183 research outputs found

    MPLS layer 3 VPN

    Get PDF
    Trabalho final de mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e TelecomunicaçõesMultiprotocol Label Switching (MPLS) is the principal technology used in Service Provider. Networks as this mechanism forwarding packet quickly. MPLS is a new way to increase the speed, capability and service supplying abilities for optimization of transmission resources. Service Provider networks use this technology to connect different remote sites. MPLS technology provides lower network delay, effective forwarding mechanism, ascendable and predictable performance of the services which makes it more appropriate for carry out real-time applications such as Voice and video. MPLS can be used to transport any type of data whether it is layer 2 data such as frame relay, Ethernet, ATM data etc. or layer 3 data such as IPV4, IPV6.Multiprotocol Label Switching (MPLS) é a principal tecnologia usada no Service Provider. Redes como este mecanismo fazem o encaminhamento de pacotes de dados rapidamente. MPLS é uma nova maneira de aumentar a velocidade, a capacidades de fornecimento, a capacidade de serviço para otimização de recursos de transmissão. As redes Service Provider usam essa tecnologia para ligar diferentes sites remotos. A tecnologia MPLS oferece menor atraso de rede, mecanismo de encaminhamento eficaz, desempenho e serviços previsíveis o que o tornam mais apropriado para executar aplicativos em tempo real, como voz e vídeo. O MPLS pode ser usado para transportar qualquer tipo de dados, seja dados de camada 2, como frame relay, Ethernet, dados ATM, etc., ou dados da camada 3, como IPV4, IPV6.N/

    Layer 3 Multiprotocol Label Switching Virtual Private Network

    Get PDF
    Layer 3 Multiprotocol Label Switching Virtual Private Networks (L3 MPLS VPNs) is becoming a key technology of Service Providers' Services for corporations who desire to use remote connectivity. It is getting more popularity by customers for its significant advantages over the prior VPN technologies such as Frame relay and ATM. The main purpose of this thesis project was to develop an understanding of L3 MPLS VPNs in theory and practice. It is targeting to explain the technology briefly and demonstrate how it works to prepare a learning material for Data Network Services course given at VAMK, University of Applied Sciences. The practical part of this project took place in the Technobothnia Research Center using Cisco technology. Four Cisco 2801 routers, laboratory computers and Ethernet and serial media links were used to build the network and accomplish connectivity. There are also software tools used such as HyperTerminal to configure the routers and WireShark packet analyzer to examine the communication protocols used for connectivity

    Multi Protocol Label Switching: Quality of Service, Traffic Engineering application, and Virtual Private Network application

    Get PDF
    This thesis discusses the QoS feature, Traffic Engineering (TE) application, and Virtual Private Network (VPN) application of the Multi Protocol Label Switching (MPLS) protocol. This thesis concentrates on comparing MPLS with other prominent technologies such as Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and Frame Relay (FR). MPLS combines the flexibility of Internet Protocol (IP) with the connection oriented approach of Asynchronous Transfer Mode (ATM) or Frame Relay (FR). Section 1 lists several advantages MPLS brings over other technologies. Section 2 covers architecture and a brief description of the key components of MPLS. The information provided in Section 2 builds a background to compare MPLS with the other technologies in the rest of the sections. Since it is anticipate that MPLS will be a main core network technology, MPLS is required to work with two currently available QoS architectures: Integrated Service (IntServ) architecture and Differentiated Service (DiffServ) architecture. Even though the MPLS does not introduce a new QoS architecture or enhance the existing QoS architectures, it works seamlessly with both QoS architectures and provides proper QoS support to the customer. Section 3 provides the details of how MPLS supports various functions of the IntServ and DiffServ architectures. TE helps Internet Service Provider (ISP) optimize the use of available resources, minimize the operational costs, and maximize the revenues. MPLS provides efficient TE functions which prove to be superior to IP and ATM/FR. Section 4 discusses how MPLS supports the TE functionality and what makes MPLS superior to other competitive technologies. ATM and FR are still required as a backbone technology in some areas where converting the backbone to IP or MPLS does not make sense or customer demands simply require ATM or FR. In this case, it is important for MPLS to work with ATM and FR. Section 5 highlights the interoperability issues and solutions for MPLS while working in conjunction with ATM and FR. In section 6, various VPN tunnel types are discussed and compared with the MPLS VPN tunnel type. The MPLS VPN tunnel type is concluded as an optimal tunnel approach because it provides security, multiplexing, and the other important features that are reburied by the VPN customer and the ISP. Various MPLS layer 2 and layer 3 VPN solutions are also briefly discussed. In section 7 I conclude with the details of an actual implementation of a layer 3 MPLS VPN solution that works in conjunction with Border Gateway Protocol (BGP)

