as used in hierarchical and

network models (Aronoff, 1989). Also, they could be more difficult to implement, and were,

initially, slower in performance than the other two models. However, speed has become

much less of an issue as processors become more powerful and methods for data retrieval

and indexing become more efficient. The advent of parallel database management systems

has not only improved processing speeds but has also greatly improved the data handling

capacity, making it possible to store and manipulate terabytes of data.

4.3 Object-Oriented DBMS

The most recent developments in GIS design have taken their lead from object-oriented

methods. Object-oriented models are based on objects which must be:

Identifiable;

relevant (be of interest);

' describable (have characteristics) (Mattos et al., 1993).

53

The concept of object is central to the object-oriented approach. An object can be defined, in

its basic form, as an entity that has a static data aspect and dynamic behaviour. The static

part is represented by the values of local variables (known as instance variables). The

combined attributes of the object constitute its state. The dynamic behaviour is expressed as

a set of operations or methods (known as instance methods) that operate on the object under

certain conditions (Somerville, 1989; Rowe, 1986; Worboys, 1994).

Individual objects belong to a class, which defines the type of object. Each class has a

superclass from which it can inherit both instance variables and methods. For example, an

object class called polygon may be defined which is also the superclass for another class

called land parcel. All the instance methods and variables of the polygon superclass are

inherited by the land parcel class, unless they are re-defined at the land parcel level.

4.3.1.1 Object -Oriented Databases

An object-oriented database management system (OODBMS), in addition to supporting the

object oriented constructs described in the previous section, must provide an environment for

the management of objects and their hierarchies, ideally providing all the features of modem

databases in the OODBMS:

• schema management, including the ability to create and change class schemata

a usable query environment, including automatic query optimisation and a

declarative query language

• storage and access management

• transaction management, including control of concurrent access, data integrity

and system security (Worboys, 1994).

However, there are some technical problems in implementing some of these facilities. Query

optimisation is made difficult due to the complexity of the object types in the system. There

may be a multitude of methods implementing operations and for each of which there may be

no measure of the implementation cost (Worboys, 1994). Another problem is that of

indexing (Worboys, 1994). Relational databases rely on direct access to attributes, while

objects are accessed by messages and identified by their object identifier.

54

There are a number of commercially available object-oriented databases in use for many

different platforms. POSTGRES is probably the most well known, with a wide user base. It

has had a rather ad hoc evolution and is currently bundled with LINUX - PC Unix freeware.

Two other available systems are JADE (1999), running on WindowsNT and RS6000 and

Orbit by Bridger Systems (1999). There are at least two mainstream object-oriented GIS

environments: Smallworld, and Gothic from Laserscan.

4.4 Hybrid and Integrated Approaches to GIS Database

Management

An important distinction in the design of GIS is between systems in which the standard file

system is used to store the digital map co-ordinate data with attribute data held in a linked

DBMS (the so-called hybrid approach), and those in which both types of data are to be held

in the DBMS (the integrated approach). Use of the computer file system directly, rather than

through the intermediate step of the DBMS, will generally yield faster response times. On

the other hand, the DBMS provides a wide range of ready made data manipulation tools so

that programming effort can be concentrated on algorithms for spatial analysis, user-

interface requirements and data distribution.

4.4.1 The Hybrid Data Model

The starting point for this approach is the view that data storage mechanisms that are optimal

for locational information are not optimal for attribute/thematic information (Morehouse,

1985; Aronson, 1985). On this basis, digital cartographic data are stored in a set of directly

accessed operating system files for speed of 110, while attribute data are usually stored in a

standard commercial relational type DBMS such as INFO, Oracle, INGRES or INFORMIX.

The GIS software manages linkages between the cartographic files and the DBMS during

different map processing operations such as overlay. While a number of different approaches

to the storage of the cartographic data are used, the linking mechanism to the database is

essentially the same. It is based on unique identifiers stored in a database table of attributes

that allow them to be tied to individual map elements.

55

Co-ordinates and topological Database

bespoke software
linkages

Figure 4-2: The Hybrid GIS Model (after Healey etal., 1991)

4.4.2 The Integrated Data Model

The integrated data model approach is also described as the spatial database management

system approach, with the GIS serving as the query processor sitting on top of the database

itself (Guptill, 1987; Morehouse, 1989). Most implementations to date are of the vector

topological type, with relational tables holding map co-ordinate data for points/nodes and

line segments, together with other tables containing topological information, in a manner

partly similar to that described by van Roessel (1987). Attributes maybe stored in the same

tables as the map feature database or in separate tables which can be accessed using

relational joins.

Van Roessels work provides a detailed analysis of how digital cartographic data can be

represented using correct relational database design methods. However, in practice this has

proved to be unsatisfactory in implementation because of performance overheads. This is

particularly so when (x,y) co-ordinate pairs for individual vertices along line segments are

stored as different rows in a database table. To achieve satisfactory retrieval performance it

has been found necessary to store co-ordinate strings in bulk data or blob (binary language

object) columns in tables (Healey, 1991).

The performance issue must also be addressed in respect of very large digital cartographic

databanks since both the U.S. Geological Survey (Guptill 1986) and the Ordnance Survey

(Smith, 1987) have developed integrated data models for national mapping applications.

Both these applications are suitable for implementation in a relational database framework

(Healey & Waugh, 1987).

56

point-id x y poly-id poly-id line-id

1 10.2 16.2 2 12 2 A
2 15.5 26.7 2 16 7 B
3 7.9 87.3 7 34 24 C
4 34.2 23.1 24 47 56 D

24 48

56 89
24 57 ffia

Point Table Polygon Table Attribute Table

Database

Relational Join

Figure 4-3: The Integrated GIS Model (after Healey et al., 1991)

4.4.3 Object-Oriented Model vs. Hybrid & Integrated Model

One of the major differences between an object-oriented approach and that of the hybrid or

integrated approaches, is that not only are the attributes (geometric or otherwise) of entities

or objects stored within the GIS/database, but so also are the allowable operations that can be

performed on them. From the database viewpoint this increases the complexity of the

implementation. This is, however, regarded as justifiable because of the benefits of

encapsulation of object attributes and behaviour for overall system design and ease of

customising (Smallworld, 1991b). Systems of this type may also provide interfaces to

external relational or other types of DBMS, in addition to their own internal object

managers.

4.5 Structured Query Language (SQL)

The move towards a more integrated corporate GIS structure has begun to turn attention

away from issues involving pure database performance towards database interfacing issues

(described above). One of the most obvious interface mechanisms for relational database

57

management systems is SQL, the structured query language developed to interrogate

relational database systems. The following sections consider what qualities SQL has to

provide a successful interfacing mechanism, and where the weaknesses lie. Included in the

discussion are a description of the basic elements of the SQL language, and embedded SQL,

which consist of SQL statements wrapped up in another programming language such as C.

SQL was designed as a high level interface to relational database systems to manipulate

tables and has been successfully used as a database interface for applications that can easily

be expressed in terms of tables (Egenhofer, 1992). It was the language adopted for IBM's

System R project, a research prototype in the mid-1970s (Astrahan et at., 1976) and was first

introduced as a commercially available implementation by the ORACLE Corporation in

1979. SQL has also been implemented in]BM's DB2 and SQL/DS database systems and

many others.

The American National Standards Institute (ANSI) adopted SQL as a standard language for

relational database management systems (RDBMS) in October 1986 (ANSI X3.135-1986).

The SQL standard has also been adopted by the International Standards Organisation (ISO

standard 9075) as well as the U.S. Federal Government, in the Federal Information

Processing Standard (FIPS) number 127 (Oracle Corporation, 1990).

The latest SQL standard, often know as SQL-92, has been published by ANSI and ISO

(ANSI X3.135-1992), "Database Language SQL"; ISO/IEC 9075:1992, "Database Language

SQL") (Oracle, 1997c). It has three levels of compliance, Entry, Intermediate and Full. The

new standard adds new features and capabilities to the specifications. It contains a better

definition of direct invocation of the SQL language, improved diagnostic capabilities, a new

status parameter (SQLSTATE), a diagnostics area, and supporting statements

(SQL92 STANDARD).

Most recently, SQL3 is under discussion at the moment. The options under consideration at

the moment are to either specifically define spatial extensions for GIS within the language,

or provide the mechanisms for user groups such as GIS to make their own extensions.

SQL is described as a structured query, update, data definition, control, consistency,

concurrency and dictionary language by the ORACLE Institute (Oracle Corporation, 1985a).

It is a non-procedural language that processes sets of records rather than just single records,

I.s] mr.]

and it provides automatic navigation of the data. SQL allows the user to work with higher

level data structures by managing sets of records. The most common form of a set of records

is a table. All SQL statements accept sets as input and they all return sets as output. This set

property allows the results of one SQL statement to be used as the input to another SQL

statement.

SQL provides statements for a number of tasks including:

querying data

' inserting, updating, and deleting rows in a table

creating, modifying, and deleting database objects

• controlling access to the database and database objects

• guaranteeing database consistency

Previous database management systems often used a separate language for each of the above

categories.

4.5.1 SQL in GIS

The SQL language has been used by many groups of users for many different tasks. These

range from: a high-level interface language for GIS to manipulate data stored in external

databases; a data exchange language to transfer data from one database to another; to an ad

hoc database query language. The language requirements for each of these roles is very

different: an interface between a database and an application must fit into a high level

programming language; while a query language must consider the interactions between

humans and the computer (Egenhofer, 1992) The ability to encompass all these different

requirements in one universal language would be almost impossible.

In an effort to circumvent some of the difficulties presented by SQL as a non-procedural

language, a number of SQL variants have been created. Oracle provide SQL*PLUS to query

the database, PL/SQL - SQL with procedural extensions, and embedded SQL to be

incorporated into programs external to the database (Oracle Corporation, 1990). There are

also groups working on a standard for GIS extensions in SQL. The development of a

standard for GIS extensions in SQL would greatly enhance the exchange of information for

WE

both hybrid and integrated corporate GIS. It would have an effect on both data retrieval,

greatly reducing the amount of code required for functions not yet supported (e.g. adjacency

tests) and performance of spatial SQL, retrieval methods could be optimised for individual

functions. It should also improve the performance of GIS/database interfaces. As common

interchange and data access methods are developed it should greatly reduce the work load

generated by interface queries by devising standard procedures for accessing data, and

eliminate much redundant work, such as submitting the query for every row of data returned.

Standards, once developed, also tend to concentrate research efforts on improving them; thus

the performance of such interfaces should improve.

SQL has become the standard for relational database management systems. Designed as a

high level interface to RDBMS it has successfully been used as a database interface for

applications that can easily be expressed in terms of tables. For non-standard applications

such as GIS, it has so far proved to be a restrictive model and insufficient for solving some

typical GIS tasks (Egenhofer, 1992). The main ingredient lacking is a support for spatial

operations such a adjacency, difficulty in incorporating concepts such as graphical display

and specification, and a lack of power and support for qualitative answers, knowledge

queries and metadata queries (Egenhofer, 1992).

There have been a number of attempts to overcome some of the short comings of SQL and

numerous extensions have been proposed, for example, proposals to deal with complex

objects (Lone & Schek, 1988; Mitschang, 1989), temporal data (Date, 1988; Ariav, 1986;

Sarda, 1990) and spatial data (Roussopoulos et al., 1988; Ooi et al., 1989, Egenhofer, 1991;

Raper & Bundock. 1991). There have also been some limited extensions such as locate and

join made available in commercial database software (Oracle Corporation, 1997d).

However, for all its limitations as a spatial query language, it will continue to be used as the

major database interface language between GIS and RDBMS because it has a proven track

record in reliability, and is unlikely to be replaced until new reliable methods have been

developed.

4.5.2 SQL Implementation

At its most basic, SQL is an implementation of the five relational operations - selection,

projection, Cartesian product, set union and set difference (Codd, 1970) - as well as a few

MI

other useful operations such as aggregation operations and views. The syntax is based on the

SELECT-FROM-WHERE clause framework, corresponding to the relational operations of

projection, Cartesian product and selection respectively (Egenhofer, 1992).

SELECT <target list>

FROM <list of relations>\

WHERE <condition> (Oxborrow, 1986)

For example, given two relations MAIN and VALVE with the attributes main—id,

main—diameter and valve—id and main—id, the following query will return the valve

identifiers of all valves situated on mains whose diameter is greater than 6 inches

SELECT valve—id

FROM main, valve

WHERE main—diameter > 6 and

main. main id=valve . mainid

The result is a relation displayed as a table.

4.5.2.1 Relational Joins

A relational join is a form of SELECT statement that combines rows from two or more

tables. Each row of the result will have column data from more than one table. The join

occurs whenever multiple tables are referenced in the FROM clause of the SELECT

statement. The optional WHERE clause determines how the rows of the table are combined.

A simple join, the most common type of join, returns rows from two tables based on an

equality condition in the WHERE clause e.g.

WHERE <tablel .columnname> = <tab1e2 . columnname>

This is also known as an equi-join because it uses an = comparison operator in the 'WHERE

clause.

SQL is able to handle null values when a not known situation arises. The null value in SQL is

a special value used to indicate the absence of any data value (SQL92 STANDARD).

61

SQL allows the user to create a database without having to define all of the tables at the

beginning. This makes it possible to create and drop tables, or alter existing tables at any

time during the implementation phase.

4.5.3 Embedded SQL

Embedded SQL refers to the use of standard SQL statements embedded within a procedural

programming language such as C, FORTRAN, Pascal or Ada, providing a mechanism for

database integration from outwith the database environment. It consists of a collection of

SQL statements such as SELECT and INSERT, and flow control commands that integrate

standard SQL commands within a procedural programming language.

Embedded SQL is used extensively in this research for a number of reasons. The first is for

the purpose of collecting performance statistics. Performance statistics were gathered from

Oracle about the processing and management of SQL queries submitted to the database from

external sources, by querying systems tables. The performance gathering queries formed part

of a much larger test harness (see chapter ten), written in C, that collected a whole range of

data about the response of the parallel database environment to different types of query and

work load, submitted using SQL as an interface mechanism. The second reason for using

embedded SQL was to allow SQL queries to be submitted at specified times of the day using

Unix batch queues. This was particularly useful for those tests timed for 2 or 3am. The final

reason was to create a multi-user workload rapidly for parallel database environment. By

submitting embedded SQL queries using PRO*C, the Unix system could control and

generate both users and workload.

Embedded SQL is interpreted by a number of precompilers which translate the embedded

statements into commands that can be understood by the procedural language compilers. Pre-

compilers exist for Ada, C, COBOL, FORTRAN, Pascal and PL/I (SQL92 STANDARD).

The programming language used for the research project was C and the precompiler was

PRO*C.

The following subsections briefly describe some of the elements involved in embedded SQL.

62

4.5.3.1 Host Variables

A variable within SQL is used as a place holder for a value within an SQL statement. These

variables function in a similar manner to programming language variables. Before a variable

can be used it must be bound to a host language variable in order that the value of the host

language variable can be accessed by the database. Host variables were used in the research

project to pass information to the database as part of the logon procedure, and were used to

update various tables.

There are two types of statement in which host variables can be used. The first is where the

nature of the transaction can be predetermined to a great extent. These are used in

conjunction with the keyword INTO. For example, extracting data stored in certain fields

into host variables so that the data can be further manipulated by the host programming

language.

4.5.3.2 Cursors

A cursor is a work area used both by the database and the programming language interface to

store the results of a particular query. A single cursor is associated with a single SELECT

statement, and may be executed repeatedly for different variations of the query (using

different host variables). Using a cursor requires the following basic commands:

DECLARE CURSOR

OPEN CURSOR

FETCH

CLOSE CURSOR

Once a cursor is opened, it is used to retrieve multiple rows from its associated query. All the

rows which satisfy the criteria of the query form a set, called the active set of the cursor.

Rows of the active set are returned, one by one, by fetching them. Then the cursor is closed.

There were a number of reasons for exploring the mechanisms of data retrieval. The first was

to decide how to construct the performance tests e.g. what to test, how to test it and how to

interpret the results. By analysing the different stages of data retrieval using embedded SQL

it is possible to isolate those areas where there was high resource usage, where there was a

potential for possible bottlenecks. Also important was the design of the performance tests to

63

ensure that extra stages, inserted in the test harness, to aid in the gathering of statistics did

not adversely affect the overall testing procedure by creating a high level of resource usage

or create bottlenecks.

4.5.3.3 Declare Cursor

DECLARE CURSOR defines a cursor by assigning it a name and associating it with a query.

This is a declarative SQL statement and must occur before any statement referencing the

cursor.

4.5.3.4 Open Cursor

By opening the cursor the query is evaluated and the active set of rows identified. It is here

that the input variables of the WHERE clause (if any) are evaluated, identifying which rows

satisfy the query. The cursor is placed into an open state and is placed just before the first

row of the active set.

Once the cursor has been opened the input variables are not re-examined until the cursor is

re-opened.

4.5.3.5 Fetch

This reads the rows of the active set and names the output variables that will contain the

results.

The first time FETCH is executed the cursor moves from above the first row to the first row.

This row then becomes the current row. Each successive FETCH advances the cursor by

one row. The cursor may only move forwards through the active set. To go back to an

earlier row it is necessary to close and re-open the cursor.

4.5.3.6 Close Cursor

Once a cursor is closed it releases the resources it was using. No FETCHes may be executed

against a closed cursor as the active set becomes undefined.

Although cursors can be explicitly declared for PRO*C operations, PRO*C will

automatically create cursors for other operations. The following types of cursor exist:

Explicitly declared cursors - These are logical cursors declared within a program

with cursor commands and are used to fetch query results.

• Implicitly opened cursors - Logical cursors that PRO*C has obtained on behalf

of the user, but requiring no action by the user.

• Database cursors - Physical cursors which are required for everyday operations.

A procedural extension of SQL called PL/SQL also exists which allows the user to link

several SQL commands through procedural logic. Although this extension is available it

must be stressed that this is not currently part of any standard.

4.6 Summary

The design of GIS reflects the improvements in database management systems. The hybrid

GIS model, developed at a time when the performance of relational database systems was

relatively poor, has proved a popular and successful model. However, integrated GIS

models, using commercially developed databases have begun to emerge as the performance

and data-handling capabilities have dramatically improved. The rapid expansion in the use of

corporate GIS and the increasing requirements from users for greater GIS functionality have

encouraged vendors to use databse systems developed to manipulate huge volumes of data

and concentrate on GIS capabilities.

Use of the integrated GIS model has placed much more demand on the interface mechanisms

that exist between GIS applications and the database systems. Languages such as SQL for

relational database systems provide a means of interfacing the GIS and database. Although

SQL was not developed for this particular task, it has the advantage that GIS extensions to

the language exist, to make interfacing more efficient. SQL can also be embedded into many

other programming languages such as C, Fortran and Pascal, which provides a flexible

means of developing interfaces. There are a number of shortcomings associated with using

SQL as an interface between GIS and a relational database, but these are known and not

insurmountable.

65

Relational database management systems are the most common type used with GIS,

although 0-0 GIS environments such as Smaliworid and Gothic are available. Relational

database management systems have a long history of development and have honed their data

retrieval, security and recovery methods. However, they are not the perfect solution to GIS

database requirements. Object-oriented databases may well provide some of the solutions

particularly where modelling power and performance are required, or large databases are

being processed and older versions need to be kept (Noervaag, 1999). The performance of

parallel databases, particularly for transaction processing is unrivalled and the development

of parallel relational database management systems has provided the ability for massive data

processing, particularly for data warehousing. The main problem is that they are optimised

for read operations. As the main memory capacity increases, the number of write operations

also increases, and therefore there is a need for write optimised databases.

Object-orientated databases may eventually provide a viable solution to the SQL/relational

database shortcomings. Parallel object-oriented databases are in the research stage of

development and are being considered for use specifically with software applications such as

GIS, and may prove to be an excellent solution for some GIS applications, in particular

modelling. However, until commercially available, and viable object-oriented databases

become available, parallel relational databases are providing a useful solution to many of the

data handling issues identified.

MIS

SECTION 2

Functionality and
Performance

Considerations
for

Parallel Databases
The use of commercially available parallel databases with GIS is in its infancy. The previous

chapters in the background section have shown that there is a demand for corporate GIS and

a requirement for hardware and software solutions to solve issues identified as potential

problems in the near future, such as the need for faster processing and the capability to

manipulate and analyse much larger datasets in something approaching real time. Parallel

architecture has developed to a stage where it has become much more attractive to business

because it is no-longer wholly dependent on specialist hardware and software. Symmetric

multi-processing (SMP) has started to lead the way towards the corporate use of massively

parallel machines, which can run software designed for both serial and parallel architectures.

The IT revolution has provided roles for both corporate GIS and parallel servers which are

being accepted by businesses and promoted by vendors such as SAS, Oracle and Microsoft.

Parallel databases have become a serious software option with a number of large vendors

providing access to parallel database management software, for example, Meiko and nCube

(Statler, 1993).

What are missing thus far are the benchmarking techniques for measuring and comparing

performance of serial and parallel versions of the software, and standard benchmark statistics

67

to categorise the performance of competing parallel database management software.

However, before considering the developments of commercial benchmarks it has to be

established whether an experimental parallel GIS environment, consisting of parallel

architecture, standard GIS applications and a parallel database, will provide a solution to any

or all of the technical deficiencies identified earlier and establish areas of technological and

organisational risk. To test these points it is necessary to design a series of benchmarking

performance tests to be able to measure performance of a range of functions and strategies.

These tests include:

• interfacing GIS software with the parallel database for both serial and parallel

architectures

• exploring different models for integrating GIS and databases

• examination of storage, manipulation and retrieval of digital cartographic data.

Therefore, there is need to consider what it would be appropriate to measure, which

particular indicators should be used, and how those chosen indicators should be collected

and analysed.

ri

5. Parallel Database Management
Systems for GIS

From the overview of database developments in Chapter four it is apparent that important

opportunities for the use of parallel database technology exist in both the integrated and

hybrid data model approaches. Systems based on the integrated approach offer a very

flexible solution for data storage and retrieval, many steps ahead of the hardware database

engines of the 1980s. The hybrid approach, offers the potential to meet both transaction

processing and ad hoc query requirements for centralised MIS systems (Healey et al.,

1998b).

There is a twofold purpose to this chapter in reviewing the development of parallel database

technology. The first is in the context of GIS requirements, highlighting areas of benefit as

well as the issues and difficulties that remain. The second, more practical purpose , is of

identifying issues pertinent to the development of a suitable environment for exploring

performance testing of a parallel database with corporate GIS applications. To be able to

design and apply a suite of tests to the corporate GIS/parallel database configuration it is

important to consider which aspects are of primary importance and how they are to be

measured. This way the type, content and reporting mechanisms of individual performance

tests can be defined.

There are two main areas of development in parallel database management systems -

hardware and software, and consideration of these comprises the first two sections. The third

considers the parallelisation of database queries, how they can be decomposed across a

number of processors, and what effect query content has on parallelising the query. The final

section describes some of the obstacles that still have to be tackled.

5.1 Hardware

The history of parallel database systems is full of proposals for different hardware solutions

for improving the performance of database operations. They range from dedicated database

We

machines with imaginative hardware solutions for rapidly searching for, and retrieving, data

to contemporary parallel machines which consist of commodity components relying on the

software to provide parallel performance.

5.1.1 Database Machines

Hardware database machines represent one of the first attempts to produce special purpose

built hardware solutions to database problems, which were the result of the limitations of

hardware and software during 1970s. There were two major advantages claimed for the

database machines. They were:

• specialised computers designed for a specific job

"almost entirely devoid of software" (Banerjee & Hsiao, 1978).

Novel solutions were devised using methods such as specially designed disks with multiple

read heads, each with its own microchip, or bubble memory (also known as zero-rpm

associate disks), to perform parallel searches and achieve higher performance. However,

these systems did not gain acceptance because to produce high retrieval rates the hardware

was pushed to the limits of its performance, and for most applications software indexing will

always beat hardware brute force (Stonebraker, 1994).

The main influence of these early systems was to introduce the notion of backend database

processing which opened the way for the wider acceptance of the concept of database servers

attached to a client server network (Healey et al., 1998b). This market niche is now growing

in importance in relation to the adoption of parallel database servers. Some of the large

software vendors are providing parallel database options for their customers, particularly for

use in data warehousing and rapid data processing for internet applications. For example, the

SAS Institute, which markets data warehousing software as part of the SAS system, has

developed a parallel database engine for improved database performance (SAS Institute,

1999; Ghosh, 1999) and is improving SAS performance using parallel processing (Olsen &

West, 1999; Williams, 1999), Oracle has implemented a fully parallel database server for

corporate use (Oracle Corporation., 1997b) and Microsoft has developed a scalable SQL

server that incorporates parallel processing techniques (Microsoft Corporation, 1999).

70

The potential role of parallel processing in implementing relational database operations has

long been under consideration (Bitton et al., 1983) particularly as the relational database

language is the only one that lends itself to backend processing. However, as serial

processing was the only available technology for general purpose computing, the special

purpose database machine was the only platform where the potential for parallel processing

could begin to be exploited. Unfortunately, due to the specialist nature of the hardware it

meant that the cost could only be justified where the database load comprised a large

proportion of the overall processing, and therefore it never gained much popularity as a type

of machine for commercial use.

5.1.2 Contemporary Parallel Architecture for Database Servers

5.1.2.1 SIMD

SIMD machines have not proved appropriate for the multi-user, I/O intensive requirements

of database processing, because the step by step processing methods are too restrictive.

SIMD machines have to execute the same instruction on each processor and this is not useful

for database management. Therefore there are no commercially available SIMD database

applications, and although a few research databases may exist there is little evidence of this

research available.

5.1.2.2 MIMD

There are three types of MIMD architecture that can be considered as suitable for database

computers. These are shared memory machines, shared disk machines and shared nothing

machines. Shared memory configurations consist of a collection of processors attached to a

shared memory bus, each accessing a common shared memory (as described in chapter four).

Shared disk architecture consists of a collection of processors with private memory that

access a shared disk system e.g. VAX clusters. The final architectures are shared nothing

where processors have their own local memory and disks and are connected by a fast inter-

connect. They can consist of specialist hardware or comprise a network of workstations

connected using ethernet for example. They have become known as software database

machines because very little of the hardware is custom made, rather the database software

uses the available hardware to its best advantage.

71

Shared memory and shared disk machines have both been perceived to suffer from

significant limitations of bus contention which arises from overlapping traffic on the bus and

has the potential to limit the scalability of larger systems (Healey, 1998a, Stonebraker,

1994). This makes them less useful as database servers for very large volumes of data.

However, improvements in bus technology including multi-bus and cross-bar switching

configurations have gone some way to solving these problems.

Shared nothing architectures, for example work station clusters, do not suffer the constraints

of the other two types of architecture because memory and disks are held locally. It does

however, require the database software to support a distributed database system to provide

communication links to enable the processors in the cluster to share data or database queries.

The main advantage offered by this environment is its potential to scale to very large

numbers of processors (hundreds, possibly thousands).

5.2 Software

Two main methods of using parallel processing in database software have been identified:

the first is to extend existing facilities and interfaces of the database software to allow basic

usage of multiple processors on parallel disk systems. The second is to exploit more fully the

parallelism available by re-writing the database kernel functions.

5.2.1 Extended Database Software

Database software which makes use of the capabilities of SMP architecture has been

available for a number of years e.g. Digital or Sequent. Many of these applications use

background processes for database writes or asynchronous read-ahead from disk, and it has

been relatively easy to transfer and distribute processes across multiple processors. The

techniques provide markedly improved response times for a user process which is confined

to a single processor, providing the machine is not fully loaded. They have become very

successful because they provide improved performance, while maintaining the ability to run

other standard applications on standard operating systems, without the need for recoded

parallel versions of the software.

72

5.2.2 Fully Parallel Database Systems

A number of software vendors have produced MPP (Massively Parallel Processor) versions

of their software, these include Oracle (Oracle Corporation 1997b), CA Jngres, Informix and

Sybase, to run on machines such as are supplied by Parsys (1991), nCube and Meiko

(Beckett, 1995).

The focus of this research project centres on the Meiko Computing Surface. Therefore, this

will be used to demonstrate the evolutionary approach to parallel database servers which,

according to Holman and Barton(1991), can be explored under three main areas:

S multi-instance support

• parallel lock management

• parallel file servers

A detailed description of the configuration of the Meiko Computing Surface used in this

research project can be found in Chapter seven.

5.2.2.1 Multi-Instance Support

Multi-instance support means that each of the processors runs its own instance of the

database management software (Figure 5-1). Each instance supports its own set of users and

has its own set of background processes. The instance is linked to a single database using the

parallel machine inter-connect, and communicates with each of the other instances using the

distributed database capabilities of the software. By comparison, an SMP machine will only

usually start a single instance of the database management software.

73

Node I

Oracle Instance

DBWR
LGWR
etc.

Node 2
Oracle Instance

DBWR
WR ___

Node 3
Oracle Instance

DBWR
LGWR FGA]
etc.

Database

Figure 5-1: Multi-Instance Database System (after Oracle Corporation, 1997b)

5.2.2.2 Parallel Lock Manager

Database locks are a method of synchronising database tasks to prevent simultaneous

changes occurring to the same data. Locking is particularly important in an environment

where there is the opportunity for multiple users, or processors accessing the same data. The

lock manager has responsibility for the locks that are acquired and released in the course of

updating the same database from multiple instances. It is implemented using a number of co-

operating sequential processes that are located on transputer nodes in the computer. It is

important that as the number of nodes and, therefore, instances increases, the lock manager

can also be scaled (Jakobek, 1990). If update transactions are held up by the lock manager

for longer than necessary, locking can become a performance issue.

5.2.2.3 Parallel File Server

The parallel file server is based on multiple disk controllers each with their own substantial

data cache. In a typical configuration this is usually a minimum of 16 Mbytes. The parallel

file server allows both data and log files to be striped across a number of disks to improve

performance. Striping ensures uniform access over the whole of the parallel system for all

instances and so maximises the benefit of concurrent disk 110 and bandwidth (Meiko, 1992).

NJ

A number of advantages have been identified for this combination that uses mostly

commodity components with specialised items restricted to the disk controller and the inter-

connects. They include flexibility, scalability, and the provision of an upward path from

standard architectures for resource hungry database applications (Healey et al., 1998b). This

type of system is also suited to both transaction processing and more complex longer

transactions (Newell & Easterfield, 1990), which, is important for use with GIS.

5.3 Parallel Queries

Having considered the hardware and software, it is now necessary to examine parallelisation

of database queries themselves. One method is to utilise the distributed database capability to

harness the power of multiple instances on different nodes in the processor network,

although, it requires significant additional programming by the user. It also generates extra

traffic on the internal network, which may very well cancel any advantage gained from

processing over multiple nodes.

There are a number of aspects to query optimisation, which centre around how the query is

broken down, and the extent to which parallelisation is dependent on query content.

5.3.1 Query Decomposition

Pirahesh et al. (1990) described two methods of query optimisation: static and dynamic.

Static optimisation implies that the breakdown of tasks between the available processors is

decided by the query executor at compilation time. Decisions may be made on a cost basis,

by considering the different options available and choosing the one likely to give the best

performance, similar to traditional query optimisation, but with the additional option that

certain parts may be parallelised.

Dynamic optimisation adapts the static plans based on a mixture of run-time information

about the loading on the processors and the other system parameters, such as memory

availability.

The main drawback of these two approaches is the size of the search space required to find

the optimum solution. This could be very severe if dynamic optimisation is employed,

75

resulting in significant resource usage. The burden of query optimisation may become too

heavy, particularly under conditions of heavy loading (Oracle Corporation, 1991).

Therefore, a two stage strategy could be adopted. The first stage generates a query plan

without reference to parallelisation issues. The resultant plan is then optimised for parallel

execution. There is a trade off with this strategy. While it makes for a much simpler solution,

it may not find the most cost-efficient search plan so operations which could be decomposed

over several processors may have been missed (Healey et al., 1998b).

5.3.2 Query Content

The level of query decomposition is very much dependent on the contents of individual

queries. SQL, for example, has a number of clauses and conditions which lend themselves

readily to parallel execution; however, some others do not. An obvious candidate for

parallelisation is relational joins, where the inherent parallelisation of simultaneous multi-

table scanning has been exploited since the advent of database machines. Sub-queries, where

the result of one query is used to drive the search conditions for another query, are also

susceptible to parallel execution.

Difficulties start to arise for clauses containing grouping operators. These operators usually

have to receive and process all of their inputs before the results stream is output, and

therefore, cannot proceed in parallel with other operations.

5.4 Implications for GIS

The recent developments in parallel database management systems examined above have a

number of implications for corporate GIS applications based on either integrated or hybrid

model approaches.

5.4.1 Integrated Model

Corporate GIS applications based on integrated model GISs are in an ideal situation to make

use of the vast and speedy data storage and manipulation advantages offered by the current

parallel database technology. It is now possible to store the contents of very large digital

76

cartographic databases in fully normalised form using commercial parallel database

software, on general purpose parallel machines. As the uptake of parallel processing for

behind the scenes data management increases, the use of special purpose hardware for

databases will disappear, and the requirement for vendor specific GIS file systems for data

storage will be redundant. The advantages of parallel processing to businesses running

corporate GIS are threefold: a significant reduction in the need for hardware and software

requiring specialist support; an improvement in the integration of GIS within the

organisation because the GIS applications are able to utilise hardware and software used by

other information systems resident in the organisation; and a strengthened business case for

corporate GIS because it is able to integrate much more readily with the IT structure in the

organisation.

The use of parallel database technology for corporate GIS using the integrated model

approach should not require major changes to storage methods already implemented for

performance benefits. Standard optimisations such as the storage of map co-ordinate strings

in bulk data types will produce much greater performance gains in a parallel rather than a

sequential environment, especially if combined with various fetching methods for retrieving

groups of rows that are supported by leading vendors. The use of new helical code indexing

methods (Oracle Corporation, 1997d) can be expected to provide matching gains in

searching performance.

The technical developments have been made on the basis that users will require to handle

databases of very large proportions i.e. hundreds of gigabytes. Therefore integrated model

GISs built on top of parallel database software are well placed to meet the future demands

for the mapping requirements of large organisations identified in the earlier chapters.

5.4.2 Hybrid Model

The hybrid GIS model still dominates the commercial market place, despite the many and

growing advantages of the integrated model, and presents a number of difficulties when

considered in conjunction with the use of external parallel databases. When implementing a

parallel approach to hybrid GIS there are three main areas to consider: the overall suitability

of the hardware platform, the effectiveness of the GIS/database interface and, finally, the

links between corporate GIS and the organisational information systems.

77

Of the two main parallel platforms the shared memory multi-processor machines have

worked well because of the standard nature of the operating system and the availability of

versions of the widely used commercial applications. For distributed memory machines it is

a different story. There are no parallel versions of GIS software commercially available.

Serial corporate GIS applications can, however, potentially run on individual nodes of

distributed memory machines providing they are composed of commodity processors and a

standard operating system. Parallel relational database software is available for this type of

environment and, providing the interface between the database and GIS application is

functional, it is possible to harness the advantages of parallel database technology.

The main issues for hybrid corporate GIS centre around the performance and functionality of

the interfaces between GIS software and the external parallel database. GIS like Arc/Info and

Smallworld have their own internal data management facilities, providing interfaces to

external databases, while others rely totally on external interfaces to manage attribute data.

Owing to the nature of these interfaces they tend to be relatively resource intensive. When

spanning between systems it is difficult to provide the same level of functionality and

performance as that of a relational join within a singe database environment. It may be

necessary to separate out the nodes supporting GIS from those supporting the database to

avoid overloading them.

5.4.3 GIS and MIS

Linking existing MIS and corporate GIS functions (whichever model approach is used),

using general purpose parallel database management software, is likely to present a number

of difficulties, many of which were evident in the early 1980s when IT functions were first

centralised and based around mainframe computers. The difficulties relate directly to the

problem of different loads placed upon the database by different types of query i.e. a long,

complex queries vs. transaction processing loads, where the queries are simple but must be

performed many times over. GIS queries are often the former, whilst other MIS generate the

latter.

For a large utility company, for example, large parts of the MIS would be concerned with

customer and billing information, while others would be concerned with asset management

and the control of streetworks and repair programmes. A number of tables across the

database would have direct and indirect linkages with GIS for digital map based query and

display. Meeting both GIS and MIS requirements from a hybrid model system on a parallel

machine would result in a very mixed load on the parallel database.

The ability of a parallel database system to handle the conflicting requirements of mixed

work loads generated by corporate GIS and MIS will be a key aspect of its success in

business because it will enable the corporate data integration that has been long sought after

but never quite achieved. There are a number of options available in a parallel environment

that are not available to the same degree in single processor environments, e.g. the ability to

group processors together for specific functions or user groups, all able to access the same

database. These options need investigating.

There is no doubt that the current parallel databases can outperform their standard mainframe

counterparts, particularly for transaction processing tasks. However, it remains to be seen

how well the system will cope with the mixing of transaction loads and with numerous

different types of queries, some GIS based, some not, being streamed in by large numbers of

users. Either may seriously impede the performance of transaction processing tasks, or

alternatively, will have their performance impeded by these tasks. One of the aims of this

research is to explore the effect of mixed workloads from both integrated and hybrid model

GIS, and consider some of the options available for improving performance.

5.4.4 Internet

Another key area of particular interest for a GIS/parallel database combination is the

internet. The demand for spatial data, particularly in the travel industry, is beginning to

grow. Examples of this are tourist information services that offer active spatial content and

multi-media inserts, road traffic monitoring services providing up-to-the minute reports on

road congestion, accidents and road works, the NHS providing spatial information on local

health services including shortest path analysis to health centres, pharmacies, opticians and

dental services. Access to the Internet is increasing rapidly as people connect from home, or

gain access through Internet cafes or public services such as libraries. Already there are in

existence a few spatial data sites with large, parallel servers fielding approximately 40,000

hits a day.

79

6. Benchmarkin

The previous chapter identified a number of areas that require further investigation

concerning the use of parallel databases with GIS. These range from more general

requirements, concerning the suitability of the hardware platform for running both GIS and

parallel database tasks together, the performance characteristics of the parallel database, and

the parallel execution of SQL in such an environment, to much more specific details

concerning hybrid GIS models using external parallel databases. They include interface

issues such as speed, resource usage and flexibility, and work load issues involving the

impact of different types of query running in the same environment, accessing a shared

database.

In this chapter design considerations are given to the construction of a performance test

environment for the use of parallel database management system software with corporate

GIS. There are three main areas of focus:

the indicators to be measured - given the complexity of the system;

how to measure the chosen indicators;

the best method of reporting the results.

One method developed to test hardware platforms and software applications systematically,

to allow for comparison with other similar systems, is benchmarking. The advantage of

benchmark tests is that they provide rules for designing and running tests and also reporting

the test results. Although the number of benchmarks for serial systems far outweighs those

for parallel systems, examination of individual benchmarks can provide useful information

for the construction of performance tests for the parallel GIS/database system in this

research. In particular, those indicators which have successfully characterised the system, the

structure of tests and methods of reporting are of particular importance, The most important

information of all however, is the reported weaknesses and failures of other benchmarks - to

avoid the pitfalls that others have already discovered.

The following chapter is split into five sections. The first section is concerned with defining

what benchmarking is, what benchmarks are used for and how they are used. This is

Ell

followed in the second section with a review of existing benchmarks' for parallel hardware

and operating system analysis. One area where benchmarks have been used and developed

extensively is that of database performance, initially to assess on-line transaction processing

performance and later expanded to include many different aspects of database performance.

In section three four of the more popular database benchmarks are discussed. Section four

describes the Wisconsin benchmark. The Wisconsin benchmark was developed initially for

serial systems but later adapted for parallel database performance assessment. This section

details some of the findings concerning the design of performance tests for parallel

databases, including the development of underlying datasets, indicators to measure, and how

to measure them. The final section summarises the chapter:

6.1 Introduction

Benchmarking is a method of measuring the performance of one computer system and its

software against some pre-set criterion, i.e. other computers in the field of expertise, or a list

of requisite performance requirements. The need to measure and compare systems has

become more important as the variety and range of computer systems, networks and web

technologies have expanded rapidly. All systems have their strengths and weaknesses

making them more suited to some particular jobs than to others. Identifying which systems

are best suited to a certain defined operation, and how one system performs against another

has always been a difficult task. Defining a test that is representative of the task, ensuring

that these tests are carried out fairly on individual systems, and that the results truly represent

the ability of the system to perform as required - is a path littered with pitfalls (Stonebraker,

1994).

Over the years, benchmarks have become increasingly important because of a consensus of

what to measure and how to measure it. The results of benchmark tests are often available in

the computing literature and have become very important to the computer industry (Gray,

1993). There is no universal benchmark that can be used to measure the performance of

systems on all applications. The performance of a particular system depends upon the nature

of the work required. Systems typically designed for a few specific problems may be

incapable of performing other tasks, for example, machines configured for transaction

The benchmarks detailed in this chapter are those that were available during the period when the test
hardware configuration was available. Appropriate benchmarks developed subsequently will be
discussed in chapter thirteen.

IJ

processing usually perform poorly when processing complex database queries. Therefore,

there exist a whole host of benchmarks targeting particular areas of computing. The type and

workload of individual benchmarks are dependent on the function of the exercise. Each

benchmark specifies a workload, whether real or synthetic, which characterises typical

applications in that particular area. The performance of the workload on different systems

gives an estimate of the relative performance of each system on that particular type of

problem.

Benchmarks are also characterised by the indicators that they measure, such as CPU, I/O,

graphics, and transaction processing, to name a few. They are used by numerous sections of

the IT population. Programmers use available benchmarks to choose among design

alternatives; product developers compare their products with those of their competitors; and

users, not interested in the technical aspects of benchmarking, make use of benchmarks to

aid in the purchasing process - indicating the range of performance that might be expected

from different hardware and software configurations (Gray, 1993).

There are several organisations that define standard, domain-specific benchmarks, standard

price metrics, and standard methods for reporting results. Of these the most prominent are:

SPEC (Standard Performance Evaluation Corporation) - a consortium of

vendors defining benchmarks for the workstation environment with particular

emphasis on UNIX systems (http://www.specbench.org) (SPEC, 1998a, SPEC,

1998b).

Ziff-Davis - who produce benchmark software for PC and desktop environments

(http://www.zdnet.com).

BAPco (Business Application Performance Consortium) - a consortium of

hardware and software vendors defining benchmarks to measure the

performance of personal computers in client-server and groupware

configurations (Gray, 1993).

TPC (Transaction Processing Performance Council) - a consortium of vendors

defining transaction processing benchmarks (http://www.tpc.org).

During the 1990s the expansion of the computing market with high performance PCs,

networking intranets and the internet has seen a corresponding increase in the number and

variety of benchmarks and benchmarketing companies available.

The benchmarks of interest to this research fall into two main areas: those that measure

aspects of performance of the hardware and operating system components for parallel

machines, and benchmarks concerned with measuring the performance of software systems

such as GIS and database applications. The following sections of this chapter concentrate on

published benchmarks available for measuring the hardware, operating system and software

for parallel machines and database performance.

6.2 Parallel Architecture Benchmarks

The National Physical Laboratory (NPL) (Brocklehurst, 199 1) has made an extensive survey

of computer benchmarks available to vector and parallel processor systems. The benchmarks

have been classified into three separate groups: general parallel processing; distributed

memory; and UNIX system benchmarks. Those that fall into the general area of this research

project are detailed below.

6.2.1 General Parallel Processing Benchmarks

Four general parallel processing benchmarks have been identified, these are: Dhrystone

(Weiker, 1984; Weiker, 1990), Whetstone (Weiker, 1990; Curnow & Wichmann, 1976),

Hartstone (Donohoe et at., 1990), Khornerstone (Wilson, 1989).

Whetstone is a synthetic benchmark developed at NPL to reflect workload during the 1970s.

It represents a computational mix sampled from a large collection of 60 Algol programs. The

benchmark provides an overall measure using different precisions during integer and floating

point calculations and returns a measure of kilo-Whetstones per second. Whetstones major

defect is that it is difficult to tell whether the code has been tweaked by vendors because

there are no precise reporting requirements, and it does not specify the precision of floating

point numbers (Dowd, 1993).

NIN

Dhrystone is a synthetic benchmark developed in a similar manner to Whetstone but directed

to non-numeric systems-type programming. The benchmark was originally written in Ada by

Reinhold Weiker and recoded in C by Rick Richardson, and returns a performance measure

in Dhrystones per second. It exercises fixed-point computations, similar to those found in

compilers or systems programs. There are also a number of defects present in this

benchmark, namely, it is an unrealistic simulation which does not capture the full nature of

fixed point applications, it fits into the memory of most machines so does not test the effects

of paging, and it is sensitive to compiler optimisations (Brocldehurst, 1991; Dowd, 1993).

Hartstone is a real time benchmark written in Ada. It measures the ability of systems to

handle multiple real-time tasks efficiently.

Finally, Khornerstone is a mix of public domain (including Dhrystone and Sieve) and

proprietary benchmarks. It measures the characteristics of processor, floating point and disk

performance for a single user.

6.2.2 Distributed Memory

Two benchmarks have been specifically developed for examining the performance of

distributed memory machines. These are: Euroben (Van der Steen, 199 1) and Genesis (Hey,

1990; Scott, 1989; Mierendorff& Trottenbeg, 1988).

The Euroben benchmark consists of three modules, written in Fortran, for the assessment of

scientific computing on super computers and distributed memory machines. The first module

is of most significance and contains architectural benchmarks for memory bank conflicts and

communication bottlenecks. The other modules are for testing algorithms and matrix

multiplication.

Genesis benchmarks are aimed at evaluating MIMD-DM machines and were constructed as

part of the Esprit 2 Genesis project P2702 (Hey, 1990). It is split into two levels, the first

consisting of synthetic code fragments, the second containing the core of a molecular

modelling routine and a linear equation solver. Most of the benchmarks are message-passing

codes written in Fortran77, using mainly double precision mathematics. Version 3 was

released in 1994. It contains a few known bugs which are manifest on certain systems, but

these are in the process of being fixed (Southampton, 1999)

6.2.3 UNIX Systems

Finally, JOBENCH (1989) is a comprehensive test of data searching and reporting. The

program creates files and records with implicit keys. A number of users are created to pick

files at random and then write to files at random. Once the file has been picked, the records

are read, re-written and finally the users write result records. It was designed at Prime

Computer Inc and runs on a number of UNIX systems.

The parallel benchmarks detailed above are used to assess the potential of the architecture to

perform complex, processing intensive algorithms, where the whole machine is dedicated to

that one task. The y are designed for the purpose of examining the speed of the system as a

whole, or the performance of individual components in a single user environment where

resource load is, for the most part, predictable.

The requirements of a benchmark for testing the performance of the parallel architecture

used in this research project are unusual because the role of the parallel architecture is

different. The role is not that of a specialised machine dedicated to any one single type of

task, rather to support the varied corporate requirements of multiple users in a speedy and

efficient manner.

These parallel benchmarks mentioned do not provide the facilities for detailed analysis of the

performance of the MCS where the number of users, processing requirements and data

access are all unpredictable. The benchmarks were designed for much older parallel

machines, which were usually made of proprietary components and often designed for purely

scientific use. The benchmarks often consist of large volumes of code that is platform

specific and difficult to translate to another platform. They suffer from two great

weaknesses, namely a lack of rigorous design and poor reporting mechanisms, which

reduces the use of any benchmark because the results can not be compared with those of

other systems.

[SPJ

6.3 Database Benchmarks

The design and execution of benchmarks for databases and transaction processing machines

has become such a large subject that it merits treatment on its own. There are several types

of query processing that can occur as database transactions, however, this research will

concentrate on two: on-line transaction processing and complex query processing. On-line

transaction processing is where similar simple queries are processed in rapid succession. The

emphasis with this type of transaction is on bulk processing, that is, the largest number of

transactions that can be processed in a given time. They are usually measured in transactions

per second (tps). The second types of query are complex queries. They are much more ad

hoc in nature and often require data from many tables to be linked together, usually

containing multiple conditions that must be resolved to provide a result. Individual queries

can take hours to return results, therefore, emphasis is placed on how to optimise various

aspects of the query, for example, the efficiency of indexes and time taken to parse the

query, to make the best use of resources to reduce the time taken to execute the query.

The next two sub-sections describe some of the benchmarks that have emerged for both on-

line transaction processing and complex query processing. The majority of these benchmarks

are designed for serial machines and may not easily translate to the parallel environment.

6.3.1 On Line Transaction Processing

The three most famous benchmarks for transaction processing are those defined by the

Transaction Processing Performance Council (TPC), TPC-A (TPC, 1989), TPC-B (TPC,

1990) and TPC-C (TPC, 1992). The need for these benchmarks arose from developments in

the 1980s. There was an expectation that high performance transaction processing machines

would be in great demand as the proliferation of automatic teller machines (ATM) and

automatic petrol pumps (controlled by credit and debit cards) would become very popular

and overwhelm computers with huge numbers of transactions (Serlin, 1993). Although the

petrol pump deluge never materialised in this country, the sharp increase in transaction

processing requirements from ATMs focused attention on the performance of transaction

processing systems and in particular how to measure the performance (provoking debate

about 1K tps systems4) (Good et al., 1985). The competition between high performance

4those capable of sustaining 1000 transactions per second.

transaction processing machines aiming for 1K tps, and the medium range on-line

transaction processing (OLTP) machines, which relied on high performance micro-processor

technology, was fierce. The competition led to manufacturers publishing tps ratings for their

particular systems to encourage buyers. The drawback with this was that there was no

agreement on exactly how tps ratings were to be derived. Each vendor devised their own

suite of tests to suit the market they were aiming at and, of course, the idiosyncrasies of their

own systems. Very few details of the tests were ever published as they were regarded as

confidential so there was never any sense of whether the tests were actually comparable

(Serlin, 1993). Leaked results of the tests often caused benchmark wars where vendors

would attempt to outdo each other by producing better numbers.

The confusion and doubt that existed over the reliability of vendor devised tests spurred the

development of publicly available benchmarks that could provide a true comparison between

various systems. The Debit/Credit benchmark, the first of these benchmarks, was closely

followed by TPC-A TPC-B and TPC-C - from the TPC. Other benchmarks, such as the

Wisconsin benchmark also gained popularity and this benchmark was also used to measure

the performance of parallel databases. The following subsections detail the Debit/Credit

benchmark and those from the TPC.

6.3.1.1 Debit/Credit Benchmark

The Debit/Credit benchmark (Anon et al., 1985, DebitCredit, 1986) was one of the first to

specify a true system level benchmark where network and user interaction components of the

workload were included. The benchmark specified that the total system cost should be

published with the performance rating to allow for true comparison of results between

different platforms, a practice that has become a fundamental part of any benchmarking

exercise. The rating was described in terms of high-level functional requirements rather than

specifying hardware/software platforms or core-level requirements facilitating comparisons

between results obtained from different platforms.

The benchmark also included workload scale-up rules where the number of users and the

size of the database tables increased proportionally with the increasing power of the system

to produce higher transaction rates. Finally, the benchmark specified that the overall

transaction rate would be constrained by a response time requirement, that 95 percent of all

transactions had to be completed in less than one second (Shanley, 1998). A number of

[•Z1LS

features specified in the Debit/Credit benchmarking process were later incorporated in the

TPC benchmarks.

6.3.1.2 TPC-A

The TPC-A benchmark exercises the system components necessary to perform tasks

associated with on-line transaction processing environments performing update-intensive

database services. These are characterised by multiple on-line terminal sessions, significant

disk 110, moderate system and application execution time and transaction integrity.

The benchmark is based on the transactions of a hypothetical bank. The bank has one or

more branches and each branch has multiple tellers. The bank has multiple customers, each

with an account. The database represents the cast position of each entity (branch, teller and

account) and a history of recent transactions run by the bank. The transaction represents the

work done when a customer makes a deposit or withdrawal against their account. The

transaction is performed by the teller at some branch (TPC-A, 1989).

The benchmark can be run in both local and wide area network configurations. It uses a

single simple update-intensive transaction to load the system under test, intended to reflect

an on-line transaction processing application, but does not reflect the entire range of

requirements typically represented by multiple transaction types of varying complexities.

6.3.1.3 TPC-B

TPC-B represents the batch version of the Debit/Credit benchmark, without the network and

user interaction factored into the workload. This benchmark has been favoured by hardware

companies who sold servers and database companies because they felt it represented the

customer environments they sold into. TPC-B uses the same TPC-A transaction type

(banking transaction) but without the network and user interaction components to leave a

batch processing benchmark (Shanley, 1998).

6.3.1.4 TPC-C

TPC-C is a much more complex benchmark than TPC-A. It includes multiple transaction

types, more complex databases and overall execution structure. The benchmark portrays the

activity of a wholesale supplier, simulating a complex environment where a population of

terminal operators executes transactions against a database. The benchmark is centred

around an order-entry environment where transactions include entry and delivery orders,

recording payments, checking the status of orders and monitoring the level of stock at the

warehouses.

The benchmark specifies the number of different types of transaction that occur during

execution. These range from on-line transaction processing type transactions that consist in

recording a payment received from a customer, to less frequent transactions where operators

request the status of a previously placed order, process a batch of 10 orders for delivery, or

query the system for potential supply shortages. A total of five different types of transaction

are used to model the business activity.

While the benchmark is based on the activities of a whole sale supplier, it could also be used

to simulate the activity of a wide variety of business sectors that must manage, sell or

distribute a product service, making it a much more flexible benchmark for the business

sector.

6.3.1.5 Advantages and Disadvantages of TPC Benchmarks

The benchmark tests described above provide a number of insights into the construction of

performance tests for the parallel database environment. The first are the standards they have

set regarding the structuring of tests and the strict reporting of results, with an insistence on

public reporting. As the performance tests will be performed on more than one platform

consideration must be given to how the performance tests are run, what is measured, how it

is measured to allow for comparability of results. Test results themselves should be

presented in a consistent manner and the method of reporting clearly detailed. Secondly, the

tests provide insights into constructing tests for distributed systems where multiple users

access services across networks, allowing the influence of network speed and network traffic

can be accounted for. Finally, the tests provide details on constructing scalable tests where

either work volume or user volume is increased.

More specifically, they describe in detail techniques for testing different aspects of databases

from the design of database tables and indexes to measuring the performance of database

queries. The individual benchmarks have their own strengths. The principal strength of TPC-

A is that it is an end-to-end system benchmark that exercises all aspects of an on-line

LROI

transaction processing system. It is of importance to the research because it represents a

system with users at terminals conducting simple transactions over a wide area or local area

network to a database server, and based on a computing model that is easily understood

(Shanleyl 998).

TPC-B is designed to stress test the core portion of the database system that performs

transaction processing. It stresses CPU by generating streams of transactions as fast as

possible, and the memory and disk 110 subsystem by causing large numbers of small read

and write jobs. They require that a system demonstrate that it can meet the reliability and

security features of the ACID (atomicity, consistency, isolation, and durability) tests by

detailing three separate durability tests (Hanson, 1998).

TPC-C is a very useful benchmark because it measures the performance of the systems when

multiple transactions of different natures compete for system resources. There are a mix of

five concurrent transactions of different types and complexity. The benchmark provides

details for an increased complexity of the data structure used which allows a greater diversity

in the data manipulated by the different types of transactions. The data entered by operators

in TPC-C include some of the basic characteristics of real-life data input, and operators may

enter invalid data which would force the transactions to be cancelled.

The TPC-C benchmark is a scalable benchmark, which requires a system to demonstrate its

ability to increase the number of terminals used and the size of the database proportionally to

the computing power of the measured system (Raab et al, 1998).

Unfortunately the TPC benchmarks do not provide a suitable suite of benchmarks to

performance test the parallel database system used in this research. TPC-A and B are based

exclusively on transaction processing tasks and the ability of the system to sustain very high

data throughput for long periods. Although the performance tests include the requirement to

test the system when transaction processing is running, the aim of the tests is to examine its

effect on the performance of other tasks occurring simultaneously, rather than gauge the tps

rate. TPC-C provides a good foundation for constructing performance tests. However, this

particular benchmark is modelled around an order-entry environment where movement of

goods from one location to another is the cornerstone of the model. The model for the

performance tests in this research is far more sedentary where large numbers of users are

accessing data from the database using GIS as the access tool. Finally, while the benchmarks

II]

provide many useful features, all three are designed for serial machines and would have to be

adapted for use with a parallel database.

6.4 A Parallel Database Benchmark

The Wisconsin benchmark (Bifton et at., 1983) is one of the few database benchmarks that

has been adapted for use with parallel database systems. The Wisconsin benchmark was

designed to test the performance of the major components of the relational database system,

by providing clear details on the semantics and statistics of underlying tables. A good

understanding of the structure of tables made it easy to add new queries to the model and

understand their behaviour.

The Wisconsin benchmark is very useful because it was designed to be flexible and allow a

wide variety of update and retrieval queries, and was therefore not restricted to transaction

processing only. It also used synthetically generated tables that were defined in the model.

Synthetic tables were used for two reasons. Firstly, real data is very difficult to scale and

secondly it is difficult to accurately specify selection queries that return a percentage of data.

Difficulties in controlling the environment are increased where relational joins are involved

because there are too many unknown factors to be able to guarantee that queries will return

results of a specified size. The Wisconsin benchmark was used to evaluate a number of

database systems running on parallel machines, including Teradata (DeWitt et at., 1987),

Gamma (DeWitt et at., 1988; DeWitt, 1990), Tandem (Englert et at., 1989) and Volcano

(Graefe, 1990). The benchmark was used to measure the speed-up and scale up

characteristics of the above systems (DeWitt, 1993). As described earlier in chapter five,

speed-up indicates whether adding additional processors and disks to a database system will

result in a corresponding decrease in response time for individual queries. Scale up measures

whether a constant response time can be maintained as the workload increases, by adding a

proportional number of disks and processors.

Scale up and speed-up experiments were carried out on the parallel database systems

mentioned above using a subset of the selection and join queries from the Wisconsin

benchmark. Using tables of 100,00, 1 million and 10 million tuples respectively, two copies

of each table were created and loaded and the results of the queries stored in the database (to

avoid the speed of the communications link becoming a factor).

In

The Wisconsin benchmark proved a useful model for measuring metrics such as scale up and

speed-up when considering the effect of increasing processors or disks in parallel database

systems. The main measurement used was that of response time, although it was noted that it

is important to establish whether response times measured could be constrained by the speed

of the communications network.

When designing benchmark tests to measure speed-up and scale up for parallel database

systems there are several issues to consider. Firstly, benchmark tables must be chosen

carefully. They must be large enough to ensure that the number of levels in each index

remains constant as the number of disks over which the tableis declustered is increased. This

is to avoid artificially producing super-linear speed-up. Secondly, when setting up a database

for measuring speed-up, the inter-connect communication between processors must be

considered, particularly if the base measurements are taken using a single processor system.

When moving from using a single node, where no inter-processor communication occurs, to

two nodes the level of traffic may increase substantially depending on the query type and

method of execution and the internal network paths.

The performance tools available for serial processors are not available yet in the parallel

environment, and therefore it is virtually impossible to monitor what loads are occurring on

multiple nodes at the same time. With machines such as the Meiko Computing Surface work

is occurring at three different levels in the hardware - the SPARC processors, the transputing

processors and parallel disk farm.

The experiments and results reported from the Wisconsin benchmark used on parallel

databases are very useful because they provide some insight into performance testing a

parallel database, even if the research is not directly applicable to the research project.

6.5 Summary

An examination of existing benchmarks for measuring the performance of parallel machines

and database systems has highlighted a number of general features in need of consideration

when designing performance tests, and a group of specific features necessary to consider

when measuring the performance of relational database systems.

92

The first, and perhaps most important, consideration is that of the reporting requirements of

the benchmarks or performance tests. One of the main reasons for creating performance tests

or designing benchmarks is to describe in some measurable and comparable way the

performance characteristics of the system under test. The end use of the results will dictate

how the results are collated and reported, therefore it is necessary to decide from the outset

the main aims of the performance tests, the audience the tests are intended for and the most

useful format for presenting the results.

The second general requirement for benchmarks or performance tests is that they are a

realistic and fair representation of the system and work under test. By under or over

estimating the complexity and volume of work undertaken by the system, a misleading

picture of its performance is created which has great potential to hide both the systems

strengths as well as its weaknesses. For the purposes of research, where weaknesses are often

sought out specifically to allow a thorough exploration of solutions to improve the system, it

is necessary to design tests that truly represent the work of the system. For example, many

GIS datasets are too large to fit into memory. It is possible to subdivide the dataset such that

each chunk is small enough to fit into memory (memory access being faster than disk

access). However, due to the inter-connected nature of each of the GIS data structures

(points, lines and polygons) in the dataset it is unlikely that individual data structures will be

contained within a single chunk. Therefore, the system will often have to work with two or

more chunks at a time, making it unsafe to assume that because the data has been divided

into memory sized chunks all work will be done using memory alone. Designing tests for

this system using data that always fits within memory would give a very misleading view of

the system.

The third general requirement is a decision on the intended client base as this will dictate

how the performance tests are written. If they are designed as a universal set of tests for use

with many different systems the code must be portable and work with the same efficiency on

all systems it is loaded on to. However, if the tests are written for a one off system, problems

of compatibility over many platforms are irrelevant and the code should concentrate on

specific features pertaining to the system under test.

An examination of individual benchmarks for benchmarking database systems highlighted

specific aspects of performance tests that require consideration. The choice of indicators to

measure will depend on the nature of the tests. Indicators such as, CPU usage will give an

93

indication of overall work load for the system, monitoring the use of paging will indicate

whether there is a memory usage problem, and measuring disk I/O will indicate whether

reading and writing data to disk is causing a bottle neck.

The metrics often used to measure parallel database systems are speed-up, scaleup and

elapsed time. Both speed-up and scaleup are used to measure the effect of adding more

resources to the parallel machine, for example, processors or disks. Elapsed time is used for

indicating the response of the system to the defined workload. Elapsed time can be used to

gauge the time a user will wait between submitting a request to the GIS and the data arriving

back on screen to give a measure of acceptability of overall machine performance. Elapsed

time can also be used to measure individual elements of the overall machine performance to

identify where most of the time is spent, to indicate areas for further research.

A fundamental component of a database benchmark or performance test is the design and

structure of the underlying database. One consideration is the use of 'real' data (i.e. extracts

of data that would typically be used with the system) or synthetic data (designed and created

specifically for the tests). Real data has the advantage that it is truly representative of the

work undertaken by the system, and full of all types of anomalies associated with real data.

However, it is difficult to design tests using such data because it is difficult to predict the

workload generated by any given query, thus making performance measurement much more

difficult, particularly when measuring scaleup effects. Synthetic data allows the precise

definition, construction and execution of performance tests, but is unlikely to be a fair

representation of the data normally used with the system. The use of synthetic data can

highlight areas of weakness in the system, particularly, where data manipulation and

interface issues are of concern. Real data can highlight tuning issues with the database where

specific data combinations are causing an inefficient use of resources. A second area for

consideration is the design of the data model. The design of the data model is in turn

dependent on the types of transaction required. There are several types of transaction ranging

from the short, on-line processing type to highly complex queries where many tables of data

are accessed in order to return a result. A data model to support on-line transaction

processing will require a few limited tables with one or two simple columns in common with

each other. A data model to support complex query processing will itself be highly complex

allowing complicated and lengthy joins to occur requiring many tables of inter-linked data.

Therefore, it is important to establish the different combinations of performance tests

required and consider basic database query structure before designing the data model to be

sure the database will facilitate all of the performance tests envisaged.

The design of a series of performance tests for a parallel UIS/database can be broken down

into a number of areas. These are, the hardware and software applications used, the type of

data used (real/synthetic), the design of the database queries, design of the data model, and

finally the reporting mechanisms used to report results. The design, implementation and

results of the performance tests will be reported in the following chapters.

95

SECTION 3

Developing a Test
Environment

The problems identified in chapter five concerning the use of commercially available parallel

database management software and the popular hybrid model require further investigation.

This is especially so, if a parallel GIS environment is to prove a viable solution for the

technological and processing problems identified in chapter two. These fall into three main

areas of investigation: the performance of the database when used for GIS purposes only, the

performance of the parallel system when both GIS and MIS applications are competing for

the same tables, and the performance of the GIS/database interface.

The use of a parallel database in either an integrated or hybrid model requires the speedy

retrieval of information from the database, particularly if the interfacing linkages between

the GIS and the database are not sufficiently efficient or as flexible as one would like. To

reduce the effect of the interface bottleneck it would make sense to have the database

perform the majority of the work, and only pass back the subset of data required by the GIS

for further analysis or display. It is therefore important to measure the database responses to

the requests it receives. These include increasing the work load, the effect of different

indexing strategies, and the effect of storing data blocks in memory (known as the buffer

cache) on retrieval times.

The second area of interest concerns the performance of the system when both GIS and MIS

are in operation. There are several strategies that could be conceived to overcome the

problems. However, it is important first to gauge the effect that conflicting query types have

on database performance before considering what solutions to employ. To that end it is

necessary to devise a series of tests to replicate this particular environment to measure the

effects of performing both long transaction, complex queries and short, transaction

processing type queries simultaneously on the same database.

The final area of interest is the effect of the GIS/database interface on the performance of a

parallel GIS environment. There are a number of methods for retrieving data from an

external database provided by the GIS applications and various strategies involving the

mechanics of how the data are retrieved and used that can be explored in relation to the

interface.

97

7. Developing the Test
Environment

7.1 Introduction

The development of a test environment is crucial for performance testing because provides a

means of exploring the issues of configuration and functionality described in the previous

chapter. The test environment encompasses not just the hardware, software, and data, but

also all of the decisions made about the testing process. For example, what are the testing

aims, who are they aimed at, what level of detail is required, what is being measured and

how. Based on the results of those decisions the approach detailed in Figure 7-1 was used.

IDENTIFY AREAS OF
RESEARCH

DEVELOP TEST
ENVIRONMENT

PERFORMANCE TESTS

PHASE I I i PHASE II

RESULTS I I RESULTS

I CONCLUSIONS I

I DISCUSSION

Figure 7-1: Flow Diagram of Performance Test Design and Analysis

7.1.1 Project Design

The project was broken into three phases, a development phase, and two parallel GIS system

testing phases called Phase I and Phase IT. The development phase involved all the initial

loading and configuration of hardware and software, time spent learning to use the software,

and trials for devising performance testing harnesses - these were developed to improve the

presentation and collection of performance statistics for individual performance tests.

Phase I was used to test the database software more fully by building a pilot database to

explore workings of the software and to develop a series of tests for data loading

performance, indexing and buffer cache effects.

Phase II introduced a much more realistic database of approx. 15 million rows of real data,

simulating a corporate database, based on a gas utility company. This database was used to

test the environment for its response to mixed transaction queries and also the database

interface.

7.1.2 Performance Tests

The aim of the performance tests carried out in this research was to examine the performance

behaviour of the parallel GIS environment to locate the strengths and weaknesses of the

system under a number of different conditions. The limitations of the system identified by

the series of performance tests gave an indication of the types of benchmarking tests that

should be developed for this type of platform for use as a corporate GIS environment.

The performance tests included:

• gathering performance statistics for the individual nodes on the MCS

• comparing the performance of nodes on MCS with those of other mainframes

available

• investigating the effect of the cache on the parallel database

• connecting a single GIS to the parallel database

• connecting multiple GIS to the parallel database

411

Performance tests were developed for both phase I and phase II. The tests were designed for

the analysis of specific areas of the parallel database system, and required the development

of several new methods for observing, collecting and analysing the results.

Phase I describes the development of the test environment to allow the development of

benchmark tests to characterise the response of the parallel database system under different

conditions, data loadings and configurations, to attempt to determine optimum database

settings and queries. The results from this phase have a twofold purpose: they were used to

compare the performance of the parallel database system against more conventional,

mainframe, RDMBS, and secondly, provided a baseline for the comparative tests in phase II.

Phase II, saw the development of a more realistic test environment based on two types of

corporate GIS, using both the integrated and hybrid models, for extensive testing with more

realistically large data volumes, realistic GIS queries and variable transaction processing

loads.

The following chapter describes the component parts used in the development of the test

environment (see Table 7-1). The following sections provide detailed information about the

hardware and software configurations, operation and limitations in an experimental parallel

environment.

Table 7-1: Parallel Environment Components

Component Vendor Description

Meiko Computing Surface Meiko MIMD Computer with 10 SPARC nodes,

16 fransputer nodes

Oracle RDBMS v6.2 Oracle Corporation Multi-Instance version of Oracle

designed for MCS

Arc/Info v6 ESRI GIS commonly used in corporate

environment

Smallworld v1.8/1.9 Smallworld GIS designed originally for Utilities,

used to create spatial database for

performance testing

100

7.2 Meiko Computing Surface

The Meiko Computing Surface (MCS) used in this research is an example of a massively

parallel distributed system (MIMD-DM). The MCS consists of a small number of relatively

powerful SPARC processor chips and a larger number of the less powerful transputer chips

which are connected together using an internal high performance communications medium

called the Computing Surface Network (CSN) (see

Figure 7-2).

There are several reasons why this particular parallel computer was chosen. Firstly, it uses

readily available industry standard hardware and software such as SPARC processors and a

standard UNIX operating system i.e. SunOS. It is important that the parallel computer

consists of elements that are already familiar and heavily used within the business

community. Uptake of parallel computers is far more likely if an organisation is able to use

and support the equipment without having to completely re-write applications. Existing

software developed to run on UNIX systems under SunOS will run on individual SPARC

nodes on the parallel platform with no need for modification, while new software developed

specifically for the MCS can take advantage of the parallelism available.

Meiko Computing Surface

• .

E/

SPARC SPARC SPARC SPARC SPARC SPARC SPARC SPARC SPARC SPARC

i I iii i I I I I
CSN

0001313D131313131313D1313D131313000D131313D1313

Figure 7-2: Meiko Computing Surface

101

Secondly, it is thought to be fully scalable i.e. as N more nodes are added the parallel

application should run N times faster. Scalability depends very much on the implementation

of individual applications, and is as yet untested using a combination of QIS and parallel

database. Scalability is an important aspect for organisations because it means that they can

begin by using a modest sized parallel computer and increase the processing power as the

size and complexity of the spatial applications and data increase. This gives a good return for

money invested and allows the organisation to expand its computing ability as necessary.

Thirdly, the computer is very flexible. The SPARC processors (known as nodes) can be

configured in a number of ways to suit the requirements for individual businesses to

complement their structure and function. Each node can be used individually, simulating a

networked workstation environment where individual users run a variety of applications. The

MCS can be partitioned with nodes grouped together and dedicated to particular groups of

users or applications. This strategy may prove to be advantageous when several large CPU or

110 intensive jobs are running simultaneously. The whole computer can also be used as a

single parallel computer to increase the performance of CPU and 110 intensive jobs.

Finally, a version of Oracle (v6.2), a well known, commercially available, database

management system, has been designed to run on this parallel architecture.

7.2.1 Meiko Computing System Components

• SPARC nodes (MK083) - These are relatively fast Twinhead chips running at

40M}lz. The SPARC nodes with their disks effectively form a number of fast

SUN workstations clustered together with a much faster network inter-connect

than is usual, known as the CSN. These nodes are responsible for the majority of

the processing.

• T800 transputer nodes - these are less powerful chips, mounted on MK060

quad transputer boards, and are responsible for running Oracle support services,

i.e. all the background processes for the Oracle database.

• Computing Surface Network (CSN) - the CSN provides inter-processor

communications irrespective of the location of the processor. It abstracts all

details of the communications hardware and provides a uniform interface to

message passing for all processor types. It is a combination of software,

102

communications processors and custom message routing chips which support

the transmission of multiple concurrent messages.

• Fat Links - these are multiple transputer links from the SPARC nodes used by

the CSN.

• Disk Controller - the MK050 disk controller is responsible for the parallel disk

farm used by the Oracle database. The disk controller has its own buffer cache

of 16 Mbytes. Therefore, the disk controller can store data blocks, increasing the

overall amount of data stored in memory in the database system. The buffer

cache should improve database retrieval performance by reducing the number of

disk accesses for data.

• Parallel Disk Farm - a group of disks used specifically by the Oracle database

for storing data, metadata and logging information pertaining to the database.

The disks work as a unit and are controlled by the MK050 disk controller. They

support a flat filing system (FFS) to allow the rapid retrieval of data.

• Flat Filing System (FFS) - FFS is a flat filing system structure with no directory

structure to allow efficient striping of data across several disks used by Oracle.

The striping is done by the Oracle parallel file server, a part of Oracle, and is not

available to other applications. The FFS is not actually visible to UNIX except

throughout the use of a utility - fsutil. The fsutil utility allows control of

FFS files, including their import to and from UNIX. Backups of Oracle data can

be done through f sut ii or alternatively, made using the dbcopy utility. It is

necessary to be a member of the dba group in order to use fsutil.

7.2.2 MCS Configuration

During the life cycle of the research the configuration of the MCS changed as the nature and

progression of the research demanded. There were two major incarnations of the MCS and

these will be described below. The first was called Edin and was used during the initial

stages of the project while disk, processor and communication configurations were being

decided. The second was called Hydra. Hydra was a greatly expanded system and was used

for the main performance testing exercises.

103

7.2.2.1 EDIN

Edin consisted of three SPARC nodes edinO, edini and edin2 respectively, running

a variant of SunOS, the SUN version of the UNIX operating system, and eight T800

fransputer nodes. There were three disks supporting UNIX file systems and three disks

supporting a flat filing system (FFS) dedicated to Oracle (the RDBMS) use and controlled by

a MKOSO board (Figure 7-3).

The Meiko interconnect CSN linked the three SPARC nodes and transputer nodes, using

links from the transputers andfat links from the SPARC boards. There was a single internet

route to the outside world and this connected from edinO. The nodes edini and edin2

were diskless clients, with all three disks allocated to edinO.

ethernet

Unix filesystem

sdO 01.2Gb

SPARC SPARC FA:RC
32 Mb 32 Mb Mb

sdl [12 Gj edinO I edini I edin3

sd2 n

MK083 MK083 MK083

~

-T

Flat Filing System

1800 1800 1800
41\4b H 4Mb 81\4b O12Gb O12Gb

1x4 MK047 1x4 MK047

Figure 7-3: Architecture of Edin

7.2.2.2 UNIX File System Configuration

The three UNIX disks sdO, sdl and sd2 were mounted as follows (Table 7-2):

104

Table 7-2: File Locations on Edin

File system Kbytes Mounted on

/dev/sdOa 15759 /
/dev/sdog 163520 /usr

/dev/sdod 29960 /export

/dev/sd0e 66775 /export/swap

/dev/sdoh 593170 /localhome

/dev/sdlh 903427 /localhome/diskl

/dev/sd21a 903427 localhome/disk2

The GIS packages and the Oracle database had the home directories tabulated in Table 7-3:

Table 7-3: Application Home Directories on Edin

Package Package account userid Home directory

Oracle oracle edin: /localhome/disk/oracle

zircon: /disk/src/master/oracle

Arc/Info arcinfo edin: /localhome/disk2/arcinfo

Sma1l world GIS smalwrld edin: /localhome/disk2/smalwrld

The oracle account had a home directory on Edin but also had a home directory on the

ZIRCON server where a standard SunOS version of Oracle is installed. This allowed the

database to be tested in single user mode, running on a single processor environment for

setup purposes.

Smallworld GIS required a file server swmf s and Arc/Info required a licence manager

lmgrd (which in turn spawned ESRI) which were created at start-up by /etc/rc . gin

which in turn was called from /etc/rc.

7.2.2.3 The FFS

The three disks controlled by the MXOSO disk controller were for Oracle use and supported

FFS. The striping was done by the Oracle parallel file server through the utility fsutil.

Using f nut ii the following information about the disks was obtained (Table 7-4):

105

Table 7-4: fsutil report using command 'fsutil devs'

Device Type Blocks Size MirroriD State File System

0 IMPRIMIS 9601-15 2031704 512 + dbs0

I IMPRIMIS 9601-15 2031704 512 + dbsl

2 IMPRIMIS 9601-15 2031704 512 + logo

This states that at that particular juncture there was currently one file system supported per

device, with names dbso, dbsl, log 0. All FFS files are named according to the system

filesystem.jilename. Striping required file systems to have the same alphabetic stem,

therefore striping could occur across dbso and dbsl but not logo.

7.2.3 Hydra

Early in the project a number of additions and alterations were made to Edin and Hydra was

created. Hydra initially consisted of seven 32 Mbyte SS-2 SPARC nodes' but was quickly

upgraded to 10 nodes - hydraO, hydral . . -. hydra9, running SunOs v4.1.3. There

were a number of disks attached to the SPARC nodes (Table 7-5):

Table 7-5 :Disk configuration on Hydra

Node

No of Disks
 Size

hydraO 2 1Gbyte (server)

hydral 1 2Gbyte (incl. local swap)

hydra2-hydra9 1 1 Gbyte (incl. local swap)

The number of transputer nodes was increased to sixteen, and later to twenty-four. These are

as follows:

2 * MKOSO @ 1*8MByte T800

4*MO47 @ 4*4Mbyte T800

1*MK060 @ 4*4Mbyte T800

5(MEIKO MX083 boards)

106

To summarise, the development of the parallel database environment occurred over a period

of several months and was subject to a number of technical changes before arriving at the

final configuration known as Hydra. There were three main areas of change. The numbers of

SPARC processors were increased from three in the first instance to ten in the final

arrangement. The numbers of transputers were upgraded from eight to twenty-four to

provide more processing power for background processes in Oracle. Finally, the numbers of

disks available were increased from three to eleven. The locations of disks were adjusted as

more SPARC nodes were added and application software was installed. Initially all disks

were located on node 0 while initial testing was undertaken, as the system expanded the

disks were distributed to individual nodes to provide local storage. This greatly reduced the

level of traffic on the internal network and reduced the likelihood of bottlenecks occurring.

7.2.4 Oracle v6.2 for the Meiko Computing Surface

This section describes the architecture of multi-instance Oracle RDBMS v6.2 on the

massively parallel MCS. The database is designed to exploit the whole of the MCS to allow

multiple database tasks to run in parallel and minimise or eliminate bottlenecks in the

system. There are three separate parts to the database (see Figure 7-4):

instances located on SPARC nodes

background processes located on the transputer nodes

the disk farm supporting FFS.

The database supports multiple users on each of the processors, by allowing multiple

gateways (or instances) into a single database server. Each instance executes independently

of other instances. Instances can be located on separate processors or multiple instances can

exist on the same processor. They provide the support to co-ordinate all parts of the parallel

system, creating a framework for multi-users in a multi-processor environment. There are

several obvious advantages of this arrangement. The first is that the multi node system can

support many more users than a single node system, all sharing the same resources.

Secondly, it offers some protection against failure: if one of the nodes fails, processing can

continue on another, thus making provision for non-stop operations, known as 7/246

6 These are operations that run seven days a week, twenty-four hours a day.

107

operations that are required to run constantly (Stonebraker, 1994). Thirdly, the architecture

allows the separation of functionally distinct applications, for example, development and

production systems without restricting access to data.

Figure 7-4: Multi-instance Oracle on the MCS (after Holman & Barton, 1991)

7.2.4.1 An Oracle Instance

An Oracle instance is a multi-user software mechanism for accessing and controlling the

database (Oracle Corporation, 1991). Each instance includes the following:

a single shared memory area, called the System Global Area (SGA)

• background processes that are shared by all users

Each instance of Oracle has an mit. ora file that contains the start-up parameters for

allocating the memory area and starting the background processes. On Hydra all instances

is:

had the same start-up parameters. Therefore, a single global mit. ora file was created and

referenced by individual instances at start-up.

Multiple instances can run concurrently and independently. They can access the same

database simultaneously in shared mode. However, an instance can only access one database

at a time. Up to 72 instances can run concurrently on the MCS at any one time.

Each instance consists of a number of components, a System Global Area (SGA) and a

number of background processes.

System Global Area

The SGA contains data and control information for individual instances. It is created when

an instance is started up and removed when the instance is shut down. It consists of a set of

shared memory buffers that contain data and control information. There are two buffer areas,

a database buffer pool and a redo log buffer. Two types of blocks are held in the database

buffer pool, these being data segment blocks and rollback segment blocks.

During a database transaction data blocks are brought into the SGA and held there. If the

data blocks are already in the buffer they are located and held, if they are not there they are

fetched from disk and held. During the transaction modifications made to data blocks are

noted and stored in a rollback segment block to allow the database to be rolled back at a later

date if the occasion arises. Information about the data block and rollback block is stored in

the redo log buffer as a redo log entry and eventually written to disk.

Data blocks are stored in the buffer on the basis of a Least Recently Used list. When the

buffer becomes full the oldest buffers are written to disk and replaced by the newest ones

(Oracle Corporation, 1990).

The operation of the buffer cache is of very great importance to the performance of the

database because the time taken to read data blocks from memory is significantly less than

that required to retrieve them from disk. By maximising the size of the cache and minimising

the number of reads from disk the overall response time for any operation is reduced.

109

Background Processes

There are a number of background processes belonging to each instance:

• the database writer process (dbwr) - writes modified blocks from the buffer

cache to the database. The dbwr process of each instance writes blocks to disk

when they are required by another instance.

• the log writer process (lgwr) - all Oracle instances share redo log files. The

log writer allocates space in the redo log file keeping each instances redo log

records separate, and then writes the entries to disk.

• the checkpoint process (ckpt) - this is an optional process that is responsible

for updating control file and database file headers after a checkpoint. The log

writer can also perform this operation; however, there are performance

implications in using the log writer to do this.

• the lock process (ickO) - this uses the lock manager to prevent simultaneous

changes to the same data by co-ordinating the buffer caches of all SGAs.

• the system monitor process (smon) - monitors and performs instance recovery

for other processes. If an instance fails the smon of another instance rolls

forward any committed work not written to disk or rolls back incomplete

transactions and frees locked resources.

• the process monitor process (pmon) - performs process recovery when a user

process fails. It cleans up the cache and frees any locked resources.

• the archiver process (arch) - archives redo log files on a per instance basis

(Oracle Corporation, 1991).

7.2.4.2 An Oracle Database

The database can be defined as the physical disk space that stores the data and the logical

structures containing data and consists of a number of files:

• control file • init.ora files

• redo log file • database file(s).

110

The control file contains information such as the database name, the database time-stamp

and the names of database files and redo log files. It also holds the values of init.ora global

cache parameters and other init. ora parameters that must be identical for all instances

running concurrently.

Database files are where the data are stored. All instances have access to the same database

files. The database files are stored on the parallel disk farm. In the configuration used here

the data are striped across two of the three disks available to reduce the seek and fetch time

for retrieving data blocks.

The init.ora file contains the parameters to create the SGA for each instance. Each instance

has its own initsid.ora file where sid uniquely identifies the start-up file. Instances that only

use public rollback segments (roll back segments generally available to any instance

accessing the database) can share a single initsid. ora file. Each instance of Oracle on Hydra

has an initsid. ora file. The instance name for this particular installation was Holly and the sid

was derived from the node number, i.e. hollyO.ora - holly9.ora.

Redo log files record all the changes that transactions make to the database data blocks

providing a recovery mechanism in the case of system or disk failure. All instances sharing a

database write to the same redo log file. If the file fills up then all instances must write to the

next log file.

7.2.4.3 Oracle Server Processes

The Meiko Computing Surface is at a basic level a network of processors. Therefore, Oracle

requires a number of server processes to handle communications and control between nodes.

There are a number of these processes.

The Database File Server is dedicated to access the database files. The file server

runs on a processor dedicated to file 110 only such as the MK050.

The Lock Server provides currency control and synchronisation between instances

and also run on dedicated processors.

111

• The SCN (System Commit Number) Server provides an incremental time-stamp

for each transaction and is available to all instances. This server runs on a dedicated

processor.

Finally, there is the pserver process which starts processes on behalf of local and remote

requesters. The pserver requires a system identifier, oracle sid. The oracle sid uniquely

identifies the logical host name of the Oracle instance required by a client.

7.2.4.4 Two -Task Architecture

Oracle is implemented on MCS using a'two-task' architecture. This means that each

application task starts a corresponding shadow task. The shadow task constitutes the Oracle

kernel and is the only non-background process that has access to the SGA. The Oracle kernel

code is shared which means it only needs to be loaded into memory once. Each application

maps the same code segment and uses a private pointer to keep a track of its position in the

program.

7.3 Arc/Info

The description of Arc/Info will be confined to the methods available within the application

of linking to external databases, because these interfacing mechanisms form an important

part of the research. There are three mechanisms for linking to external databases, which are

the relate environment, cursor processing, and the Database Integrator which is a generic

family of interface modules within Arc/Info.

The implementation of Arc/Info on the MCS is similar to other installations on a UNIX

workstation, and therefore this section will concentrate on the data management side.

Arc/Info v6.0 can manage spatial and attribute data internally using the INFO database, or

externally through the relate environment or through the Database Integrator. The following

describes each of the environments and the considerations that should be taken into account

when using Arc/Info with external databases.

112

7.3.1 The INFO Database Management System

The INFO DBMS is a file based system that allows the user to read and edit the feature

attribute tables and related INFO files (such as look-up tables). It should be noted that INFO

can manage both data held directly in files within the INFO database, and external data. The

Arc/Info attribute tables (PAT, NAT and AAT), boundary (BND) and TIC files are examples

of the latter as they are not stored in the INFO database. As a result they are termed external

files. They are in fact ordinary fixed format system files resident in the Arc/Info coverage

directory. Each INFO database has a system directory containing a catalogue (file called

ARCDR9), a default spool file (ARCNSP) and a number of special files. For each external

file there are two INFO internal files, one of which contains the path-name to the external

file containing the data, and the other of which defines the column names and format of the

data (column width in bytes and data type such as Integer, Binary or Character). It is a

simple matter to turn any fixed format file into an INFO external data file. Feature attribute

tables must be external files referenced in an INFO database located in the coverage

workspace. Related INFO files can be stored in any INFO database such as the coverage

workspace or any remote INFO database.

Files held in the INFO subdirectory are only accessible from the Arc/Info modules and the

INFO database software, but external INFO data files may additionally be accessed by

operating system commands (e.g. to sort the file on a column) or another user program. The

basic contents of the INFO subdirectory have been described above, but the details are as

follows: each INFO data file, whether internal or external is always associated with two disk

files:

. ARCnnnDAT - This file contains either the data for the corresponding internal

INFO data file, or the path-name to the external system file which contains the

data.

ARCnnnNIT - This file contains item definitions for reading the data (nnn refers

to a three digit number assigned sequentially to INFO data files).

The ability of INFO to access external files means that many Arc/Info operations that

manage or update the attribute database can take place without having to use the INFO

DBMS system.

113

RELATE

Relation Name> VEG.REL

Table Identifier> VEG>EXPAND

RECNO AREA PERIMETER EXCOV# EXCOV-
ID

VEG-
CODE

36.0 24.0 1 0

2 3.0 9.0 2 1 B

—03

4

5

6

7

8

2.5

15.0

4.0

2.0

5.5

4.0

8.5

15.0

8.5

4.5

12.0

7.0

3

4

5

6

7

8

2

3

4

5

6

7

A I

A

B

C

B

A

7.3.2 The Relate Environment

A relate in Arc/Info is a named relationship between an item appearing in a feature attribute

table (or many tables) and either a related INFO file or a table in one of the supported

DBMS. The relate environment exploits a relational database structure and could be

described as a relational join across tables stored in multiple DBMS. It uses ESRI Info file

processing libraries linked to routines containing embedded SQL for accessing the external

DBMS. A record in a feature attribute table is related to a record in another table when their

relate items match, or in other words a colunm in the feature attribute table forms the foreign

key to the primary key of the related table, e.g. RECNO and VEG CODE (see Figure 7-5).

Feature attribute tables, INFO files and external DBMS tables can be related to the feature

attribute table of a coverage using a relate.

se > INFO

Item> VEG-CODE

Column> VEG-CODE

Type > ORDERED

Access >RW

B DECIDUOUS 127

C MIXED 175

D SCRUB 316

Figure 7-5:A Conceptual View of a Relate Environment (after ESRI, 1991)

Up to 100 different relates can be defined as part of the relate environment at any time,

although only five can be used simultaneously during an operation. Normally relates will be

lost on quitting from Arc/Info unless they have been saved. Relates are saved in a special

INFO table, and can then be reloaded by using the name given the relate table when it was

saved.

114

Arc/Info supports more than one level of relates, termed stacked relates, so that data can be

accessed through other related files (see . Figure 7-6).

RECNO AREA PERIMET
ER

EXCOV# EXCOV-
ID

1 36.0 24.0 1 0

2 3.0 9.0 2

3 2.5 8.5 3 2

4 15.0 15.0 4 3

5 4.0 8.5 5 4

6 2.0 4.5 6 5

7 5.5 12.0 7 6

8 40 70 8 7

VEG-
ID

VEG-
CODE

VEG-
CODE

10 1 10
20

2 20
30

3 30 40

4 40

5 50

6 60

7 76

Relate 2nd

TYPE ICANOPY

61
75
73
45

1st Relate

Figure 7-6: Stacked relates: an example of how three tables are related (after ESRI, 1991)

In other words one relate may be stacked inside another to allow three tables to be related

together. It is not currently possible to have more than one level of stacking, so that a

maximum of three tables can be related together.

Relates, once defined or restored from the INFO relate file, may be used at any point in the

Arc/Info system where an INFO item (column) name could be used. Thus, for example, the

relate SPECIES might define the relational join between a coverage PAT and a look-up table

containing plant species names. To select polygons on the basis of a database attribute one

would use the RESELECT command which has the following syntax:

RESELECT (<coverage>) POLYGONS (<INFO expression>)

in which the INFO expression would consist of an item (column) name, an operator such as

'=', and a value. To use the relate, the item (column) name in the INFO expression is simply

replaced by the relate name and the column to be used in the related table, thus:

RESELECT (<coverage>) POLYGONS SPECIE S//(<column>) = (<value>)

115

Note that the symbol "/1" is used to separate the name of the relate and the name of the

column from the related table, and that any colunm from the related table can be specified.

Relates support either one-to-one relationships or many-to-one relationships. An example of

a one-to-one relationship is that between the PAT and an ORACLE table containing one row

for each polygon. An example of a many-to-one relationship, is between the PAT and a look-

up table containing the names corresponding to codes in the PAT. If, for example, a related

ORACLE table contained multiple matching rows, then using the relate only the first to be

encountered would be selected. In some circumstances it is acceptable to pre-process the

related table or tables to overcome some of these limitations. For example, the restriction on

stacked relates can be overcome in ORACLE by creating a view that establishes the required

relationship between multiple ORACLE tables. The Arc/Info relate can then be made to the

database view. Complex views, though, can considerably affect the performance of queries.

This could be an area where parallel database environment could have a significant effect by,

for example, using views based on parallelised relational joins. The one-to-many or many-to-

many problem can sometimes be bypassed also by creating a database view. In this case the

view would simplify the relationship to either one-to-one or many-to-one. If, for example, an

ORACLE table contained details of planning applications, then a view could be created that

was a count of the number of applications per polygon, and which thus had only one row per

polygon.

7.3.3 Cursor Processing

Relationships which are either one-to-many or many-to-many are difficult to handle

effectively using the relate mechanism, as was described above. It is now possible to

overcome these limitations by means of defining and using a cursor. A cursor is not a

physical entity in this context but a programming concept. Cursors are a mechanism for

accessing a selected set of coverage feature attributes, INFO file records, or DBMS table

rows, one element at a time. Cursor is a DBMS industry-standard term for managing a

pointer to a particular row in a database table

Cursors support one-to-many relationships between INFO files or external DBMS tables,

allowing one to step through each of the many records or rows related to the current row as

can be seen in Figure 7-7.

116

Selected ARCs S
and Attributes

AAT items Street

I Olive

2 Third

3 Leith

4 Fern

6 Cajon

7 Sixth

8 Fifth

9 Colton

10 Lexus

Arcedit: edit test I I
Arcedit: editfeature arcs The cursor can be

Arcedit: select many moved through the

4 element (s) selected
selected set offeatures

Arcedit: cursor open

Arcedit: cursor next

Arcedit: cursor next

Arcedit: &type %:edit.test#%

edit. street%

6 Cajon

Arcedit: &sv :edit.street Clark St

Figure 7-7: A schematic example of a cursor being used to access a selected set of arcs in
ArcEdit (after (ESRI, 1991)

Both Arc/Info and the Arc Macro Language (AML) support cursors at Revision 6.0. A

cursor may be declared at any point in either the ArcEdit or ArcPlot modules and thereafter

the results of a database query displayed as a pop-up window. Alternatively AML directives

and functions can be used to extract data from the cursor, using the row and column

numbers, so that it can be used as input for other tasks. In Arc/Info, cursors are designed

primarily as a mechanism for displaying and updating INFO files and DBMS tables using

the graphic user interface which is OPEN LOOK or MOTIF based.