    Concepção e implementação de experiências laboratoriais sobre MPLS

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesO Multiprotocol Label Switching (MPLS) é um mecanismo de transporte de dados, sob a forma de um protocolo agnóstico, com grande potencial de crescimento e adequação. Opera na “Camada 2.5” do modelo OSI e constitui um mecanismo de alto desempenho utilizado nas redes de núcleo para transportar dados de um nó da rede para outro. O sucesso do MPLS resulta do facto de permitir que a rede transporte todos os tipos de dados, desde tráfego IP a tráfego da camada de ligação de dados, devido ao encapsulamento dos pacotes dos diversos protocolos, permitindo a criação de “links virtuais” entre nós distantes. O MPLS pertence à família das “redes de comutação de pacotes”, sendo os pacotes de dados associados a “etiquetas” que determinam o seu encaminhamento, sem necessidade de examinar o conteúdo dos próprios pacotes. Isto permite a criação de circuitos “extremo-aextremo” através de qualquer tipo de rede de transporte e independentemente do protocolo de encaminhamento que é utilizado. O projecto do MPLS considera múltiplas tecnologias no sentido de prestar um serviço único de transporte de dados, tentando simultaneamente proporcionar capacidades de engenharia de tráfego e controlo “out-of-band”, uma característica muito atraente para uma implementação em grande escala. No fundo, o MPLS é uma forma de consolidar muitas redes IP dentro de uma única rede. Dada a importância desta tecnologia, é urgente desenvolver ferramentas que permitam entender melhor a sua complexidade. O MPLS corre normalmente nas redes de núcleo dos ISPs. No sentido de tornar o seu estudo viável, recorreu-se nesta dissertação à emulação para implementar cenários de complexidade adequada. Existem actualmente boas ferramentas disponíveis que permitem a recriação em laboratório de cenários bastante complicados. Contudo, a exigência computacional da emulação é proporcional à complexidade do projecto em questão, tornando-se rapidamente impossível de realizar numa única máquina. A computação distribuída ou a “Cloud Computing” são actualmente as abordagens mais adequadas e inovadoras apara a resolução deste problema. Esta dissertação tem como objectivo criar algumas experiências em laboratório que evidenciam aspectos relevantes da tecnologia MPLS, usando para esse efeito um emulador computacional, o Dynamips, impulsionado por generosas fontes computacionais disponibilizadas pela Amazon ec2. A utilização destas ferramentas de emulação permite testar cenários de rede e serviços reais em ambiente controlado, efectuando o debugging das suas configurações e optimizando o seu desempenho, antes de os colocar em funcionamento nas redes em operação.The Multiprotocol Label Switching (MPLS) is a highly scalable and agnostic protocol to carry network data. Operating at "Layer 2.5" of the OSI model, MPLS is an highperformance mechanism that is used at the network backbone for conveying data from one network node to the next. The success of MPLS results from the fact that it enables the network to carry all kinds of traffic, ranging from IP to layer 2 traffic, since it encapsulates the packets of the diverse network protocols, allowing the creation of "virtual links" between distant nodes. MPLS belongs to the family of packet switched networks, where labels are assigned to data packets that are forwarded based on decisions that rely only on the label contents, without the need to examine the packets contents. This allows the creation of end-to-end circuits across any type of transport medium, using any protocol. The MPLS design takes multiform transport technologies into account to provide a unified data-carrying service, attempting simultaneously to preserve traffic engineering and out-of-band control, a very attractive characteristic for large-scale deployment. MPLS is the way to consolidate many IP networks into a single one. Due to this obvious potential, it is urgent to develop means and tools to better understand its functioning and complexity. MPLS normally runs at the backbone of Service Providers networks, being deployed across an extensive set of expensive equipment. In order to turn the study of MPLS feasible, emulation was considered as the best solution. Currently, there are very good available tools to recreate, in a lab environment, quite complicated scenarios. However, the computational demand of the emulation is proportional to the complexity of the project, becoming quickly unfeasible in a single machine. Fortunately, distributed computing or Cloud computing are suitable and novel approaches to solve this computation problem. So, this work aims to create some lab experiments that can illustrate/demonstrate relevant aspects of the MPLS technology, using the Dynamips emulator driven by the computational resources that were made available by the Amazon ec2 cloud computing facilities. The utilization of these emulation tools allows testing real networks and service scenarios in a controlled environment, being able to debug their configurations and optimize their performance before deploying them in real operating networks