117

7.3.4 The Database Integrator

The Database Integrator is a generic family of Arc/Info software interface modules. Each of

the modules provides access to a single DBMS including INFO. However, multiple

DATABASE INTEGRATOR modules can be used concurrently to issue relates to different

external databases (Figure 7-8).

Application

ARC/INFO I ILl{iIc I ORACLE ORACLE (-1 Tabular Data
Server DBMS

I INGRES 11111 INGRES I
B Server 11111 DBMS Tabular Data

T Another Server Another
DBMS Tabular Data

DATABASE
INTEGRATOR

Spatial Data

Figure 7-8: An illustration of the relationships between the data, the software modules and the
software systems (after (ESRI,1991))

A database in Arc/Info terms is a logical concept for a group of tables stored in a DBMS to

which the user has access. A DBMS can manage many databases.

The DATABASE INTEGRATOR does not require the INFO DBMS for any of its

functionality and will run even if INFO is removed from the Arc/Info configuration

(although it does still require the Info file structure to remain) because ESRI has duplicated

all of the necessary code!

The DATABASE INTEGRATOR uses a CONNECT command to login to and maintain a

communication link between Arc/Info and the DBMS. The database definition file contains

the parameters required to connect to specific DBMSs and will allow the user to connect to a

specific instance (in ORACLE) of the DBMS. However, it is not possible to connect to the

same database using the same database definition file more than once in the same Arc/Info

118

session. In each Arc/Info session a user may have up to five simultaneous database

connections. Each connection creates its own process that maintains the communication path

between Arc/Info and the DBMS. Data can be transferred/converted from INFO to the

DBMS and vice versa.

The DATABASE INTEGRATOR permits the use of native mode SQL queries submitted to

external databases. The use of native mode SQL is of great importance because it submits a

single query to the DBMS, unlike the relate environment where a query is submitted for

every selected record in the INFO data file and should have a considerable impact on

performance. This is another area where a parallel database could enhance performance

further by parallelising the SQL code to reduce the time for external DBMS retrieval.

7.3.5 Special Considerations in the Use of ORACLE

In all situations where the topology is altered and rebuilt in Arc/Info, the software will create

and/or update the PAT, NAT, and AAT. These files will thus always maintain a one-to-one

relationship with the graphic features and attributes such as length and area will remain

correct (i.e. there will be one row in the PAT for each polygon in the coverage).

The situation becomes more complex where some of the data are held outside the Arc/Info

system, for example with some attribute data being held in ORACLE. In these circumstances

the PAT, NAT or AAT might only hold the default attributes for each feature (i.e. the

internal feature number - (<coverage>)# - the user ID number - (<coverage>)-ID - and

attributes such as length, area and perimeter), with all of the user defined data held in a

related ORACLE table. The ORACLE table would be related to the feature attribute table by

means of the (<coverage>)-ID number. Once this system has been established, a relate

defined and the ORACLE table populated, the system can function as if the ORACLE data

were seamlessly appended to every row in the feature attribute table. It does, however, need

to be noted that the Arc/Info software is not itself aware that the external database table

exists. This means that when the coverage changes, for example by the addition of a new

polygon, the topology can be rebuilt which will update the feature attribute table, in this

example by adding a record for the new polygon. No changes, though, will be made to the

related ORACLE table. It is left to the user to update the external database, by adding a new

record containing the id number of the new feature. Similarly, deleting a feature would mean

119

that the ORACLE table would contain a row that no longer matched to any of the coverage

features, and the user would decide whether or not to remove it.

7.4 Smallworld

Smallworld GIS is an object-oriented system which was mainly used in this research to

digitise the gas mains network which formed a central part of the large corporate database

developed in Phase II of the performance testing. The Smallworld system is quite complex

because it is an object-oriented environment built on top of a relational database. The

following section describes the database, known as the Version Managed Data Store

(VMDS), how it is managed and updated, and finally how it links to the Oracle RDBMS.

7.4.1 VMDS (Version Managed Data Store)

The Version Managed Data Store (VMDS) is the name given to Smallworld's own internal

database. It is based on the tabular model that underlies other commercial relational database

applications.

The database comprises a set of tables, and each table contains a set of records. A database

record in Smallworld behaves much like any traditional slotted object, where the record has

fields that correspond to slots in an object. All records in a table are the same shape - like a

collection which contains objects which are of the same class.

One or more of the fields in a record forms its primary key. The value of this set of fields

must be unique to each record in a particular table. The primary key effectively gives the

record its identity - two records are considered the same if they come from the same table

and have same value of primary key.

A database table is implemented in Magik 7 (Smallworld, 1991a) to behave like a form of

collection. Therefore, database collection objects respond to methods such as .size,

.anelement() and .elementsO. The standard database collection may be sub-classed to

provide specific behaviour for particular tables, if required.

The Smallworld object-oriented programming language

120

Each element of a collection (i.e. a record) is an object and all the elements of a particular

table have the same class. They have methods for accessing each field (in the same way that

a slotted object has slot access methods). They also have data dictionary behaviour, with

various methods returning information about the structure of the record. The exemplar
8 for

the class can be generated automatically, so that any database may be opened and be

immediately capable of interrogation.

7.4.1.1 Field Assignments

Field assignments differ between the VMDS and foreign databases. In the case of the

VMDS, field assignment works directly on the database, so the database is updated as the

field values are changed. In the case of foreign databases such as ORACLE, the record

object is treated in Smallworld as a true slotted object. Therefore, updating its fields will

have no effect on the data stored in the underlying database. The collection must be

explicitly committed with the new record value (Smallworld, 1991 c).

The primary key value gives the record its identity; therefore, it is not permissible to change

the value of a primary key field of a VMDS record object.

7.4.1.2 Database Views

VMDS collections are grouped together in a hash table in an object of class ds view. The

hash table is in a slot named collections, and a collection is referred to by its name expressed

as a symbol. There may be a number of c/s views, each of which contains one or more files.

A particular file may be in more than one view at a time. The primary purpose of a view is to

group collections which are to be committed or rolled back together (ensuring atomic

commit), and to enable different versions of the same set of files to be accessed at one time.

Each ds_view behaves like a separate user, and must conform to the same concurrency

constraints.

8 An exemplar is an instance of a particular class that is in some way typical or holds default values.
New class instances can be created by sending a message to the exemplar which will make a copy of
itself and perform any special initialisation that is required.

121

7.4.1.3 Versioning

Traditional database systems are based on the premise that there is only one consistent state

of the database at any one time. Two users may seemingly change the database at the same

time, but they are prevented from changing the same or related records simultaneously by

locking or forced rollback.

The VMDS takes a different approach. It is designed on an optimistic principle that in

practice most changes that different users make concurrently do not conflict; and that

conflict, when it does occur, can usually be resolved by the operator selecting which parts of

the two updated versions should be merged to make one version. The VMDS is not suited to

applications where a single up-to-date state is mandatory at all times. The VMDS is designed

for efficient storage and access to multiple versions of the same data. It does this by keeping

disk blocks which differ, rather than by cloning data en masse.

Before the VMDS can be used, it must be initialised. This is true for both open and closed

images. The following protocol will perform the required operation:

dsenvironment. init(gather params)

Where params is a list of key, value pairs and ds environment is a global object that contains

information about the VMDS as a whole.

7.4.1.4 Access to an ORACLE Database

Smaliworid allows access to the ORACLE database through the Magik language. An

ORACLE table or collection of tables is treated in a similar fashion to tables held internally

in Smaliworid and can be manipulated using methods written in Magik.

To access the ORACLE database (only a single database can be accessed), the following

protocols should be used: oracle.open (login name, password). This returns an oracle—user.

The ORACLE object is a single global which corresponds to ds environment for the VMDS

(Version Managed Data Store). The oracle user is an object connected to the ORACLE

database. There may be more than one in one Magik Environment. An oracle user crudely

corresponds to a ds view, and is the unit of commit and rollback.

122

All the methods described in the next section can be applied to an oracle—user:

• open—collection (name), which returns an oracle—collection

• commit()

rollback()

close()

Tables are not opened automatically (as they are in VMDS), but must be explicitly opened.

Changes to ORACLE collections can be committed using commit() or undone using

rolibackO.

Smaliworid was briefly linked up to the Oracle RDBMS, but due to the very slow elapsed

times measured during test runs it was decided that this was not a viable route to follow.

7.5 Summary

The test environment was constructed from a number of elements. The hardware platform

was a Meiko Computing Surface (MCS), consisting of:

• 10 SPARC nodes - each with at least one disk attached to it

• 24 transputer nodes

a parallel disk farm dedicated to Oracle.

All of the nodes were connected together using a very fast interconnect called the CSN.

There were two main software platforms, Oracle v6.2, a multi-user version of a relational

database management system, and Arc/Info v6.0. The Oracle database was a parallel version

designed to utilise the whole of the MCS. Oracle processing took place at two different

levels: on the SPARC nodes, and on the transputers. The SPARC nodes were responsible for

setting up and running individual Oracle instances, while the transputers were used to run all

of the background processes, including the parallel lock managers which controlled the

123

updating of individual data blocks. A third element of interest was the parallel disk farm

because it had its own buffer cache which could have an effect on the performance test

results.

The Arc/Info environment was established on individual nodes of the MCS. The main

feature of interest in Arc/Info were the interfaces available through the relate system, and the

Database Integrator to external databases, and in particular the Oracle database. Arc/Info was

set up and a number of relates successfully established.

Smallworld was also established on individual nodes of the MCS. An interface mechanism

existed between Smallworld and Oracle through a series of methods supplied by Smallworld.

A connection between Smallworld and Oracle v6.2 was established and data retrieved from

the Oracle database. However, the performance of the interface was very slow and it was

cumbersome to use. These two aspects of the Smallworld interface forced the software to be

discounted for performance test purposes. The Smallworld GIS software was used

extensively in the design and creation of the large corporate database used in phase II of the

testing procedure with great success, in particular the ability to digitise from raster images

from the screen proved very useful.

Once the testing environment was established it was necessary to create the databases for

phase I and phase II. The testing was split into two phases to allow a series of baseline tests

to be measured using an artificial dataset, and a number of more realistic tests using real

data. The artificial dataset would make the tests easy to control and calibrate, to allow an

accurate picture and understanding of the database and GIS interface mechanisms in a

parallel environment. The real data would give a truer picture of the performance of the GIS

parallel environment. Details of the two databases can be found in chapters eight and nine.

iV!

8. Phase I - Pilot Database

As mentioned in the previous chapter, the performance testing process, was split into two

phases: known as phase I and phase II. This was done for several reasons, firstly, to provide

an environment where unfamiliar hardware and software could be brought together for trial

purposes, secondly, to aid development of a test environment and performance gathering

techniques, and finally to allow for the development of two different approaches to testing.

The first used artificial data to test the parallel database environment under controlled

conditions, and the second used real data from British Gas (Scotland) to test the parallel

database environment under more realistic conditions. One of the major criticisms of

benchmarks is that they use artificially created datasets that are not representative of the

corporate databases they are mimicking, and are often too small to show up difficulties

relating to 110 and memory bottlenecks. It was hoped by taking this two stage approach

some of these criticisms could be overcome.

The following two chapters describe the development of the database environments created

for phase I and phase II. This chapter concentrates on the pilot database developed for initial

testing of the environment. The tables and queries used in this phase were developed for a

research project examining the performance testing of the use of corporate GIS with

distributed databases (Chan, 1993) and, due to the nature of the multi-user Oracle database,

were found suitable for testing a number of aspects of this parallel/GIS database

environment. The testing suite is divided into six stages and provides data and queries for

testing the performance of relational join strategies, the effect of indexing on elapsed time

and the effect of the buffer cache on data retrieval times. The use that this project makes of

the tables and queries designed by Chan is unique to this research project.

8.1 Background

The use of commodity components, such as SPARC processors, in parallel architectures has

made the definition of what constitutes a parallel computer distinctly unclear. A cluster of

SPARC processor based workstations networked together and used in parallel to solve

corporate data processing difficulties, could technically be classed as a parallel computer,

and has often been described as loosely coupled parallel architecture. Similarly, the

125

distinctions between distributed Oracle databases and multi-user Oracle (v6.2) on the MCS

have also become rather hazy. One of the main differences is the physical distance between

the processors. For the MCS they lie a few inches apart and are linked together using a fast,

dedicated interconnect, while in a conventional distributed database system they can be

hundreds or thousands of miles apart, connected via ethernet and optical cable. However, the

methods of addressing different nodes in the system, and the structure of SQL queries for

retrieving data from multiple nodes are very similar. Therefore, the database and SQL query

suite, developed for investigating the use of corporate GIS based on distributed database

technology, were found to be both pertinent and applicable for the initial testing of the

parallel database environment. The obvious difference is that instead of accessing data from

multiple databases through a distributed system, the parallel database would provide access

to the same database for all nodes available on the MCS.

The research investigated the effect of data distribution on the performance of SQL queries

of both textual and spatially-related data across a network, and examined the implications for

architecture design on data distribution and query performance. A series of database tables

and SQL queries were developed to analyse the effects of distributed-databases, query

construction and GIS models on the performance of hardware, software and communication

infra-structure. The author was involved in this work in an advisory capacity, and gas mains

data from this project which examined the use of parallel databases with corporate GIS, was

donated to form part of the distributed database.

8.1.1 Aim of the Distributed Database Research

The aim of this part of research project was to simulate a corporate GIS environment where

data were located in a distributed database system environment (DDBS) to determine

appropriate strategies for data distribution and the optimisation of query processing. A series

of performance tests were developed to investigate the effect of different permutations of

data distribution on a single computer and a series of computers connected via a network.

Data in topological, vector, raster and attribute formats including OS data of Cumbernauld,

gas mains data from British Gas (full description in Phase II), street works data and customer

data were combined to create a simplified corporate database. The individual databases were

located on VMS and UNIX systems (including Hydra) based at different locations around

the University of Edinburgh and connected via LAN (ethernet) and FDDI communication

126

links (Figure 8-1). Oracle v6.2 and ARC/INFO 5.1 were employed, being commonly used

database and GIS applications.

Monitor data I
ull k- _._. I Geovax

Oracle table
VAX 6000-340 multi-processor machine
4 main processors
128 Mbytes of shared memory

Arc/Info

ISPARC0 I ISPARC1 I......SPARC9

....
Oracle Table

Oracle
I Background

management
system processors

Meiko Computing Surface

Oberon
16 Mbytes memory

208 Mbytes local disk

VAXSTATION 3100 PCs
VAXSTATION

2000
Ethernet connection

......... FDDI Link

Figure 8-1: The hardware platform for Distributed Database Performance Tests (after Chan,
1993)

The research into distributed database performance used three servers available over the

University of Edinburgh campus. Two of the machines, Geovax and Oberon, were based in

the Department of Geography while Hydra was based several miles away and accessible

through the University network using a mixture of ethernet and optical fibre (FDDI) links.

127

Geovax was a VAX 6000-340 and Oberon a VAX3 100. A full description of Hydra can be

found in chapter seven.

The research should be of interest to corporate GIS users for a number of reasons. Many

large organisations are located over a number of sites, often in different parts of the country

or in different countries and need to have corporate data accessible to all sites to gain a full

business picture. Similarly the corporate GIS will also have to span many sites. It is

important to know the performance implications involved in manipulating spatial data from

several different sites, particularly as it involves the use of communication links shared by

the whole organisation. Strategies for retrieving data that minimise network bottlenecks

improve the performance for the whole organisation and reduce processing time for GIS

functions. These strategies could be critical if deadlines are very tight.

The research also has an impact upon corporate data integration strategies involving GIS,

whether data are located locally or remotely. Corporate GIS usually require access to data

from many different locations. By considering the location of the data, the type of database,

and the processing power of the server, it is possible to develop an efficient integration

strategy.

8.1.2 The Distributed Database Performance Test Design

To investigate the behaviour of the distributed database environment under different

operating environments, data loadings and optimisations, six stages of test programme were

designed. The first group of tests was conducted on individual nodes. Their purpose was to

provide a series of control results for comparison with results collected from the second

group of tests, which were conducted using multiple database nodes in a distributed

environment. A full description of the project can be found in Chan (1993).

8.1.2.1 Single Node Queries

The first group of tests was split into three stages and used to investigate the behaviour of

single nodes under a number of different circumstances.

128

Stage I - Single Join on a single node

Queries of single relational joins on tables of different sizes were run on individual nodes of

Geovax, Oberon and Hydra to examine any threshold effects or abrupt changes of behaviour

in the database query performance. The query results returned a fixed number of rows of

data based on the size of the data table to allow for comparison of systems under different

conditions of caching, attribute indexing, and data load (see Table 8-1).

Table 8-1: Example of Indexing Effect on Elapsed Time Using a Fixed Number of Returned
Rows (after Chan, 1993)

No. of rows returned Index Strategy 1

Elapsed time (secs)

Index Strategy 2

Elapsed time (secs)

6667 81.55 117.18

3333 37.5 57.27

2778 36.28 44.22

2222 26.53 37.13

1667 18.26 26.85

1111 13.61 18.98

555 6.94 10.3

333 2.78 4.66

222 2.81 3.34

111 1.11 2.26

Stage II - Multiple Joins on a Single Node

This phase of testing had a two-fold purpose - first to examine the significance of how tables

were ordered in a relational join and, secondly, to identify the optimum table order for

relational joins used in test stages III and V. A number of multi-table multi-join queries were

carried out using four tables with three relational joins. The four tables were indexed on their

foreign keys. The queries were designed to retrieve data sets of 850 tuples, 1700 tuples and

3400 tuples respectively.

Stage III - Spatially-related Queries on a Single Machine

The third phase investigated two different database model approaches in GIS - integrated

DBMS and hybrid DBMS, retrieving spatial and corporate information from a single

machine using ARC/INFO and Oracle. A view was constructed in Oracle using a query with

optimal relational join ordering (developed in Phase II) and used in conjunction with other

129

tables and files to simulate corporate applications that generate complex queries over

multiple tables. To simulate an integrated approach, a PAT file from ARC/INFO was

converted to an Oracle table and queries run against this table and the view table (Figure

8-2). To simulate a hybrid system a link was set up in ARC/INFO to relate the spatial data to

the view table held in Oracle. Queries were generated selecting and re-selecting spatial data

using ARCPLOT.

TABLE

INFO-BLDG
Converted

Arc/Info Table

VIEW

82000@Hydra C2000@Oberon MA[NSATT@Hydra NET WORK@Oberon

Join B Join C

Join A

Figure 8-2: Diagram to Show the Link Between a Spatial Table and an Oracle View (after Chan,
1993)

A view of the data was constructed using queries developed in stage II, to generate a series

of complex queries over multiple database tables. The two GIS models were approached in

the following manner. Both models used the same data: the integrated approach had both the

spatial and attribute data held in Oracle; while the hybrid approach relied on Arc/Info to

manage the spatial data and Oracle the attribute data. Queries for both GIS models were

generated by selecting and reselecting spatial entities from the screen.

The three stages outlined above provided a series of ready made SQL queries for

performance tests for use with individual nodes on Hydra. The queries from the stages were

130

taken and used for testing the behaviour of single nodes on Hydra, to compare response

times for each node against the performance of the other nodes in the parallel environment,

and to locate any performance black spots. Once the nodes were characterised individually, a

strategy was then developed for using nodes in parallel, and identifying roles for each of the

nodes. These results were used as a base line set of performance indicators for comparison

with performance statistics gathered from other test runs.

8.1.2.2 Multiple Node Queries

The second three stages of parallel testing concentrated on the use of relational joins to

access multiple tables held both locally and remotely in Oracle databases. The tests aimed to

examine the effect of data loading when larger tables were accessed in a distributed system

to try and derive a set of rules for table location. The final tests investigated the effect of two

GIS approaches i.e. the hybrid and integrated GIS models, on distributed databases.

Stage IV - Distributed Single Joins

The aim of this phase of testing was to investigate the effect of data distribution on single

join queries across a network using different data loading and different percentages of data

retrieved. Databases were located on three computers Geovax, Oberon, and Hydra.

The connections between Geovax and Oberon consisted of local ethernet links, while the

connection between Oberon and Hydra was between remote sites and used an optical fibre

(FDDI) with ethernet at either end (see Figure 8-1). Oberon was used as the local site and

Geovax and Hydra were remote sites. The processing power of the three computers ranged

from Hydra lying at the top end of the processing scale to Geovax at the bottom. Thus, it was

possible using this hardware configuration to define both local sites that had more processing

power than their remote counterparts, or vice versa. The results of the different permutations

for siting tables were compared with each other and with the results collected in Phase I.

131

Stage V - Distributed Multiple Joins

This part of the testing investigated the effect of data distribution on queries utilising

multiple relational joins in a distributed database. The intention was to begin deriving some

rules of thumb for optimising query performance by the pattern of data distribution. A

number of join queries were performed between a table and the view constructed in Stage II

(Figure 8-2). All foreign keys were indexed. Sixteen permutations were formed using four

tables stored at two different sites. Each site was tested as both a local and remote site.

Stage VI - Distributed Spatially-Related Queries

The final phase of testing investigated the performance of different distributed DBMS

approaches on two different models of GIS. Using an approach similar to that in Stage III,

tests were carried out on integrated and hybrid GIS systems. Arc/Info was used as an

example of a hybrid GIS, with spatial data stored directly in the GIS and attribute data stored

in Oracle. Arc/Info was also used to simulate an integrated GIS. Both spatial and attribute

data were stored in Oracle and accessed through the Database Integrator.

These three test stages provided a series of queries suitable for testing the performance of the

database with an increasing workload. The workload started with one user on a single node,

submitting a query with a single relational join. The workload was built up to ten users on all

available nodes of Hydra, simultaneously submitting queries containing three or four

relational joins.

One of the intentions of the testing procedure was to discover whether there were any

permutations of users and workload that were more successful than others. For example,

what was the effect of all users submitting queries from a single node, compared to users

being spread out over all of the available nodes. This was of particular interest if the nodes

on the machine were to be partitioned for different uses, or user groups, especially when

submitting long, complex transactions.

8.2 Description of the Pilot Database

The pilot database consisted of a number of tables of artificial data, developed purely for

database testing purposes. There were five main tables: a gas mains table; a gas mains

attribute table; a buildings table; a customer table; and finally a polygon attribute table from

Arc/Info containing co-ordinate data for individual gas mains. The gas mains table contained

132

attribute data for each individual gas main in the network. This table was originally

developed for queries testing the performance effects of distributed databases on corporate

GIS. The table, along with the polygon attribute table and the mains network table, was used

in Phase I testing (chapter eleven) to establish that all of the different database interfaces

available from within Arc/Info were connecting to the Oracle database successfully and that

data retrieval was satisfactory.

8.2.1 The Pilot Database Model

The database model was a very simple one (see Figure 8-3) but provided enough flexibility

to begin initial tests on the parallel database system which could provide an understanding of

the workings of the different elements, check the functioning of Oracle on individual nodes,

and record some base performance statistics.

Figure 8-3: Pilot Database Data Model

133

The five entities shown in Figure 8-3 have the following attributes (see Table 8-2):

Table 8-2: Attributes for Pilot Model Entities

Entity Attribute

Customer customer#
building#
name
address
town
postcode
pipe network#

Building building#
description
category
building use#
label point#

Mains Attribute mains#
network#
siphon#
inj ection#
governor#

Mains Network name
network#
length

Info Bldg x

y
bldg id
bldg#

The buildings and customer tables were the main driving tables for performance testing and

were used extensively in most of the tests. A number of versions of the two tables were

created containing differing numbers of rows (see Table 8-3) to simulate different data

loadings. Indexes were also built on the tables to investigate the effects of a number of

indexing strategies.

134

Table 8-3: List of Tables for the Pilot Database (after Chan, 1993)

Table Name Type Number of

Rows

Number of Attributes

B60000 Building 60000 5

B30000 Building 30000 5

B25000 Building 25000 5

B_20000 Building 20000 5

B15000 Building 15000 5

B_10000 Building 10000 5

B5000 Building 5000 5

B3000 Building 3000 5

B2000 Building 2000 5

B_bOO Building 1000 5

C20000 Customer 20000 8

C10000 Customer 10000 8

C_8333 Customer 8333 8

C_6667 Customer 6667 8

C5000 Customer 5000 8

C_3333 Customer 3333 8

C1000 Customer 1000 8

C_667 Customer 667 8

C333 Customer 333 8

MAINS MINE Mains Attributes 1000 5

MAINS ATTRIBUTE Mains Network 20000 3

INFO BLDG Mains co-ordinates 14567 4

The SQL suite consists of some fifty queries developed for use in the performance test stages

described above. A list of SQL queries used in phase I can be found in Appendix A.

135

9. Phase II - Corporate Database
Deshn

The purpose of this chapter is to present the different stages that together provide the basis

for system testing in Phase II. The work falls into a series of sections, from the designing and

building of an organisational datamodel through to the production of a series of data retrieval

queries. The results of these stages provide the testing environment for phase II and consist

of two GIS applications holding gas mains data, a parallel database containing approximately

two years worth of organisational data, and a series of GIS and database queries to run on the

parallel system. These stages, although a laborious and lengthy process to go through, were

necessary to the research to provide a realistic workload for the parallel platform to manage.

Using real data, with all its quirks and difficulties, reduces the artificial nature of the testing

procedure as communication weaknesses, bottlenecks and gremlins encountered using large

volume, working data with several applications linked together can be expected to manifest

themselves.

The large corporate database held in Oracle was designed to look like a real utility problem.

The underlying gas mains networks were digitised from working maps taken directly from

the paper map library belonging to British Gas (Scotland). The digitising exercise coincided

with the huge Digital Records project undertaken by British Gas (Ives, 1993), to turn their

paper map-base into a nation-wide GIS. This gave a much clearer insight into the workings

of a gas utility company and access to internal reports and documents improved the

understanding further. The gas utility database designed for this project does not reflect the

full complexity of a corporate database for such a large organisation, but has brought

together the essential elements to allow for a much more thorough testing of the parallel

database environment for use with corporate GIS. The size and scope of the database also

made provision for both GIS and transaction processing type queries to be run either

separately or together.

There are a number of problems associated using real data for testing purposes. It is difficult

to design and calibrate tests, particularly those requiring precise numbers of rows returned,

or those using selectivity factors to retrieve percentages of data, because it is difficult to

guarantee the content or level of data returned by a query (DeWitt, 1993). This becomes

136

even more complex when relational joins are involved. Therefore, it was important that

results from phase I were available to use as a base-line for comparison with results from

phase H.

The layout of the chapter is as follows. The first two sections describe the design process of

the datamodel using Entity-Relationship modelling to create a series of inter-related entities

representing the base building blocks of various organisational roles and processes. The

datamodel is built upon a fictional gas utility company, Gas 'R' Us ltd., and based on

information provided by British Gas (Scotland). The main focus of the utility company, and

therefore the model, is the gas mains network because this is the fundamental function of the

business and seen as the main target for GIS. However, emphasis is also placed on both the

customers and their billing system and other areas of the business which could be integrated

using GIS. The result of the design process was a model of some 37 entities with defined

relationships which was translated into SQL code and loaded into the Oracle database.

The next two sections of the chapter records the physical construction of the corporate

database and the process of populating it with a significant quantity of data, with the final

database containing approximately 15 million rows of data. The database held details on a

customer base of approximately 1 million, which was thought to be a reasonable

representation for a gas utility company based in Scotland. The total population of Scotland

stands at a little over 5 million, and much of rural Scotland does not have access to piped gas

services.

9.1 The Data Model Background

9.1.1 Introduction

This section describes the design of a data model based on a fictitious Utility company,

known as Gas R' Us ltd, the results of which will be converted to an Oracle database used to

performance test the parallel database and GIS applications loaded on the MCS (Meiko

Computing Surface).

There are three design stages described in this section. The first consists of a description of

the type of organisation the model is based upon. The second stage describes the software

137

application used to create the model, dipping briefly into entity-relationship modelling and

its terminology and notation. The third stage consists of an in-depth description of all parts

of the data model.

The main aim of the data model is to provide an environment for testing the performance of

the parallel system, the parallel database, the GIS applications and external databases,

incorporating some of the philosophy and methods devised in standard benchmarking tests,

that have relevance to the project.

The function of the data model and database is to create an information infra-structure for a

gas company that has both complexity and enough dimension to provide a fair simulation of

the data requirements of such a company. It is important that the results of the subsequent

tests have a reasonable level of relevance to the business environment to provide an insight

into the performance and usability of parallel database systems with GIS.

9.1.2 Model Criteria

When building the model there were a series of five conditions that the model was required

to meet and which are now described:

9.1.2.1 Database Size

There was a need to produce a test environment of a realistic size. Results from tests

conducted using small datasets are very often misleading because the data will usually fit

neatly into memory and are therefore unlikely to highlight potential weaknesses of the

system. If a parallel GIS system is to be adopted by business (either public or private) it will

be required to manipulate millions of rows of data regularly in a robust and efficient manner.

Therefore it is necessary to show the performance at the levels of usage envisaged by the end

users.

9.1.2.2 Database Complexity

Organisational data are often very complex; for example, a simple gas main can have

between 15 and 20 attributes associated with it, detailing, size, material, pressure etc. It is

138

important to try to capture some of this data complexity in the datamodel as it will have an

obvious effect on the performance of the system. The complexity of stored objects will affect

data storage, data retrieval times, and speed of communications between the GIS and

database, and consequently user response times.

9.1.2.3 Support bed for testing

There is a need for many different types of test in the research - analysis of the performance

of serial GIS in a parallel environment, the performance of the parallel database, the

communication between GIS and database, the performance of the system under different

work loads, and levels of user are a few examples. Therefore, the model must contain the

different types of table and data necessary to do this. This will include a mixture of lookup

tables, tables with many columns and tables suitable for transaction processing.

9.1.2.4 Multiple Users

The projected increase of users for any given application, due to increased use of both the

Internet and intranets, necessitates that the environment will provide support for multiple

users. These users will generate a mixture of short transactions resulting from transaction

processing type queries and long transactions resulting from complex queries. The

performance of the system under different user loadings should be analysed.

9.1.2.5 SQL Links

The environment must provide support to simulate both integrated and hybrid GIS

datamodels, and for GIS linking to the database using off the shelf GIS packages.

Comparison of the performance of GIS applications using external databases as the main

data repository against their standard one will give an indication of the viability of using a

parallel database as part of an integrated GIS model.

9.1.3 Data Model Background

The data model designed for this research is based around the British Gas Digital Records

strategy (Ives, 1985; Ives, 1991; Ives, 1993; Hartley, 1990; Knott & Goodall, 1991). The

139

author is indebted to British Gas (Scotland) for all of the information and gas mains data that

went into the creation of database model for Gas 'R' Us ltd.

9.1.3.1 System Extent

Gas 'R' Us ltd has a computer system based on a distributed network with several

interconnected processors and data stores at different locations. The central processor and

data storage facilities are based at a central HQ, with satellite processors with local storage

facilities sited at each district office (see Figure 9-1). The distributed configuration means

that two copies of the regional mapping database are stored - one at the central site, the other

at the district, with each district holding a subset of data relevant to its geographic area. The

distribution of data allows the district to operate without dependence on the central system

other than for system management activities such as backup and transfer of updates from

districts to the central database. It is proposed that the corporate database created for phase II

will represent the database system at central HQ level.

Within the system there are two distinct networks. The wide area network (WAN) which

connects the district sites to the central site, and the local area network (LAIN) connecting all

local processors, storage devices and peripherals such as printers and plotters within a given

site.

The central processing environment is needed for large volume, data processing and system

management tasks and is an ideal location for a parallel GIS environment. There is need for a

very fast turn around of large volumes of data from both central and district applications

from the updating and maintenance of spatial and gas main data. The data once available in

the system will be used by many different GIS and MIS applications. Fast, secure, multi-user

access is needed to support the data requirements of all of the district sites. Data will also be

received from personnel such as repair crews, surveyors, and meter readers, to name a few,

able to record information in hand held systems to be sent back to base for processing. The

parallel database may also have to support many transaction processing functions,

particularly involving the customer billing system. For large customers, gas bills may

calculated on a fifteen minute basis, rather than quarterly. In the future it is envisaged that

bills will calculated on a minute-by minute, or even second-by-second basis, creating

millions of transactions a second. Consequently, both the changing price of gas, and the

140

customers' gas usage must be monitored and adjusted accordingly. In an integrated IT

system all of this information will be accessible to the GIS through the parallel database.

Central HQ

EEE
ssork oork

storage penferals
station station

District ofice

Rig

storage periferals
Lonon

Figure 9-1: Central HQ and District Structure

The system software consists of the following components: the operating system; the GIS

applications; and database software.

9.1.3.2 GIS Role

The GIS software provides the geographic database with comprehensive facilities to enable

the user to manipulate the gas main network, to allow:

Geography take-on, to load and update the base digital maps.

Mains and Plant take-on, to digitise mains networks and associated plant and

create links to external databases.

• Mains and Plant Maintenance, to update the mains and plant take-on with full

facilities for creation, amendment and deletion of facilities.

• Plotting, to provide hard copy reporting facilities i.e. plots, microfiche, project

drawings

141

• Applications, for example, network analysis, inter utility exchange, leakage

surveys (Hartley, 1990).

These functions all require the GIS to access external data from a variety of database

sources.

9.1.3.3 Scope of GIS Environment

The system must provide facilities for: the engineering management of the gas mains

network; the management information and control; the user task management; and the

distributed data management.

It is important that engineers have fast, efficient, access to all relevant data for issues they

are dealing with, e.g. upgrading gas mains networks, before decisions have to be made.

Decisions may have to be made at short notice, and therefore, the system should provide the

ability for what ifquestions across the whole expanse of data, from the full range of attribute

data on a gas main, the job history on the gas main and similar mains, to network flow and

pressure data. The company already has in existence a series of databases for corporate and

engineering needs; there are also network analysis systems available. The requirement of this

system is that it provides efficient linking to external systems to provide the necessary level

of service for engineers.

The GIS role and environment described above are those actually found in large utility

companies and are based on the experience of British Gas.

The integrated computing facilities must also provide all the information required by

management. For example:

• the control of data take-on and update, to show the status of work in progress

and work about to be started.

• the status of individual jobs, work orders, or the projects. Integration with

existing mainframe control facilities should also be maintained.

gas network information.

142

Finally, the system must cover the control of user tasks, providing the necessary data

controls so that users can only enter or update data which satisfies the control criteria. For

example, a low pressure main would not be connected to a medium pressure main; a valve

only has a single active inlet and outlet main. Therefore, validation facilities to assist the user

are required to assess the network, for example, facilities such as free end network traces

that identify where mains have not been connected into the network despite appearances.

The emphasis is on these controls to establish and maintain data integrity (Ives, 1991).

9.1.3.4 System Organisation

The system is designed to allow multiple users access to the specific data required for the

particular task in hand. Access to the data is in layers, grouped into layers or sub-layers so

that different categories or groups of data can be manipulated independently. The success of

the system hinges on fast and efficient access to the data.

User interfaces to the system are dependent upon the particular operations to be performed.

They range from highly customised, graphics and menu driven interfaces, e.g. the index map

displaying all the maps for that district, colour coded to indicate its status, to command

driven interfaces for system administration. The system must be able to support the data

requirements of each of the interfaces.

9.1.4 The Data Model

9.1.4.1 Gas Company Requirements

The database model is required to provide support for the data input and output applications

described above. The tasks fall into two main areas: the inputs take the form of creating and

updating data held in geographic databases; the output from the geographic database forms

goes to a variety of applications, from high-level, graphical interface applications to data

mining operations. The data are held in a number of databases, from proprietary GIS formats

to general database applications.

143

Integration

The first is the integration of data from many different sources, both internal and external to

the company (and district offices, council, other utilities, health boards, and police). For the

system to work efficiently and the company to fulfil its aims and objectives there must be

access to a variety of data sources.

Speed

The second is speed. The system must respond quickly to requests, particularly to complex,

ad-hoc queries run in emergency situations where an almost instant response is required. In

an environment where a variety of operations are all running at the same time, the data

model must be designed to support fast access to data to reduce the chances of bottlenecks

developing. This may mean that the traditional rules for relational data have to be relaxed.

Data Processin

Finally, there should be support for different types of data processing. Mixed in the

datamodel are databases that support transaction processing, and those supporting more ad-

hoc type queries. There should be no detriment to performance when, for example, both

transaction processing and complex query execution occur at the same time.

9.1.4.2 Research Requirements

From the descriptions above a number of requirements for the datamodel can be extracted.

These are:

' The datamodel should supply a database of sufficient size and complexity to provide

a realistic environment for performance tests.

A variety of data tables should be available, from simple look-up tables to much

larger, complex tables.

Data tables of different types should be available for different types of query

processing, particularly transaction processing and complex query processing.

The datamodel should allow access to data held in different locations, such as the

ORACLE database, ARC/INFO and Smallworld.

144

9.1.5 Model Design

The model was designed using CASE*DesignerTM, an Oracle Corporation product which

provided a comprehensive environment for modelling organisations and includes a graphical

Entity-Relationship (E-R) environment. This model was selected because it represented the

real world in a more natural manner than some of the other data models in existence, and it

translates well into a relational database environment (Chen, 1976; Stonebraker, 1994). In

the entity-relationship model about Gas 'R' Us ltd only relevant information concerning

entities and relationships pertaining to the company were recorded. The following sections

briefly describe E-R modelling and CASE*Designer
TM

terminology and graphics.

9.1.5.1 Entity Relationship Models

E-R models, based on set theory and relation theory, consist of entities and relationships

which incorporate some of the important semantic information about the real world, and use

a special diagrammatic technique to aid in database design (Chen, 1976). The entities and

relationships recorded at this level in database design are conceptual objects in the mind.

An entity is a thing that can be distinctly identified and is of relevance to the organisation,

such as for example, a customer, a street or a gas mains. Each entity has a series of attributes,

which are features describing the entity. For example, each customer has a name, which can

be broken up into title, initials, and surname. Each entity also requires a unique identifier.

This consists of one or more attributes which when combined form a primary key for each

customer.

Relationships

Relationships are connections or mappings between entities, for example, "customer -

mains" is a relationship that exists between the customer who is a gas consumer and the

mains which is the mechanism for delivering gas to the customer. Relationships are defined

between entities using the entity primary keys. The primary keys of the two entities in the

relationship combine to form the relationship primary key.

145

9.1.5.2 Entity-Relationship Diagrams

Entity-relationships are usually represented in diagrammatic form. There are a number of

different methods for representing these. However, they all show the entities, the

relationships, and the type of relationship i.e. one-to-one, one-to-many and many-to-many.

In this thesis the method used in CASE*DesignerT' will be adopted to describe the

datamodel for Gas 'R' Us ltd. because the main body of design was undertaken with this

application.

CASE*DesignerTM E-R Diagram Method

This E-R diagram Figure 9-2 uses rectangles to represent the entities, a variety of line types

Figure 9-2: An Example of a CASE*DesignerTM E-R Diagram

146

to represent relationship mappings, and textual descriptions to denote the relationships

between entities.

The mappings between entries are used to convey a number of pieces of information:

• the nature of the mapping i.e. one-to-one, one-to-many, many-to-many. A

crow's-foot symbol is used to indicate many mappings (Figure 9-3)

Crows-foot

Figure 9-3: Crow's-foot symbol

the status of the relationship i.e. mandatory or optional (Figure 9-4),

one to one (mandatory)

one to one (optional)

one (mandatory) to one (optional)

one to many (optional)

one (mandatory) to many (optional)

- < one (optional) to many (mandatory)

< one to many (mandatory)

many to many (optional)

many (mandatory) to many (optional

Figure 9-4: Types of Relationship in CASE*DesignerTM

9.1.6 Data Sources

The data model allows for data to come from a number of different sources and different

systems. These include GIS applications, remote databases and sources of information

147

external to Gas 'R' Us ltd., e.g. other utilities and local government and data collecting

agencies. The model is also flexible in the location of data. The parallel server is acting as

data warehouse collating information from other locations of the company to a main data

store and making it available for analysis and interpretation. It is feasible that the mains

network will be held in a GIS on one system, buildings information on a different system,

and customer information on yet a third system.

Bringing the data together in one place on a powerful parallel server that is accessible to all

parts of the company brings many benefits. It makes the data a corporate resource while

keeping responsibility and data ownership with individual departments, increases the

sophistication and complexity of analysis possible, keeps data up to date and solves some of

the data duplication problems.

9.2 The Data Model for Gas 'R' Us ltd.

The data model consists of 37 separate entities simulating many different areas of a utility

business (Figure 9-5).

Regional/District
Council Information

National Streetworks
Register

fftomer
Streetworks Data

Data

Corporate Database for
GAS 'R' Us ltd.

Financial Data
Mains Data _________________

Network Data
-

Mine Data
GIS

Applications

Figure 9-5: Database Model Overview

lim

Each entity describes a particular, unique item of the business. For the purpose of the model,

for example, the customer entity represents all the information about customers, the

building entity represents all information required about the houses and factories gas is

supplied to, street contains all relevant information about streets and so on. The entities can

be grouped together to describe functions of the organisation, such as customer services,

personnel, gas appliance services.

There are ten distinct groups of entity within the model. These are mains network, streets,

street works, buildings, customers, employees, vehicles, appliances, external information and

specialist contractors (Table 9-1). Although this is a rather simplistic view of a large

corporate business, it incorporates enough complexity to simulate the types of requests

demanded of a corporate information system. It also provides enough variety of data for both

long, complex GIS queries, and the shorter, more rapid transaction processing queries.

Table 9-1: List of Entities that Comprise the Database Model

Entity Associated Entities

Gas Mains Network Gas Main, Control Entities: Governor Station, Injection Point,

Siphon, Carrier

Buildings Building Use, Household

Customers Complaints, Special Needs, Account, Service Contracts,

Installation, Meter, Meter Type, Emergency, Charges

Streets Works Schedule, Completion, Plans, Originator/Recipient

Street Town, County

Employees Pay

Appliances Appliance Type, Components, Appliance Maker

External Links Census Data, Council, Credit Ratings

Vehicles

Specialist Contractors

The following subsections detail the main groups of entity found in the model. The complete

model diagram is complex and difficult to read, therefore, each section contains an extract of

the data model pertinent to that section as well as list of attributes for the main entities of the

model.

149

9.2.1 Mains Network

The main network is the foundation on which Gas 'R' Us ltd is built and is their primary

asset. An accurate representation of the network is essential to the company. Engineers

planning new mains need to know the precise location of other gas mains in the area (as well

as other utility mains or cables). Maintenance engineers require accurate information to

locate relevant mains. Emergency engineers need to locate problems quickly and accurately

to carry out repairs before an explosion occurs. Suppliers need to know the mains network

structure to ensure that they are delivering their gas to the correct customers. The gas

company requires accurate information to bill customers, monitor the performance of the

network, make strategic decisions, and draw up maintenance schedules.

Other entities connected to the gas mains are control mechanisms such as valves, injection

points, siphon points and governor stations. These all contribute to the maintenance of the

network, for example, allowing engineers to shut down particular sections of a network, and

monitor the flow of gas at various points. These are important features in the mains network

which must be represented in the data model (see Figure 9-6).

STREET

CARRIER V GOVERNOR STATION

<1 GAS MAIN I............... .<-I INJECTION POINT

SIPHON

GAS MAINS
NETWORK

CUSTOMER

Figure 9-6: Entity Relationship model for the Gas Mains Entity

The central entity of the mains network are the individual gas mains. The attribute data for

individual gas mains is stored in, what British Gas call, the Mine Database. The database

contains full descriptions of individual gas mains. This includes physical attributes, such as

150

length, material and diameter, street location, grid reference, and comments for engineers.

Data from the Mine database were being made available to corporate GIS systems in British

Gas through the Digital Records project. The section relating to the mains network for

Cumbernauld was supplied with paper maps for use in this research project. An extract of the

Mine database (Table 9-2) replicated in its original form, has been included to demonstrate

the task of extracting information from it. A pile of paper approximately two inches thick

was supplied from British Gas (Scotland)!

For the purposes of the mains network model the physical attributes of individual gas mains

were stored with the spatial data (see Figure 9-7) and links were through to the Mine

Database (see Table 9-2) using the mains-id, unique number assigned to each individual

main.

joint

diameter

pressure

action type

diamet

Pmaterial

gas main

length

)

status dnl

Figure 9-7: Gas Main Attributes

+
Table 9-2: Example of Mine Data

Grid 4044

street address mains & Main-id diameter length of limits odd mains-id

ST Ref mat main limits even

OS Map sub-diaL

Derrywood Road 10 4 044 009260 009261 1 0 32 46 RDXSCOTT AVE 238907

Milton of Campsie 306734 P INLT TO SRI

NS6576NW 80

Ferguson Terrace 104 044 009116 009117 2 0 20 17 SER TO 1 170601

Milton of Campsie 306154 p
NS6576NW SO

Lochiel Drive 104 044 000022 000125 1 0 125 320 CCV INLET

Milton of Campsie 306499 p BALDORAN 169536

N56576NW 80

School Lane 104 044 009000 0090011 0 63 87 ESL TO EON 170124

306736 P

0856876MW 80

151

The attributes for the gas main were derived directly from information from British Gas

(Scotland) and are an exact replication of data, available from either mains diagrams on

paper maps, or the Mine database.

9.2.2 Streets

The street entity contains all information the company requires regarding streets (see Figure

9-8). Information about streets is stored for many purposes including: the location of

individual gas mains, customer information, sales and marketing, and emergency planning.

Below are a sample of the details that could be included. The company might also want to

hold details about physical features such as the material of the street, width, depth of surface,

and the type of area.

Figure 9-8: Attributes for Street Entity

Accurate street information is essential for utility companies for many reasons. A large

proportion of the gas mains are buried below streets and pavements so they need to be

located both quickly and correctly. This may prove rather problematic for information

systems derived from paper maps as the grid references marked on the map may bear no

relation to the reality on the ground.

The Street entity is connected to a number of other entities in the corporate datamodel (see

Figure 9-9). These include information about the buildings lining the street, the town the

street is part of. The entity is also connected to the gas mains buried under it and to the

streetworks entity for future planning of gas mains.

152

TOWN

contains

zontain
STREET WORKS

situated a

BUILDING ituatedon

,
Arefesred to

GAS MAINS

Figure 9-9: Entity-Relationship Model for the Street Entity

9.2.3 Street Works

The streetwork entity represent the part of the corporate datamodel dealing with all the

communications and data associated with streetwork notices. It would be useful for a utility

company to be able to process this information quickly to send out to other organisations.

The individual attributes of the streetwork entity (see Figure 9-10) comprise all the

information available about individual streetworks. The information required may be

multimedia, including images and scanned documents as well as text.

notice purpose

streetworks
tj

~des fcri pti on date

streetwork id comments

Figure 9-10: Attributes for Streetwork Entity

There have been a number of experiments to make this exchange of information through

electronic communication and it is likely with the development of extranets that work in this

153

direction will continue to progress. The streetwork model depicted in Figure 9-11 allows for

the several stages of operation from the original drawing up of plans for streetworks to

recording details of these who should receive the information. There are also links to spatial

COMPLETION PLANS ORIGINATORIRECIPIENT

have
planned

"/originate/receive

have have
have .. /\

STREET
fa contain

(STREET WORKS
situated on

schedule

schedule

SCHEDULE

Figure 9-11: Entity-Relationship Model for the Street works Entity

and attribute data about the streets themselves and the surrounding area, which could also

include links to the council for detailed road engineering data. There is also a link to a

scheduler system that is used to schedule and allocate both work and staff to ensure that

projects take place at the appropriate time with enough staff to do the job.

9.2.4 Buildings Entities

The building entities describe the installation sites where gas is consumed. Detailed

information about each site is necessary especially in cases of emergency when gas

engineers need to know what awaits them at the other end. It is possible to incorporate

photographs, building plans, video clip into the model to provide a very detailed picture of

each building, especially for the large commercial users of gas.

The buildings entity (see Figure 9-12) is a central object shared by any organisational

function that requires an address. This includes sales, marketing, personnel, and payroll. The

model was designed in this way so that address data need only be stored once, but are

accessible to all. This means that everyone is working from the same updated version of the

address list, which should reduce the number of instances where communications are sent to

154

customers needlessly. This type of strategy should reduce customer complaints as well as

save both time and money.

BUILDING USE SPECIALIST

"7 have

CONTRACTORS

..ieside in

CENSUS / EXTERNAL
DATA

record

have
contoi,

BUILDING
have

STREET

sieni° I CARRIER

HOUSEHOLD reside in
reside in

reside in

CUSTOMER EMPLOYEE

Figure 9-12: Entity-Relationship Diagram for Building Entity

9.2.5 Customer Entities

The customer is one of the main focal points of the organisation, customers (gas consumers)

are the foundation of the business and generate a high proportion of work and profit for the

organisation. The customer entity consists of only those attributes that directly identify and

describe the individual (see Figure 9-13). This forms a small cluster of information that

could also include sex and race if this were thought appropriate.

title customer H-(surname

Figure 9-13: Attributes for Customer Entity

155

Along with the building entity, the customer entity is a central piece of information that links

to many other entities in the datamodel (see Figure 9-14).

COMPLAINTS I SPECIAL NEEDS
ACCOUNT

ntto
come from

.ect

BUILDING ay contain
...•" SERVICE

rechive make have CONTRACTS
draw up

.renides in
peain to

CUSTOMER
connected to -.. be

require have
.

.
repnt

be

GAS EMPLOYEE
caffies to

apply to apply to
occur to

INSTALLATION
I
 METER EMERGENCY

Figure 9-14: Entity-Relationship model for Customer Entity

Based on information contained within this entity group a transaction processing task can be

created to process billing information.

Bills are processed and sent out quarterly to the customer based on the number of units of

gas consumed and the price of a unit of gas. For the purposes of this research the price of gas

is assumed to be constant over the quarterly period; however it is possible to include the

fluctuating price of gas into the equation and bill the customers accordingly.

9.2.6 Employee Entities

The employee section of the entity model holds information about individual employees

such as name, status, and salary (see Figure 9-15). There is a link to the customer tables

because it is highly likely that many of the employees will be customers of Gas 'R' Us ltd.

156

and would be entitled to a discount. This section is partly designed for a modest transaction

processing routine to calculated the pay of individual employees using a simple update

function based on salary level and number of days worked. It would be possible to include

factors such as number of hours worked per week, bonus payments, sick leave, special leave,

and expenses occurred throughout the week or month, to extend the transaction processing

function.

CUSTOMER J ...b.

Figure 9-15: Entity-Relationship diagram of Employee Entity

9.2.7 Appliances

The appliance entities are there to represent another facet of the organisation, i.e. that of

selling and servicing gas appliances for central heating systems, gas fires and water heaters.

This part of the model provides facilities for developing a series of stock control functions,

requiring the level of stock to be monitored and new stock ordered when necessary. The

tables in Figure 9-16 also form part of a much more complex query that accesses data from

many of the tables in the model (detailed in chapter twelve).

157

APPLIANCE TYPE belong

CONTRACTS

belong to
has

require j installed

APP NCE r>.....
install

INSTALLATION

/fit made by \f/
"'belong to

COMPONENTS
Wfl CUSTOMER

make

APPLIANCE MAKER
require

1

Figure 9-16: Entity-Relationship Diagram for the Appliance Entity

9.2.8 Summary

The entity-relationship model has been built around a company called Gas 'R' Us ltd. This

fictitious company is based on British Gas, with many of the company requirements for an

integrated corporate GIS influenced by their requirements and experiences of implementing

the Digital Records project. The role of the data model is threefold. Firstly, it represents a

selection of the main elements of an integrated corporate database. This includes spatial and

attribute data for the gas mains network. Secondly, it provides an environment for creating

both hybrid and integrated corporate GIS models where spatial data for the mains network

can either be stored in native GIS formats or within the corporate database. Attribute data

associated with the mains network is stored in the corporate database. Finally, it provides an

environment where complex SQL queries with a large number of joins can be constructed

and run, as well as those queries required for transaction processing. The entity-relationship

model was designed to provide a database of a suitable size for performance testing using

much more realistic data than that of the pilot database. The entities were created around the

data they represented. The attributes of each entity were chosen because it was felt they were

appropriate for that particular entity, and size was determined by the data. In contrast the

pilot database was designed as a number of fixed length tables with the data created to fit the

table requirements.

158

9.3 Database Creation

The database was created using code generated by the CASE*DesignerTM software when the

data model was complete (see Appendix B). Before the code was generated a series of

integrity checks were made using the modelling software. The checks examined the validity

of the relationships between entities, and looked for inconsistencies with entities and

attributes. These are detailed further in Appendix C. The code once created was modified

slightly to remove some of the constraints placed on the tables to facilitate the loading of

data into the system. The data loading process proved to be rather by trial and error,

particularly at the start and therefore the constraints were removed.

9.3.1 Data

The data in the database are all fictitious, created by a series of C programs written for the

purpose (see Appendix D). The database was partially populated to allow a series of

transaction processing queries and complex queries to be performed (Table 9-3).

Table 9-3: List of Table Names and Size

Table Name No. Rows

Appliances 2 million

Buildings 1 million

Building Uses 10

Customers 1 million

Employees 5000

Meters 8 million

Pipes 3200

Schedules 2000

Streetworks 100

Streets 212

Towns 8

159

In total the database contained approximately 15 million rows of data, held in 10 different

tables.

93.1.1 CUSTOMER/EMPLOYEE Table

The CUSTOMER table was populated by taking a digital download of the University of

Edinburgh telephone directory and extracting all of the surnames. A program then randomly

combined these surnames with a title - Mr, Mrs, Ms, Miss, Dr, Father or Prof., and a couple

of letters to form the initials. The program was weighted so that only a small percentage of

Fathers and a slightly larger percentage of Drs. and Profs. were generated. The rest were

randomly split between the more common titles.

The program was used to generate one million customers for Gas 'R' Us ltd. Once the list

was compiled a check was then made against the University Telephone Directory to ensure

that the program had not inadvertently created a real person.

A similar process was used to create the EMPLOYEE table. However, it is possible that a

high proportion of customers are also employees. Therefore, a large percentage of employees

were taken from the existing customer database. The other employees were generated using

the name generation program.

9.3.1.2 Building Table

The BUILDINGS table also contains fictitious data. The data were created using street

names from the fictional town "Ankh-Morpork", created by Mr Terry Pratchett in the

Discworld series. Postcodes were created using combinations of letters and numbers not

currently used in the postcode directory.

BUILDING USES is a look-up table detailing a number of different uses for a building from

domestic use through to heavy industrial use.

160

9.31.3 Meters

The METER readings table is the largest table generated and holds meter readings data over

a two year period, and assumes that meter readings are made quarterly. The start number for

the initial meter reading was picked randomly between a figure of 0 and 3000. The

subsequent series of readings for each household over the period are incremental, randomly

adding a figure between 75 to 2000. To make the data slightly more realistic the meter

reading figures could have been dependent on the building use. However, there was little

time to add such refinements to the generated data.

The ACCOUNT table was filled using the output from a transaction processing query (see

example below). The query accessed meter reading details, calculated the bill for each

customer for a particular quarter and stored all relevant data in the ACCOUNTS table.

select custid,a.metereading,b.metereading, b.mete reading-

a mete reading

from meters a, meters b, customers

where ((custid = a.meteid

and a.mete date between 1 01-JAN-93' and 1 31-MAR-93')

and (custid = b.meteid

and b.mete date between 1 01-APR-93' and 1 30-JUN-93'))

Example of a transaction processing query

9.3.1.4 Streetworks

The data for the STREETWORKS table was derived from an example of a streetworks

notification form from British Gas Scotland. Figure 9-17 shows a replica of a street work

notification form. The form is distributed by the utility wishing to begin road works, to other

utilities and the local government to notify them of their intentions. The recipients are then

obliged to notify the utility issuing the notice of any known mains or cables in that area.

161

TO: CPO11

STRATHCLYDE REGION
CENTRAL PROCESSOR

FROM: 01201

BRITISH GAS SCOTLAND

WORK SCHEDULING

GLASGOW SOUTH

60 MAXWELL RD GLASGOW G41

DATE OF ISSUE: 03/11/92

TIME OF ISSUE: 13:11

Mouse Name/No, or Specific 0
Location
Street Name Buchanan

Street
Local Area Name City Centre

District Glasgow

Postal Code G12

Street Type o.smsa eg Local
Road

PURPOSE:
Notification

TYPE OF WORKS: Urgent Works (Special
Cases)
STREET STATUS: Non Traffic Sensitive
NOTIFICATION PERIOD: Seven
Days

ORIGINATORS REP: CROSS REFERENCE

G12/3110146

Parti 1 of 1 Part Item

RECIPIENTS REP: CROSS REFERENCE

Part of Part Item

EXPECTED START DATE:
01/12/92
EXPECTED COMPLETION DATE 01/12/92

Grid Ref NT
Easting
006666
Northing
006666
Route Number
M8

DESCRIPTION OF WORKS

RENEW SERVICE (5) - CONDITION

CONTRACTOR DETAILS

Name: GLASGOW SOUTH
Address: BRITISH GAS SCOTLAND

Figure 9-17: Example of a Streetwork Notification Form

9.4 The Gas Main Network

9.4.1 Main Network Elements

The main network for the company has been created from data kindly supplied by British

Gas (Scotland). The data consisted of 113 1:1250 scale Ordnance Survey maps of the

Cumbemauld area with individual gas mains drawn on by hand. The mains were supplied in

both paper format (1:1250 sheets) and in a raster format compatible with the raster import

routines in the Smaliworid GIS. Each map file was named with its sheet reference and a

".lrd" extension e.g. ns7373sw.lrd. Paper copies of the sheets with and without mains

identifiers were supplied. The maps date from around 1962.

162

The maps contain the following information:

the location of each individual gas main

the type of main - low, medium, intermediate pressure mains

the material of the main - polyethylene, cast iron

' the date the main was laid

the diameter

the status of the main - used, abandoned, as-found

the start and end node identifiers of the main.

Not all mains have all of this information attached, but most mains at least have the type,

material and diameter. As well as mains the maps indicated the positions of valves, siphons,

pressure points and other items sited on an individual main.

Each main has its own main identifier which is a unique identifier for each main in the

network. The main identifier has been added by British Gas at a later date to the gas mains

drawn on the maps as they require the information for their own digitised main network

database.

Landline digital data (1992) from Ordnance Survey was also provided as a reference data set.

The reference data set was essential due to the nature of the paper maps supplied by British

Gas (Scotland). The maps suffered from a number of major flaws owing to their age and the

number of times they had been copied. The problems were exacerbated by the area chosen.

Cumbernauld was a new town and a large part of it was built after the maps were produced,

making the accuracy of suburban features on the map rather suspect. Use of the Landline

data will be explained in detail later.

9.4.1.1 Methodology

To create a mains network that could be used by a number of different GIS applications the

mains had to be digitised as vectors from the raster maps provided by British Gas (Scotland).

Smallworld was chosen for this conversion process for two reasons. Firstly, both the

rasterised paper maps and Landline vector data could be imported into the system and

163

manipulated. Secondly, Smallworld provided a sophisticated suite of on-screen digitising

facilities.

The stages for creating the main network are as follows:

create objects for raster data, Ordnance Survey Landline Data and main network

in Smallworld

create rules for objects

test database - much more difficult to change at a later date

import raster data and register each sheet to the National Grid Co-ordinates

import Landline Data

check accuracy of raster maps

• edge match of each sheet

• feature match between raster and Landline maps

• digitise mains and other objects with reference to both raster and vector maps

• export to other GIS applications.

9.4.2 Smallworld Model

Smallworld is an object-oriented GIS and requires the user to create a series of objects in

which to hold the map data. For the Gas Mains model nine objects were identified from the

paper maps. These were: main; valve; siphon; pressure point; carbo seal; governor house;

governor; meter; and surface box. Smallworld also allows the user to develop a series of

rules about how each of the objects interact with each other. The rules for the Gas Mains

model were fairly simple. All of the point objects such as valves and siphons should be sited

on a gas main. It is possible to have more than one point object sited at a particular point.

Valves tend to be sited at the ends of mains, even though they are not drawn so on the maps

(for sake of clarity).

Mains are defined by their mains identifier and their start and end nodes.

164

9.4.2.1 Mains

The gas main object has a number of attributes that describe each individual gas main, such

as status, pressure and diameter. These are described below.

Status

Three types of status of main were identified. These are:

working mains i.e. mains as shown on the map

abandoned mains - identifiable by a scribbled line through them

as found mains. These are mains that were discovered by one of the utilities

when doing other work. The sections of main that have been located have been

marked on the map, and identified as as found.

Mains are designed to carry different gas pressures - the categories are:

supergrid (sg) - to carry gas at very high pressure (over 7 bar) across country

S intermediate pressure (ip) - carries above 2 bar but not exceeding 7 bar

medium pressure (mp) - carries above 75 mbar but not exceeding 2 bar

low pressure (n) - does not exceed 75 mbar

A convention on the paper maps is not to show gas services to individual houses unless these

are carried by medium pressure mains. Therefore, the main network for the imaginary gas

company will not show delivery to individual houses. It is assumed that gas is delivered to

each house that the mains network passes. Gas mains are attached to particular buildings in

the Oracle database, even though those connections are not shown on the mains maps.

165

Material

Mains are made from different materials depending on the pressure of gas they are designed

to transport:

• steel (st)

ductile iron (di)

cast iron (ci)

• polyethylene (pe)

Diameter

There are two units of measure used for the diameter of the main: inches and millimetres.

For storage in the database it was decided to convert all diameters to millimetres, using the

conversion of 25mm = 1 inch. Although this is not quite exact - it simplified the conversion

process and moreover seems to be the method favoured by British Gas (Scotland).

Start and End Nodes

Each main has a labelled start node and end, the majority of which were marked on the paper

maps by British Gas (Scotland). As this work was in progress at the time of digitising, not all

nodes had been assigned start and end node identifiers. Therefore this information was only

included where available. This information when complete could be used to verify the

connection of individual gas mains to each other and thus provide a means of checking the

integrity of the network.

Mains Identifier

Each main was assigned a unique mains identifier. Again this work was in progress during

the project and although most mains had been assigned an identifier there were a few where

this information was unavailable.

166

9.4.2.2 Valves

Valves have three identified attributes - state, size and position.

• state valves can have two states: either open or closed. On the maps supplied

by British Gas (Scotland) two types of valves appear, those that are normally left

open, and those that are normally left closed.

size - the size of the valve is occasionally identified if it is felt significant.

• position - valves tend to have two positions - they are either located on the

surface or they are buried.

9.4.2.3 The Other Point Objects

All of the other point objects - siphon, pressure point, carbo seal, governor house, governor,

meter, and surface boxes, have no visible attributes apart from location, which is stored as

part of the object.

9.4.3 Creation of the Main Network

To allow the mains network to be ported to other GIS applications the Smallworld database

has been kept as simple as possible. No behaviour has been defined for the objects except for

display purposes.

A test database for the maps was initially created using only main and valve objects. This

was done to test the loading, transforming and digitising of raster maps. Once this was seen

to be working a full implementation of the database was undertaken.

For a GIS application in Smallworld (vi .9) it is necessary to provide MAGIK code to define

the structures and special behaviour required by an applications Real World Objects

(RWOs). It is conventional to provide an RWO definition file to define the structures and an

EXEMPLARS file to define the behaviour. Two pieces of code were written in MAGIK to

167

create the database called GAS RWO.MAGIK, and GAS EXEMPLAR.MAGIIK. The code

for these can be found in Appendix E.

The initial setting up of the database was fairly straightforward, following the instructions in

the Customisation Overview Documentation provided by Smallworld (Smallworld, 1991 c).

However, once the database was set up it was not immediately clear how to go about making

minor modifications to the structure.

Structural Changes

In simple terms, RWO code defines the structure of tables held in the database e.g. the main

table. Exemplar code defines the interface to the database describing which attributes are

visible and whether they can be updated. Therefore, changing an exemplar is easier than

changing an RWO as exemplars can be removed and redefined without any effect on the

structure of the database.

To change RWO definitions means changing table structure. To do this requires the table to

be dropped and recreated - similar to tables in relational databases. When a table is dropped

the exemplar is removed as well and will have to be reloaded when the table is recreated.

This type of change should be done during the test phase while there are little data in the

system or face losing a lot of work at a later stage. It is important to commit the changes and,

when satisfied with the result, also save the image.

Data Entry of Raster Maps

The first step was to load in all the raster maps and align them with the national grid. It was

necessary to align all the map sheets to check the accuracy of the alignment (to try to reduce

errors due to the paper warping and distortions from the rasterising process) and identify

those maps that required to be scanned again. Many of the mains cross map sheet boundaries

- it is easier to digitise over the complete area rather than sheet by sheet.

The raster files took up approximately 80mb of disk space.

UKV

Methodology

Each raster map was taken individually, loaded into Smallworld using the load option on the

raster menu, and then transformed. Transformation was done using all four corners of the

map sheet and then checked for error - in this way errors were kept to a minimum.

There were a number of maps with no clearly defined corner points. These could not be

added immediately to the database and had to be re-scanned.

Problems with Raster Data Entry

Somehow one of the boundaries of the raster maps became unset. This had a strange effect

on the display of raster maps. When this particular map was selected the system would not

display the maps surrounding the faulty one. It appears that an entry was placed in the index

but not in the actual table. The solution was to write a procedure in MAGIK to identify

records in the raster table whose value is unset. Those records were then removed and the

raster sheet reloaded.

Symbols

It was decided to display the data in Smallworld as close to the original maps as possible.

Therefore a number of symbols had to be created. The symbols were difficult to create as the

procedures for creating them were not intuitive. Symbols are created using the style option

on the "Themes and Styles" menu.

The following symbols were used for display purposes in Smallworld:

Mains Colour

normal = blue

abandoned = green

• as—found = magenta

• Mains Line Type

• normal pressure = solid line

• medium pressure = chain dash

• intermediate pressure = long dash

169

supergrid = short dash

error = red/short dash

Mains Symbol

1 = normal/normal pressure

2 = normal/medium pressure

. 3 = normal/intermediate pressure

. 4 = normal/supergrid

. 5 = abandoned/normal pressure

6 = abandoned/medium pressure

7 = as-found/normal

8 = as found/medium

• 9=error

In order to show mains in different colours and line styles it was necessary to write a piece

of MAGIK code to look at the main status and the main type, decide which symbol to

choose, and return the integer code for the relevant symbol. The 2 attributes have a defined

set of entries:

• Main Status

• nnorma1

• ab = abandoned

as = as—found

• Main Type

• nnormal

mp = medium pressure

• sg=supergrid

170

• ip = intermediate pressure

The two files were called MAIN.MAGIK and VALVE.MAGIK and can be found in

Appendix B

Loading in vector data

The loading of vector data, such as Ordnance Survey OS) OSTF (Ordnance Survey Transfer

Format) maps, as background data followed a similar process to that of the raster maps.

Smallworld required the user to define the specific features, and their numeric identifiers,

contained in the maps, for example, different road types, rivers etc., and these were defined

in an OSTF document published by OS (Ordnance Survey, 1988). The OSTF identifiers had

to be linked to some Smallworld index numbers defined in the procedure Ttread_ostft. A

number of difficulties were encountered due to bugs in the software but these were isolated

and repaired. The OSTF files were large and took several hours each to load.

Digitising

Digitising the main network took eight weeks with two people working at it. There were a

number of unexpected problems. It is possible for mains to span a number of map sheets.

When mains were drawn in by hand little effort was made to make sure that the main ends

matched up from one sheet to the next. When digitising a decision was made to make a best

fit line rather than digitise to the end of one sheet then jump to the start of the next.

As referred to earlier, the maps were printed around 1962 when Cumbernauld was in its

infancy. Many of the housing estates and retail parks were at the planning stage only. When

they were built it was often not in the location indicated on the printed map. When using the

paper maps this did not present a great problem as the map features are only visual clues to

the user and all positions are relative. However, when transferring this data into a GIS each

main is given a physical grid location. Using the OS vector data as a more accurate guide,

the accuracy of the raster maps were examined. In some areas it was found that map features

on the raster and vector maps were up to 40 metres apart. In such cases mains were digitised

relative to the OS vector maps rather than the raster maps.

Transfer of Smallworld data to the Parallel Computer

A test database consisting of all the data structures and a very small amount of data was

created. Two files . rwo.MAGII(and exemplar.MAGIK were created containing all relevant.

171

code. This was loaded up into a test version of Smallworld and a closed image created.

These were then transferred to the parallel computer using FTP and dumped into an identical

structure to that on the original machine.

The transfer process of Smallworld from the single node machine to the parallel machine

was not a smooth process. This was partly due to the changing location of many of the files

required by Smallworld, and also the change to a new version of Smallworld. Some internal

tinkering with Smallworld was necessary to complete the transfer successfully. Once this

was achieved a migration of spatial data from Smallworld to Arc/Info was achieved.

9.5 Summary

The test databases, a spatial database and an integrated corporate database created for phase

II were required to provide facilities for substantial testing of integrated and hybrid corporate

GIS models accessing data stored in a parallel environment. There were several stages to the

development of the databases, including decisions about the corporate environment

envisaged for the databases, the creation of a suitable datamodel and the construction and

population of both databases. Decisions about the corporate environment were based on the

British Gas digital records project, which was an extensive programme to convert all map

data held by British Gas into digital form for widespread use throughout the company. It was

important to reflect what roles and uses were envisaged for the spatial and attribute data to

build a framework for the database model.

The design of the conceptual database model occurred in several stages, from the initial

conception of entity groups such as customers, buildings and gas mains, and how they would

fit together and interact, through to the creation of individual entities and their attributes.

Some time was spent on ensuring that the database model was coherent and much use was

made of the validation facilities in CASE*DesignerTM. Once the datamodel was complete it

was converted into SQL code and loaded into Oracle. The database model represented all

entities in the same location with links between different entity groups. However, in reality

data was stored in two locations: the spatial data was held in Arc/Info and the corporate

database in Oracle. External links were depicted to other data sources and it was expected

these would be made through e-mail, or internet connections.

172

The final stage was the construction of data to fill the database. At this stage the conceptual

model was split up into its individual components and developed into two separate

databases. The spatial data were digitised using Smallworld and migrated to both Arc/Info

and Oracle. The digitising process alone was a full time job for two people for two months.

This did not include the learning curve for developing the Smallworld environment. Data for

the corporate database were created using a mixture of real and computer generated data to

simulate the mix of data expected in the database. The data had to be generated due to the

confidentiality and data protection difficulties of using actual data from British Gas systems.

The database construction process was very complex and lengthy. There were many different

software applications and environments to co-ordinate and manage and, as with many

experimental projects, there were difficulties with the data, the software and the hardware

which extended the length of development time considerably. The amount of data generated

to populate individual database tables challenged the abilities of editing facilities and the

storage media and it was necessary to make many adjustments to the parallel environment to

accommodate the full database successfully.

The successful outcome of this stage of the project was a working corporate database, a GIS

system with a substantial gas mains network linked to the database through a number of

corresponding attribute tables, and an environment ready for performance testing.

The next stage of the research was to design a performance measuring environment.

Performance testing in a parallel environment is complex because there are so many actions

happening simultaneously. Due to the lack of parallel tools available for performance

monitoring it was necessary to devise methods of collecting data from multiple nodes, the

Oracle database and the GIS simultaneously. The performance tests envisaged would require

all of these elements to work together in a parallel environment and therefore, two

performance test harnesses were created. The first was for use with the pilot database, and

the second for use with GIS/database interfaces. The next chapter describes the measurement

environment and the performance test harnesses created.

173

10. Performance Measurement

10.1 Introduction

Sawyer (1993) described the second major hurdle of benchmarking as defining the

measurement environment (the first was to define the workload!). Designing a suitable

performance measuring environment for the project in a parallel environment was much

more complex than in a sequential environment because there were many more things

happening simultaneously, and monitoring tools for parallel processing were in their infancy.

The majority of the facilities provided to monitor system and application performance were

designed for sequential processing and were only capable of monitoring a single node at a

time. Therefore, it was necessary to devise methods of recording the performance of the

whole system as well as the individual nodes.

A further complication existed because the parallel environment had three separate levels of

processing that should be considered, the SPARC nodes, the transputer nodes and the

parallel disk farm. While the facilities for monitoring the performance of the SPARC nodes

were relatively sophisticated, there were no direct methods available for measuring the

performance of the transputer nodes or the disk farm, and their performance had to be

inferred from the overall performance.

From the performance test specification there appeared to be two main areas where

performance measuring was required. The first was in collecting performance statistics for

queries run purely on the Oracle RDBMS. These were for testing response times for data

loading, indexing, the effect of the buffer cache on query response time, and the effect of

transaction mixes on system response time. The tests required that users log onto the

database, perform the selected test and then exit. The second area was that of the

GIS/database interface. This required statistics to be collected from the GIS as well as the

database, and also that tests be started from within the GIS itself to measure the response

times for GIS users.

The performance measuring requirements for the two different types of test were quite

separate; therefore, two test harnesses were designed, one to be used with all tests devised to

174

work with the database alone, and another to be used with Arc/Info to collect figures when

using Oracle as an external database.

10.1.1 Database Performance Measures

The black art of database performance tuning has long been a contentious subject because

there are so many areas where inefficiencies could occur. These range from the designers

and users of the system: (Corrigan & Gurry, 1993) to the physical components, for example,

memory, disks, and networks.

When deciding what to measure it is important to consider what the common problems

usually are. There are four basic components of the machine environment which interact and

affect system performance.

• Memory

Memory bottlenecks occur when there is not enough memory to accommodate the

needs of the application or group of applications. When this occurs excessive paging

(moving portions of processes to disk) and swapping (transferring whole processes

from memory to disk) start to happen.

• Disk 110

Disk bottlenecks occur when one or more disks exceed their recommended I/O rate.

The disk drivers and controllers have a maximum I/O throughput, both in terms of 110

per second and blocks per second.

• CPU

CPU bottlenecks occur when either the operating system or the software applications

are making too many demands on the CPU. This is often caused by excessive paging

and swapping.

• Network

Network bottlenecks occur when the amount of traffic on the network is too great or

when network collisions occur.

There were two areas of the system that had to be considered when undertaking performance

monitoring of a parallel database, the system environment and the database itself.

175

Monitoring tools for the MCS were part of the operating system, SunOS. The database

monitoring tools were part of the database management environment.

10.1.1.1 SunOS Monitoring Tools

The following tools with SunOS are available for monitoring the performance of the parallel

environment: ps, vmstat.

These were standard tools for collecting statistics on CPU usage, interrupts, swapping,

paging and context switching for each individual node on HYDRA. However, they did not

allow the user to monitor all of the nodes simultaneously through a single interface. It was

necessary to log on to each node individually and start the monitoring tool for that particular

node. This was acceptable for a very small number of nodes, but monitoring even ten nodes

became a very complex and difficult operation, particularly for interactive monitoring where

it was necessary to have a window open for each node.

10.1.1.2 Monitoring Tools in Oracle

There were a number of monitoring and diagnostic tools available with the Oracle RDBMS

to help the user examine the system and database statistics to tune the database to improve

performance. The list below includes all the facilities that were used during the course of the

project.

MONITOR

A SQL*DBA facility for examining various system activity and performance tables

• SQL—TRACE

A utility that writes a trace file containing performance statistics

• TKPROF

A utility for translating the SQL_TRACE file into a readable form. It is also able to

show the execution plan for SQL statements

' EXPLAIN PLAN

A statement that analyses and displays the execution plan for SQL statements

• BSTAT (begin) & ESTAT (end)

176

Scripts which produce snapshots of how the database is performing

• V$SYSSTATS

A view that contains a variety of processing and performance statistics which can be

queried in a variety of ways.

The limitation with all of these tools was that while they allowed the user to monitor the

performance of a wide variety of statistics pertaining to Oracle, they were specific to Oracle

and only gave an indication of how the whole system was working from the viewpoint of the

database. They did not, for example, help to monitor what sort of effect the disk controller

buffer had on buffer caching in Oracle.

10.1.1.3 GIS Applications

Monitoring of performance in Arc/Info was done using the AML command &WATCH,

which collected statistics and wrote them to a named file.

10.1.1.4 Elapsed time

The elapsed time for individual operations is a very useful measure of how the system is

performing because unlike other more complex performance metrics it does not vary

unpredictably as is possible when using monitoring tools from different software

applications to collect statistics. It also the least complex metric to measure once it has been

decided when it is appropriate to start and end the period of measurement.

Using elapsed time as an indicator of how the database is performing under a number of

different conditions also provides a means of comparing results across all the performance

tests to identify where bottlenecks are occurring. Once they have been identified it is then

appropriate to start examining the performance in more detail.

177

10.2 Database Performance Testing Harness

The requirement for this harness was to collect various performance statistics for any given

SQL query, or group of queries, run on any or all of the nodes on the MCS. There were a

number of tasks that had to be completed to set up the environment for the performance test,

including starting up an Oracle instance on the desired nodes and initialising start values for

statistical variables before actually performing the test and gathering up the results (see

Figure 10-1). The test harness was written in C, and used Pro*C commands to issue

instructions to Oracle. The following sections detail the separate parts that make up the

performance test harness.

10.2.1 Resource Usage Statistics

The resource usage module is used to collect statistics about the UNIX system using

standard C programming language libraries. The module collects user and system time using

the get rus age function which returns information about resource usage. A comprehensive

list of resource indicators were collected, including:

system time,

user time - user and system time were converted to number of seconds used

memory in use during program run

number of page faults

number of swaps

block input and output

messages sent and received

number of signals delivered

number of context switches

The results from the function were written out to file at the end of the performance run for

analysis.

178

SQL

INITIALISE VARIABLES UNIX

ORACLE
NODES

INITIALISE ERROR REPORTING

TIME STAM

41

CONNECT TO ORACLE
GET INITIAL ORACLE

STATS

I TIMER I
MODULE TIME STAMP

PERFORM SQL QUERY lB I
'P I
IE I
'Al

AMP

n

[j

I COLLECT FINAL SQL I
STATS

UNIX WRITE PEORMANCE RESOURCE
RESULTS TO FILE MODULE

EXIT ORACLE

I WRITE ERROR
REPORT T

END

Figure 10-1: Performance Program Flow Diagram

179

10.2.2 Timer Module

The timer module uses the time of day as time stamp. Various time stamps are taken during

the running of the program and are used to calculate elapsed running time of the query and to

measure the length of time the Oracle connection sequence takes to complete.

Time of day is calculated and converted into seconds. To calculate elapsed time two time

stamps are taken, one at the beginning of the measuring period and one at the end, then

subtracted to get the elapsed time value in seconds.

double timer()

struct timeval tp;
struct timezone tzp;
mt res;
res = gettimeofday(&tp,&tzp)
return (double) tp.tvsec + ((double) tp.tvusec) *

0.0000001;

}
ml time = timer() ; / starting time for SQL query *7

10.2.3 Oracle Data Statistics

The Oracle database statistics are stored in a pseudo-table which is constructed in memory at

the time of database initialisation and called V$SYSSTA T (a full list of the contents of the

V$SYSSTAT table can be found in Appendix F). The code extract below uses a cursor to

extract db block gets, physical reads, consistent gets and physical writes. These statistics can

be used to calculate the buffer cache hit ratio to compute the rate at which Oracle finds the

data blocks it needs already in memory.

EXEC SQL DECLARE Cl CURSOR FOR
SELECT NAME, VALUE FROM V$SYSSTAT A, V$STATNAME B
WHERE A.STATISTIC# = B.STATISTIC4*
AND (A.STATISTIC# = 28

OR A.STATISTIC# = 30
OR A.STATISTIC# = 31
OR A.STATISTIC# = 29)

UKE

10.2.4 Oracle Instance Initialisation

The initialisation of an Oracle instance occurs in three phases. Firstly, userid and password

variables must be declared to Oracle. The variables contain information used to connect to

individual oracle instances on specific nodes. The second phase requires the creation of an

Oracle logon array to store all logon information in one place to allow the user to connect to

multiple instances Oracle. The final phase is where the Oracle connection is established for

each instance mentioned in the logon array.

10.2.4.1 Variable Declaration

The Oracle variable initialisation begins with SQL BEGIN DECLARE section. All variables

used to store the User ID, password and values returned from the database must be declared

at the very beginning.

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR uid [40] , pwd[30] , name[20]
mt end value, start value;
char category[5], town[201

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;

The variables declared here are:

UID - user ID for the Oracle user

pwd - password for the Oracle user.

Other variables declared hold data from Oracle systems and user tables:

• start—value - the value of particular statistics held in the Oracle system

table V$SYSSTAT before the SQL query has been executed.

• end—value - the value of particular statistics held in the Oracle system table

V$SYSSTAT after the SQL query has been executed.

category and town - values from the Oracle database

181

10.2.4.2 Setup Oracle Logoii Array

To begin multiple instances of Oracle each one must be specified as part of an array, giving

the usemame e.g. OPS$METTE, password and the address e.g. @t :hydral :hollyl of the

particular instance (see Table 10-1), the details are then read one at a time into the Oracle

variables uid and pwd and used to initialise the Oracle instance e.g. hollyl on the chosen

node hydral.

Table 10-1: Oracle Logon Array

Array Username
and
Password

Instance Address

strcpy(node[OJ, lluln/pwn @t:hydra:holly");
strcpy (node [1], "uln/pwn @t:hydral:hollyltl);

strcpy (node [21, l!uID/pwD @t:hydra2:ho11y2l1);

strcpy (node [31, IuID/pwD @t:hydra3 :h011y3);
strcpy (node [4], "UID/PWD @t:hydra4 :h011y411);

strcpy (node [51, l!UID/pWD @t:hydra5:ho11y511);

strcpy (node [61, UID/PWD @t:hydra6:ho11y6h1);

strcpy (node [71, l!uln/pwD @t:hydra7:ho11y7Tl);

strcpy (node [81, T!UID/PWD @t:hydra8 :holly8tT)

strcpy(node[91, UUID/pwD @t:hydra9:h011y9")

The number of instances initialised at any one time depends upon the individual test. Table

10-1 is an example of all nodes on Hydra being initialised for performance testing. However,

by naming individual nodes, or smaller groups, the MCS can be partitioned. Several different

performance tests could be run on their own partitioned nodes or other applications could

operate using those nodes not utilised by the database.

10.2.4.3 Connect to Oracle

The following performs an Oracle connection to each of the nodes on HYDRA.

EXEC SQL CONNECT :uid /*IDENTIFIEJJ BY :pwd*/;

The benefit of using this method of starting Oracle instances is that they are all started as

close together as possible and are executing the query as close to the same time as is possible

to achieve. This puts the maximum amount of stress on any particular datablock for that

particular run as all of the instances are trying to access it at the same time. This requires the

parallel lock manager to synchronise controlled access to the data blocks. Another interesting

side effect is the pattern of retrieval of datablocks from disk, which is explored later.

182

10.2.5 Performance Query Execution

Individual performance queries are executed through a cursor. Any query or group of queries

could be inserted at this point for presentation to the database. Depending on the test in

question, this may be presented to a single node, a group of nodes or the whole system. The

extract of code below is taken from the test harness and shows a cursor C2 and the SQL

query it represents.

1* Open cursor for SQL Query *1
EXEC SQL DECLARE C2 CURSOR FOR

SELECT CATEGORY, TOWN
FROM B1000, C_333

WHERE B 1000 .BUILDING# = C_333 .EUILDING#
AND B 1000.BUILDING# BETWEEN 1333 AND 1667;

10.2.6 Performance Data Storage

The statistics are sent to file at the end of every run. The following data are stored for

analysis:

Node used
Start time for run
Starting time for SQL query
Starting time for fetching
Elapsed time to start time of SQL Query (data searching
Elapsed time from start of searching to start of
retrieval
Elapsed time for run
end time
Total elapsed time
Unix system statistics
Oracle Statistics

The time stamps taken at various points throughout the run are used to monitor the burden of

performance overheads that are placed on the system in addition to the running of the

performance test.

Each performance test is run twice. This means that the first time the query is run it does so

without the benefit of the buffer cache, and therefore all datablocks have to be fetched from

disk. In the second run the data are already stored in the cache, and therefore retrieval time

183

should be quicker. Comparison of the two results gives an indication of how well the buffer

cache is operating and what performance benefit can be achieved.

10.3 GIS/Database Interface Performance Harness

This second test harness is designed to be run from within Arc/Info and is written using

AML9. Instructions are passed to Oracle through the Database Integrator module that

provides the functionality to connect to Oracle and join tables based in Oracle with

geographic features in Arc/Info.

The test harness is a flexible piece of AML code that wraps around database queries issued

from within Arc/Info, and provides the ability to gather performance statistics for specific

types and combination of query. It follows a similar pattern to the previous harness written in

C. The test harness performs a series of set up procedures which initialise a number of

variables with data from the GIS and the Oracle database. Time stamps are collected at

various points during the test run to calculate elapsed times for various functions, the

performance test is then run and final statistics are gathered and written to file.

10.3.1 Connection to Oracle

Connection to Oracle was through the Database Integrator connect command. The

command required the user to specify a data definition file that contained the address for

individual instances of Oracle, the username and password. The data definition file was

called during the set up phase. The logon details were stored in a separate file to reduce the

time taken to make adjustments to the set-up procedure. It removed the need to wade through

the test harness code every time an Oracle destination was altered.

The code fragment below is an example of information stored in the data definition file. The

file specifies the address for an Oracle instance.

9 Arc Macro Language

184

6.0 Oracle DBI Server

$ARCHOME/programs/oracle

@t :hydral :hollyl

The syntax of the connect command is as follows:

connect oraclel OPS$METTE/password

10.3.2 Oracle Statistics

Oracle statistics were collected using dbms cursors. A cursor is a method of retrieving

data a row at a time from a database. DBMS cursors operate in a similar fashion to those in

Pro*C, requiring the user to declare, open and fetch the data from the database. The

advantage of the cursor is that it allows the user to select data from Oracle using native SQL

commands. Data from the V$SYSSTATS table are selected using this method, as can be

seen from the program fragment below.

dbmscursor c2 declare orac1e2
select value
from v$sysstat a, v$statname b -
where a.statistic# = b.stat±stic# -

and (a.statistic# = 28 or a.statistic# = 29 or
a.statistic# = 30)

dbmscursor c2 open

loop until all data retrieved

dbmscursor c2 next
&end
dbmscursor c2 close

The collection of statistics generated by Oracle system tables is important to gauge what

work the database is performing through the interfacing mechanism and how comparable the

performance is with a similar query submitted directly to Oracle from outside Arc/Info.

10.3.3 Watch Files

A watch file is used to gather performance statistics from within Arc/Info while performance

tests are running. The performance statistics from Arc/Info are essential to understanding

185

how the GIS operates when performing connections to external databases, and locating

bottlenecks or inefficiencies if they are occurring. When a watch file is turned on it collects

all data in a named file until it is explicitly switched off again. The results are text based. The

code below is an example of AML code used to control watch file operation.

/* set up watch file to gather statistics from arc using &pt
functions

&watch watch.log

7* begin performance testing

&echo &on
&pt &on

10.3.4 Query Execution

Performance queries are submitted to Oracle using native mode SQL from within the

Database Integrator. The advantage of using this method over other methods like the relate

environment, which can be used to execute SQL queries in an external database, is that the

query is only submitted once to Oracle, rather than for every single row of data retrieved.

Native mode queries from Arc/Info are expressed as follows:

reselect mains arcs test1 where pressure = ILI

where testl is the name of the relate, indicated by A• The command means that arcs

representing gas mains are reselected based on the gas pressure they carry. The arcs are held

in Arc/Info and the pressure information in Oracle.

The relate itself is defined and stored in Arc/Info and defines the connection between

Arc/Info and Oracle, specifying the name of the table identifier for spatial table, the database

name, the table identifier for the oracle table, the type of access, and the name of the relate.

This type of access to the database requires tables and views to be optimised in the database

rather than specifying all requirements from the GIS end. It also limits the number of

relational joins that can be used. However, linking spatial attributes with a view created in

Oracle rather than individual tables means that multi relational joins can be performed

successfully.

.i.

10.3.5 Performance Data Storage

The contents of the watch file log and the data from the Oracle system tables were written to

file for further analysis.

10.4 Constraints and Limitations

There were a number of constraints placed on collecting performance statistics from the

parallel environment. The first major difficulty was that there was no monitoring facility that

allowed the user to look at the performance of multiple nodes within the parallel machine.

The usual monitoring tools were available on individual nodes, but could only collect

information for that particular node. This made gauging the performance of the whole

machine difficult.

Due to the configuration of the parallel machine, resources were used at a number of

different levels, for example, the SPARC nodes, the transputer nodes and the parallel disk

controller (cache). There were however no tools for monitoring performance below the level

of the SPARC nodes. The extensive performance monitoring tools provided for monitoring

the Oracle database went some way towards solving the problem. However, they could show

what was happening to Oracle, but not to other applications.

It is also important to take into account that monitoring facilities have a small overhead when

collecting and analysing performance statistics.

10.5 Processing Results

To run the performance tests at specific times of the day or night, a series of Unix command

files were created. The performance statistics from each individual run were stored in files,

which were organised into directories. Each directory represented an individual test run and

was labelled with both date and time.

Once the performance statistics had been collected and written to file they were transferred

to a spread sheet for further analysis.

187

SECTION 4

Performance Tests
- -- _1

!K1S

11. Phase I Tests

In this chapter the Phase I tests and results are presented. Details of the hardware, software,

the construction of the pilot database and the test harness can be found in chapters seven and

eight.

The testing falls into a number of stages which will be detailed in this chapter. The initial

stages consist of verifying that both the hardware and software are all in working order, and

that all of the interfaces between the different applications are able to provide the

communication links that are expected of them. Effort has been concentrated on the MCS

and Oracle v6.2 because little was known about this combination. A few simple tests were

run to verify that Oracle was up and running on all of the nodes at the outset.

The second level of the tests detailed is used to verify the behaviour of the parallel RDBMS

in the parallel environment. The version of Oracle v6.2 for the MCS, which was newly

released at the time in question, was supplied with the most minimal of benchmarking

information and it was necessary to perform a series of calibrated tests upon the database in

order to compare its behaviour with that of serial RDBMS.

The final tests in Phase I begin to assess the performance of GIS applications using parallel

RDBMS to store both attribute data and also spatial data. As part of this series of tests it was

necessary to devise methods of submitting queries to the parallel RDBMS through GIS

applications to specific nodes or groups of nodes on the MCS, and collecting and assessing

performance statistics from the GIS, the RDBMS and the MCS.

To perform the tests in Phase I a small database was developed in conjunction with a series

of calibrated SQL queries to examine:

how processing is divided across the MCS

the processing speed of a single node vs. nodes working in parallel

the bandwidth of the network and the volume of the network traffic

the ordering of joins

USH

the effect of the cache.

The results from this phase have several functions to perform in Phase II. The performance

monitoring harness will be used to monitor and collect results, the suite of performance tests

that are felt to be most indicative of parallel performance will be used on a much larger

database, and the performance statistics collected will be used to compare the performance

of the 'pilot' database with one of a size commensurate with those used daily in real life

corporate situations.

11.1 Software And Hardware Tests

The first and most important series of tests was to establish the performance of the nodes on

the MCS. The main processing nodes consisted of 10 SPARC processors linked together by

a very fast network (CSN). The intention was to use groups of the nodes in parallel, and

therefore, it was important to determine that they were all performing at a similar speed. The

tests were looking for defective processors and possible problems occurring with the CSN. It

was expected that malfunctions would initially manifest themselves by extended elapsed

times.

Meiko Computing Surface
-Hydra

...." .

IHiI Ii Ii I] IH
YDRA I IHYDRA I IHYDRA IH YDRA

CSN

13000013000131313131313131313D13131313131311131313

Figure 11-1: the Meiko Computing Surface known as Hydra

190

Initial sets of tests were run to establish the performance of the individual nodes on Hydra.

The tests were run at a period when the system could reasonably be expected to be busy

(2.45 pm) and at a time when the system should be quiet (2am)10.

11.1.1 SPARC Node Performance Tests

Three SQL queries were used for this performance test. The queries returned a specified

number of rows, using a single relational join to select data. The queries used were as

follows:

• laic

• lalOc

• 1a15c11

which returned 111, 1111 and 1667 rows respectively. These were run with the aim of

checking that the performance of each individual node remained similar to that of the other

nine SPARC nodes in the system, as the number of rows returned increased.

Each individual query was run twice in succession to collect figures with and without the

effects of caching. This was repeated five times and the results for each particular query

were averaged out. For this test the total elapsed time (time taken for the SQL query to run

twice), the system time, user time and the memory usage were examined.

11.1.1.1 Results

There are two elements of interest in these tests, the performance of the individual nodes,

and the effect of traffic across the university campus network on response time. Most tests

were done in batch mode late at night or early in the morning, when it was expected that the

network would carry minimal traffic. However, some tests requiring a more interactive

approach had to be run during the day. The parallel computing system was located in a

building at some distance from where the author was based, and accessed using the campus

° It should be noted that there were certain parts of the system such as the main FDDI (optical
connection) over which the author had no control. It can therefore only be assumed that these times
would provide the types of conditions required.
11 see Appendix A for SQL code for individual queries

191

network. It was therefore important to establish whether the traffic on the network was

having an influencing effect on overall performance.

It can be seen from Figure 11-2 that all of the nodes excluding Hydra had a similar

elapsed time performance for any given query submitted to Oracle. It could, therefore, be

extrapolated, excepting Hydra 0 which will be considered next, that the computer was

working as intended with no single node showing either decreased or increased performance

compared to its neighbours. Although, it must be noted that the level of work in this

particular test was minimal compared to the work expected of such a machine, and will fit

into the memory. It could also be observed that there was little difference in elapsed time

between those runs performed at a potentially busy time of day i.e. early afternoon, and a

quiet time of day i.e. late night/early morning.

Pe.fonnince ofl4,des on HYDRA
(in seconds)

60

50

40

. 30
Co

w
20

0
I-

10

0 i i i I i i i I I
C'4 () X) 0) N- CO 0)

2 12 12 2

] J] E J E J

HYDRA Node

—m— 1al0_c (Nov 1st
14:45)

—D— lal_c (Nov 1st
14:45)

—U-- 1a15_c (Nov 1st
14:45)

—c--- 1a15_c (Oct 31st
02:00)

—4-- lal_c (Oct 31st
02:00)

—0--- lab_c (Oct 31st
02:00)

Figure 11-2: Elapsed Time Performance of Nodes on Hydra

The figures show that the effect of the university network had little or no influence upon the

elapsed time of queries to the Oracle database, and therefore the effect of traffic across the

LAN was negligible and will be discounted for the moment.

Although this is a very simple test of the nodes, it proved to be a good measure of the health

of both Oracle and the MCS. Comparing the performance of the nodes at frequent

192

intervals quickly highlighted any problems which would affect the response time, and hence

the performance, of a particular run of performance tests. When using a parallel machine

such as Hydra in a commercial situation, where the parallel GIS environment will be in

constant use it is important to be able to identify hardware and software faults or bottlenecks

quickly, particularly as parallel speed-up is often handicapped by the slowest performing

node or task.

This test was used to gauge the state of the MCS throughout the project and proved to be an

accurate barometer of the health of the computer, as can be seen from Figure 11-3. Figure

11-3 shows the response of the system 5 months on from Figure 11-2 and it is obvious that

there were problems with both Hydra4 and Hydra 7 which became more pronounced as

the work load increased. There is also a potential problem with Hydra5, which may be as a

result if Hydra4 is configured such that it uses the same inter-connect paths as Hydra5. It

may also be an indication that there are problems developing with Hydra5 that need to be

investigated.

Performance of Nodes on Hydra

60

50

-40
0
C.)

c30

Ego

I-

10

0 I i I
CoCD M N Co 0)

a a a a a a a a a a

Nodes

—4--- Total elapsed time
lalO_bi cache
log

—4I--- Total elapsed time
1a10 b2 cache
logi
Total elapsed time
1a10_b3 cache
logi
Total elapsed time
1a10_b4 cache
1091

)K Total elapsed time
1a10_b5 cache
logi

Figure 11-3: Performance of Nodes showing difficulties

As can be seen from Figure 11-2 there were some serious problems developing with this

experimental system. Difficulties developed that caused the processing of Oracle to hang

indefinitely, with no way to free up the system. All methods provided by Oracle for killing

Oracle instances ceased to function when the system got into this state and there was no

other solution that to abort Oracle by rebooting the entire parallel system. Unfortunately,

although a huge amount of time was spent trying to solve the problem, it proved very

193

difficult to trace. There were some hardware faults reported by diagnostic tests (data

corruption and time-outs with the switching chips); however, it was very unclear whether

these had any bearing on the observed problems with Oracle. The hardware faults eventually

halted the testing project, a number of months earlier than was intended. The problems are

explained in more detail at the end of the chapter.

11.1.1.2 Node HydraO

Hydra 0 is the odd node out in the parallel system. For any given query run against the

Oracle database it consistently recorded a longer elapsed time, regardless of whether caching

was in operation or not. As the level of work increased the difference between the elapsed

time on Hydra 0 and the other nodes (Hydra 1-9) was proportionately longer (see Figure

11-4).

Mean elapsed time

60

50

40

—query I

—s— query 2
0 query 3

ii 30 query 4

query 5
E —.—query 6

20

10

01 I I

hydra0 hydral hydra2 hydra3 hydru4 hydra5 hydra6 hydru7 6ydru6 hydra6

MCS nodes

Figure 11-4: Mean Elapsed time for HydraO and the Other Nodes

Further, examination of other performance indicators such as the system and user time 12, and

memory usage during the query runs brought other anomalies to the surface associated with

Hydra 0 (see Figure 11-5, Figure 11-6, Figure 11-7). It can be seen that the values for these

12 system time = percentage of CPU used by system resources.
user time = percentage of CPU used by users.

194

particular indicators are consistently lower than those of the other nodes, even though the

elapsed time is always greater.

Mean System Time

8

7

6

5

C
0

E
3

2

--query 1
—

s- -query 2
query 3
query 4

—*—query 5
—'—query 6

ST I I I I

hydraD hydral hydra2 hydra3 6y5ra4 hydra5 hydraS hydra7 hydra8 hydraS

MCS nodes

Figure 11-5: Mean System Time

Mean User Time

3.5

2.5

hydraO hydra 1 hydra2 hydra3 hydra4 hydra5 hydraG hydra7 hydra8 hydra9

MCS nodes

Figure 11-6: Mean User Time

query 1
—s--- query 2

query 3
query 4
query 5

—.--query 6

195

Mean Memory Usage

200000

180000

160000

140000

120000

0

100000
0

80000

60000

40000

20000

---query 1

—u-- query 2

query 3

query 4

—sE—query 5

—S—query 6

01 i I I

hydrao hydrel hydra2 hydra3 hydra4 hydraS hydra6 hydra7 hydra8 hydra9

MCS nodes

Figure 11-7: Mean memory usage for HydraO and the other nodes

The most likely explanation for this odd pattern of behaviour is due to the configuration of

Hydra itself. The machine was configured such that the node Hydra 0 played the role of the

server node and was therefore responsible for all of the external communication of the

system. All work to the parallel computer required the use of external communication as the

MCS was located in a separate part of the university campus and connected through the

campus LAN using a mixture of FDDI link and ethernet. The consequence of this type of

configuration is that there is a cost to handling external communication and it is necessary to

consider the various options for handling it.

When running queries in parallel, consideration must be given to the fact that the node

designated to be the server node will not display the same performance characteristics as the

other nodes, it is likely to perform more slowly and thus reduce the overall performance of

the system. Depending on the corporate requirements for the parallel database system there

are two strategies that could be followed. The first is to designate one particular node as the

server node and use it solely for that purpose, e.g. handling all communications, and use the

other nodes to run Oracle. The other option would be to configure the system such that the

overheads incurred by the server node are spread across the system. This may result in a very

196

slight overall reduction in performance, or the overheads may be swallowed up by the other

processing tasks and have no visible effect on performance. It is not in the remit of this

research project to explore the effects of different hardware configurations. However,

decisions about external communication support does merit further investigation in the

future.

The task of handling external communication clearly had an adverse effect on the elapsed

time for SQL queries. However, it was much less clear why the system, user time and

memory usage were much lower for Hydra 0 over the other nodes (see Figure 11-5, Figure

11-6, and Figure 11-7). No immediate explanation could be found for this phenomenon.

However it would be worth further investigation to see what bearing it has on performance.

11.1.2 Using Multiple Nodes To Perform Relational Joins

The database system is designed to maximise the number of users using a single database at

any one time while maintaining the integrity of the system, security, and above all retrieval

speed for each user. When a user logs onto the database there are three basic methods used to

assign a particular node to them for the creation of the SGA and background processes. Two

of these methods are automatic and the final is manual. The system can automatically assign

a user to the least used node, or use a round robin method of assigning the user to the next

available node on the list, which appears to be the default method, or the user can explicitly

state which node to use as part of the logging on procedure. This ability to address individual

nodes explicitly can be used to direct queries to a particular node, but it can also be used to

split up the processing of a query so that separate tables will be processed on separate nodes.

Research into the distribution of data in a distributed database system (see Figure 11-8)

showed that, when processing queries that involved tables held in different databases, for the

majority of the time the most efficient method required the bulk of the processing to occur

on the local node (shown as 'L' in the node sequence on Figure 11-8) to reduce

communication overheads. However, research has also revealed that the processing power of

the individual system was of importance, and in some instances where the bulk of processing

fell to a more powerful remote node it was more efficient to carry out the processing on the

remote node (shown as 'R' on Figure 11-8) and send the results back to the local processing

node, as can be seen from permutation 8 where Hydra was acting as the remote node in the

distributed database system (Chan, 1993).

197

oberon/geovax spatial table:local
120 'geovaxIoberon spatial table:local

oberon/hydra spatial table:local

100 oberon/geovax spatial table:remote
elapsed €— geovaxfoberon spatial table:remote
time in oberonlhydra spatial table:remote
seconds 80

[;Jt

r

UI I I I I I I I i i iI I

LLLL LLLR LLRL LLRR LRLL LRLR LRRL LRRR RLLL RLLR RLRL RLRR RFtLL RRLR RRRL RRRR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Permutations of Data Distribution

Figure 11-8: A Graph Showing Performance Behaviour of Data Distribution Using Different
Local and Remote Nodes (as Chan, 1993)

A similar pattern can be seen when the individual nodes on Hydra are treated as nodes in a

distributed database system (see Figure 11-9). If tables, used in data retrieval tasks, are

accessed from different nodes on the MCS the two most successful strategies limit the

communication overheads by ensuring most of the processing occurs either on the local node

or the remote.

Permutations of Connections to Oracle Using a Local and
Remote Host

L = Local Host
25 (hydra5)

20 R = Remote Host

R 15
CD

I (hydra6)

/ 10

8 I limiting communication
overheads

0 I I I I I I I I

- -

- - ---Series1

Host connections with Oracle

Figure 11-9: A Graph Showing the Performance Behaviour of Data Distribution Using Two
Nodes of Hydra as Local and Remote Nodes

Although parallel query optimisation and execution does not happen automatically in Oracle

v6.2, given the processing power of the nodes on Hydra, the high bandwidth connection

(CSN) between the individual nodes and the specialised background processes, it might be

advantageous to divide the processing of complex queries requiring multiple relational joins

over several nodes. The advantages would be to spread the cost of processing so that no

single node is working absolutely flat out, and spread the cost of communication overheads,

to reduce the chances of bottlenecks occurring, and improve the speed of transactions.

11.1.2.1 Performance Test

Using the tables B_60000 and C 20000, and the query 1a_60b30 - a query with a single

relational join, the query was submitted to the database. The query was run firstly on a single

node, and then run using three nodes (see Figure 11-10) - the node initiating the query, and

two further nodes, one for each table of the relational join. A percentage of the total number

of rows in the table were retrieved ranging from 5%-30% of the table and the results plotted.

The technique of splitting the processing of the query across two nodes was fairly crude, in

that the two tables in the query were given different node addresses in the FROM section of

the SQL query.

The result are graphs with similar patterns of increasing elapsed time as the percentage of

data returned increases. However when compared with the same set of queries run on a

single node it can be seen that any advantages that may have been gained from the ability to

use separate nodes to process the individual tables in parallel are lost. The elapsed time for

the query run across three nodes took almost four times as long as using a single node.

There are several possible explanations for a query spread across several nodes taking longer

than that run on a single node. The first reason could be a communication bottleneck due to

excessive message passing between the nodes involved. The second cause could be due to

the SQL optimiser that is not set up to perform parallel query decomposition and may

therefore take much longer to process the optimum retrieval path for the query. Finally, the

indexing system has not been optimised for parallel query access, therefore there may be

contention for use of indexes between nodes, or a full table scan has had to take place on

each node. These three factors are explored in more depth below.

199

HYDRA 3
SELECT CATEGORY, TOWN

0000, 00

WHERE B 60000.BUILDING# = C20000.BUILDING#

AND B 600000.BUILDING# BETWEEN 1001 AND 610000;

HYDRA1 IW1IR1

t

Effect of Performing Query across one and two nodes

1000

900

800
700

Elapsed 600
time 500
(secs) 400

300

200

100

0

query on two nodes

—El— query on single node

5 15 20 25 30

percentage of rows returned

Figure 11-10: Performance Difference between SQL query on One Node and Two Nodes

200

Communication

The first consideration is that there is excessive communication required between the nodes

themselves, and between the nodes and the parallel disk farm that far outweighs the actual

processing time. The size of the table used in the query is relatively small with only 60,000

rows and the complexity of the query is small so therefore may not create enough work to

overcome the communications overhead. The advantage of this strategy may become

apparent when using very large tables where the communication overheads form a small

proportion of the overall time taken to process the query.

The next stage in this series of tests would be to try running the query on increasingly larger

sized tables to examine whether increasing levels of work load would render the

communications overhead negligible, or if, as work load increased substantially, so do the

communications required to support a query spread over several nodes. It would also be

useful to determine whether there is a point where the elapsed time for the query is less when

the query is split over several nodes than on a single node.

Another cause for long response times that can not be identified with any obvious bottleneck,

could be caused by excess latency. This is where the system topology in the file is defined

such that the obvious path from the user processor to the instance processor exists but is not

used, or the path exists, and is defined, but is also used for heavy file server traffic. In this

case it would be necessary to reconfigure the MCS such that paths between defined user

processors and instance processors exist and are not used for other types of communication

(Oracle, 1991).

The intention of the author was to repeat the tests on tables developed in Phase II; however a

combination of hardware and software failure made this impossible.

SQL Optimiser

The second influencing factor is that of the SQL optimiser. The optimiser is part of the

Oracle kernel which examines SQL statements and chooses an optimal execution plan for

that particular statement. The execution is a sequence of physical steps the RDBMS must

take in order to perform the operation. When working out an execution plan the optimiser

examines the following:

201

of the syntax specified

iditions the data must satisfy

the database tables the statement will access

any indexes that can be used to retrieve data.

Based on the information the optimiser works out the optimal retrieval path for the SQL

statement being executed.

Using EXPLAIN PLAIN, an optimiser diagnostic statement, the decisions used by the

optimiser can be examined. In Oracle v6.2 the rule based optimiser uses a pre-defined set of

precedence rules and indexes to sort out which path will be used to access the database.

However, it is unable to make decisions based on cost, for example, if an index exists on a

particular table the precedence rules dictate that the index be used. The optimiser is unable

to make a decision as to whether the use of the index improves or degrades the performance

of the query execution.

The SQL optimiser includes the ability to instruct the optimiser manually as to how the

query should be executed by including hints in the SQL statement. Using this method it may

be possible to improve the performance of the SQL query execution.

To plan an optimum parallel execution there are two specific areas to consider. The first is

the FROM clause where the ordering of tables can be crucial if the rule based optimiser can

not make an intelligent decision, in which case Oracle executes the query as it is written. The

parser processes tables reading from right to left and, therefore the last table name in the

FROM clause is the first to be processed. It is also advisable that the driving table (i.e. the

last named table) is the smallest as this reduces the number of database blocks that need to be

read. When designing a parallel execution plan it is necessary to consider how best to divide

the tables up between the available nodes. It may prove beneficial to group tables together,

with each group having its own driving table, and then combining the results of each node

using a similar principle. The node with the smallest number of rows retrieved becomes the

driving node.

202

The second consideration is designing an efficient WHERE clause sequence. The way the

conditions of a WHERE clause are specified have a significant impact on the performance of

SQL in version 6.2. In the absence of any other information the Oracle optimiser uses the

conditions in the WHERE clause to determine the best retrieval path for the database. By

specifying the most efficient clauses early in the WHERE clause the rule-based optimiser

will be more effective in selecting the most efficient path. When working in parallel the

ordering of the WHERE clause may affect the best method for ordering tables.

Finally, it should be considered what functions are used with the query when considering

how to decompose the query. For example, grouping functions, such as GROUP BY, by

their very nature require all of the data to be present before they can work, so queries

containing these types of function will not perform well in parallel.

However, no matter how well the queries are decomposed using manual instructions to the

SQL optimiser, or how carefully tables are ordered or the WHERE clauses constructed, the

Oracle V6 optimiser is unable to divide and conquer database access. As a result, the time

taken to retrieval data will always be poorer than that of databases using optimisers with that

capability. In versions of Oracle using SQL v7 and later this ability has been added. Access

using the divide and conquer method has the advantage that it allows database access

without changing application logic, thus allowing it to break down queries and perform them

in parallel.

Indexing

Data are accessed in two ways, either using a full table scan or using indexes. For most

situations the use of indexes will greatly improve the performance of a query because they

allow more immediate access to the selected rows. They are particularly effective for large

tables where the overhead of using an index forms a very small proportion of the overall

execution time (Corrigan & Gurry, 1993).

However, when more than approximately 25% of records in the queried tables are selected

the use of an index becomes a disadvantage. Using indexes in this situation only increases

the overheads because the database must perform a full table scan in addition to reading the

index (Oracle Corporation, 1990). In a benchmark test by Corrigan & Gurry (1993) it was

found that a row could be inserted into the EMP13 table in less than 0.11 seconds. After

13 a table supplied by Oracle

203

adding 8 indexes to the table (which is more than usually recommended for any one table)

the time taken to insert a single row increased to 0.94 seconds, more than 8 times the original

overhead.

This point may be of great significance when trying to decompose individual queries across

a number of nodes on the system. The use of an index on the table B600000 on building#

attribute may magnify the influence of the index overhead when splitting the execution of

the query between several nodes, because the overhead is incurred on several nodes. One

method that may improve the performance of a single query split over several nodes is to

store the tables and their indexes on separate disks - this will allow greater throughput

(Oracle Corporation, 1991).

11.1.3 The significance of the cache buffer in multi-instance Oracle

The buffer cache is an area in memory that holds copies of database blocks for tables,

indexes, rollback segments, and clusters. Each buffer holds one Oracle data block, the more

blocks that can be held in memory, the less I/O is required, and the better performance will

be (Corrigan & Gurry, 1993). By increasing the parameter DBBLOCK_BUFFERS in

init. ora it is possible to improve performance by up to 50% for long running update jobs and

between 5-20% for transaction processing.

Oracle v6.2 has parallel cache management which uses instance locks to co-ordinate access

to database blocks held in buffer caches. Each individual instance of Oracle has its own SGA

(System Global Area) which includes the buffer cache. The parallel cache manager co-

ordinates the access of individual database blocks for each instance. If the required blocks

are not held in the cache then they are located from disk and put into the cache. The cache is

held on a Least Recently Used (LRU) basis. If a request is made for a sequence of database

blocks not held in the cache and there is no free space the oldest entries in the list are

removed and replaced by the newest. A cache view supplied with Oracle contains

information about the contents of the buffer cache (Oracle Corporation, 1991).

Pill, I

The size of individual buffer caches on Hydra was 16 mbytes and required a table of 4

columns, each of 23 characters long of more that 160,000 rows in order to flush it. The

efficiency of the cache can have a dramatic effect on the database performance and requires

monitoring on a regular basis. Therefore the following test was devised to measure the effect

of the buffer cache.

11.1.3.1 Performance Test

When designing the performance test harness for gathering performance statistics it was

decided to run each individual query twice in order to collect values for both the uncached

run where database blocks had to be brought into the cache and a cached run where the

database blocks were being held in memory. Therefore, the test consisted of running aflush

query to clear the buffer of current data blocks held, then run individual queries twice in

quick succession. The first time the query is run, the required datablocks will have to fetched

from disk, the second time, the block will be resident in the buffer cache. The effect of the

cache can be seen in Figure 11-11 where the same queries are run twice on each node. The

first time the query is run the results must be fetched from disk, the second time they are

retrieved from memory making the elapsed time of the query shorter.

Effect of buffering using mean elapsed time
LI no [cheI

cache

40

35

30

25
C
V
C
0
C

20

C

E

15

10

5

MCS nodes

Figure 11-11: Effect of Caching on Elapsed Time

205

A similar effect can be seen when system time is examined (see Figure 11-12). For the most

part system time is shorter when data is retrieved from the cache rather than from disk.

Effect of Cache on System Time Onocache

cache

query 1 query

I

I
I

Li

F F I

r w 16
'

MCR Nodes

Figure 11-12: Effect of Cache on System Time

From a series of tests done on data loading the following examples have been used. The

graphs show average elapsed time and average system time for two queries.

query name rows returned

Query 1 lal0_b 1111

Query 2 1a20_b 2222

For query 1 a 10_b the effect of caching appears to be negligible with an actual decrease in

average performance of 0.04% (elapsed time). For query 1a20_b the effect of caching was an

average improvement in performance of 24% (elapsed time).

11.1.3.2 Cache Hit Ratio

One measure of the effectiveness of the buffer cache is the cache hit ratio. When an Oracle

process accesses data stored in a cache the data are read directly from memory without the

overhead of disk 110 and is known as a cache hit. The size of the cache affects the likelihood

of a request for data resulting in a cache hit. The cache hit ratio measures the proportion of

6

5

4

C
0 C,

C

S
I-

2

0

206

total data requests satisfied entirely by memory access rather than disk 110 (Oracle

Corporation, 1991).

There are several methods for gathering the statistics to measure the cache hit ratio. Two

scripts called BSTAT and ESTAT are supplied by Oracle to allow the user to take snapshots

of how the database is performing. The scripts have been found to incur very little overhead

(Corrigan & Gurry, 1993). The system table V$SYSSTAT (see Appendix F) also stores the

system wide value for each statistic in the table V$SESSTA T. V$SESSTA T is the system table

that holds the current value for each statistic held by Oracle. The statistics can be used to

interpret how the database system is performing and for tuning various parameters to

improve performance if necessary. During this phase of the project statistics from these

tables were gathered and used to calibrate the buffer cache, applying the calculation

hit ratio = (logical reads - physical reads) / (logical reads)

where logical reads = consistent gets + db block gets.

As a rule of thumb if the hit ratio is below 0.9 then the system needs some tuning (Corrigan

&Gurry, 1993).

The cache hit ratio was unable to be measured for Hydra because the figures collected from

the table V$SYSSTAT through the performance harness were very unreliable and without

meaning. Several possible causes for these are detailed below. These include the effect of

multi-processing, and the parallel disk farm cache.

Multiple processing

During the statistics gathering exercise many of the tests required that multiple processes

were running on Hydra. Often all 10 nodes were accessing data simultaneously. When the

Oracle statistics were gathered for each individual run the system was in a state of flux due

to the processing occurring simultaneously on the other nodes. Therefore, the figures that

were recorded were continually being updated and would appear to be meaningless in terms

of statistics gathered for individual nodes. This would seem to be a drawback of only being

able to monitor individual nodes rather than the whole parallel machine. It may have been

possible to use figures from the table V$SESSTATbut hardware and software problems

became manifest before this was done.

207

Parallel Disk Farm Cache

On the MCS the performance measurement of cache efficiency is complicated by the parallel

disk farm which has a cache of its own. If an Oracle instance retrieves a series of database

blocks from disk they are deposited in the disk buffer as well as in the instance buffer cache.

When another instance requires those blocks, it first checks the buffer cache, then the disk

cache and finally the disk itself.

In order to propagate the queries across all of the nodes on Hydra it was necessary to create a

master file in UNIX that submitted each of the queries in turn to the database. The MASTER

file was started manually on each node with as little time between the start of the MASTER

file on the first and last nodes as was possible. Therefore, the pattern of retrieval of database

blocks for each query will be complex. For example, given three instances running on

separate nodes, individual instances requiring the same database blocks will first check their

buffer cache, then the disk cache and finally the disks themselves. If instancel retrieves the

first few blocks it will place them in the disk buffer making them accessible to the other two

instances. The other instances access those database blocks and store them in their own

cache. Instance3 is the first one ready for the next database blocks in the series so it pulls the

blocks from disk and deposits them in the disk buffer, which the other two nodes access.

Instance 2 then locates the next database blocks, instancel was delayed due to a slight

bottleneck so instance3 locates the next database blocks from disk ... and so it continues

with the instances leap-frogging over each other to retrieve datablocks from disk.

The effect of the disk cache on performance of the buffer cache is difficult to measure and

may be responsible for some unexpected effects. An example of this is where the first run of

a query which was theoretically measured without the benefit of caching had a shorter

elapsed time than the second run, which should have taken advantage of caching. This effect

can be seen in Figure 11-13 where the query that should have made use of the cache on the

nodes hydra4 and hydra5 are clearly slower than the first run. The effect can also be

seen clearly in Figure 11-14 where the results of same query is shown having been run at

different times of the day, and also on different days. It can been from the graph that when

the query was run and recorded in 1og3 there was a significant drop in performance between

the query when it was run for the first time without the benefit of caching, and the second

time when caching should have taken effect. The straight line on the graph indicates the

percentage increase in speed-up of elapsed time between the first and second runs of the

query.

(I)
-c
0
0
a)
(1)

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0

o Elapsed time for run-average
no cache lal_b

Elapsed time for run-average
cache lal_b

a)
E
I-

hydraO hydra2 hydra4 hydra6 hydra8

Figure 11-13: Cache contention and LRU list

11.1.3.3 Advantages of the cache structure on Hydra

The design of Oracle on Hydra where each individual instance of Oracle has its own separate

buffer cache that is not shared with any other instance is very useful in a database system

that is intended to support different types of transaction and different database applications

because the computer can easily be partitioned with groups of nodes working on separate

applications with no interference from other nodes. This means that one part of the machine

could be configured to perform transaction processing, or updating procedures to the

database while other nodes are dedicated for GIS use. Providing the machine configuration is

such that the inter-connects paths do not coincide, the system response time should not

degrade to the same degree as in a sequential system.

Effect of Elapsed time for a single run

300

250
(I)

cD 200

150

CD

. 100

Q)
50

13
logi - 2am 10g2 - 2am Iog3 - 10:50am 10g4 - 10:50am

[iJ uncached elapsed time
I:J

name/time of run
cached elapsed time
% performance improvement

Figure 11-14: Percentage Performance Improvement Using Buffer Cache

11.1.4 Other Performance Tests

Two other sets of performance tests were devised for phase I testing, but due to a

combination of difficulties experienced with the hardware and software these could not take

place. The ideas for the two tests are explained below

11.1.4.1 Data Loading

The first of these tests was to examine the effect of data loading on the parallel database.

Firstly using a single node of the computer: to test the effects on elapsed time as the number

of rows returned was increased for a single user; then to increase the number of users as well

as the number of rows returned. The aim of this test was to discover whether the

performance of Oracle on the MCS would be adversely affected if one node was loaded

significantly more than any of the others. This would be of particular interest to those

wishing to partition nodes on the MCS for different functions or user groups. If one

particular node or small group of nodes monopolised the processing power to the extent that

other users were severely affected, it would be useful to know under what conditions this

happened and whether there were any solutions.

It was expected that performance would degrade as the level of data increased, and would

further degrade as the number of users increased. What was unclear was whether the rate of

20

15

10

5

0

-5

-10

-15

-20

a)
U,

a
0

210

performance degradation would be linear, and whether a point would be reached where

resources were swamped, causing a sharp decline in performance. If there was a point where

performance dramatically declined, it would be interesting to note at what point the decline

began and what was causing the bottleneck. It may well be possible to reduce the rate of

performance decline by reconfiguring the MCS or retuning Oracle.

The second stage of data loading involved multiple nodes on the MCS and multiple users on

each of those nodes. There were a number of permutations for these tests that involved

different data loading on each node and multiple users, building up to a point where full

capacity was reached.

The aim of this test was to establish whether it was possible to reach full capacity on the

system and if so what the performance profile resembled. It was expected, given the design

of the parallel database and Oracle and the descriptions of performance by Oracle, that if the

level of data loading and number of users was spread fairly evenly over the MCS the

performance would decline gently. However, it was not clear if this would be the case if part

of the machine was more heavily loaded than the rest, and whether this would cause a sharp

decline in performance. If performance under these conditions was adversely affected then a

re-examination of the configuration of both MCS and Oracle would be necessary.

11.1.4.2 Effect Of Percentage Of Data Returned Using Indexed Tables

The other performance test that was curtailed by hardware and software failure was that of

the effect of using indexed tables. For this a series of calibrated tests were designed using

different percentages of data returned to measure any indexing effect.

The aim of these tests was to examine the effect of multiple users retrieving data from the

same tables, as would be expected to happen if a database were accessible from the internet,

to many thousands of users. It is known that indexing tables can have a beneficial effect on

retrieval times under the right circumstances, usually when less than 25% of the table is

being retrieved. However, if more than 25% of rows are returned then the index tends to add

to the overheads and extends retrieval time rather than improving it. In an environment

where thousands of users were accessing data from the same tables to varying degrees it

would be difficult to predict what effect indexing would play on performance.

211

The effect of indexing was to be considered in several ways starting with the retrieval of 0,

20, 50, 80 and 100 percent of data from a single table on a single node. This would then be

repeated using a single relational join query and multiplied up until the whole system was

being used with multiple users.

It was expected that, as the percentage of retrieved data rose, performance would begin to

decline more sharply. However, it is not clear what would happen in a multi-user situation

utilising all nodes on Hydra. It should be possible to derive some rules of thumb for creating

indexes in such situations, should the performance tests be run.

11.1.5 Hardware and Software Problems

During the lifetime of the research project a number of hardware and software difficulties

occurred which ultimately brought the project to an early end. The main problems occurred

when queries were executed on Oracle, run either in real time or in batch mode. Some fault

caused Oracle v6.2 to become inactive, freezing on all ten nodes. The only way to resolve

the problem was to reboot the MCS, a practice that was particularly unpopular with the other

users of the system! It was unclear whether the fault was primarily a hardware one or a

software one, but in either case it became insoluble. The MCS was lent for the project and

Meiko were unwilling to spend a lot of time and energy looking for a fault on a machine that

was soon to be dismantled. Oracle had moved to version 7, and although version 7 may have

solved the problem there was not enough time within the project to begin again with a new

database. Therefore the performance testing phase was halted and the results of some tests

remain speculation.

212

12. Phase II Testinti and Results

The following chapter presents the performance tests and results for phase II of the

performance testing phase of this research. The thrust of this second stage of testing is aimed

at the use of a GIS parallel environment in corporate situations. Therefore, the tests

concentrate on the features that would have most influence over performance. Three of the

most influential areas are the efficiency and flexibility of the GIS/database interface, the use

of views to represent complex database queries, and the ability of the database system to

manage a mixed work load of both long and short database transactions.

The success of both hybrid and integrated model corporate GIS in an integrated IT strategy,

is heavily reliant on the performance of the interface between the GIS and the database. A

powerful database able to store and manipulate large volumes of data, and a GIS optimised

for processing and analysing large spatial datasets can not wholly compensate for an

inefficient interfacing mechanism. The interface has an effect on both what the user sees, i.e.

elapsed time for individual functions, and also on system resources, i.e. network traffic, CPU

usage and disk access. The GIS/database interface is likely to be heavily used; therefore, it is

important that the interface does not generate unnecessary work, particularly in an

environment where thousands of users are accessing spatial and attribute information.

The use of views for operations involving spatial data stored on the GIS and attribute data on

the database is very common. Views provide a useful shorthand for long and complex

queries that are frequently used. However, they can also be used to circumvent the

shortcomings of GIS/database interface mechanisms, particularly if there is no support for

native SQL queries, if only a small set of SQL commands have been implemented, or if the

interface does not support many-to-many relationships.

The ability to support mixed transactions in a single environment is also of importance if the

parallel database environment is destined to form part of a data warehouse, support internet

applications, or form the heart of an integrated IT policy. The reason is that data from many

different sources will be brought together, and accessed in the same environment. Therefore,

transaction processing operations will be competing for the same resources as the longer

transactions of GIS and other MIS applications. It is also likely that groups of nodes on the

213

parallel computer will be partitioned for different functions or usergroups, but all will be

accessing data from the same database. It is important that the different types of transactions

do not significantly impede the performance of each other and render the system unusable.

The tests from phase I performed a series of baseline performance tests on the database to

characterise the performance of Oracle instances on individual nodes, and the performance

of the database when all nodes were submitting SQL queries and retrieving data. The results

from phase I showed that the nodes of Hydra all had similar performance patterns for Oracle

processing, apart from Hydra 0 , and that the communication infrastructure was not

impeding the performance of any node. Queries performed on Hydra 0 were found to take

longer than its counterparts. This was thought to be because the node was responsible for

handling communication to the outside world, and therefore, it was advisable to use this

node for communication purposes only. The tests also showed that the buffer caches for the

SPARC nodes and the disk controller had an effect on the performance of individual queries,

although the effect of the cache was uncertain as it was difficult to measure the effect of

individual caches. Nevertheless, the effect of the cache should be borne in mind when

analysing the performance of other test queries. The results from the phase I testing were

used to direct the phase II testing stage. For example, all subsequent tests undertaken

excluded Hydra 0 from the testing schedule.

The following sections describe the tests and results on the performance of the Arc/Info GIS/

database interface, the effect of using views, and the effect of mixing different transaction

strategies. Both the performance tests and the results are presented below.

12.1 Interface Performance Tests

The investigation into interfacing issues considered the success of various strategies for

retrieving data. The tests were designed for use with both integrated and hybrid GIS models,

but due to operating difficulties explained in the previous chapter the tests concentrated

purely on the hybrid model. The hybrid GIS model is still the most prevalent in the business

world and it was felt the results would be of more interest at this stage. The data retrieval

strategies detailed in the following pages cover the retrieval of data directly from tables held

in Oracle, and using views (see Figure 8-2) to access the data.

214

The interface performance tests explore three different methods of accessing data using

Arc/Info as the GIS application and Oracle as an external RDBMS. The first is a direct link

from the spatial data held in Arc/Info to tables in Oracle. The other two methods involve

using views to access the data.

12.1.1 Interfacing Arc/Info to Oracle

The first performance tests investigated the ability of Arc/Info to link to Oracle using the

Database Integrator to establish and maintain the link. Spatial data, stored in Arc/Info was

displayed on the screen using the ArcPlot module. Individual, or groups of gas mains were

reselected using a relate (see Figure 12-1) to extract the appropriate attribute and MIS data

that was specified by the relate definition file. The test harness developed for gathering

performance statistic from within Arc/Info was used to gather the results.

reselect pipes arcs Aaudrey where pressure =

/
arc/info object relate name Oracle attribute

Figure 12-1: Example of an Arc/Info relate

The first series of tests performed in phase II were designed to establish the performance

characteristics of the different stages of data retrieval involved in the relate mechanism. For

any given SQL query submitted from Arc/Info using the Database Integrator, three different

stages of processing could be measured. These were the parse, execute and fetch stage. The

parse phase measured the time it took for the SQL code generated by the relate environment

to be passed to Oracle and prepared for execution. The execute stage performed the SQL

query and the fetch stage retrieved the rows of data and passed them back to Arc/Info for

display on the screen. An example of this can be seen in Figure 12-2 where the total elapsed

time is displayed against the elapsed time for the individual stages of retrieval.

215

Processing Times for GlS/Database Interface Query

Processing Phases

.111

LO
14000

12000

10000

8000

6000

4000

2000

0

total Total time taken

Figure 12-2: Processing time for an Interface Query

From the graph it can be seen that the parse and execute stages accounted for the greater part

of the retrieval time, and that the parse and execute elapsed times were roughly similar in

length. Figure 12-3 shows the proportion of time spent by the individual stages of retrieval.

The Division of Elapsed Time by Percentage

fetch
4001

parse
42%

4U%

Figure 12-3: Proportion of Elapsed Time Spent on Individual Processing Phases

This indicated that effort in improving performance of GIS/database interfaces should

concentrate on the parse and execute stages of the process. If the CPU usage for the same

query is examined (Figure 12-4) it can be seen that the greatest processing effort was

concentrated on the execute stage.

216

Processing Percentages for view - CPU usage

fetch
13% parse

execute
66%

Figure 12-4: CPU Usage for GIS/Database Interface Queries

Two issues arise from these observations, the first on the execution stage, and the second on

the parsing stage.

12.1.1.1 Query Execute

The execute part of the query took a proportionately longer time to run and also had a higher

CPU requirement than the other two processing stages. Therefore, it is feasible that it was

this part of the processing where bottlenecks were likely to occur first, particularly in a

situation where multiple users were accessing data through the Database Integrator.

There were a number of alternatives available for investigating the effect of the execute stage

on the performance of the parallel database and the MCS. The first strategy was to increase

the workload by creating more complex queries (see the example of SQL code on page 218)

to discover whether the time spent on the execute stage increased in a linear fashion as the

level of work increased. The second was to increase the number of users utilising the

GIS/database interface, and finally to combine the two strategies to increase the workload

significantly for a worst case scenario. The advantage of performing the tests in this order

were that it would identify if there was any difference in performance by increasing the work

load through greater complexity of retrieval or shear volume of users. It would also identify

217

whether there was a point where execute time increased rapidly, or whether a point would be

reached where execute time levelled off. This would be useful for two reasons: the first

would indicate the likely performance if multiple users were running similar queries in the

same environment, and secondly it would indicate at what level performance would begin to

decline sharply.

Once this was established a series of tests with calibrated workloads were established.

However, hardware and software difficulties prevented the tests from going ahead. The

following is a description of the test outlines.

Workload tests

The workload tests involve building up the number of relational joins in a particular query,

and building up the number of rows of data that match the query. As the query became more

selective the number of rows of data retrieved would inevitably decrease. Therefore, the

volume of data in the tables accessed would have to increase as selectivity increases. An

example of the most complex query built for the performance test can be found on page 221.

Multiple user tests

Multiple users of GIS on multiple nodes of Hydra would be set up and run simultaneously,

starting with a single user on a single node and building up to multiple users on all nodes

available. Performance statistics from the tests above could then be compared against

performance values gathered those from the multiple user tests,

Result Conclusions

The aim of the two tests was to identify whether in fact the execute stage of query processing

was causing bottlenecks in the system. If bottlenecks were evident then there would be two

basic strategies to follow. The first would be to retune Oracle to improve the execute time.

This would involve identifying which parts of the execute stage were the most resource

intensive and time consuming. One candidate would be the query execution path the

database used to retrieve the data. If the query is complex and the options available to the

query optimiser are difficult to choose between then it may take a while to decide on the

optimal retrieval path. The second would be to try implementing parallel query execution

where the CPU costs are spread across several nodes. If this were followed up, a further test

to investigate whether performance would improve would be necessary, using the same

testing strategy (with multiple GIS users on multiple nodes, submitting queries to the

t1F:]

database through the Database Integrator) as above but implementing parallel execution

techniques.

12.1.1.2 Query Parsing

The parsing stage of query execution has a proportionately long elapsed time, but does not

involve a particularly high level of CPU usage. It would, therefore, be useful to examine the

effects of more complex queries on parse time to consider whether it is a variable that would

have a significant influence as workload increased. It is likely that the solution to decreasing

the time spent parsing SQL queries would be to redesign the database interface to reduce the

amount of communication necessary and to make optimal use of the communication links

available. It is possible that the communication path between two nodes on the MCS might

influence parse time, particularly if that path were also used for other high traffic processes.

Therefore, it would be beneficial to consider the configuration of the communication paths.

12.2 Views

There are a number of options available for constructing queries for use with GIS interfaces.

The first option is to submit the query direct to the database using native SQL. The second is

create a view (see example on page 221) of the data tables to be accessed in Oracle such that

the request from Arc/Info to Oracle appears to be a simple table to table link. The third

option is a halfway house, where a view is created on the data tables required in Oracle, but

no WHERE clause specified. The WHERE clause can then be constructed as part of the SQL

query from Arc/Info to Oracle. All three methods are viable and all three have their uses.

A series of tests were devised to investigate the performance of these three approaches. The

results in Figure 12-5 and Figure 12-6 show the differences between the different strategies

using both elapsed time and CPU usage. It is interesting to note that while the CPU usage for

all three approaches is very similar, the elapsed time shows a significant increase in elapsed

time for the strategy where the WHERE clause is defined outside the view.

219

no view view view
used and

where
clause

35

30

25

(00 20

• 15 a)
E
- 0

5

0

0 fetch

execute

El parse

Three approaches to using views (Elapsed Time)

1200

1000

800

in 600

400
I-

200

0

i

fetch

execute

pa rs]

no view view view
used and

where
clause

Figure 12-5: Graph to Show Three Approaches to Using Views - Elapsed Time

Three approaches to using views with GIS
-average values for 3 approaches (CPU)

Figure 12-6: Graph to Show Three Approaches to Using Views from GIS - CPU Usage

The use of a view would always add a small overhead to retrieval time because it is

necessary to process the view table before beginning to process the actual query. However,

the effect of separating the WHERE clause from the view had a dramatic effect on retrieval

time. The greatest effect appeared to be on the parse time. It is likely that a query such as that

on the next page caused a large amount of communication to occur between Arc/Info and

Oracle, and that query is demonstrating a serious weakness in the GIS/database interface.

These results require further investigation to identify precisely what is causing the huge

increase in retrieval time. However, this was not possible to follow up due to hardware and

software difficulties that were described in chapter eleven.

220

create view gasl

as

select meter types.id meter type_id, mete—id, char Id, tax—id,

housid,

counties.id county—id, townid, stre_id, buil_id, cust_id,

cust pipe record_id, pipe_main_id

from meter types, meters, charges, households, customers,

council—tax, counties, towns, streets, tempbuild, pipes

where pipe—main—id = cust pipe record_id

and buil Id = cust build Id

and stre_id = builstreetld

and town—id = stre town Id

and counties.id = town_county_id

and cust build id = hous build Id

and hous_id = tax—household—id

and char—id = tax—band

and cust Id = mete—customer—id

and meter types.id = mete metertid

and char—rate = 400

and meter types.Id = 3

Example of complex SQL Query used as a view within Oracle

12.3 Transaction Processing in a GIS/Database

Environment

This final set of performance tests is devoted to the conflicting requirements of transaction

processing vs. long, complex GIS queries. The aims of these tests are to examine the effect

of both transaction processing queries and longer transaction queries running in the same

environment.

A series of performance tests were devised to compare the running of a particular query: on

its own; with a low level background transaction processing; with a high level of background

transaction processing; and finally with a high level of transaction processing occurring on

all nodes excluding the node the query is running. The SQL code on the next page is an

221

example of a transaction processing query used in the performance tests. The transaction

processing queries were supplied with enough data from the corporate database to run for at

least an hour, to allow time for the start-up the SQL queries on all of the nodes.

select custid,a.metereading,b.mete_readiflg, b.mete reading-

a. mete reading

from meters a, meters b, customers

where ((custid = a.meteid

and a.mete date between 1 01-JAN-93 and 1 31—MAR-93)

and (custid = b.meteid

and b.mete date between 1 01-APR-93' and I30.JJ193T))

Example of A Transaction Processing Query

There were some interesting results from these tests. Figure 12-7 shows that there is little

effect when transaction processing is occurring on only one or two nodes on the parallel

computer.

300

250

200
U)

o 150
U
U)

100

50

0

113

tch
execute
parse

Compare query and query with TP in background (ELAP)

query run on query run

its own with low level
tp in

background

Figure 12-7: Graph to Show Effect of Transaction Processing

The effect is increased when transaction processing is occurring on all nodes on the Hydra,

including the node that the complex query is running on. However, if transaction processing

is excluded from that node, the effect of the transaction processing queries running in the

background is negligible (see Figure 12-8).

222

Compare query and query with TP in background (Elapsed

120

100

80 U)

0
C.)
a)
cn 60

40

a)

I-

20

0
parse execute fetch

31

25

20

>-1 5

10

5

0

parse

Comparison of Query run in different environments
--*—query on its own

very with low level tp

ny with high level TP on
odes

ny with high level tp
ept on query node

--

execute fetch
Processing Stages

Figure 12-8: Processing Time for Queries Run in Different Environments

Figure 12-9: Comparison of Two Queries

One interesting feature to note in both Figure 12-8 and Figure 12-9 is that although the

elapsed times (see Figure 12-10) are roughly similar, even when transaction processing is

run on the same node as the complex query, it is the execute stage of the elapsed time where

performance is most affected. Both the parse time and fetch time remains almost exactly the

same.

223

Comparison of Query run in different environments

45

40

35

30 I Dfetch
25

20

Dparse
15

10

5

I 0— -

query on its own query with low level query with high level query with high level

tp TP on all nodes tp except on query
node

runs

Figure 12-10: Comparison of a single query run in four different environments

12.4 Summary

The phase II performance tests described in this chapter have considered three fundamental

features of a corporate GIS environment where the data store is located on a parallel database

system.

The interface mechanism between GIS applications and the database is one area that can

have a significant impact on the performance of the whole system. The interface mechanisms

include both hardware and software components. The hardware components such as the

communications network infra-structure of the parallel machine is well-known and has been

the subject of much research, forming an important part of many commercial benchmarks.

This is because it is such a fundamental part of the machine and a recognised bottleneck. The

software components that form part of the GIS and also database software, are more of an

unknown quantity. Many of the commercial GIS available were designed on the hybrid

model, and while it was recognised that there was a need to make provision for external data

access it was not a fundamental feature of the system and therefore not as efficient as it

might be. Interfacing can be broken into three separate phases - parse, execute and fetch. Of

these the parse phase, where the SQL query is passed to the Oracle database from the GIS, is

processed for execution, took a significant proportion of the total retrieval time. Performance

could be improved by making the link between the GIS and database much more streamlined

224

to minimise the communication required. The execute phase of the query processing also

required significant resources in particular CPU. One option to improve execute would be to

retune the database, although it should be borne in mind that the database is designed for a

multi-transaction environment, and changes to improve the execute phase of particular

queries may prejudice the performance of others, for example, transaction type queries.

Another option would be to implement parallel query execution.

The second area of interest considered whether the design of SQL queries from the GIS to

the database has a detrimental affect on performance. Three options were examined: using

native SQL, a hybrid query using a view of tables and a separate WHERE clause, and a view

containing the whole query (stored in SQL). The results showed that while the first two

options had a similar performance the use of a view to access data had quite a significant

overhead. The most efficient method of interfacing between Arc/Info and the Oracle

database was using native SQL commands issued directly from the GIS to the database.

The final area of consideration was the effect of mixed transactions in a single database. A

series of tests were run where different levels of transaction processing occurred while more

complex queries were being processed. Low level transaction processing had little effect

even when the transaction processing and more complex queries were occurring

simultaneously on the same node. High level transaction processing had some impact on

performance, particularly if nodeO (the communications node) was included as part of the

test. If nodeO was excluded transaction processing had a negligible effect on response time

even when complex queries were run simultaneously.

225

13. Conclusion and Discussion

13.1 Performance Test Summary - Phase I and Phase II

The main aim of the research project was to investigate the integration of GIS and corporate

database management systems in a parallel environment. To this end a series of performance

tests were devised to explore the ability of the parallel system to function under different

work load conditions, support multiple users (hundreds or even thousands are anticipated

with the expansion of the internet), and provide an efficient interface between GIS

applications and the parallel database. The performance tests were split into two phases,

phase I and phase II.

Phase I was designed to measure the performance of the parallel database alone. The

performance of the database under different workloads and user levels was measured for two

reasons. The first reason was to provide an understanding of how the database worked and

performed. The software was newly released with virtually no available benchrnarking

information. The second reason was to provide a base line of information for the phase II

results. Phase I used synthetically produced data to allow a precise definition of workload

during testing. The testing was broken down into six subsections, three of which were

conducted on a single node, and three that used multiple nodes, from two to ten depending

on the nature of the test. The test concentrated on the effects of relational joins, indexing and

data distribution on the database system.

Phase II was designed to represent a more realistic use of a corporate parallel GIS/database

system where the data held in the database were accessed by GIS through an interface

mechanism. The data model designed for the purpose was based on a utility company and

used a more realistic inter-linked dataset, designed to represent the day-to-day business

transactions of the company. The performance tests were designed to test a number of data

retrieval strategies that may be adopted when using hybrid or integrated GIS models, Of

particular interest was the response of the system to running both on-line transaction

processing type queries and highly complex queries simultaneously within the same database

to gauge whether a more open corporate data access strategy could be supported using

parallel technology and software.

226

Two performance harnesses were developed to run the performance tests and gather the

performance statistics generated each time the performance test was run. The results were

gathered, analysed and presented in this research.

Due to a serious fault with the parallel GIS/database system the tests were brought to an

early close. However, the results gathered before the system became unusable are

summarised below. The fault, which lay either in the parallel hardware or database software,

caused the database to continually crash and render the whole database unusable, to the

extent that the only method of recovery available was to reboot the parallel computer. The

difficulty with resolving the fault was twofold. Firstly, the parallel computer was lent for the

project and due to be broken down into its separate components and returned shortly, so

there was little interest in locating a hardware fault. Secondly, the version of Oracle used in

the research project, although newly released was soon superseded, so there was little

interest in locating a software fault in an older version of the software. It was concluded that

a move to a later version of Oracle was not a viable option due to time constraints and the

project halted earlier than originally intended.

13.1.1 Results

13.1.1.1 Phase I

The results from Phase I were divided into four different parts. The first set of results

described the running of the parallel machine. Performance tests were run on each individual

node in turn to measure and compare the response of individual nodes against each other.

From these tests it could be seen that all ten nodes on the MCS were of comparable

performance except for node 0. Node 0 was the node responsible for handling external

communications, and it appeared that the extra communications occurring placed a

significant overhead on CPU usage. A simple test based on this performance test was

devised to assess the health of the parallel computer by comparing the performance of each

node against the other nine. Any anomalies in performance showed up clearly, indicating

which nodes were affected.

The second stage of phase I was to use multiple nodes to perform relational joins. Two

methods were explored. The first method simulated the data retrieval techniques of a

227

distributed database by notionally assigning particular tables to particular nodes. This

strategy worked most efficiently when all of the communication occurred on either the local

node or the remote node, and took longest when communication was forced to occur on two

nodes simultaneously. The second method was to attempt to parallelise a query using 2 or

more nodes to retrieve the data. The results of this experiment were not encouraging.

Elapsed time for the query took far longer when the query was divided up by this method

than when run on a single node. A combination of excessive communication, an inability to

optimise the query and a lack of parallel indexing brought this line of enquiry to an early

close.

The third area of research considered the influence of the buffer cache. The results for this

set of performance tests were unexpected. Under normal circumstances a query run against a

database is likely to run much slower when submitted for the first time and speed-up in

subsequent runs. The reduction in elapsed time on the second and subsequent runs occurs

because the data blocks required to satisfy the conditions of the query are already stored in

the buffer cache. Retrieval of data from the buffer cache is much quicker than retrieval from

disk, therefore it is usual for the second run of a given query to take less time. However, this

did not always prove to be the case when running tests on the parallel database. On a number

of occasions the elapsed times for two consecutive runs of an individual query were either of

a similar length or the second run had a greater elapsed time than the first. Due to the lack of

performance monitoring tools for certain areas of the MCS such as the parallel disk farm and

associated buffer cache, the reasons for this were difficult to investigate. However, it may be

due to the fact that all of the nodes on the MCS access the same buffer cache. Therefore, the

sequence of data blocks read from memory, used and then stored in the buffer cache could be

unpredictable when more than one node is accessing the same table simultaneously.

The final area for research was the effect of data loading, where the response of the database

would be measured as workload and user load increased. This set of performance tests were

abandoned due to hardware and software difficulties described above.

The results from the performance tests in phase I were used to calibrate the data model in

phase H.

228

13.1.1.2 Phase II

The phase II tests were split into three parts and the results are as follows. The first set of

tests concentrated on the performance of the interface existing between Arc/Info and the

Oracle database. Three different strategies were devised to access data from the database to

display on the screen using Arc/Info. These involved using native SQL commands, creating

a series of views in Oracle and finally using the Arc/Info database integrator to retrieve data.

Of the three methods of retrieving data from Oracle, native SQL commands passed directly

from Arc/Info to Oracle were the most efficient method measured. Using views had mixed

results. If the view contained a SELECT command only with no WHERE clause then the

performance was similar to that of a native SQL command. If a WHERE clause was

included in the view then this created significant overheads increasing the elapsed time at

least fivefold. Elapsed time for queries submitted through the database integrator could not

be recorded due to systems failure.

The second part of phase II considered the effect of running different types of transaction in

the same environment. To measure the effect of the different transactions two types of query

were developed. The first type of query was a simple on-line transaction processing type

query, designed to run repeatedly for at least an hour at a time. The second query was a long

complex query requiring the use multiple relational joins to retrieve the required data. The

two queries were run simultaneously on single nodes in the same environment. This was then

repeated on multiple nodes. The effect of low-level transaction processing, running in the

background, on the elapsed time for the complex query was negligible, even when both

queries were run simultaneously on the same node. A higher level transaction processing

(where transaction processing was run on multiple nodes) carried some small level of

overhead with it. The main effect was seen when transaction processing occurred on node 0

(the communication node) as well as other nodes on the MCS. This had the effect of

increasing the elapse time by approximately 20 percent.

The third part of phase II was the workload and multi-user tests where both the amount of

work and the number of users were increased. However, this did not take place due to

systems failure.

229

13.2 Conclusions

From the summary and results above the following conclusions can be drawn.

The performance tests conducted in both phase I and phase II show that a parallel GIS

environment consisting of general purpose parallel hardware, a parallel database and

commercially available GIS software is a viable solution to the data processing difficulties

emerging in corporate GIS. The tests in phase I and phase II have shown that it is not only

possible to have each individual element of the environment running successfully, but that it

is feasible to have a serial GIS running at the same time as a parallel database, and further

that they are able to link up successfully using existing GIS/database interfaces.

Communications are an issue. The performance tests in phase I indicate that there is a real

performance overhead when external communications are managed by a single node. The

strategy adopted by this research project was to dedicate a single node to the task of handling

communications. Another option would be to spread the burden of communication between

several nodes. Partitioning the nodes on the MCS was also feasible and caused no

perceivable overheads or access problems.

True parallel access has not yet been implemented, and results showed this. This was

particularly noticeable when the elapsed time to access data using two nodes was measured.

A much more successful strategy was to manipulate the data in the database in a similar

fashion to that of a distributed database. This gave much better performance. A truly parallel

implementation of the Oracle database has been released with version 8. In this version

parallel query processing, query optimisation and indexing have been implemented.

Performance monitoring was made more difficult due to lack of tools available. Although

standard UNIX performance monitoring tools and Oracle database monitoring tools were

available on the parallel system, they had not been implemented to gather performance

statistics for the whole machine. The UNIX tools were limited to providing information

about individual nodes. To gain an overall picture it was necessary to develop methods and

tools for gathering global performance statistics in the shape of two performance tests

harnesses. The harnesses were used to run the tests, measure the performance and gather the

data from each node.

230

The results of the performance tests measuring the influence of the buffer cache on elapsed

time for individual queries were unexpected and require further research to understand why

some queries took longer to run on the second invocation. The influence of many nodes

requesting similar data almost simultaneously was felt to be a factor in the results measured.

However, this area of the database requires more research to understand how multiple nodes

are using the buffer cache.

The interface between the GIS and the database is perhaps the most important feature in the

parallel GIS/database system and a very obvious bottleneck. The performance tests

concerning the use of the substantial corporate database demonstrated firstly, that the use of

existing interface links between the GIS and the database was feasible and that a corporate

hybrid GIS model could form part of an integrated corporate IT strategy. GIS could access

data from a data warehouse utilising parallel database system software and, through the

Database Integrator, spatial data could be migrated from GIS to the data warehouse. The

performance tests demonstrated that the GIS could make use of the parallel facilities offered

by MCS and was able to address individual nodes or groups of nodes using the Database

Integrator. Finally, the tests demonstrated that data access strategies using views of database

tables were successful. However, the issues surrounding the interface between the GIS and

the database need to be examined more closely. It was not possible in the research project to

explore the Arc/Info - Oracle database interface thoroughly. Native SQL commands issued

directly for Arc/Info to Oracle performed the best and a view with a 'WHERE clause

(constructed in Oracle) performed worst. If a corporate parallel GIS/data system were to be a

viable option then a closer connection between the GIS and the database needs to be

developed to eliminate any inefficiencies in data retrieval and continue to improve

performance.

Finally, the tests showed that the parallel environment could support both transaction

processing queries and long, complex queries in a single database. The performance

overhead measured from running both transaction processing and complex queries in the

same environment were minimal. However, it would be necessary to increase both work load

and user load to explore the threshold where transaction processing might affect the

performance of more complex queries.

The performance tests confirmed that the parallel GIS/database environment is suitable for

supporting corporate GIS in an integrated IT strategy with the following recommendations:

231

always segregate a node for communication.

• consider implementing the databaset as a distributed system.

• the interface between GIS and database the key to success with this system - needs

proper research to vastly improve the performance to make it as efficient as possible.

• performance monitoring tools for parallel systems need to be developed to allow the

whole system to be monitored from one application.

13.3 Discussion

The aim of this research project was to investigate alternative approaches to the integration

of GIS and corporate database management systems in a parallel environment to identify

both potential benefits and risk factors involved in such a strategy. The rapid development of

corporate GIS over the last decade had identified many pitfalls to the implementation of GIS,

but were only beginning to consider the technological requirements. It was clear from the

literature that organisations were keen to make full use of corporate GIS and that there was a

rapid expansion of spatial datasets available.

During the rise of corporate GIS, parallel architectures had developed from specialist,

scientific machines into more general purpose computers designed with commodity

components and utilising operating systems such as SunOS. The move to commodity

components was highly significant because it opened the parallel architectures market to

many organisations with a need for much greater processing power, but utilising custom

built software.

As technology has become more powerful it has been possible to create much large datasets

than it is currently feasible for many organisations to process and analyse. The need to

process and analyse large datasets (100GB databases are becoming more common) is

universal and has encouraged the development of parallel relational database management

systems capable of handling very large data volumes. Two GIS approaches, the hybrid and

integrated GIS models, suitable for use with parallel relational database technology were

identified.

232

The threads of the research project were beginning to twist together in commercial

organisations and it was felt that an investigation into the use of parallel databases for

corporate GIS was required.

Accordingly, a test environment was developed consisting of Oracle, a parallel relational

database management system, and initially , two GIS - Arc/Info and Smallworld, and later

narrowed down to Arc/Info. A two-stage testing strategy was devised to performance test the

environment, the first phase to characterise the environment, and the second to test the

suitability for corporate GIS use. Two databases were devised for the tests, the first a pilot

database constructed from artificial data. The second 'corporate-sized' database to

performance tests the environment using real data.

The results showed conclusively that the parallel GIS/database environment would support

corporate GIS needs. GIS software designed to run on a single processor could operate

alongside parallel database system software and function well in a parallel environment. The

GIS was able to link into the parallel database and make use of the substantial data

processing power available.

The research also identified a number of areas of further research. The subsequent sections

consider those areas and the most recent developments in parallel database technology and

the corporate environment that have a bearing on the thesis.

13.4 Corporate GIS/Database Issues

13.4.1 GIS/Database Interface

One of the most important features of this research was the interface between the GIS and

parallel database environment. This provides the key to accessing integrated corporate

databases, data warehouses, or providing a sustained web-based GIS service. The interface

provides the ability to pass SQL commands from the GIS to the database to retrieve selected

data. The efficiency of this link impinges not only on the elapsed time the user experiences

in making the data request, but also on resource usage, network traffic and disk access. From

the user view point the elapsed time is particularly important, especially if GIS functions are

hidden behind a user front-end, and they are unaware of the levels of processing being

233

undertaken. From a system viewpoint, inefficient use of resources in an environment dealing

with a huge work load, generated by thousands of users, will inevitably lead to severe

contention for network facilities and processing resources.

From the performance tests it was clear that the most resource intensive and time consuming

part of the transaction was the query execute part. Increased work loads had little effect on

either the parse or fetch stages of data retrieval. One solution would be parallel query

decomposition, spreading the cost of the execute stage across a number of nodes. Parallel

query decomposition is very amenable to long transaction queries where individual queries

consume a great deal of CPU and disk 110 (Oracle Corporation 1997a) and would greatly

reduce the time taken to execute the query. Transaction processing, however, would not

benefit from parallel query decomposition because the overhead involved in breaking the

query down would impede throughput. Therefore, in a mixed transaction environment a

distinction between the different transactions would have to be made. Oracle, version 8

(1997) fully supports a parallel database server capable of parallel query decomposition.

Using parallel query decomposition to spread the execution load over a number of processors

calls into question the performance of the buffer caches, both in the SGA and on the disk

controller. From the buffer cache tests in phase lit can be seen that the effect of the two

buffer caches together is not only difficult to measure, but also rather uncertain. The usual

effect of a buffer is to improve the performance of the second run of a particular query. This

is because when the query is run for a second time the data required is already resident in

memory and are retrieved faster. However, the results from some of the test runs in phase I

were faster on the first run of the query than the second. A network bottleneck may have

been the cause for the odd behaviour seen in these tests, but it deserves further investigation.

13.4.2 Transaction Mix

The tests in phase II demonstrated the ability of the environment to support both transaction

processing and long, complex queries together, while both accessing the same, significant

sized database. The next stage of investigation would require the development of a very large

database, in the range of 100GB to consider whether it is feasible to integrate corporate GIS

and MIS into such systems. Long transactions performed on tables holding such huge

volumes of data may suffer severe performance difficulties.

234

13.5 Benchmarking Data Warehousing and Web-Based

Applications

Since 1998 two benchmarks have been developed for performance testing web-based

databases and databases specifically designed for data warehousing roles.

The Transaction Processing Performance Council (TPC) is in the process of producing a

transactional web benchmark. The benchmark is designed to represent any business that

markets or sells over the internet. It will also benchmark intranet environments which make

use of web based transactions for internal operations. The benchmark will concentrate on the

performance of systems supporting users browsing, ordering, and conducting transaction

oriented business activities (Shanley, 1998). Although the benchmark is aimed at transaction

processing type web activities, the processes and decisions that the TPC have evaluated and

implemented will prove useful to those developing GIS-web based businesses, or providing

access to GIS based applications.

The second benchmark which has been available since April 1995 is TPC-D (TPC, 1995)

and is of direct importance for GIS/database benchmarking. TPC-D is aimed at modelling

decision support systems in which complex ad hoc business-oriented queries are submitted

against a large database. The queries might access large portions of the database and

typically involve multiple relational joins, extensive sorting, grouping and aggregation and

sequential scans. The benchmark assesses the cost/performance of particular systems (TPC,

1998). This represents a huge step forwards in benchmarking for GIS because it measures

the typical types of query generated by GIS functions and would be suitable for parallel

database analysis.

13.5.1 E-Commerce

The most rapid area of business growth at the moment is e-commerce, the name given to

businesses that transact their business over the web. There are a number of obvious examples

at the moment, such as air line ticket sales and on-line book and music businesses. Other

businesses beginning to flourish are e-law and consultancy services. GIS users, developers

and vendors are also beginning to develop on-line GIS services including Spatial Online - a

business belonging to ESRI that provides a location for selling on ArcView solutions created

235

by developers, and on-line consultancy e.g. Chesapeake Analytics, providing access to

people with all types of CIS/Remote Sensing skills. Other industries with huge GIS potential

are travel agencies, tourist information, road traffic information providers such as AA and

RAC, job hunting and house hunting agencies. All of these companies have access to a

potentially huge market through the internet and will have to sustain user loaded of over

40,000-50,000 users a day. It is imperative that the database technology is capable of doing

so.

E-commerce also provides the business with large volumes of data which must have a quick

turn around. Much of the data received from the user can be processed and re-used, either to

assess how well the company is doing, whether it is appealing to the right audience, and

whether their site is easily accessible. However, this information can also be re-packaged and

sold on to companies such as those specialising in marketing life style data. It is vital that

there is a very quick turn around for both analysis purposes and for profit.

236

References

Aid, S. G., 1989, The design and analysis ofparallel algorithms. Prentice Hall International

Inc., London.

Alla, P. and Trow, S. W., 1990, Implementation of GIS - a way to optimising utility
operations. AGI'90: GIS - The key to managing information Proceedings, 2nd National
Conference and Exhibition, Brighton, UK.

Amdahl, U., 1967, The validity of the single processor approach to achieving large scale
computing capabilities. AFIPS Conference Spring Joint Computer Conference Proceedings,
30, 483-485.

American National Standards Institute (ANSI), 1989, Database Language SQL, X3.135-

1989.

Anon et al., 1985, A measure of transaction processing power. Datamation, 31, (7), 112-118.

Antennuci, J. C., Brown, K., Croswell, P. L., Kevany, M. J., and Archer, H., 1991,
Geographic Information Systems. Van Nostrand Reinhold, New York.

Arivav, G., 1986, A temporally oriented datamodel. ACM Transactions on Database
Systems, 11, 499-527.

Armstrong, M. P., 1994, GIS and high performance computing. In Proceedings of
GIS/LIS'94. American Congress on Surveying and Mapping, Bethesda, 4-14.

Armstrong, M. P. and Densham, P. J., 1992, Domain decomposition for parallel processing
of spatial problems. Computers, Environment, and Urban Systems, 16, 497-513.

Armstrong, M. P. and Marciano, R. J., 1996, Local interpolation using a distributed parallel
super computer. International Journal of Geographical Information Systems, 10, (6), 713-

729.

Aronoff, 5., 1989, Geographic Information Systems: a management perspective. WDL

Publications, Ottawa.

Aronson, P., 1985, Applying software engineering to a general purpose Geographic
Information System. Proceedings of A UTOCARTO 7. ASPRS, Falls Church, Virginia, 346-

355.

Astrahan, M., Blasgen, M. W., Chamberlin, D. D., Eswaren, K. P., Gray, N. J., Griffiths, P.
P., King, W. F., Lone, R. A., McJones, P. R., Mehl, J. W., Putzolu, G. R., Traiger, I. L.,
Wade, B. W. and Watson, V., 1976, System R: relational approach to database management.
ACM Transactions on Database Systems 1, (2), 97-137.

Banerjee, J. and Hsiao, D. K., 1978, Concepts and capabilities of a database computer. ACM

Transactions on Database Systems, 3, (4), 347-384.

Barr, R., 1997, Hardware heaven? GIS Europe, December, 12-13.

237

Barr, R., 1998, Thin is in. GIS Europe, January, 14-15.

Beckett H., 1995, Analysis: parallell computing. DEC Computing, 18 October,6-7.

Bitton, D. and Turbyfill, C., 1983, Benchmarking database systems: a systematic approach.
Proc. VLDB Conference 1983, Florence, Italy.

Branagan, I., 1995, A picture tells a thousand stories. AGI'95: Expanding your world,
International Conference Centre, Birmingham, UK.

Bridger Systems, 1999, Orbit Database System.
Available from <http://www.bridger-link-usa.com/brhm25.htm>.

Brocklehurst, E. B., (1991), Survey of benchmarks. NFL Report DITC 192/91 National
Physical Laboratory, Teddington, Middlesex, UK.

Bundock, M., 1987, An integrated DBMS approach to geographic information systems. In
Chrisman, N. R. (Ed.), Auto Carto 8 Proceedings, Baltimore, MD, 292-30 1.

Bytes Technology Group, 1997, Novell's NDS for NT. Talking Technology, 1, December.
Available from <http://www.thin-client.coml>.

Callaghan, J. G., 1989, GIS - Increasing business efficiency and profit. AG-T'89.- GIS - A
Corporate Resource, first national conference and exhibition. National Motorcycle Museum
Conference Centre Birmingham, UK, 1.4.1-1.4.4.

Callingham, M., 1995, The structure of catchment areas. AGI'95: Expanding Your World,
International Conference Centre, Birmingham, UK.

Campbell, H., 1991, Organisational issues and the utilisation of Geographic Information
Systems. RRL Initiative Discussion Paper 9.

Campbell, H., 1994, How effective are GIS in practice? A case study of British local
government. International Journal of Geographical Iizformation Systems, 8, (3), 309-325.

Campbell, H. and Masser, I., 1991, The impact of GIS on Local Government in Great
Britain. AGI'91: third national conference and exhibition, International Convention Centre,

Birmingham, UK, 2.5.1-2.5.6

Campbell, H. and Masser, I., 1992, GIS in local government: some findings from Great
Britain. International Journal of Geographical Information Systems, 6, (6), 529-546.

Cattel, R., 1993, An engineering database benchmark. In Gray, J. (Ed.), The benchmark
handbook for database and transaction processing systems. Morgan Kaufman Publishers,
Inc., San Mateo, CA., 2nd edition.

Chan, B. S. B., 1993, An investigation of distributed database system applications in
corporate GIS. The Department of Geography, The University of Edinburgh, Edinburgh.

Chance, A., Newell, R. G., and Theriault, D. G., 1990, An overview of MA GIK, Technical
Paper 9/1. SMALLWORLD Systems Ltd, Cambridge, U.K.

238

Chen, P., 1976, The entity-relationship model - towards a unified view of data. Association
of Computing Machinery, Transactions and Database Systems, 1, (1), 9-36.

Clegg, P., 1992, GIS implementation - the Sheffield experience. AGI'92: World of GIS,
fourth national conference and exhibition, International Convention Centre, Birmingham,
UK, 3.9.

Codd, B. F., 1970, A relational model of data for large shared data banks. Communications
of the ACM, 13, (6), 377-387.

Corrigan, P. and Gurry, M., 1993, Oracle Performance Tuning. O'Reilly, UK.

Curnow, H. J. and Wichmann, B. A., 1976, A synthetic benchmark. Computer Journal, 19,
1,43-49.

Dangermond, J. and Morehouse 5., 1987, Trends in hardware for geographical information
systems. Auto Carto 8 Proceedings, American Congress for Surveying and Mapping,
Bethesda, 380-385.

Date, C. J., 1986, An introduction to database systems. 2nd edition, Addison-Wesley,
Reading, MA.

Date, C. J., 1988, An introduction to database systems. 4th edition Addison-Wesley,
Reading, MA.

DebitCredit: a standard? (1986). FT Systems, 47, 2-8.

Denness, I., 1997, Data for local authorities. Part I: Discovering what's out there. Mapping

Awareness. July.

Denning, P. J. and Tichy, W. F., 1990, Highly parallel computing. Science, 250, 1217-1222.

Department of the Environment, 1987, Handling geographic information. Report of the
Committee of Enquiry Chaired by Lord Chorley. Her Majesty's Stationery Office, London.

DeWitt, D. J. and Hawthorn, P. B., 1981, A performance evaluation of database machine
architectures. In Zaniolo, C. and Delobel, C. (Eds.), Proc. 7th mt. Conference on VLDB,
Cannes, France.

DeWitt, D. J., Smith, M. and Boral, H., 1987, A single-user performance evaluation of the
Teradata Database Machine. MCC Technical Report no. DB-081-87.

DeWitt, D. J., Ghandeharizadeh, S. and Schneider, D., 1988, A performance analysis of the
gamma database machine. Proceedings of the ACM-SIGMOD International Conference on
Management of Data. Chicago.

DeWitt, D. J., et al., 1990, The gamma database machine project. IEEE Knowledge and Data
Engineering, 2, 1.

DeWitt, D. J. and Gray, J., 1992, Parallel database systems: the future of high performance
database systems. Communications of the ACM, 35, 85-98.

239

DeWitt, D. J., 1993, The Wisconsin Benchmark: past, present, and future. In Gray, J. (Ed.),
The benchmark handbook for database and transaction processing systems. Morgan

Kaufman Publishers, Inc., San Mateo, California.

Dhillon, P., (1992), Towards an integrated future. AGI'92: World of GIS, fourth national
conference and exhibition, International Convention Centre, Birmingham, UK.

Ding, Y. and Densham, P. J., 1996, Spatial strategies for parallel spatial modelling.
International Journal of Geographical Information Systems, 10, (6), 669-698.

Donohoe, P. et al., 1990, Hartstone benchmark users guide, version 1.0. Technical Report
CMU/SEI-90-UG-1, ESD-90-TR-5, Carnegie Mellon University, March

Dowd, K., 1993, High performance computing. O'Reilly & Associates, Inc., Sebastapol, CA.

Dowers, S., Gittings, B.M., Healey, R.G., Sloan, TM., and Waugh, T.C., 1991,
Characterising GIS performance and the potential for parallelism. Parallel Architectures
Laboratory for GIS, RRL Scotland, Dept. Geography, University of Edinburgh, Edinburgh,
Scotland.

Edinburgh Parallel Computing Centre (EPCC), 1992, Parallel systems: getting the benefits.

Edinburgh.

Egenhofer, M. J., 1991, Extracting SQL for cartographic display. Cartography and
Geographic Information Systems, 18, 230-245.

Egenhofer, M. J., 1992, Why not SQL? International Journal of Geographical Information

Systems, 6, (2), 71-85.

Englert, S., Gray, J., Kocher, T. and Shah, P., 1989, A benchmark of NonStop SQL Release 2
demonstrating near-linear speed-up and scaleup on large databases. Tandem Computers,

Technical Report 89.4. Tandem part no. 27469.

ESRI, 1991, Arc/Info: Managing tabular data. Environmental Systems Research Institute,

Inc., Redlands, CA.

ESRI, 1999, Spatial Database Engine (SDE) - Product Description.
Available at <http://www.esri.comlsoftware/sde/description.htm>.

Fanner, P., 1997, Tapping into mapping. Mapping Awareness. July.

Flynn, M. J., 1972, Some computer organisations and their effectiveness. IEEE Transactions

on Computers, C-21, (9), 948-960.

Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon, J. K. and Walker, D. W.,

1988, Solving problems on concurrent processors: vol. 1, general techniques and regular
problems. Prentice Hall, Englewood Cliffs,NJ.

Gadd, 5., 1992, GIS - forging a key role in data integration. AGI'92: World of GIS, fourth
national conference and exhibition, International Convention Centre, Birmingham, UK.

Ghosh, A., 1999, A new high performance parallel GIS data server. SUGI Proceedings.
Available at <http://www.sas.comlusergroups/sugi/abstracts/abs 112.html>.

240

Gittings, B. M., Dowers, S., Healey, R. G., Sloan, T. M. and Waugh, I. C., 1991, Identifying
the performance constraints on geographical information systems in the VAXcluster
computing environment. Working Paper 29, Regional Research Laboratory for Scotland,
Edinburgh.

Good, B., Homan, P. W., Gawlick, D. E. and Sammer, El., 1985, One thousand transactions
per second. IEEE Compcon Proceedings, San Francisco.

Goodchild, M. F., 1992, Geographic Information Science. International Journal of
Geographical Information Systems, 6, 31-45.

Graefe, G., 1990, Encapsulation of parallelism in the volcano query processing system.
Proceedings of the 1990 ACM-SIGMOD International Conference on Management of Data.

Gray, J., 1993, The benchmark handbookfor database and transaction processing systems.
Morgan Kaufman Publishers, Inc., San Mateo, CA.

Grimshaw, D. J., 1997, A survey of GIS use in the business sector. AGI'97: Geographic

information - exploiting the benefits, National Exhibition Centre, Birmingham, UK.

Guptill, S. C., 1986, A new design for the U.S. Geological Survey's National Digital
Cartographic Database. In Blakemore, M. (Ed.), Auto Carto 7 Proceedings, London, 2, 10-

18.

Guptill, S. C., 1987, Desirable characteristics of a spatial database management system. In
Chrisman, N. R. (Ed.), Auto Carto 8 Proceedings, Baltimore, MD, 292-301.

Hack, J. J., 1989, On the promise of general purpose parallel computing. Parallel Computing

10, 261-275.

Hanson, R. J., TPC Benchmark B - what does it mean and how to use it. Transaction
Processing Council.
Available from <http://www.tpc.org/bdetail.html>

Hartley, J. C., 1990, Getting started in Digital Records. Presented to: The Institution of Gas
Engineers, North of England Section, May.

Healey, R. G., 1991, Database Management Systems. In Maguire, D. J., Goodchild, M. F.,
and Rhind, D. W. (Eds.), Geographical Information Systems: Principles and Applications.
Longman, Harlow.

Healey, R. G., 1996, Special Issue on Parallel Processing in GIS. International Journal of
Geographical Information Systems, 10, (6), 667-668,
Available from <http://www.geo.ed.ac.uk>.

Healey, R. G. and Desa, G. B., 1989, Transputer based parallel processing for GIS analysis:
problems and potentialities. In Auto-Carto 9 Proceedings, American Congress for Surveying

and Mapping, Bethesda, 90-99.

Healey, R. G., Dowers, S., Gittings, B. M. and Mineter, M., 1998a, Parallel Processing
Algorithms for GIS. Taylor & Francis Ltd., London.

241

Healey, R. G., Dowers, S., Gittings, B. M., Sloan, T. M., et al. 1991, Determination of
computing resource requirements for GIS processing in a workstation environment. EGIS 91,

Brussels, Belgium.

Healey, R. G., Dowers, S., Gittings, B. M., and Tranter, M. J., 1998b, Parallel database
management systems for GIS. In Healey, R. G., Dowers, S., Gittings, B. M., and Mineter, M.
(Eds.), Parallel Processing Algorithms for GIS. Taylor & Francis Ltd., London.

Healey, R. G. and Waugh, T. C., 1987, The Geoview design: a relational database approach
to geographic data handling. International Journal of Geographical Information Systems, 1,

101-118.

Hey, A. J. G., 1990, The Genesis parallel benchmarks. In proceedings ofjIrst EuroBen

workshop. AFU1J.

Heywood, I., 1997, Beyond Chorley: current geographic information issues. Association for

Geographic Information, London.

Hobson, S. A., 1992, Bridging Islands to increase return on investment. AGI'92: World of

GIS, fourth national conference and exhibition, International Convention Centre,

Birmingham, UK, 1.4.1-1.4.5.

Holman, A. and Barton, 1991, E., The computing surface - a platform for Oracle. Technical
Paper, A presentation made to the European Oracle User Group, Basel, June.

Homer, I. R., and Watson, M., 1992, Integrated data saves money!! AGI'92: World of GIS,
fourth national conference and exhibition Proceedings, International Convention Centre,
Birmingham, UK, 3.10.1-3.10.5.

Hopkins, S., Healey, R. G. and Waugh, T. C., 1992, Algorithm scalability for line
intersection detection in parallel polygon overlay. In Proceedings of 5th International
Symposium on Spatial Data Handling, International Geographical Union, Columbia, 210-
218.

Hornby, R., 1990, Successful application of GIS at Nationwide Anglia. AGI'90: The key to
managing information, 2nd National Conference and Exhibition, Brighton, UK.

IOBENCH, 1989, Computer Architecture News, August.

Ireland, P., 1997, Plugging into Cyberspace. GIS Europe, August.

Ives, M. J., 1985, Inter-utility exchange of digital records. Presented to: The Institution of
Gas Engineers, South Western Section, Keynsham.

Ives, M. J. 1991, The operation of a digital records system in the United Kingdom. 18th

World Gas Conference, Berlin.

Ives, M. J. 1992, Reaping the benefits. AGI'92: World of GIS, fourth national conference
and exhibition, International Convention Centre, Birmingham, UK, 1.6.1-1.6.3.

Ives, M. J., 1993, The British Gas Digital Records System. Mapping Awareness & GIS in

Europe, 7, (3), 25-27.

242

Jade, 1999.
Available from <http://www.discoverjade.com>.

Jakobek, S., 1990, Scalable Computing in the 1990s. Paper presented at the UK Oracle User
Group Meeting, 18 September.

Knott, D. R. and Goodall, K., 1991, Digital Records - theory into practice. Presented to: The
Manchester District Junior Gas Association, Haydock Park.

Lee, 5., 1995, Parallel processing in the data warehouse.
Available from
<http://www.developer.ibm.cornllibrary/aixpert/feb95/aixpert_feb95_oracle.htrnl>

Lodwick, A. and Cushnie, J., 1990, A GIS pilot study in Berkshire. Mapping Awareness, 4,

December, 39-42.

Lone, R. and Schek, H. J., 1988, On dynamically defined complex objects and SQL. In
Ditfrich, K. (Ed.), Advances in Object-Oriented database systems - Proceedings of the 2nd
International Workshop on Object-Oriented Database Systems, Bad Munster an Stein-
Edernberg, Germany, Springer-Verlag, 334, 323-328, (Lecture Notes in Computer Science).

Maguire, D. J., Goodchild, M. F. and Rhind, D. W., (Eds.), 1991, Geographical Information
Systems: Principles and Applications. Longman, Harlow.

Mahoney, R. P., 1992, The organisational implications of corporate data management for
GIS. AGI'92: World of GIS, fourth national conference and exhibition, International
Convention Centre, Birmingham, UK, 3.5.1-3.5.4.

Mattos, N. M., Meyer-Wegener, K. and Mitschang, B., 1993, Grand tour of concepts for
object-orientation from a database point of view. Data and Knowledge Engineering, 9, 321-

352.

McLaren, R. A. and Healey, R. G., 1992, Corporate harmony: a review of GIS integration
tools. AGI'92: World of GIS, fourth national conference and exhibition, International
Convention Centre, Birmingham, UK, 1.17.1-1.17.5.

Meiko, 1992, Computing surface: Oracle on the Unix Performance Mainframe.

Microsoft Corporation, 1999, Prologic teams up with Microsoft to deliver a more scalable
SQL Server and Windows NT-based banking solution.
Available at <http://www.microsoft.comlPressPass/comdexldOcS/Pr010gicpn.htm>.

Mierendorff, H. and Trottenbeg, U., 1988, Performance evaluation for Suprenurn Systems.
In Evaluating Supercomputers, Unicorn Seminar, 84-97.

Mitchell, M., 1997, Saving for a rainy day. Mapping Awareness, July.

Mitschang, B., 1989, Extending the relational algebra to capture complex objects. In Apers,
P. and Wiederhold, G. (Eds.), Fifteenth international conference on very large databases,
Amsterdam, 297-306.

243

Morehouse, S., 1985, Arc/Info: a geo-relational model for spatial information. Auto-Carto
VII Proceedings, Washington, DC, 388-397.

Morehouse, S., 1989, The architecture oh Arc/Info. Proceedings of Auto Carto 9. ASPRS,

Falls Church, Virginia, 266-277.

Morgan, R., 1991, Integrated GIS. In Cadoux-Hudson, J. and Heywood, D. I. (Eds.), AGI

Year Book. Miles-Arnold, London, 197-200.

Mower, J. E., 1996, Developing parallel procedures for line simplification. International

Journal of Geographical Information Systems, 10, (6), 699-712.

Newell, R. G. and Easterfield, M. E., 1990, Version Management - the problem of the long
transaction, Mapping Awareness Conference, Oxford, January.

Nicol, D. M. and Willard, F. H., 1988, Problem size, parallel architecture and optimal speed-
up. Journal of Parallel and Distributed Computing, 5, 404-420.

Nitsche, M. and Reuscher, D., 1997, Second-guessing the saver, GIS Europe, November, 34-

35.

Noervaag, K., 1999, The vagabond parallel object-oriented database system: versatile
support for future applications. March
Available from <http://www.idi.ntnu.no/—noervaag/Ptoodb.html>.

Olsen, K. J., and West, J. T., 1999, SAS software and the performance effect of parallel
architectures. SUGI Proceedings, 290.

Ooi, B., Sacks-Davis, R. and McDonell, K., 1989, Extending a DBMS for geographic
applications. IEEE fifth international conference on data engineering, Los Angeles, CA,

590-597.

Openshaw, S., Cross, A., Charlton, M., and Brunsdon, C., 1990, Lessons learnt from a post
mortem of a failed GIS. AGI'90: GIS-The Key To Managing Information, 2nd International
Conference and Exhibition, Brighton, UK, 2.3.

Oracle Corporation, 1985a, Oracle overview and introduction to SQL. Oracle Systems,

Redwood Shore, California.

Oracle Corporation, 1985b, SQL, the quiet revolution. Oracle Corporation. Redwood Shore,
California.

Oracle Corporation, 1990, SQL, Language reference manual. Oracle Systems, Redwood

Shore, California.

Oracle Corporation, 1991, Oracle for the Meiko Computing Surface: installation and users
guide (v. 6.2). . Oracle Corporation. Redwood Shore, California.

Oracle Corporation, 1997a, Exploiting the geographical component of business using the
Oracle 8 spatial cartridge. An Oracle business white paper. Redwood Shore, California.

Oracle Corporation, 1997b, Oracle 8 Parallel server: concept and administration. Oracle

Corporation. Redwood Shore, California.

244

Oracle Corporation, 1997c, Oracle 8 server SQL reference. Oracle Systems, Redwood
Shore, California.

Oracle Corporation, 1997d, Oracle 8 spatial cartridge: Advances in relational database
technology for spatial data management. Oracle Technical White Paper Volume 7. Redwood
Shore, California.

Ordnance Survey, 1988, Digital Map Data: Ordnance Survey Transfer Format -
incorporating 0S1988 Specification.

Oxborrow, B., 1986, Databases and database systems. concepts and issues. Chartwell-Braft,
Bromley, Kent.

Padding, P., 1991, A GIS infrastructure for the information production process. EGIS 91
Proceedings, Brussels, Belgium.

Parsys, 1991, Oracle parallel server on the Parsys Supernode 1000 series. Technical Paper,

Parsys Ltd, London.

Peel, R., 1997a, Corporate balancing act. Mapping Awareness, May.

Peel, R., 1997b, Unifying spatial information. Mapping Awareness, July.

Peuquet, D. J., 1988, Representations of geographic space: towards a conceptual synthesis.
Annals of the Association of American Geographers, 78, 375-3 94.

Peuquet, D. J., 1994, Its about time: a conceptual framework for the representation of
temporal dynamics in geographic information systems. Annals of the American
Geographers, 84, 441-465.

Pirahesh, H., Mohan, C., Cheng, J., Liu, T. S. and Selinger, P., 1990, Parallelism in relational
database systems: architectural issues and design approaches. In Lu, H., Ooi, B.-C. and Tan,
K.-L. (Eds.), Query Processing in Parallel Relational Database Systems. IEEE Computer

Society Press, Los Alamitos, CA.

Preston, K. and Ulir, L., 1982, Multicomputers and image processing: algorithms and
programs. Academic Press, New York.

Quinn, M. J., 1987, Designing efficient algorithms for parallel computers. McGraw-Hill,
New York.

Quinn, M. J. and Deo, N., 1984, Parallel graph algorithms. Computing Surveys, 16, 319-348.

Raab,F., Kohler, W. and Shah, A., 1998, Overview of the TPC Benchmark C: The Order-
Entry Benchmark. Transaction Processing Performance Council.
Available at <http://www.tpc.org/cdetail.html>.

Ragsdale, S., 1991, Parallel Programming. McGraw-Hill, New York.

Raper, J. and Bundock, M., 1991, UG1IX: a layer-based model for a GIS user interface. In
Mark, D. and Frank, A. (Eds.), Cognitive and linguistic aspects of geographic space. Kluwer

Academic, Dor, 449-475.

245

Raper, J., McCarthy, T. and Williams, N., 1997, Integration of real-time GIS with web-based
virtual worlds. AGI'97: Geographic Information - exploiting the benefits, National
Exhibition Centre, Birmingham, UK, 3.5.1-3.5.3.

Rauen, C., 1993, Mapping the future. Oracle Magazine, vii, (4), 38-41.

Ricardo, C., 1990, Database systems: principles, design, & implementation. Macmillan
Publishing Company, New York.

Rideout, T. W., 1992, A practical geographic information system for conservation and rural
management. In Rideout, T. W. (Ed.), Geographic Information Systems and Urban and
Rural Planning. Planning and Environmental Study Group of the Institute of British
Geographers.

Roche, S. C. and Gittings, B. M., 1996, Parallel polygon line shading: the quest for more
computational power from an existing GIS algorithm. International Journal of Geographical

Information Systems, 10, (6), 731-746.

Roberts, J., 1989, The Hertsmere experience. AGI'89 AGI'89: GIS - A Corporate Resource,
first national conference and exhibition. National Motorcycle Museum Conference Centre
Birmingham, UK.

Roussopoulos, N., Faloutos, C. and Sellis, T., 1988, An efficient pictorial database system
for PSQL. lEE Transactions on Software Engineering, 14, 630-638.

Rowe, L. A., 1986, A shared object hierarchy. In Stonebraker, M. A. and Rowe, L. A.,
(Eds.), The POSTGRES papers. Memorandum no. UCB/ERL, M86/85. College of
Engineering, University of California, Berkeley.

Sahay, S. and Waisham, G., 1996, Implementation of GIS in India: organisational issues and
implications. InternationaiJournalfor Geographical Information Systems, 10, (4), 385-404.

Sarda, N., 1990, Extensions to SQL for historical databases. IEEE transactions on
knowledge and data engineering, 2, 220-230.

SAS Institute Inc., 1999, Scalable performance data server -faster disk access for more
timely decision making, The SAS Institute, Inc., Cary, N.C.
Available at <http://www.sas.com/software/components/spds.htm>.

Sawyer, M., 1998, The development of hardware for parallel processing. Healey, R. G.,
Dowers, S., Gittings, B. M. and Mineter, M., (Eds.), Parallel Processing for GIS. Taylor &

Francis Ltd., London.

Sawyer, T., 1993, Doing your own benchmark. In Gray, J. (Ed.), The benchmark handbook
for database and transaction processing systems. Morgan Kaufman Publishers, Inc., San

Mateo, CA.

Scott, C. J., 1989, Genesis pre-study phase report. Technical Paper, Southampton

University.

246

Serlin, 0., 1993, The history of DebitCredit and the TPC. In Gray, J. (Ed.), The benchmark
handbook for database and transaction processing systems. Morgan Kaufman Publishers,

Inc, San Mateo, CA.

Shanley K, 1998, History and Overview of the TPC. Transaction Processing Council.

Available at <http://www.tpc.org/articles/tpc.overview.history.l.html>.

Sloan T. M., 1998, Vector-to-Raster Conversion. In Healey, R. G., Dowers, S., Gittings, B.
M. and Mineter, M., (Eds.), Parallel Processing Algorithms for GIS. Taylor & Francis Ltd,

London.

Smallworld Systems Ltd, 1991a, Magik Documentation. Burleigh House, 13-15 Newmarket

Road, Cambridge.

Smallworld Systems Ltd, 1991b, GIS User's Guide. Burleigh House, 13-15 Newmarket
Road, Cambridge.

Smallworld Systems Ltd, 1991c, Customisation Overview Documentation. Burleigh House,
13-15 Newmarket Road, Cambridge.

Smith, N. 5., 1987, Testing of relational databases in Ordnance Survey research and
development. SORSA Symposium, Durham.

Somerville, 1989, Software engineering, 3rd edition. Addison-Wesley, Reading,
Massachusetts.

Southampton, 1999, The Genesis benchmark suite.
Available at <http://hpcc.soton.ac.uk/RandD/genesis/genesis.html>.

SPEC, 1998a, SPEC Frequently Asked Questions.
Available at <http://www.specbench.org/spec/faq/>.

SPEC, 1998b, SPEC OSG Frequently Asked Questions.
Available at <http:www.specbench.org/osg/faq>.

SQL3 Standard Committee, SQL3 Standard.

SQL92 Standard Committee, SQL92 Standard.

SQL-/MM Standard Committee, SQL-/MM Standard.

Statler, S., 1993, How parallel should a database be? Parallelogram, 56, 21-23.

Stonebraker, M., (Ed.), 1994, Readings in Database Systems. Morgan Kaufman Publishers,

San Mateo, California.

Sybase, 1999, New features of Sybase IQ release 11.2 - parallel IQ backup/restore.
Available from <http://www.sybase.com/products/dataware/iqI l html>.

Tomlin, D., 1990, Geographic Information Systems and Cartographic Modelling. Prentice

Hall, Englewood Cliffs, NJ.

Toon, M., 1997, PC graphics grow up. Mapping Awareness, 8, December.

247

TPC, 1989, TPCBenchmarkA. San Jose, CA, Shanley Public Relations.

TPC, 1990, TPC Benchmark B. San Jose, CA, Shanley Public Relations.

TPC, 1992, TPC Benchmark C. San Jose, CA, Shanley Public Relations.

TPC, 1995, TPC Benchmark D. San Jose, CA, Shanley Public Relations.

TPC, 1998, TPC Benchmark W. San Jose, CA, Shanley Public Relations.

Trew, A. and Wilson, G., 1991, Past, present, parallel. Springer-Verlag, London.

Van der Steen, A., 1991, The benchmark of the EuroBen group. Parallel Computing, 1-11.

Van Roessel, J. W. and Fosnight, E.A., 1984, A relational approach to vector data structure
conversion. In Marble, D. F. et. al. (Eds.), International Symposium on Spatial Data
Handling, Zurich, 1, 78-95.

Van Roessel, J. W., 1987, Design of a spatial data structure using the relational normal
forms. International Journal of Geographical Information Systems, 1, 33-50.

Webb, G. and Todd, P., 1991, Identifying GIS benefits in the Regional Electricity
Companies. 4GI91:third national conference and exhibition, International Convention

Centre, Birmingham, UK, 1.11.

Weiker, R. P., 1984, Dhrystone: a synthetic systems programming benchmark.
Communications of the ACM, October, 1013-1030.

Weiker,R. P., 1990, An overview of common benchmarks. IEEE Computer, 65-76.

Williams, C., 1999, The SAS system for OS/390 in a parallel sysplex world, SAS Institute

Inc., Cary,N.C.
Available at <http://www.sas.comlpartners/enterprise/ibnilparallel.htrn>.

Wilson, D., 1989, Tested metal. Unix review, 7, 1, 97-107.

Wong, Z., 1998, Sears, Roebuck and Co. achieves data warehousing success with parallel
SAS application.
Available from <http:www.torrent.com!stories/sears-story.html>.

Worboys, M. F., 1992, A generic model for planar geographic objects. International Journal
of Geographical Information Systems, 6, (5), 353-372.

Worboys, M.F., 1994, Object-oriented approaches to geo-referenced information.
International Journal of Geographical Information Systems, 8, 45, 385-399.

Xiong, D. and Marble, D. F., 1996, Strategies for real-time spatial analysis using massively
parallel SIMD computers: an application to urban traffic flow analysis. International Journal

of Geographical Information Systems, 10, (6), 769-789.

4:

Appendix A
The following SQL queries are those used in the phase I performance tests. The tests are
designed to return fixed numbers of rows. There are two versions of each query, those with
'b' in the title have an index on the buildings table, those with 'c' have an index on the
customer table. Only the queries with indexes on the buildings table are shown here. The SQL
queries were developed by Ben Chan (1993).

1 a.sql
select town, category
from b60000, c20000
where b60000.building#=c20000.bUilding*
and c 20000.build±ng* between 20000 and 40000;

al_lb.sql
SELECT CATEGORY, TOWN
FROM B 1000, C_333

WHERE B 1000 .BUILDING* = C_333 .BUILDING#
AND B l000.BLTILDING# BETWEEN 1333 AND 1667;

lalO_b.sql
SELECT CATEGORY, TOWN
FROM B10000, C3333

WHERE B 10000 .BUILDING* = C_3333 .BUILDING#
AND B 10000.BIJILDING# BETWEEN 3333 AND 6667;

1 a15_b.sql
SELECT CATEGORY, TOWN
FROM B15000, C5000

WHERE B 15000 . BUILDING# = C 5000 . BUILDING#
AND B 15000.BUILDING# BETWEEN 5000 AND 10000;

1 a2_b.s1
SELECT CATEGORY, TOWN

FROM B20000, C6667

WHERE B 20000 .BUILDING# = C 6667 .BUILDING*
AND B 20000.BUILDING# BETWEEN 6667 AND 13333;

1 a20_b.sql
SELECT CATEGORY, TOWN
FROM B2000, C_667

WHERE B 2000 .BLTILDING# = C_667 .BUILDING#
AND B 2000.BUILDING# BETWEEN 1667 AND 2333;

1 a25.sql
SELECT CATEGORY, TOWN
FROM B25000, C8333

WHERE B_25 000 .BUILDING*
AND B 25000 .BUILDING*

= C 6333 .BUILDING#
BETWEEN 8333 AND 16666;

1a3.sql
SELECT CATEGORY, TOWN
FROM B3000, C1000
WHERE B 3000.BUILDING# = C 1000 .BUILDING#
AND B 3000.BUILDING# BETWEEN 1000 AND 2000;

1 a30_b.sql
SELECT CATEGORY, TOWN
FROM B30000, C10000

WHERE B 30000 .BUILDING4 C10000.BUILDING#
AND B_3 0000 .BUILDING# BETWEEN 10000 AND 20000;

1 a5_b.sql
SELECT CATEGORY, TOWN
FROM B5000, C1667

WHERE B 5000 .BUILDING*
AND B 5000 .BUILDING*

= C 1667 .BUILDING
BETWEEN 1667 AND 3333;

1 a60_b.sql
SELECT

FROM
WHERE

AND

CATEGORY, TOWN
B60000, C20000

B 60000 .BUILDING#
B60 000 .BUILDING#

= C20000.BUILDING#
BETWEEN 20000 AND 40000;

The following SQL queries were used in phase I the perform tests requiring a percentage of
data to be returned. Again there are two similar queries for each percentage using diffeent
indexing strategies. Only one version is shown here.

c60_b15.sql
SELECT CATEGORY, TOWN
FROM B60000, C20000
WHERE B 60000.BUILDING# = C20000.BUILDINGt
AND B 60000.BUILDING# BETWEEN 20000 AND 50000;

c60_b20.sql
SELECT CATEGORY, TOWN
FROM B60000, C20000
WHERE B 60000 .BUILDING# = C20000.BUILDING#
AND B 60000.BIJILDING# BETWEEN 10000 AND 50000;

1 c60_b25.sql
SELECT

FROM
WHERE
AND

CATEGORY, TOWN
B60000, C20000

B 60000 .BUILDING#
B 60000 .BUILDING#

C20000.BTJILDING#
BETWEEN 5000 AND 55000;

1 c60_b30.sql
SELECT CATEGORY, TOWN
FROM B60000, C20000
WHERE B 60000 . BIJILDING# = C 20000 . BTJILDINGj*
AND B 60000.BUILDING* BETWEEN 1001 AND 61000;

1 c60_b5.sql
SELECT CATEGORY, TOWN
FROM B60000, C20000

WHERE B 60000 .BUILDING* = C 20000 .BTJILJJING*
AND B 60000.BUILDING* BETWEEN 20000 AND 30000;

Appendix B
The following is a list of SQL Code used to create the corporate database:

REM
REM This ORACLE V6 RDBMS command file was generated by CASE*Dictionary
REM on 18-FEB-94
REM
REM For application system GAS version 1
REM
SET SCAN OFF

REM Objects being generated in this file are:-
REM TABLE
REM ACCOUNTS
REM APPLIANCES
REM APPLIANCE MAKES
REM APPLIANCE_TYPES
REM BUILDINGS
REM BUILDING USES
REM BUILD BUILDU
REM CARRIERS
REM CARRIER PIPE
REM CENSUS
REM CHARGES
REM COMPLAINTS
REM COMPLAINTS CUSTOMER
REM COMPLETIONS
REM COMPONENTS
REM COMP APL _M
REM COMPAPLT
REM COUNCIL TAX
REM COUNTIES
REM CUSTOMERS
REM EMERGENCIES
REM EMERGENCY CUSTOMER
REM EMPLOYEES
REM GOVERNOR STATIONS
REM HOUSEHOLDS
REM INJECTION POINTS
REM INSTALLATIONS
REM INSTALL APPL
REM METERS
REM METER TYPES
REM ORIGINATOR RECIPIENTS
REM PAY
REM PIPES
REM PIPE NETWORKS
REM PIPE STREET
REM PLANS
REM SCHEDULES
REM SERVICE APPL
REM SERVICE_CONTRACTS
REM SIPHONS
REM SPECIALIST CONTRACTORSS
REM SPECIALIST SCHEDULE
REM SPECIAL CUSTOMER
REM SPECIAL NEEDS
REM STREETS
REM STREETWORKS
REM STREETWORKORIG
REM STREETWORK SCHEDULE
REM STREET STREETWORK
REM TOWNS
REM USAGE
REM VEHICLES
REM VEHICLE_USAGE
REM VEHICULE MAKERS

REM
REM Created from Entity ACCOUNT by OPS$MJT on 18-FEB-94
REM

PROMPT
PROMPT Creating Table ACCOUNTS
CREATE TABLE accounts(
acc_id NUMBER NOT NULL,
acccustomerid NUMBER NOT NULL,
acc aprox annual usage NUMBER NULL,
acc credit rating CHAR(20) NULL,
accenddate DATE NULL,
acc start date DATE NULL,
acc payment due NUMBER(9,2) NULL

COMMENT ON TABLE accounts
IS 'Created from Entity ACCOUNT by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN accounts.accid
IS 'unique id';

COMMENT ON COLUMN accounts.acccustomerid
IS 'unique id';

COMMENT ON COLUMN accounts.acc aprox annual usage
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE APROX ANNUAL USAGE';

COMMENT ON COLUMN accounts.acc_ credit _rating
IS 'credit worthiness of customer';

COMMENT ON COLUMN accounts.acc_end_date
IS 'final date of account (end of quarter)';

COMMENT ON COLUMN accounts.acc start date
IS 'date account started (start of quarter)

COMMENT ON COLUMN accounts.acc payment due
IS 'amount owed by customer'

REM
REM Created from Entity APPLIANCE by OPS$MJT on 18-FEB-94

REM
PROMPT
PROMPT Creating Table APPLIANCES
CREATE TABLE appliances(
applid NUMBER NOT NULL,
applaplmid NUMBER NOT NULL,
applapltid NUMBER NOT NULL,
applcustonerid NUMBER NULL,
appl description CHAP. (40) NULL,
appi make CHAR(20) NULL,
appl type CHAR(15) NULL

COMMENT ON TABLE appliances
IS 'Created from Entity APPLIANCE by OPS$MJT on 18-FEB-94 1 ;

COMMENT ON COLUMN appliances.appl_id
IS 'unique id for appliance';

COMMENT ON COLUMN appliances applaplmid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN appliances.applapltid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN appliances.appl_customer_id
IS 'unique id';

COMMENT ON COLUMN appliances.appl description
IS 'brief description of appliance';

COMMENT ON COLUMN appliances.appl make
IS 'name of maker';

COMMENT ON COLUMN appliances.appl type
IS 'type of appliance eg. gas fire, cooker etc';

REM
REM Created from Entity APPLIANCE MAKE by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table APPLIANCE MAKES
CREATE TABLE appliance makes(
Id NUMBER NOT NULL,
name CHAR(30) NULL

COMMENT ON TABLE appliance makes
IS 'Created from Entity APPLIANCE MAKE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN appliance makes.id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN appliance nakes.nane
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

REM
REM Created from Entity APPLIANCE TYPE by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table APPLIANCE TYPES
CREATE TABLE appliance_types(
aplid NUMBER NOT NULL,
apl name CHAR(20) NULL

COMMENT ON TABLE appliance_types
IS 'Created from Entity APPLIANCE TYPE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN appliance types.aplid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN appliance types.apl name
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

REM
REM Created from Entity BUILDING by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table BUILDINGS
CREATE TABLE buildings(
buil id NUMBER NOT NULL,
buil household Id NUMBER NOT NULL,
buil carrier Id NUMBER NULL,
buil customer id NUMBER NULL,
bull specialist Id NUMBER NULL,
bull street Id NUMBER NULL,
bull census id NUMBER NULL,
bull employee Id NUMBER NULL,
bull_category CHAR(15) NULL,
bull_label_point NUMBER NULL,
buil—name CHAR(25) NULL,
bull postcode CHAR(10) NULL,
bull ycoord NUMBER NULL,
bull xcoord NUMBER NULL,
bull number NUMBER NULL,
buil description CHAR(15) NULL

COMMENT ON TABLE buildings
IS 'Created from Entity BUILDING by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN buildiogs.builid
IS 'unique Id';

COMMENT ON COLUMN buildings.buil household Id
IS 'unique Id';

COMMENT ON COLUMN buildings.buil carrier_id
IS 'unique Id';

COMMENT ON COLUMN buildings.buil—customer—id
IS 'unique id';

COMMENT ON COLUMN buildings.buil specialist
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN buildings.buil street id
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN buildings.buil census _id
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN buildings.builemployeeid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN buildings.buil category
IS 'whether its a listed building or not';

COMMENT ON COLUMN buildings.buil—label—point
IS 'label point number stored in arc/info';

COMMENT ON COLUMN buildings.buil name
IS 'name of building;

COMMENT ON COLUMN buildings.builpostcode
IS 'postcode of each individual building';

COMMENT ON COLUMN buildings.builycoord
IS 'y coordinate position';

COMMENT ON COLUMN buildings.builxcoord
IS 'x coordinate position';

COMMENT ON COLUMN buildings.builnunther
IS 'Street number of building';

COMMENT ON COLUMN buildings.buil description
IS 'description of building eg flat, semi etc';

REM
REM Created by mit 1/11/94. Table is a temporary table used until I can
REM find time to create data for the rest of the columns
REM

CREATE TABLE temp build(
BUlL ID NUMBER not null
BUlL HOUSEHOLD ID NUMBER not null
BUlL CARRIER ID NUMBER
BUlL CUSTOMER ID NUMBER
BUlL SPECIALIST ID NUMBER
BUlL STREET ID NUMBER
BUlL CENSUS ID NUMBER
BUlL EMPLOYEE ID NUMBER
BUlL CATEGORY CHAR (15)
BUlL LABEL POINT NUMBER
BUlL NAME CHAR(25)
BUlL POSTCODE CHAR (10)
BUlL YCOORD NUMBER
BUlL XCOORD NUMBER
BUlL NUMBER NUMBER
BUlL DESCRIPTION CHAR(15)
COVER NUMBER

pctfree 2
storage(initial 22728

next 2280
pctincrease 0)

REM there are no comments for attributes for temp_build, I'm too lazy!

REM
REM Created from Entity BUILDING USE by OPS$MJT on 18-FEB-94

REM
PROMPT
PROMPT Creating Table BUILDING—USES
CREATE TABLE building uses(

id NUMBER NOT NULL,
use CHAR(20) NULL

COMMENT ON TABLE building uses
IS 'Created from Entity BUILDING USE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN building uses.id
IS lunique id';

COMMENT ON COLUMN building uses.use
IS 'description of building use';

REM
REM AUTOCREATED - Intersection table
REM - changed PCTFREE from 10 to 2 for all occurances in this file
PROMPT
PROMPT Creating Table BUILD BUILDU
CREATE TABLE build buildu(
builidl NUMBER NOT NULL,
id2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE build buildu
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN build buildu.buil idl
IS 'unique id';

COMMENT ON COLUMN build buildu.id2
IS 'unique id';

REM
REM Created from Entity CARRIER by OPS$MJT on 18-FEB-94

REM
PROMPT
PROMPT Creating Table CARRIERS
CREATE TABLE carriers(
carrid NUMBER NOT NULL,
carr build_id NUMBER NULL,
carr contact name CHAR(20) NULL,
carr name CHAR(20) NULL,
carr telephone CHAR(15) NULL

COMMENT ON TABLE carriers
IS 'Created from Entity CARRIER by OPS$MJT on 18-FEB-94 1 ;

COMMENT ON COLUMN carriers.carr_id
IS 'unique id';

COMMENT ON COLUMN carriers.carr_build_id
IS 'unique id';

COMMENT ON COLUMN cerriers.carr contact name
IS 'name of first point of contact with carrier'

COMMENT ON COLUMN carriers.carr name
IS 'name of carrier'

COMMENT ON COLUMN carriers.carr telephone
IS 'telephone number';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table CARRIER PIPE
CREATE TABLE carrier pipe(
carridl NUMBER NOT NULL,
pipe record id2 NUMBER(7,0) NOT NULL

PCTFREE 2

COMMENT ON TABLE carrier pipe
IS 'AUTOCREATED - Intersection table;

COMMENT ON COLUMN carrier pipe.carridl
IS unique id';

COMMENT ON COLUMN carrier pipe.pipe record_id2
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE RECORD ID';

REM
REM Created from Entity CENSUS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table CENSUS
CREATE TABLE census(
cens_id NUMBER NOT NULL,

censbuildid NUMBER NOT NULL

COMMENT ON TABLE census
IS Created from Entity CENSUS by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN census.censid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN census.censbuildid
IS 'unique id';

REM
REM Created from Entity CHARGE by OPS$MJT on 18-FEB-94

REM
PROMPT
PROMPT Creating Table CHARGES
CREATE TABLE charges(
char id CHAR(5) NOT NULL,
char rate NUMBER NOT NULL

COMMENT ON TABLE charges
IS 'Created from Entity CHARGE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN charges.charid
IS 'unique id';

COMMENT ON COLUMN charges.char rate
IS 'amount band is worth'

REM
REM Created from Entity COMPLAINTS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table COMPLAINTS
CREATE TABLE complaints(
comp_id NUMBER NOT NULL,

compaction CHAR(100) NULL,
conp_description CHAR(100) NULL

COMMENT ON TABLE complaints
IS 'Created from Entity COMPLAINTS by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN complaints.comp_id
IS 'unique id';

COMMENT ON COLUMN complaints.comp action
IS 'description of action taken';

COMMENT ON COLUMN complaints.comp description
IS 'description of complaint';

REM
REM AUTOCREATED - Intersection table

REM
PROMPT
PROMPT Creating Table COMPLAINTS CUSTOMER
CREATE TABLE complaints_customer(
compidl NUMBER

cust 1d2 NUMBER
NOT NULL,
NOT NULL

PCTFREE 2

COMMENT ON TABLE complaints customer
IS 'AUTOCREATED - Intersection table;

COMMENT ON COLUMN complaints_customer.comp_idl
IS 'unique id

COMMENT ON COLUMN complaints_customer.cust_id2
IS unique id';

REM
REM Created from Entity COMPLETION by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table COMPLETIONS
CREATE TABLE completions(
id NUMBER NOT NULL,

streetwork_id NUMBER NOT NULL,

completion date DATE NULL,

description CHAR(100) NULL

COMMENT ON TABLE completions
IS 'Created from Entity COMPLETION by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN completions.id
IS 'unique id';

COMMENT ON COLUMN completions.streetwork_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN completions.completion_date
IS 'date of completion';

COMMENT ON COLUMN completionsdescription
IS 'description of work completed';

REM
REM Created from Entity COMPONENTS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table COMPONENTS
CREATE TABLE components(
id NUMBER NOT NULL,

description CHAR(50) NULL

COMMENT ON TABLE components
IS 'Created from Entity COMPONENTS by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN components.id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN components.dascriPtiOn
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table COMPAPLM
CREATE TABLE compaplm(
idl NUMBER NOT NULL,

id2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE compaplm
IS 'AUTOCREATED - Intersection table;

COMMENT ON COLUMN compaplm.idl
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN compaplm.id2
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table COMPAPLT
CREATE TABLE compaplt(
idl NUMBER NOT NULL,

aplid2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE compaplt
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN compaplt.idl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN compaplt.ap1id2
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM Created from Entity COUNCIL TAX by OPS$MJT on 18-FEB-94
REM - changes made by mjt 1/11/94
PROMPT
PROMPT Creating Table COUNCIL TAX
CREATE TABLE council tax(
tax NUMBER —id NOT NULL,

tax CHAR(5) —band NOT NULL,

tax —id NUMBER —council NOT NULL,
tax —id NUMBER —household NULL,
tax_amount_paid NUMBER NULL,
tax date DATE NULL

pctfree 2
storage(initial 34628

next 3460
pctincrease 0)

COMMENT ON TABLE council tax
IS 'Created from Entity COUNCIL TAX by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN council—tax.tax—id
IS 'Unique id';

COMMENT ON COLUMN council tax.tax band
IS 'enter letter from A to H';

COMMENT ON COLUMN council tax.tax council—id
IS 'name of council responsible for charging council tax'

COMMENT ON COLUMN council tax.tax household Id
IS 'unique Id';

COMMENT ON COLUMN council tax.tax amount paid
IS 'Amount of money received to date';

COMMENT ON COLUMN council tax.tax date
IS 'date of last payment;

REM
REM Created from Entity COUNTY by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table COUNTIES

CREATE TABLE counties(
id NUMBER NOT NULL,

name CHAR(25) NULL

COMMENT ON TABLE counties
IS 'Created from Entity COUNTY by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN counties.id
IS 'unique id;

COMMENT ON COLUMN counties.name
IS 'name of county'

REM
REM Created from Entity CUSTOMER by OPS$MJT on 18-FEB-94

REM - changes made by mjt 1/11/94
PROMPT
PROMPT Creating Table CUSTOMERS
CREATE TABLE customers(
cust_id NUMBER NOT NULL,

cost surname CHAR(50) NOT NULL,

cost title CHAR(S) NOT NULL,

custbuildid NUMBER NULL,
cust pipe record_id NUMBER (7) NULL,
cost employee id NUMBER NULL,
cust initials CHAR(10) NULL

pctfree 2
storage(initial 21781

next 2180
pctincrease 0)

COMMENT ON TABLE customers
IS 'Created from Entity CUSTOMER by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN customers.custid
IS 'unique id';

COMMENT ON COLUMN customers.cust surname
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE SURNAME';

COMMENT ON COLUMN customars.cust title
IS 'miss, me, or';

COMMENT ON COLUMN customers.custbuildid
IS 'unique id';

COMMENT ON COLUMN customers.cust pipe record_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE RECORD—ID';

COMMENT ON COLUMN customers.cust employee_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN customers.cust initials
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE INITIALS';

REM
REM Created from Entity EMERGENCY by OPS$MJT on 18-FEB-94

REM
PROMPT
PROMPT Creating Table EMERGENCIES
CREATE TABLE emergencies)
emend NUMBER NOT NULL,

amer_action CHAR(100) NULL,

amer_description CHAR(100) NULL,

amer_priority NUMBER NULL

COMMENT ON TABLE emergencies
IS 'Created from Entity EMERGENCY by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN emergencies.emerid
IS 'unique Id';

COMMENT ON COLUMN emergencies.elner action
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ACTION';

COMMENT ON COLUMN ernergencies.emer_deSCriPtiOn
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION;

COMMENT ON COLUMN emergencies.emer priority
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE PRIORITY';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table EMERGENCY _CUSTOMER
CREATE TABLE emergency—customer(
emeridi NUMBER NOT NULL,

cust_id2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE emergency customer
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN emergency customer.emer_idl
IS unique id';

COMMENT ON COLUMN emergency customer.cust_id2
IS 'unique id';

REM
REM Created from Entity EMPLOYEE by OPS$MJT on 18-FEB-94

REM - changes made by mit 1/11/94
PROMPT
PROMPT Creating Table EMPLOYEES
CREATE TABLE employees(
empl id NUMBER NOT NULL,
empl department CHAR(20) NOT NULL,

empl surname CHAR(50) NOT NULL,
empl customer id NUMBER NULL,

empipayid NUMBER NULL,

empl schedule id NUMBER NULL,
empl initials CHAR(10) NULL,
emplj oh description CHAR(100) NULL,

empl CHAR(5) _status NULL,
empl title CHAR(5) NULL

COMMENT ON TABLE employees
IS 'Created from Entity EMPLOYEE by OPS$MJT on 18-FEB-94 1 ;

COMMENT ON COLUMN employees.empl_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN employees.empl_department
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DEPARTMENT';

COMMENT ON COLUMN employees.empl_Surname
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE SURNAME';

COMMENT ON COLUMN etnployees.empl customer_id
IS 'unique id';

COMMENT ON COLUMN employees.empl pay_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN employees.empl_schedule_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN employees.empl initials
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE INITIALS';

COMMENT ON COLUMN employees. empl job description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE JOB DESCRIPTION';

COMMENT ON COLUMN employees.empl status
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE STATUS';

COMMENT ON COLUMN employees.empl title
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE TITLE';

REM
REM Created from Entity GOVERNOR STATION by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table GOVERNOR STATIONS
CREATE TABLE governor —stations(
goveid NUMBER NOT NULL,
gove pipe record_id NUMBER(7,0) NOT NULL,
gove date of service DATE NULL,
gove settings NUMBER NULL,
gove description CHAR(loo) NULL

COMMENT ON TABLE governor_stations
IS 'Created from Entity GOVERNOR STATION by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN governor stations.goveid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN governor_stations .gove pipe_record_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE RECORD—ID';

COMMENT ON COLUMN governor _stations. gove_date_of_service
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DATE_OF_SERVICE';

COMMENT ON COLUMN governor stations.gove settings
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE SETTINGS';

COMMENT ON COLUMN governor_stations .gove description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

REM
REM Created from Entity HOUSEHOLD by OPS$MJT on 18-FEB-94

REM
PROMPT
PROMPT Creating Table HOUSEHOLDS
CREATE TABLE households(
hous—id NUMBER NOT NULL,
hous surname CHAR(20) NOT NULL,
hous title char(10)
hous initial char(10),
hous surname char(50)
hous—build—id number

pctfree 2
storage(initial 22438

next 2250
pctincrease 0)

COMMENT ON TABLE households
IS 'Created from Entity HOUSEHOLD by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN households.housid
IS 'unique id';

COMMENT ON COLUMN households.hous surname
IS 'family (principle) name of household';

REM table injection_points deleted mjt 1/11/94

REM
REM Created from Entity INSTALLATION by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table INSTALLATIONS
CREATE TABLE installations(
inst_id NUMBER NOT NULL,
inst_customer_id NUMBER NOT NULL,
inst_cost NUMBER(9,2) NULL,

inst start time DATE NULL,

inst description CHAR(100) NULL,

inst end date DATE NULL,

inst start date DATE NULL,

inst end time DATE NULL

COMMENT ON TABLE installations
IS 'Created from Entity INSTALLATION by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN installations.inst id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN installations.instcustomerid
IS 'unique id';

COMMENT ON COLUMN installations.inst cost
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE COST';

COMMENT ON COLUMN installations.inst start time
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE START—TIME';

COMMENT ON COLUMN installations.inst description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

COMMENT ON COLUMN installations.inst end date
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE END_DATE';

COMMENT ON COLUMN installations.inst start date
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE START—DATE';

COMMENT ON COLUMN installations.inst end time
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE END_TIME';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table INSTALL_APPL
CREATE TABLE install appl(
inst idl NUMBER NOT NULL,
app1id2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE install appl
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN install appl.inst idl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN install appl.appl id2
IS 'unique id for appliance';

REM
REM Created from Entity METER by OPS$MJT on 18-FEB-94

REM - changes made by mit 1/11/94
PROMPT
PROMPT Creating Table METERS
CREATE TABLE meters(
mete id NUMBER NOT NULL,

mete _customer _id NUMBER NOT NULL,

mete meter tid NUMBER NOT NULL,
mete date DATE NULL,
mete—reading NUMBER NULL,

pctfree 2
storage (initial 106395

next 10640
pctincrease 0)

COMMENT ON TABLE meters
IS 'Created from Entity METER by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN meters.meteid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN meters.metecustomerid
IS 'unique id';

COMMENT ON COLUMN meters.metemetertid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN meters.mete date
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE DATE, contains time of

reading too'

COMMENT ON COLUMN meters.mete reading
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE READING';

REM
REM Created from Entity METER TYPE by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table METER TYPES
CREATE TABLE meter—types (
id NUMBER NOT NULL,

type CHAR(20) NULL

COMMENT ON TABLE meter types
IS 'Created from Entity METER TYPE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN meter types.id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN meter types.type
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE TYPE';

REM
REM Created from Entity ORIGINATOR! RECIPIENT by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table ORIGINATOR RECIPIENTS
CREATE TABLE ORIGINATOR RECIPients
origid NUMBER NOT NULL,

orig name CHAR(20) NULL

COMMENT ON TABLE ORIGINATOR RECIPients
IS 'Created from Entity ORIGINATOR! RECIPIENT by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN ORIGINATOR REClPients.origid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN ORIGINATOR REClPients.orig name
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

REM
REM Created from Entity PAY by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table PAY
CREATE TABLE pay(
pay—id NUMBER NOT NULL,

pay_employee_id NUMBER NULL,

pay—rate NUMBER(9,2) NULL

COMMENT ON TABLE pay
IS 'Created from Entity PAY by OPS$MJT on 18-FEB-94 1 ;

COMMENT ON COLUMN pay.payid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN pay.payemployeeid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN pay.pay rate
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE RATE';

REM
REM Created from Entity PIPE by OPS$MJT on 18-FEB-94

REM - changed by mjt 1/11/94
PROMPT
PROMPT Creating Table PIPES
CREATE TABLE pipes(
pipe main id NUMBER not NULL,
pipe _record _id NUMBER NOT NULL,

pipe_street_id CHAR(8) NULL,
pipe_ntr CHAR(4) NULL,
pipe _material CHAR(2) NULL,

pipe—length NUMBER(8,3) NULL,
pipe joint type CHAR(l) NULL,
pipe dnl CHAR(2) NULL,
pipe_status CHAR(l) NULL,
pipe_pressure CHAR(2) NULL,
pipe diameter NUMBER(6,2) NULL,
pipe district CHAR(8) NULL,
pipe diameter —units CHAR(1) NULL,

pipe—action —type CHAR(l) NULL

COMMENT ON TABLE pipes
IS 'Created from Entity PIPE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN pipes.pipe_record_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE RECORD—ID';

COMMENT ON COLUMN pipes.pipe_ntr
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE MTR';

COMMENT ON COLUMN pipes.pipe material
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE MATERIAL';

COMMENT ON COLUMN pipes.pipe main id
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE MAIN ID';

COMMENT ON COLUMN pipes.pipe length
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE LENGTH';

COMMENT ON COLUMN pipes.pipe joint_type
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE JOINT TYPE';

COMMENT ON COLUMN pipes.pipednl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DN1';

COMMENT ON COLUMN pipes.pipe status
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE STATUS';

COMMENT ON COLUMN pipes.pipe pressure
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE PRESSURE';

COMMENT ON COLUMN pipes.pipe_diameter
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DIAMETER';

COMMENT ON COLUMN pipes.pipe_district
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DISTRICT';

COMMENT ON COLUMN pipes.pipe_diameter_units
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DIAMETER UNITS';

COMMENT ON COLUMN pipes.pipe action type
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ACTION_TYPE';

REM
REM Created from Entity PIPE NETWORK by OPS$MJT on 18-FEB-94
REM - changed by mjt 1/11/94
PROMPT
PROMPT Creating Table PIPE NETWORKS
CREATE TABLE pipe networks(
network id NUMBER NOT NULL,

tnode NUMBER NULL,

f node NUMBER NULL,
length NUNBER(8,3) NULL,
pipe record id NUMBER NULL
pipe—network number,

COMMENT ON TABLE pipe_networks
IS 'Created from Entity PIPE NETWORK by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN pipe networks.id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN pipe networks.connectivity_details
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE CONNECTIVITY DETAILS;

COMMENT ON COLUMN pipe networks.name
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

COMMENT ON COLUMN pipe networks.total length
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE TOTAL—LENGTH';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table PIPE_STREET
CREATE TABLE pipe _street(
pipe record idl NUMBER(7,O) NOT NULL,
stre_id2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE pipe_street
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN pipe street.pipe record idi
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE RECORD_ID';

COMMENT ON COLUMN pipe street.stre id2
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM Created from Entity PLANS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table PLANS
CREATE TABLE plans(
plan id NUMBER NOT NULL,
planstreetworkid NUMBER NOT NULL,
plan blue print LONG RAW NULL,
plan description CHAR(100) NULL

COMMENT ON TABLE plans
IS 'Created from Entity PLANS by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN plans.planid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN plans.plan streetworkid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN plans.plan blue print
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE BLUE—PRINT';

COMMENT ON COLUMN plans.plan description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

REM
REM Created from Entity SCHEDULE by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table SCHEDULES
CREATE TABLE schedules(

scheid NUMBER NOT NULL,
scheemployeeid NUMBER NULL

COMMENT ON TABLE schedules
IS Created from Entity SCHEDULE by OPS$MJT on 18-FEB-94;

COMMENT ON COLUMN schedules.scheid
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN schedules.scheemplOyeeid
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table SERVICE APPL
CREATE TABLE service appl(
servidi NUMBER NOT NULL,

applid2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE service appi
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN service appl.sery idl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN service appl.applid2
IS 'unique id for appliance';

REM
REM Created from Entity SERVICE CONTRACTS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table SERVICE CONTRACTS
CREATE TABLE service contracts(
servid NUMBER NOT NULL,

servcustomerid NUMBER NOT NULL,

sery cost NUMBER(9,2) NULL,
sery description CHAR(100) NULL,

sery end date DATE NULL,
sery start time DATE NULL,
serv_start_date DATE NULL,
sery end time DATE NULL

COMMENT ON TABLE service—contracts
IS 'Created from Entity SERVICE CONTRACTS by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN service contracts.servid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN servicecontracts.servcustomerid
IS 'unique id';

COMMENT ON COLUMN service_contracts.serv_cost
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE COST';

COMMENT ON COLUMN service contracts.sery description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

COMMENT ON COLUMN service_contracts.serv_end_date
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE END_DATE';

COMMENT ON COLUMN service _contracts. sery start time
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE START—TIME';

COMMENT ON COLUMN service contracts.sery start_date
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE START—DATE';

COMMENT ON COLUMN service_contracts. sery end time

IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE END TIME';

REM
REM Created from Entity SIPHON by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table SIPHONS
CREATE TABLE siphons(
siph_id NUMBER NOT NULL,
siphpiperecordid NUMBER(7,0) NOT NULL,

siph_date DATE NULL,
siph_photo LONG RAW NULL,
siph settings CHAR(100) NULL,
siph_description CHAR(100) NULL

COMMENT ON TABLE siphons
IS 'Created from Entity SIPHON by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN siphons.siph_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN siphons.siph_pipe_record_id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE RECORD—ID';

COMMENT ON COLUMN siphons.siph_date
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DATE';

COMMENT ON COLUMN siphons.siph photo
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE PHOTO';

COMMENT ON COLUMN siphons.siphsettirigs
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE SETTINGS';

COMMENT ON COLUMN siphons.siph description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

REM
REM Created from Entity SPECIALIST CONTRACTORS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table SPECIALIST CONTRACTORSS
CREATE TABLE specialist contractors s
spec_id NUMBER NOT NULL,
spec—build —id NUMBER NULL,
spec_contact_name CHAR (20) NULL,
spec name CHAR(30) NULL,
spec_telephone CHAR(15) NULL

COMMENT ON TABLE specialist contractorss
IS 'Created from Entity SPECIALIST CONTRACTORS by OPS$MJT on 18-FEB-94 1 ;

COMMENT ON COLUMN specialist contractorss.specid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN specialist_contractores. spec_build_id
IS 'unique id';

COMMENT ON COLUMN specialist contractorss . spec_contact_name
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE CONTACT NAME';

COMMENT ON COLUMN specialist contractorss . spec name
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

COMMENT ON COLUMN specialist contractorss . spec_telephone
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE TELEPHONE';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table SPECIALIST _SCHEDULE
CREATE TABLE specialist—schedule(
spec idl NUMBER NOT NULL,

scheid2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE specialist schedule
IS 'AUTOCREATED - Intersection table;

COMMENT ON COLUMN specialist schedule.specidl
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN specialist schedule.scheid2
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table SPECIAL _CUSTOMER
CREATE TABLE special customer(
idi NUMBER NOT NULL,
cust_id2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE special_customer
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN special customer.idl
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN special customer.cust_id2
IS 'unique id';

REM
REM Created from Entity SPECIAL NEEDS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table SPECIAL _NEEDS
CREATE TABLE special needs(
id NUMBER NOT NULL,
priority NUMBER NULL,
type CHAR(30) NULL

COMMENT ON TABLE special needs
IS 'Created from Entity SPECIAL NEEDS by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN special needs.id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN special needs.priority
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE PRIORITY';

COMMENT ON COLUMN special needs.type
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE TYPE';

REM
REM Created from Entity STREET by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table STREETS
CREATE TABLE streets(
stre_id NUMBER NOT NULL,
stretownid NUMBER NULL,
stre name CHAR(30) NULL,
stre route number CHAR(S) NULL,
stre type CHAR(10) NULL

COMMENT ON TABLE streets
IS 'Created from Entity STREET by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN streets.streid

IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN streets.stre town id
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN streets.stre name
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

COMMENT ON COLUMN streets.stre route number
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ROUTE NUMBER';

COMMENT ON COLUMN streets.stre type
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE TYPE';

REM
REM Created from Entity STREETWORKS by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table STREETWORKS
CREATE TABLE streetworks(
id NUMBER NOT NULL,
comments LONG NULL,
notice_period CHAR(20) NULL,
recip_cross_ref NUMBER NULL,
start —date DATE NULL,
start time DATE NULL,
reinstatement CHAR(20) NULL,
orig_cross_ref NUMBER NULL,
description CHAR(100) NULL,
end date DATE NULL,
end time DATE NULL

COMMENT ON TABLE streetworks
IS 'Created from Entity STREETWORKS by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN streetworks.id
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN streetworks.comments
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE COMMENTS';

COMMENT ON COLUMN streetworks.notice period
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NOTICE—PERIOD';

COMMENT ON COLUMN streetworks.recip_cross_ref
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE RECIP CROSS REF';

COMMENT ON COLUMN streetworks.start date
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE START—DATE';

COMMENT ON COLUMN streetworks.start time
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE START—TIME';

COMMENT ON COLUMN streetworks.reinstatement
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE REINSTATEMENT';

COMMENT ON COLUMN streetworks.orig cross ref
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ORIG CROSS REF';

COMMENT ON COLUMN streetworks.description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

COMMENT ON COLUMN streetworks.end date
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE END DATE';

COMMENT ON COLUMN streetworks.end time
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE END—TIME';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table STREETWORKORIG
CREATE TABLE streetworkorig(
idl NUMBER NOT NULL,

origid2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE streetworkorig
IS 1 AUTOCREATED - Intersection table;

COMMENT ON COLUMN streetworkorig.idl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN streetworkorig.origid2
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table STREETWORK SCHEDULE
CREATE TABLE streetworkschedule(
idl NUMBER NOT NULL,
scheid2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE streetwork schedule
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN streetworkschedule.idl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN streetworkschedule.scheid2
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM AUTOCREATED Intersection table
REM
PROMPT
PROMPT Creating Table STREET STREETWORK
CREATE TABLE street_streetwork(
streidl NUMBER NOT NULL,
id2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE streetstreetwork
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN streetstreetwork.streidl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN streetstreetwork.id2
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM Created from Entity TOWN by OPS$MJT on 18-FEB--94
REM
PROMPT
PROMPT Creating Table TOWNS
CREATE TABLE towns(
town id NUMBER NOT NULL,
town county id NUMBER NOT NULL,
town name CHAR(50) NULL

COMMENT ON TABLE towns
IS 'Created from Entity TOWN by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN towns.townid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN towns.towncountyid
IS 'unique id';

COMMENT ON COLUMN towns.town name
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

REM
REM Created from Entity USAGE by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table USAGE
CREATE TABLE usage(
usagid NUMBER NOT NULL,

usag description CHAR(50) NULL

COMMENT ON TABLE usage
IS 'Created from Entity USAGE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN usage.usagid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN usage.usag description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

REM
REM Created from Entity VEHICLE by OPS$MJT on 18-FEB-94

REM
PROMPT
PROMPT Creating Table VEHICLES
CREATE TABLE vehicles(
vehi id NUMBER NOT NULL,
vehi schedule id NUMBER NOT NULL,
vehi v make id NUMBER NOT NULL,
vehi comments CHAR(100) NULL,
vehi description CHAR(100) NULL,
vehi number plate CHAR(15) NULL

COMMENT ON TABLE vehicles
IS 'Created from Entity VEHICLE by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN vehicles.vehiid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN vehicles.vehischeduleid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN vehicles.vehivmake—id
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN vehicles vehi comments
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE COMMENTS';

COMMENT ON COLUMN vehicles.vehi description
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE DESCRIPTION';

COMMENT ON COLUMN vehicles.vehi number plate
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NUMBER PLATE';

REM
REM AUTOCREATED - Intersection table
REM
PROMPT
PROMPT Creating Table VEHICLE—USAGE
CREATE TABLE vehicle usage(
vehiidl NUMBER NOT NULL,

usagid2 NUMBER NOT NULL

PCTFREE 2

COMMENT ON TABLE vehicle usage
IS 'AUTOCREATED - Intersection table';

COMMENT ON COLUMN vehicle usage.vehi idl
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN vehicle usage.usag 1d2
IS COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

REM
REM Created from Entity VEHICULE MAKER by OPS$MJT on 18-FEB-94
REM
PROMPT
PROMPT Creating Table VEHICULE MAKERS
CREATE TABLE vehiculemakers(
v_ma_id NUMBER NOT NULL,
vma name CHAR(20) NULL

COMMENT ON TABLE vehicule makers
IS 'Created from Entity VEHICULE MAKER by OPS$MJT on 18-FEB-94';

COMMENT ON COLUMN vehiculemakers.vnaid
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE ID';

COMMENT ON COLUMN vehicule makers.v ma name
IS 'COLUMN DEFINITION DERIVED FROM ATTRIBUTE NAME';

PROMPT Adding PRIMARY Constraint To ACCOUNTS Table

ALTER TABLE ACCOUNTS ADD
PRIMARY KEY (ACC ID)
CONSTRAINT ACC_PK

/

PROMPT Adding PRIMARY Constraint To APPLIANCES Table

ALTER TABLE APPLIANCES ADD
PRIMARY KEY (APPL_ID)
CONSTRAINT APPLPK

/

PROMPT Adding PRIMARY Constraint To APPLIANCE MAKES Table

ALTER TABLE APPLIANCE MAKES ADD
PRIMARY KEY (ID)
CONSTRAINT APL_M_PK

/

PROMPT Adding PRIMARY Constraint To APPLIANCE—TYPES Table

ALTER TABLE APPLIANCE_TYPES ADD
PRIMARY KEY (APL ID)
CONSTRAINT APLTPK

/

PROMPT Adding PRIMARY Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
PRIMARY KEY (BUlL ID)
CONSTRAINT BUILD_PK

/

PROMPT Adding PRIMARY Constraint To BUILDING—USES Table

ALTER TABLE BUILDING USES ADD
PRIMARY KEY (ID)
CONSTRAINT BUILDUPK

/

PROMPT Adding PRIMARY Constraint To BUILD BUILDU Table

ALTER TABLE BUILD BUILDU ADD
PRIMARY KEY (BUlL IDl,

ID2)
CONSTRAINT BUILD BUILDUPK

/

PROMPT Adding PRIMARY Constraint To CARRIERS Table

ALTER TABLE CARRIERS ADD
PRIMARY KEY (CARRID)
CONSTRAINT CARRIERPK

/

PROMPT Adding PRIMARY Constraint To CARRIER—PIPE Table

ALTER TABLE CARRIER PIPE ADD
PRIMARY KEY (CARRIDl,

PIPE RECORD ID2)
CONSTRAINT CARRIER PIPE PK

/

PROMPT Adding PRIMARY Constraint To CENSUS Table

ALTER TABLE CENSUS ADD
PRIMARY KEY (CENSID)
CONSTRAINT CENSUSPK

/

PROMPT Adding PRIMARY Constraint To CHARGES Table

ALTER TABLE CHARGES ADD
PRIMARY KEY (CHAR ID)
CONSTRAINT CHARGEPK

/

PROMPT Adding PRIMARY Constraint To COMPLAINTS Table

ALTER TABLE COMPLAINTS ADD
PRIMARY KEY (COMP ID)
CONSTRAINT COMPLAINTSPK

/

PROMPT Adding PRIMARY Constraint To COMPLAINTS CUSTOMER Table

ALTER TABLE COMPLAINTS CUSTOMER ADD
PRIMARY KEY (COMPIDl,

CUSTID2)
CONSTRAINT COMPLAINTS CUSTOMER PK

/

PROMPT Adding PRIMARY Constraint To COMPLETIONS Table

ALTER TABLE COMPLETIONS ADD
PRIMARY KEY (ID)
CONSTRAINT COMPLETIONPK

/

PROMPT Adding PRIMARY Constraint To COMPONENTS Table

ALTER TABLE COMPONENTS ADD
PRIMARY KEY (ID)
CONSTRAINT COMPPK

/

PROMPT Adding PRIMARY Constraint To COMP APL M Table

ALTER TABLE COMP APL M ADD
PRIMARY KEY (101,

ID2)
CONSTRAINT COMPAPLMPK

/

PROMPT Adding PRIMARY Constraint To COMP APL T Table

ALTER TABLE COMP_APL_T ADD
PRIMARY KEY (101,

APLID2)
CONSTRAINT COMPAPLTPK

/

PROMPT Adding PRIMARY Constraint To COUNCIL TAX Table

ALTER TABLE COUNCIL TAX ADD
PRIMARY KEY (COUNID)
CONSTRAINT COUNCILPK

/

PROMPT Adding PRIMARY Constraint To COUNTIES Table

ALTER TABLE COUNTIES ADD
PRIMARY KEY (ID)
CONSTRAINT COUNTYPK

/

PROMPT Adding PRIMARY Constraint To CUSTOMERS Table

ALTER TABLE CUSTOMERS ADD
PRIMARY KEY (COST _ID)
CONSTRAINT CUSTOMERPK

/

PROMPT Adding PRIMARY Constraint To EMERGENCIES Table

ALTER TABLE EMERGENCIES ADD
PRIMARY KEY (EMERID)
CONSTRAINT EMERGENCYPK

/

PROMPT Adding PRIMARY Constraint To EMERGENCY—CUSTOMER Table

ALTER TABLE EMERGENCY CUSTOMER ADD
PRIMARY KEY (EMERID1,

COST ID2)
CONSTRAINT EMERGENCY CUSTOMER PK

/

PROMPT Adding PRIMARY Constraint To EMPLOYEES Table

ALTER TABLE EMPLOYEES ADD
PRIMARY KEY (EMPLID)
CONSTRAINT EMPLOYEEPK

/

PROMPT Adding PRIMARY Constraint To GOVERNOR STATIONS Table

ALTER TABLE GOVERNOR STATIONS ADD
PRIMARY KEY (GOVEID)
CONSTRAINT GOVERNORPK

/

PROMPT Adding PRIMARY Constraint To HOUSEHOLDS Table

ALTER TABLE HOUSEHOLDS ADD
PRIMARY KEY (HOUSID)
CONSTRAINT HOUSEHOLDPK

/

PROMPT Adding PRIMARY Constraint To INJECTION POINTS Table

ALTER TABLE INJECTION POINTS ADD
PRIMARY KEY (INJEID)
CONSTRAINT INJECTIONPK

/

PROMPT Adding PRIMARY Constraint To INSTALLATIONS Table

ALTER TABLE INSTALLATIONS ADD
PRIMARY KEY (INST ID)
CONSTRAINT INSTALLATIPK

/

PROMPT Adding PRIMARY Constraint To INSTALL APPL Table

ALTER TABLE INSTALL APPL ADD
PRIMARY KEY (INST IDl,

APPLID2)
CONSTRAINT INSTALLAPPLPK

/

PROMPT Adding PRIMARY Constraint To METERS Table

ALTER TABLE METERS ADD
PRIMARY KEY (METE ID)
CONSTRAINT METERPK

/

PROMPT Adding PRIMARY Constraint To METER—TYPES Table

ALTER TABLE METER—TYPES ADD
PRIMARY KEY (ID)
CONSTRAINT METER_T_PK

/

PROMPT Adding PRIMARY Constraint To ORIGINATOR—RECIPIENTS Table

ALTER TABLE ORIGINATOR RECIPIENTS ADD
PRIMARY KEY (ORIGID)
CONSTRAINT ORIGPK

/

PROMPT Adding PRIMARY Constraint To PAY Table

ALTER TABLE PAY ADD
PRIMARY KEY (PAY ID)
CONSTRAINT PAY_PK

/

PROMPT Adding PRIMARY Constraint To PIPES Table

ALTER TABLE PIPES ADD
PRIMARY KEY (PIPE _RECORD_ID)
CONSTRAINT PIPEPK

/

PROMPT Adding PRIMARY Constraint To PIPE NETWORKS Table

ALTER TABLE PIPE NETWORKS ADD
PRIMARY KEY (ID)
CONSTRAINT PIPENETWOPK

/

PROMPT Adding PRIMARY Constraint To PIPE STREET Table

ALTER TABLE PIPE STREET ADD
PRIMARY KEY (PIPE RECORD 101,

STRE 102)
CONSTRAINT PIPE STREET PK

/

PROMPT Adding PRIMARY Constraint To PLANS Table

ALTER TABLE PLANS ADD
PRIMARY KEY (PLAN ID)
CONSTRAINT PLANSPK

/

PROMPT Adding PRIMARY Constraint To SCHEDULES Table

ALTER TABLE SCHEDULES ADD
PRIMARY KEY (SCHEID)
CONSTRAINT SCHEDULEPK

/

PROMPT Adding PRIMARY Constraint To SERVICE APPL Table

ALTER TABLE SERVICE APPL ADD
PRIMARY KEY (SERVIDl,

APPLID2)
CONSTRAINT SERVICEAPPLPK

/

PROMPT Adding PRIMARY Constraint To SERVICE—CONTRACTS Table

ALTER TABLE SERVICE_CONTRACTS ADD
PRIMARY KEY (SERVID)
CONSTRAINT SERVICE CO PK

/

PROMPT Adding PRIMARY Constraint To SIPHONS Table

ALTER TABLE SIPHONS ADD
PRIMARY KEY (SIPHID)
CONSTRAINT SIPHON PR

/

PROMPT Adding PRIMARY Constraint To SPECIALIST CONTRACTORSS Table

ALTER TABLE SPECIALIST CONTRACTORSS ADD
PRIMARY KEY (SPEC ID)
CONSTRAINT SPECIALISTPK

/

PROMPT Adding PRIMARY Constraint To SPECIALIST—SCHEDULE Table

ALTER TABLE SPECIALIST_SCHEDULE ADD
PRIMARY KEY (SPEC IDl,

SCHEID2)
CONSTRAINT SPECIALIST SCHEDULE PK

/

PROMPT Adding PRIMARY Constraint To SPECIAL—CUSTOMER Table

ALTER TABLE SPECIAL CUSTOMER ADD
PRIMARY KEY (IDl,

CUSTID2)
CONSTRAINT SPECIAL CUSTOMER PK

/

PROMPT Adding PRIMARY Constraint To SPECIAL—NEEDS Table

ALTER TABLE SPECIAL NEEDS ADD
PRIMARY KEY (ID)
CONSTRAINT SPECIAL NE PK

/

PROMPT Adding PRIMARY Constraint To STREETS Table

ALTER TABLE STREETS ADD
PRIMARY KEY (STREID)
CONSTRAINT STREET—PR

/

PROMPT Adding PRIMARY Constraint To STREETWORKS Table

ALTER TABLE STREETWORKS ADD
PRIMARY KEY (ID)
CONSTRAINT STREETWORKPK

/

PROMPT Adding PRIMARY Constraint To STREETWORKORIG Table

ALTER TABLE STREETWORKORIG ADD
PRIMARY KEY (IDl,

ORIGID2)
CONSTRAINT STREETWORKORIGPK

/

PROMPT Adding PRIMARY Constraint To STREETWORK SCHEDULE Table

ALTER TABLE STREETWORK SCHEDULE ADD
PRIMARY KEY (IDi,

SCHEID2)
CONSTRAINT STREETWORKSCHEDULEPK

/

PROMPT Adding PRIMARY Constraint To STREET STREETWORK Table

ALTER TABLE STREET STREETWORK ADD
PRIMARY KEY (STREIDl,

ID2)
CONSTRAINT STREET STREETWORKPK

/

PROMPT Adding PRIMARY Constraint To TOWNS Table

ALTER TABLE TOWNS ADD
PRIMARY KEY (TOWN—ID)
CONSTRAINT TOWNPK

/

PROMPT Adding PRIMARY Constraint To USAGE Table

ALTER TABLE USAGE ADD
PRIMARY KEY (USAGID)
CONSTRAINT USAGE PR

/

PROMPT Adding PRIMARY Constraint To VEHICLES Table

ALTER TABLE VEHICLES ADD
PRIMARY KEY (VEHIID)
CONSTRAINT VEHICLEPK

/

PROMPT Adding PRIMARY Constraint To VEHICLE—USAGE Table

ALTER TABLE VEHICLE USAGE ADD
PRIMARY KEY (VEHIIDl,

USAGID2)
CONSTRAINT VEHICLE USAGE PK

/

PROMPT Adding PRIMARY Constraint To VEHICULE MAKERS Table

ALTER TABLE VEHICULE MAKERS ADD
PRIMARY KEY (V MA ID)
CONSTRAINT VMAKEPK

/

PROMPT Adding FOREIGN Constraint To ACCOUNTS Table

ALTER TABLE ACCOUNTS ADD
FOREIGN KEY (ACC CUSTOMER ID)
REFERENCES CUSTOMERS

COST _ID)
CONSTRAINT ACC—SENT—TO

/

PROMPT Adding FOREIGN Constraint To APPLIANCES Table

ALTER TABLE APPLIANCES ADD
FOREIGN KEY (APPL CUSTOMER ID)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT APPL BELONG TO

/

PROMPT Adding FOREIGN Constraint To APPLIANCES Table

ALTER TABLE APPLIANCES ADD
FOREIGN KEY (APPL APL TID)
REFERENCES APPLIANCE TYPES

APL ID)
CONSTRAINT APPL HAS

/

PROMPT Adding FOREIGN Constraint To APPLIANCES Table

ALTER TABLE APPLIANCES ADD
FOREIGN KEY (APPL APL MID)
REFERENCES APPLIANCE—MAKES

ID)
CONSTRAINT APPL MADE BY

/

PROMPT Adding FOREIGN Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
FOREIGN KEY (BUlL STREET ID)
REFERENCES STREETS

STREID)
CONSTRAINT BUILD_SITUATED_ON

/

PROMPT Adding FOREIGN Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
FOREIGN KEY (BUlL CUSTOMER ID)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT BUILD—MAY—CONTAIN

/

PROMPT Adding FOREIGN Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
FOREIGN KEY (BUlL HOUSEHOLD ID)
REFERENCES HOUSEHOLDS

BOOS ID)
CONSTRAINT BUILD MAY CONTAIN2

/

PROMPT Adding FOREIGN Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
FOREIGN KEY (BUlL CENSUS ID)
REFERENCES CENSUS

CENSID)
CONSTRAINT BUILD HAVE

/

PROMPT Adding FOREIGN Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
FOREIGN KEY (BUlL CARRIER ID)
REFERENCES CARRIERS

CARRID)
CONSTRAINT BUILD—CONTAINS

/

PROMPT Adding FOREIGN Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
FOREIGN KEY (BUlL SPECIALIST ID)
REFERENCES SPECIALIST CONTRACTORSS

SPEC ID)
CONSTRAINT BUILD CONTAINS2

/

PROMPT Adding FOREIGN Constraint To BUILDINGS Table

ALTER TABLE BUILDINGS ADD
FOREIGN KEY (BUlL EMPLOYEE ID)
REFERENCES EMPLOYEES

EMPLID)
CONSTRAINT BUILD—CONTAIN

/

PROMPT Adding FOREIGN Constraint To BUILD BUILDU Table

ALTER TABLE BUILD BUILDU ADD
FOREIGN KEY (BUlL IDi)
REFERENCES BUILDINGS

BUlL ID)
CONSTRAINT BUlL BUlL FR

/

PROMPT Adding FOREIGN Constraint To BUILD BUILDU Table

ALTER TABLE BUILD BUILDU ADD
FOREIGN KEY (ID2)
REFERENCES BUILDING—USES

ID)
CONSTRAINT BUlL BUlL FK2

/

PROMPT Adding FOREIGN Constraint To CARRIERS Table

ALTER TABLE CARRIERS ADD
FOREIGN KEY (CARE BUILD ID)
REFERENCES BUILDINGS

BUlL ID)
CONSTRAINT CARRIER_RESIDENT_IN

/

PROMPT Adding FOREIGN Constraint To CARRIER—PIPE Table

ALTER TABLE CARRIER PIPE ADD
FOREIGN KEY (CARR 101)
REFERENCES CARRIERS

CARE_ID)

CONSTRAINT CARRPIPEFK

/

PROMPT Adding FOREIGN Constraint To CARRIER PIPE Table

ALTER TABLE CARRIER PIPE ADD
FOREIGN KEY (PIPE RECORD ID2)
REFERENCES PIPES

PIPE RECORD ID)
CONSTRAINT CARR PIPE FK2

/

PROMPT Adding FOREIGN Constraint To CENSUS Table

ALTER TABLE CENSUS ADD
FOREIGN KEY (CENS BUILD ID)
REFERENCES BUILDINGS

BUlL ID)
CONSTRAINT CENSUS—RECORD

/

PROMPT Adding FOREIGN Constraint To COMPLAINTS CUSTOMER Table

ALTER TABLE COMPLAINTS CUSTOMER ADD
FOREIGN KEY (COMPID1)
REFERENCES COMPLAINTS

COMP ID)
CONSTRAINT COMPCUSTFK

/

PROMPT Adding FOREIGN Constraint To COMPLAINTS—CUSTOMER Table

ALTER TABLE COMPLAINTS_CUSTOMER ADD
FOREIGN KEY (CUSTID2)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT COMP_CUST_FK2

/

PROMPT Adding FOREIGN Constraint To COMPLETIONS Table

ALTER TABLE COMPLETIONS ADD
FOREIGN KEY (STREETWORKID)
REFERENCES STREETWORKS

ID)
CONSTRAINT COMPLETION HAVE

/

PROMPT Adding FOREIGN Constraint To COMPAPLM Table

ALTER TABLE COMPAPLM ADD
FOREIGN KEY (IDl)
REFERENCES COMPONENTS

ID)
CONSTRAINT COMPAPLFK3

/

PROMPT Adding FOREIGN Constraint To COMP_APL_M Table

ALTER TABLE COMP APL M ADD
FOREIGN KEY (ID2)
REFERENCES APPLIANCE MAKES

ID)
CONSTRAINT COMPAPLFK4

/

PROMPT Adding FOREIGN Constraint To COMP APL T Table

ALTER TABLE COMP APL T ADD

FOREIGN KEY (IDl)
REFERENCES COMPONENTS

10)
CONSTRAINT COMPAPLFK

/

PROMPT Adding FOREIGN Constraint To COMP APL T Table

ALTER TABLE COMP APL T ADD

FOREIGN KEY (APLID2)
REFERENCES APPLIANCE TYPES

APL ID)
CONSTRAINT COMPAPLFK2

/

PROMPT Adding FOREIGN Constraint To COUNCIL TAX Table

ALTER TABLE COUNCIL TAX ADD

FOREIGN KEY (COON HOUSEHOLD ID)
REFERENCES HOUSEHOLDS

HOUSID)
CONSTRAINT COUNCIL—OWED—BY

/

PROMPT Adding FOREIGN Constraint To COUNCIL TAX Table

ALTER TABLE COUNCIL TAX ADD

FOREIGN KEY (COUN CHARGE ID)
REFERENCES CHARGES

CHAR ID)
CONSTRAINT COUNCIL—HAVE

/

PROMPT Adding FOREIGN Constraint To CUSTOMERS Table

ALTER TABLE CUSTOMERS ADD
FOREIGN KEY (CUST BUILD ID)
REFERENCES BUILDINGS

BUlL ID)

CONSTRAINT CUSTOMER_RESIDES_IN

/

PROMPT Adding FOREIGN Constraint To CUSTOMERS Table

ALTER TABLE CUSTOMERS ADD
FOREIGN KEY (CUST PIPE—RECORD—ID)
REFERENCES PIPES

PIPE_RECORD_ID)
CONSTRAINT CUSTOMER CONNECTED TO

/

PROMPT Adding FOREIGN Constraint To CUSTOMERS Table

ALTER TABLE CUSTOMERS ADD
FOREIGN KEY (CUST _EMPLOYEE_ID)
REFERENCES EMPLOYEES

EMPLID)
CONSTRAINT CUSTOMER—BE

/

PROMPT Adding FOREIGN Constraint To EMERGENCY—CUSTOMER Table

ALTER TABLE EMERGENCY_CUSTOMER ADD
FOREIGN KEY (EMERID1)
REFERENCES EMERGENCIES

EMERID)
CONSTRAINT EMERCUSTFK

/

PROMPT Adding FOREIGN Constraint To EMERGENCY CUSTOMER Table

ALTER TABLE EMERGENCY CUSTOMER ADD
FOREIGN KEY (CUST 102)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT EMERCUSTFK2

/

PROMPT Adding FOREIGN Constraint To EMPLOYEES Table

ALTER TABLE EMPLOYEES ADD
FOREIGN KEY (EMPL CUSTOMER ID)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT EMPLOYEE—BE

/

PROMPT Adding FOREIGN Constraint To EMPLOYEES Table

ALTER TABLE EMPLOYEES ADD
FOREIGN KEY (EMPL PAY ID)
REFERENCES PAY

PAY ID)
CONSTRAINT EMPLOYEE—RECEIVE

/

PROMPT Adding FOREIGN Constraint To EMPLOYEES Table

ALTER TABLE EMPLOYEES ADD
FOREIGN KEY (EMPL SCHEDULE ID)
REFERENCES SCHEDULES

SCHEID)
CONSTRAINT EMPLOYEE—SCHEDULED

/

PROMPT Adding FOREIGN Constraint To GOVERNOR STATIONS Table

ALTER TABLE GOVERNOR STATIONS ADD
FOREIGN KEY (DOVEPIPE_RECORD_ID)
REFERENCES PIPES

PIPE RECORD ID)
CONSTRAINT GOVERNOR SITUATED ON

/

PROMPT Adding FOREIGN Constraint To HOUSEHOLDS Table

ALTER TABLE HOUSEHOLDS ADD
FOREIGN KEY (HOUS BUILD ID)
REFERENCES BUILDINGS

BUlL ID)
CONSTRAINT HOUSEHOLD_RESIDES_IN

/

PROMPT Adding FOREIGN Constraint To HOUSEHOLDS Table

ALTER TABLE HOUSEHOLDS ADD
FOREIGN KEY (HOUS COUNCIL T ID)
REFERENCES COUNCIL TAX

COUNID)
CONSTRAINT HOUSEHOLD—PAYS

/

PROMPT Adding FOREIGN Constraint To INJECTION—POINTS Table

ALTER TABLE INJECTION POINTS ADD
FOREIGN KEY (INJE PIPE RECORD ID)
REFERENCES PIPES

PIPE_RECORD_ID)
CONSTRAINT INJECTION_SITUATED_ON

/

PROMPT Adding FOREIGN Constraint To INSTALLATIONS Table

ALTER TABLE INSTALLATIONS ADD
FOREIGN KEY (INST CUSTOMER ID)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT INSTALLATI APPLY TO

/

PROMPT Adding FOREIGN Constraint To INSTALL APPL Table

ALTER TABLE INSTALL APPL ADD
FOREIGN KEY (INST IDl)
REFERENCES INSTALLATIONS

INST ID)
CONSTRAINT INSTAPPLFK

/

PROMPT Adding FOREIGN Constraint To INSTALL APPL Table

ALTER TABLE INSTALL APPL ADD
FOREIGN KEY (APPLID2)
REFERENCES APPLIANCES

APPL ID)
CONSTRAINT INST APPL FK2

/

PROMPT Adding FOREIGN Constraint To METERS Table

ALTER TABLE METERS ADD
FOREIGN KEY (METE _CUSTOMER_ID)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT METER—APPLY—TO

/

PROMPT Adding FOREIGN Constraint To METERS Table

ALTER TABLE METERS ADD
FOREIGN KEY (METE METERTID)
REFERENCES METER TYPES

ID)
CONSTRAINT METER HAS

/

PROMPT Adding FOREIGN Constraint To PAY Table

ALTER TABLE PAY ADD
FOREIGN KEY (PAY EMPLOYEE ID)
REFERENCES EMPLOYEES

EMPLID)
CONSTRAINT PAY—PAID—TO

/

PROMPT Adding FOREIGN Constraint To PIPES Table

ALTER TABLE PIPES ADD
FOREIGN KEY (PIPE PIPE NETWO ID)
REFERENCES PIPE NETWORKS

ID)
CONSTRAINT PIPE PART OF

/

PROMPT Adding FOREIGN Constraint To PIPES Table

ALTER TABLE PIPES ADD
FOREIGN KEY (PIPE—GOVERNOR—ID)

REFERENCES GOVERNOR STATIONS
GOVEID)

CONSTRAINT PIPE —SUPPORT

/

PROMPT Adding FOREIGN Constraint To PIPE STREET Table

ALTER TABLE PIPE STREET ADD
FOREIGN KEY (PIPE RECORD IDl)
REFERENCES PIPES

PIPE—RECORD—ID)
CONSTRAINT P1 PESTREFK

/

PROMPT Adding FOREIGN Constraint To PIPE—STREET Table

ALTER TABLE PIPE STREET ADD
FOREIGN KEY (STREID2)
REFERENCES STREETS

STREID)
CONSTRAINT PIPE STRE FK2

/

PROMPT Adding FOREIGN Constraint To PLANS Table

ALTER TABLE PLANS ADD
FOREIGN KEY (PLAN STREETWORK ID)
REFERENCES STREETWORKS

ID)
CONSTRAINT PLANS PLANNED

/

PROMPT Adding FOREIGN Constraint To SCHEDULES Table

ALTER TABLE SCHEDULES ADD
FOREIGN KEY (SCHE EMPLOYEE ID)
REFERENCES EMPLOYEES

EMPLID)
CONSTRAINT SCHEDULE—RECEIVED

/

PROMPT Adding FOREIGN Constraint To SERVICE APPL Table

ALTER TABLE SERVICE APPL ADD
FOREIGN KEY (SERV 101)
REFERENCES SERVICE_CONTRACTS

SERV ID)
CONSTRAINT SERVAPPLFK

/

PROMPT Adding FOREIGN Constraint To SERVICE—APPL Table

ALTER TABLE SERVICE APPL ADD
FOREIGN KEY (APPLID2)
REFERENCES APPLIANCES

APPL ID)
CONSTRAINT SERV_APPL_FK2

/

PROMPT Adding FOREIGN Constraint To SERVICE—CONTRACTS Table

ALTER TABLE SERVICE_CONTRACTS ADD
FOREIGN KEY (SERV CUSTOMER ID)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT SERVICE_CO_PERTAIN_TO

/

PROMPT Adding FOREIGN Constraint To SIPHONS Table

ALTER TABLE SIPHONS ADD
FOREIGN KEY (SIPH PIPE RECORD ID)
REFERENCES PIPES

PIPE _RECORD _ID)
CONSTRAINT SIPHON SITUATED ON

/

PROMPT Adding FOREIGN Constraint To SPECIALIST CONTRACTORSS Table

ALTER TABLE SPECIALIST CONTRACTORSS ADD
FOREIGN KEY (SPEC _BUILD_ID)
REFERENCES BUILDINGS

BUI LID)
CONSTRAINT SPECIALIST_RESIDE_IN

/

PROMPT Adding FOREIGN Constraint To SPECIALIST_SCHEDULE Table

ALTER TABLE SPECIALIST_SCHEDULE ADD
FOREIGN KEY (SPEC 101)
REFERENCES SPECIALIST CONTRACTORSS

SPEC ID)
CONSTRAINT SPEC SCHEFK

/

PROMPT Adding FOREIGN Constraint To SPECIALIST_SCHEDULE Table

ALTER TABLE SPECIALIST_SCHEDULE ADD
FOREIGN KEY (SCHEID2)
REFERENCES SCHEDULES

SCHEID)
CONSTRAINT SPEC_SCHE_FK2

/

PROMPT Adding FOREIGN Constraint To SPECIAL—CUSTOMER Table

ALTER TABLE SPECIAL CUSTOMER ADD
FOREIGN KEY (IDl)
REFERENCES SPECIAL NEEDS

ID)
CONSTRAINT SPECCUSTFK

/

PROMPT Adding FOREIGN Constraint To SPECIAL—CUSTOMER Table

ALTER TABLE SPECIAL CUSTOMER ADD
FOREIGN KEY (CUSTID2)
REFERENCES CUSTOMERS

CUSTID)
CONSTRAINT S PECCUSTFK2

/

PROMPT Adding FOREIGN Constraint To STREETS Table

ALTER TABLE STREETS ADD
FOREIGN KEY (STRE TOWN ID)
REFERENCES TOWNS

TOWN ID)
CONSTRAINT STREET_LOCATED_IN

/

PROMPT Adding FOREIGN Constraint To STREETWORKORIG Table

ALTER TABLE STREETWORKORIG ADD
FOREIGN KEY (IDl)
REFERENCES STREETWORKS

ID)
CONSTRAINT STREORIGFK

/

PROMPT Adding FOREIGN Constraint To STREETWORKORIG Table

ALTER TABLE STREETWORK ORIG ADD
FOREIGN KEY (ORIG 102)
REFERENCES ORIGINATOR RECIPIENTS

ORIG ID)
CONSTRAINT STREORIGFK2

/

PROMPT Adding FOREIGN Constraint To STREETWORK SCHEDULE Table

ALTER TABLE STREETWORK SCHEDULE ADD
FOREIGN KEY (101)
REFERENCES STREETWORKS

ID)
CONSTRAINT STRE_SCHE_FK

/

PROMPT Adding FOREIGN Constraint To STREETWORK SCHEDULE Table

ALTER TABLE STREETWORK SCHEDULE ADD
FOREIGN KEY (SCHE 102)
REFERENCES SCHEDULES

SCHEID)
CONSTRAINT STRESCHEFK2

/

PROMPT Adding FOREIGN Constraint To STREET STREETWORK Table

ALTER TABLE STREET STREETWORK ADD
FOREIGN KEY (STREID1)
REFERENCES STREETS

SIRE ID)
CONSTRAINT STRESTREFK

/

PROMPT Adding FOREIGN Constraint To STREET STREETWORK Table

ALTER TABLE STREET STREETWORK ADD
FOREIGN KEY (102)
REFERENCES STREETWORKS

ID)
CONSTRAINT STRESTREFK2

/

PROMPT Adding FOREIGN Constraint To TOWNS Table

ALTER TABLE TOWNS ADD
FOREIGN KEY (TOWN COUNTY ID)
REFERENCES COUNTIES

ID)
CONSTRAINT TOWN LOCATED IN

/

PROMPT Adding FOREIGN Constraint To VEHICLES Table

ALTER TABLE VEHICLES ADD
FOREIGN KEY (VEHI SCHEDULE ID)
REFERENCES SCHEDULES

SCHEID)
CONSTRAINT VEHICLE—SCHEDULED

/

PROMPT Adding FOREIGN Constraint To VEHICLES Table

ALTER TABLE VEHICLES ADD
FOREIGN KEY (vEHIV MAKE ID)
REFERENCES VEHICULE MAKERS

V MA ID)
CONSTRAINT VEHICLE MADE BY

/

PROMPT Adding FOREIGN Constraint To VEHICLE USAGE Table

ALTER TABLE VEHICLE USAGE ADD
FOREIGN KEY (VEHI 101)
REFERENCES VEHICLES

VEHIID)
CONSTRAINT VEHIUSAGFK

/

PROMPT Adding FOREIGN Constraint To VEHICLE—USAGE Table

ALTER TABLE VEHICLE_USAGE ADD
FOREIGN KEY (USAG 102)
REFERENCES USAGE

USAGID)
CONSTRAINT VEHIUSAGFK2

/

REM
REM End of command file
REM
EXIT

Appendix C
The following is a validity check report from CASE*Designer, and was use to check mappings between entities

CASE-Dictionary Reports

Report ENTITY MODEL INFORMATION

Filename : cdents.lis

Run By OPS$MJT

Report date 17-APR-98 14r22r35

--+

I I

Parameter values I

Application System GAS
Version 1
Page Numbers ? Y
4 Character Prefix

--+

Date 17-APR-98 Entity Model Information Page 1

ACCOUNT

Each ACCOUNT has significance as Collates all information necessary for creating
bills to send to customers

Information about ACCOUNT includes id, credit—rating, payment due, start—date,
aprox annual usage, end date, etc.

Each ACCOUNT
must be sent to one and only one CUSTOMER

APPLIANCE

Each APPLIANCE has significance as Stores all gas appliance types available

Information about APPLIANCE includes id, make, description, type, etc.

Each APPLIANCE
must be made by one and only one APPLIANCE MAKER

and must be has one and only one APPLIANCE TYPE
and may be belong to one and only one CUSTOMER
and may be installed one or more INSTALLATIONS
and may be belong to one or more SERVICE CONTRACTS

APPLIANCE MAKER

Each APPLIANCE MAKER

Information about APPLIANCE MAKER includes id, name, etc.

Each APPLIANCE MAKER
may be make one or more APPLIANCES

and may be require one or more COMPONENTS

APPLIANCE TYPE

Each APPLIANCE TYPE

Information about APPLIANCE TYPE includes id, name, etc.

Each APPLIANCE TYPE
may be belongs one or more APPLIANCES

and may be require one or more COMPONENTS

Date 17-APR-98 Entity Model Information Page 2

AVENUE

Each AVENUE

Each AVENUE
may be contains one or more HOMES

BUILDING

Each BUILDING has significance as Description of buildings with gas supplies

Information about BUILDING includes Id, description, category, label point,
xcoord, ycoord, number, postcode, name, etc.

Each BUILDING
must be may contain one and only one HOUSEHOLD

and may be have one or more BUILDING USES
and may be contains one and only one CARRIER
and may be have one and only one CENSUS
and may be may contain one and only one CUSTOMER
and may be contain one and only one EMPLOYEE
and may be contains one and only one SPECIALIST CONTRACTOR
and may be situated on one and only one STREET

BUILDING USE

Each BUILDING USE also known as BUILD USE, has significance as Describes the
type of building use eg private, domestic etc

Information about BUILDING USE includes id, use, etc.

Each BUILDING USE
may be have one or more BUILDINGS

CARRIER

Each CARRIER has significance as details of carriers supplying gas into the
network

Information about CARRIER includes id, name, telephone, contact name, etc.

Each CARRIER
may be resident in one and only one BUILDING

and may be inserts into one or more PIPES

Date 17-APR-98 Entity Model Information Page 3

CENSUS

Each CENSUS has significance as contains census data from 1991 census

Information about CENSUS includes id, etc.

Each CENSUS
must be record one and only one BUILDING

CHARGE

Each CHARGE has significance as contains band charges for council tax

Information about CHARGE includes id, rate, etc.

Each CHARGE
may be used by one or more COUNCIL TAX

COMPLAINTS

Each COMPLAINTS has significance as description of complaint received from
customers

Information about COMPLAINTS includes id, description, action, etc.

Each COMPLAINTS
may be come from one or more CUSTOMERS

COMPLETION

Each COMPLETION has significance as completeion details of streetworks

Information about COMPLETION includes id, description, completion date, etc.

Each COMPLETION
must be have one and only one STREETMORKS

COMPONENTS

Each COMPONENTS

Information about COMPONENTS includes id, description, etc.

continued on next page

Date 17-APR-98 Entity Model Information Page 4

COMPONENTS continued

Each COMPONENTS
may be fit one or more APPLIANCE MAKERS

and may be fit one or more APPLIANCE TYPES

COUNCIL TAX

Each COUNCIL TAX has significance as council tax details

Information about COUNCIL TAX includes id, band, amount paid, last payment,
council name, etc.

Each COUNCIL TAX
must be have one and only one CHARGE

and may be owed by one and only one HOUSEHOLD

COUNTY

Each COUNTY has significance as Name of county, shire or region

Information about COUNTY includes id, name, etc.

Each COUNTY
may be contain one or more TOWNS

CUSTOMER

Each CUSTOMER has significance as customer details

Information about CUSTOMER includes id, surname, initials, title, etc.

Each CUSTOMER
must be owns one or more APPLIANCES

and may be receive one or more ACCOUNTS
and may be resides in one and only one BUILDING
and may be make one or more COMPLAINTS
and may be report one or more EMERGENCIES
and may be be one and only one EMPLOYEE
and may be require one or more INSTALLATIONS
and may be have one or more METERS
and may be connected to one and only one PIPE
and may be draw up one or more SERVICE CONTRACTS
and may be have one or more SPECIAL NEEDS

Date 17APR-98 Entity Model Information Page: 5

EMERGENCY

Each EMERGENCY

Information about EMERGENCY includes id description, action, priority, etc.

Each EMERGENCY
may be occur to one or more CUSTOMERS

EMPLOYEE

Each EMPLOYEE

Information about EMPLOYEE includes id, surname, initials, title, department,
status, job_description, etc.

Each EMPLOYEE
may be resides in one or more BUILDINGS

and may be be one and only one CUSTOMER
and may be receive one and only one PAY
and may be scheduled one and only one SCHEDULE

GOVERNOR STATION

Each GOVERNOR STATION

Information about GOVERNOR STATION includes id, settings, date of service,
description, etc.

Each GOVERNOR STATION
must be situated on one and only one PIPE

HOME

Each HOME

Each HOME
must be situated on one and only one AVENUE

HOUSEHOLD

Each HOUSEHOLD

Information about HOUSEHOLD includes id, surname, street, town, county,
postcode, type, etc.

continued on next page

Date 17-APR-98 Entity Model Information Page: 6

HOUSEHOLD continued

Each HOUSEHOLD
must be pays one and only one COUNCIL TAX

and may be resides in one and only one BUILDING

INJECTION POINT

Each INJECTION POINT

Information about INJECTION POINT includes id, settings: date, description, etc.

Each INJECTION POINT
must be situated on one and only one PIPE

INSTALLATION

Each INSTALLATION

Information about INSTALLATION includes id, description, cost, start_date,
end—date, start—time, endtitse, etc.

Each INSTALLATION
must be install one or more APPLIANCES

and must be apply to one and only one CUSTOMER

LAND PARCEL

Each LAND PARCEL

LAND USE ZONE

Each LAND USE ZONE

Each LAND USE ZONE
may be has one or more PERMITS

METER

Each METER

Information about METER includes id, reading, date, time, etc.

continued on next page

Date 17-APR-98 Entity Model Information Page 7

METER continued

Each METER
must be apply to one and only one CUSTOMER

and must be has one and only one METER TYPE

METER TYPE

Each METER TYPE

Information about METER TYPE includes id, type, etc.

Each METER TYPE
may be belong one or more METERS

ORIGINATOR RECIPIENT

Each ORIGINATOR RECIPIENT

Information about ORIGINATOR RECIPIENT includes id, name, etc.

Each ORIGINATOR—RECIPIENT
may be originate/ receive one or more STREETWORKS

OWNER

Each OWNER

PAY

Each PAY

Information about PAY includes id, rate, etc.

Each PAY
may be paid to one and only one EMPLOYEE

PERMIT

Each PERMIT

Each PERMIT
must be has one and only one LAND USE ZONE

Date 17-APR-98 Entity Model Information Page 8

PIPE

Each PIPE

Information about PIPE includes record id, dnl, action type, pressure, main _id,
status, length, method laid, date_laid, points rating, protection, district,
streetid, diameter, diameter units, material, sdr, joint type, comments, mtr,

etc.

Each PIPE
must be carries to one or more CUSTOMERS

and may be carries for one or more CARRIERS
and may be support one and only one GOVERNOR STATION
and may be support one or more INJECTION POINTS
and may be part of one and only one PIPE NETWORK
and may be support one or more SIPHONS
and may be refaced to one or more STREETS

PIPE NETWORK

Each PIPE NETWORK

Information about PIPE NETWORK includes id, name, total_length,
connectivity_details, etc.

Each PIPE NETWORK
must be comprises one or more PIPES

PLANS

Each PLANS

Information about PLANS includes id, description, blue_print, etc.

Each PLANE
must be planned one and only one STREETMORKS

SCHEDULE

Each SCHEDULE

Information about SCHEDULE includes id, etc.

Each SCHEDULE
may be received one and only one EMPLOYEE

and may be required one or more SPECIALIST CONTRACTORS
and may be schedule one or more STREETMORKS
and may be required one or more VEHICLES

Date 17-APR-98 Entity Model Information Page 9

SERVICE CONTRACTS

Each SERVICE CONTRACTS

Information about SERVICE CONTRACTS includes id, description, start_date, cost,
end—date, starttime, endtime, etc.

Each SERVICE CONTRACTS
must be contain one or more APPLIANCES

and must be pertain to one and only one CUSTOMER

SIPHON

Each SIPHON

Information about SIPHON includes id, settings, date, description, photo, etc.

Each SIPHON
must be situated on one and only one PIPE

SPECIAL NEEDS

Each SPECIAL NEEDS

Information about SPECIAL NEEDS includes id, type, priority, etc.

Each SPECIAL NEEDS
may be affect one or more CUSTOMERS

SPECIALIST CONTRACTOR

Each SPECIALIST CONTRACTOR

Information about SPECIALIST CONTRACTOR includes id, name, contact—name,

telephone, etc.

Each SPECIALIST CONTRACTOR
may be reside in one and only one BUILDING

and may be contracted one or more SCHEDULES

STREET

Each STREET

Information about STREET includes id, name, type, route number, etc.

continued on next page

Date 17-APR-98 Entity Model Information Page 10

STREET continued

Each STREET
must be contains one or more BUILDINGS

and may be refer one or more PIPES
and may be may contain one or more STREETWORKS
and may be located in one and only one TOWN

STREETWORKS

Each STREETWORKS

Information about STREETWORKS includes id, reinstatement, notice_period,
description, start _date, end _date, start—time, end time, orig_cross_ref,

recip_cross_ref, comments, etc.

Each STREETWORKS
may be have one or more COMPLETIONS

and may be have one or more ORIGINATOR RECIPIENTS
and may be have one or more PLANS
and may be scheduled one or more SCHEDULES
and may be situated on one or more STREETS

TOWN

Each TOWN

Information about TOWN includes id, name, etc.

Each TOWN
must be located in one and only one COUNTY

and may be contain one or more STREETS

USAGE

Each USAGE

Information about USAGE includes id, description, etc.

Each USAGE
may be apply one or more VEHICLES

VEHICLE

Each VEHICLE

Information about VEHICLE includes id, numberplate, description, comments, etc.

continued on next page

Date 17-APR-98 Entity Model Information Page 11

VEHICLE continued

Each VEHICLE
must be scheduled one and only one SCHEDULE

and must be made by one and only one VEHICULE MAKER
and may be has one or more USAGE

VEHICULE MAKER

Each VEHICULE MAKER

Information about VEHICULE MAKER includes name, Id, etc.

Each VEHICULE MAKER
may be make one or more VEHICLES

CASE*Dictionary Reports

ENTITY MODEL INFORMATION

End of Report

Appendix D

Example of C code used to create data for the corporate databes. This code is used to create
names for customers and employees in the corporate database.

#include <stdio.h>
linc1ude <stdlib.h>
#include <string.h>

#define MAX SURNAMES 2926
*define NUMBER REQUID 1500000
char Surname [MAX SURNANES] [80]

struct Initial
char* letter;
mt weight;

InitTab[J =

-1
"A." 5922 "B" 10528, 11 C . " , 15134,"D.", 20398,
UE., 26978,F.', 32242,G., 36190,"H.", 40138,
111. 11 , 46060, 11 J." , 49350, • , 52640,"L.", 57246,
"N." 61194, 11N .", 65800 1 Q 1

70406,"P.", 74354

"Q." 75670, 11 R . ", 80276, 11 S.", 85540 , 11 T.", 90146
'U. 1' 92120,"V." , 94094, 11 W." , 98042,"X.', 98700,
"Y.", 100674,"Z.", 101332 };

extern mt random()
char *addstr(d,$)
char *d, *s;

while ((*d++*s++) = \o')
return --d;

char * GetSurname()

char Name [4001, *p;
mt i, 11,12;
p = Name;

P = addstr(p," I');
± = random (MAX SURNAMES);
P = addstr(p,Surname[il);

#±fdef DEBUG
fpr±ntf (stderr, 'Surname %s\nT ,Name)

#end±f
if (random(1000)==1) {

I = random (MAX SURNAMES);

11 = strlen(Name);
12 = strlen(Surname[i]) +1;
if ((11 +12) <400) {

p = addstr(p,
± = random(MAX SURNAMES);

p = addstr(p,Surname[11);

#ifdef DEBUG
fpr±ntf (stderr, 'Surname %s\n',Name)

#end±f

return Name;

char * MakeTitle()

char Title [101
mt ±;
i = random(1000)
if (i < 450) strcpy(Title, "Mr. ")

else
if (i < 455) strcpy(Title, "Prof.
else
if (i< 700) strcpy(Title, "Ms. ")
else

if (i<965) strcpy(Title, "Mrs. ")
else

strcpy(Title, "Dr.
*ifdef DEBUG

fprintf(stderr, "Title %s\n",Title)
#endif

return Title;

char * Getlnitial (weight)
mt weight;

mt i=0;
/* printf(T%d\nT1,weight); */

while ((InitTab [ii .weight < weight) && (i < 26))

/* printf("%d \t%s\n",i,InitTab[i] .letter) ;*/
return (InitTab[i] .letter);

char * Generatelnitials()

mt i, count, rnum=0;
char *p, Inits [50]
p = Inits;

i=random(100)
count =3;
if (i<75) count--;
if (i<25) count--;

for (i=0; i< count; i++)
mum = random(101331);
p = addstr(p, Getlnitial(mnum));

*ifdef DEBUG
fprintf (stderr, 'Initials %s\n', Inits)

#endif
return(Inits)

main ()

mt i;
FILE *fopen() , *fin, *fout;
char INFILE[801, OUTFILE[80];
char buffer [512], *res, *p, *pos;

res = buffer;

*define ERRORMEG "Error opening file : %s.\n"
strcpy(INFILE, 1 /home/mette/oraclel/datamodel/fred2 .lis")
strcpy(OUTFILE,

"/home/mette/oraclel/datamodel/names/names .dat'1);
if ((fin=fopen(INFILE,11r11))==NULL){

printf (ERRORMSG, INFILE);
exit (1)

#ifndef DEBUG
if ((fout = fopen(OUTFILE, "w"))==NTJLL){

printf (ERRORMSG, OUTFILE);
exit (1)

*endif
for (1=0; i< MAX SURNAMES; i++)

fscanf (fj, T%sII,Surname [ii);

for (i=0; i< NUMBER REQUID; i++)
*ifdef DEBUG

fprintf (stderr, "Record %d\n" , 1);
*endif

res = addstr(res, MakeTitleO);
res = addstr(res , GeneratelnitialsO);
res =addstr(res, GetSurnameO)

fprintf (fout, '%s\n" ,buffer)

*ifdef DEBUG
fprintf (stderr, "Name %s\n' ,buffer)

*endif
if (1 (i %1000)) fprintf (stderr, "Name \t%d\n", 1);
strcpy (buffer,'");
res=buffer;

Appendix E
Examples of Smaliworid magik code used to create the entities and structures necessary to
digitise the gas mains network.

Gas_RWO.MAGIK
make rwo mit ()
$
define manifold(:gas network, 1)
$

define other point objects for the database

define rwo table (current dsview!, siphon,
vec (vec (: siphonid, : dsuint))
1,1004, "rwods")

$

define_application_code (:siphon, :location, 1, :point, :gas_network)
$

define rwo table (Icurrent dsview!, :pressure_point,
vec (vec (:pressure_point_id, :ds_uint)),
1,1005, lrwo.dsl!)

$

define_application_code (:pressure_point, : location, 1, :point, :gasnetwo
rk)
$

define rwo table (!current dsview!, :carbo seal,
vec (vec (:carbo seal id, :ds_uint))
1, 1006, ITrwods!T)

$

define_application_code (:carbo seal, :location, 1, :point, :gas_network)
$

define rwo table (! current_dsview!, govenor houses,
vec (vec (:govenor houses, :ds_uint))
1,1007, "rwods")

$

define_application_code (:govenor houses, location, 1, :point, :gasnetwo
rk)
$

define rwo table (current dsview!, : govenOr,
vec (vec (:govenor id, :ds uint))
1,1008, Tlrwo.dsl!)

$

define_application_code (:govenor, : location, 1, :point, :gas network)
$

define rwo table (1 current dsview!, :meter,

vec (vec (:meter id, :ds_uint))
1,1009, l!rwodsl!)

define application code(:meter, :location, 1, :point, :gas network)

$

define rwo table (current dsview!, : surf ace box,
vec (vec (: surface box id, : ds_uint))
1,1010, "rwo.ds")

$

define application_code(:surface_box, :location, 1, :point, :gas network)

$

I current dsview! . commit ()

$

GAS_EXEMPLAR. MAG 1K

* define the exemplar for the pipes.

gisdsview.declare_record_exemplar(:pipe, :pipe, vec(),
vec (rwo_record_mixin, rwosysidmixin))

$
pipe.defineshared_constant(:visible_fields,vec(:inst_date, :diameter)
false)

$

* define the method for the pipes.

_method pipe. mit table ()

self.declareautogenerate (: Iset_key_for() I)
_endmethod
$

define the exemplar for the valves.

gisdsview.declarerecord_exemplar (:valve, :valve,vec ()
vec (: rwo record mixin, rwo_sysid_mixin))

$
valve.define shared constant(:v±sible fields,vec(:valve Id) ,false)

$

* define the method for the valves.

_method valve. mit table ()

self. declare_autogenerate (: I set_key_for () I)
_endmethod
$

* define the exemplar for the raster maps.

gisdsview.declare_record_exemplar(:raster map, :raster map,vec ()

vec (: rworecordm±xin))

$

raster map.define shared constant(:visible_fields,vec (:sheet ref) ,fa

ise)
$

declare the method for the raster maps.

method raster_map. mit table ()

declare mandatory(:raster map, :sheetref)

endmethod
$

MAIN .MAGIK
method pipe . determine style ()

if self.status = TnT _then
if self.type =

_then return 2
elif self.type = Tip then

_return 3
_elif self.type = TsgT _then

return 4
else return 1
endif

endif

it self.status = 'ab' then
if self.type = 'mp" then

return 6
else return 5
endif

—endif

if self.status = 'as ' then
if self.type = 'mp' _then

return 8
else return 7
endif

endif

_return 9
endmethod

VALVE. MAC 1K
method valve.determine style ()

if self.status = li cit

then
_return 2

elif self.status = VIOTI then
return 1

Appendix F
The V$SYSSTAT pseudo-table is used by ORACLE to store database statistics which may be
displayed via various ORACLE utilities. The pseudo-table is constructed in memory when the
database is initialised, and may be viewed directly by the user.

S# NAME CLASS VALUE

0 cumulative logons 1 307

1 current logons 1 9

2 cumulative opened cursors 1 19198

3 current opened cursores 1 17

4 user commits 1 11948

5 user rollbacks 1 276

6 user calls 1 319471

7 recursive calls 1 300381

8 recursive cpu usage 1 0

9 session logical reads 1 1392435

10 session stored procedure space 1 0

11 CPU used when call started 128 0

12 CPU used by this session 1 0

13 session connect time 1 0

14 process last non-idle time 128 0

15 session memory 1 1201973

16 max session memory 1 9546989

17 messages sent 128 26684

18 messages received 128 26684

19 background timeouts 128 510287

20 session pga mode 1 21449404

21 session max pga memory 1 21478436

22 enqueue timeouts 4 13

23 enqueue waits 4 24

24 enqueue deadlocks 4 0

25 enqueue requests 4 68501

26 enqueue conversations 8 2486

27 enqueue releases 8 68472

28 db block gets 8 146695

29 consistent gets 8 1252109

30 physical reads 8 195243

31 physical writes 8 24202

32 write requests 8 5853

33 summed dirty queue length 8 2079

34 db block changes 8 95001

35 change write time 8 0

36 consistent changes 8 2120

37 write complete waits 8 635

38 write wait time 8 0

39 buffer busy waits 8 89

40 busy wait time 8 0

41 redo synch writes 8 11524

42 redo synch time 8 0

43 DEWN exchange waits 8 0

44 exchange deadlock 8 0

45 free buffer requested 8 203575

46 dirty buffers inspected 8 1568

47 free buffer inspected 8 3081

48 free buffer waits 8 16

49 free wait time 8 0

50 DBWR timeouts 8 254416

51 DBWR make free requests 8 13071

52 DBWP. free buffers found 8 82626

53 DBWR lru scans 8 13182

54 DBWR summed scan depth 8 91466

55 DBWR buffers scanned 8 88365

56 DBWR checkpoints 8 296

57 calls to kcmgcs 128 117246

58 calls to kcmgrs 128 0

59 calls to kcmgas 128 12234

60 redo entries 2 54912

61 redo size 2 17995651

62 redo entries linearized 2 0

63 redo buffer allocation retries 2 26

64 redo small copies 2 54887

65 redo wastage 2 4803610

66 redo writer latching time 2 0

67 redo writes 2 13864

68 redo blocks written 2 46075

69 redo write time 2 0

70 redo log spoce requests 2 59

71 redo log space wait time 2 0

72 redo log switch interrupts 2 0

73 redo ordering marks 2 0

74 background checkpoints started 8 22

75 background checkpoints completed 8 21

76 table scans (short tables) 64 6817

77 table scans (long tables) 64 5626

78 table scan rows gotten 64 4577154

79 table scan blocks gotten 64 398405

80 table fetch by rowid 64 307729

81 table fetch continued row 64 88

82 cluster key scans 64 11180

83 cluster key scan block gets 64 21331

84 parse time cpu 64 0

85 parse time elapsed 64 0

86 parse count 64 367754

87 sorts (memory) 64 287

88 sorts (disk) 64 0

89 sorts (rows) 64 448

90 cursor authentications 128 64175