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Planning tools for MPLS networks

    Get PDF
    Verkot, joissa MPLS-tekniikkaa (Multi Protocol Label Switching) käytetään pakettien reitittämiseen, kasvavat jatkuvasti yhä suuremmiksi ja toiminnallisuus, jota verkoissa tarvitaan, monipuolistuu koko ajan. Tämän syyn vuoksi verkon suunnittelija tarvitsee yhä parempia apuvälineitä, jotta suunnittelu olisi onnistunutta, optimaalista ja tuottaisi halutun tuloksen. Tämän diplomityön tarkoitus on selvittää tärkeimmät toiminnallisuudet ja ominaisuudet, joita MPLS-verkkojen suunnitteluun laadittu työkalu vaatii. Diplomityö on jaettu kolmeen osaan. Ensimmäisessä osassa valotetaan MPLS-verkkojen käyttämää tekniikkaa. Tuossa osiossa käydään läpi tekniikat ja protokollat, joita MPLS-verkot käyttävät erinäisiin tehtäviin. Ensin käydään läpi yleisesti miksi MPLS-tekniikkaa ylipäätään tarvitaan ja miksi sitä käytetään verkkojen reitittämiseen. Tämän jälkeen tarkastellaan MPLS-protokollan otsikkokenttää ja sen osien käyttötarkoitukset selitetään. Sitten tarkastellaan MPLS-verkon rakennetta ja siihen kuuluvia laitteita. Seuraavaksi siirrytään osioon, joka selvittää kaikki yleisesti MPLS-polkujen rakentamiseen käytettävät protokollat ja miten ne eroavat toisistaan. Tämän jälkeen kerrotaan MPLS-vuonohjauksesta Differentiated Services-tekniikan avulla ja siitä miten se auttaa erilaisten liikenneluokkien erittelyssä MPLS-liikenteessä. Viimeinen kohta tässä osassa listaa erilaiset VPN-yhteydet, jotka ovat mahdollisia MPLS-tekniikkaa käytettäessä. Osio selventää näiden tekniikoiden eroavaisuudet ja mahdollisuudet, joita nämä MPLS-tekniikan avulla toteutettavat VPN-yhteydet suovat verrattuna aiempiin VPN-toteutuksiin. Toinen osa tässä diplomityössä kertoo verkon suunnittelusta. Ensin käydään läpi verkon suunnittelua yleisellä tasolla. Tämä osa sisältää verkon suunnittelun eri vaiheet pääosittain: erilaiset ennustusmallit esitellään ja selvitetään mitoituksen ja vuonohjauksen rooli verkkosuunnittelussa. Näiden jälkeen siirrytään yleisestä verkonsunnittelusta osioihin, joita käytetään MPLS-verkon suunnittelussa ja joiden yleisesti oletetaan tai halutaan löytyvän MPLS-verkkoihin tarkoitetusta suunnittelutyökalusta. Viimeinen kohta kertoo toiminnallisuus- ja skaalautuvuushaasteista, joihin MPLS:n on tekniikkana vastattava nykypäivänä. Kolmannessa osiossa tarkastellaan kahta eri suunnittelutyökalua, jotka on laadittu MPLS-verkkojen suunnitelua varten: WANDL-yhtiön julkaisemaa IP/MPLSView:ta ja Aria Networks Oy:n julkaisemaa iVNT:ta. Tässä osiossa käydään läpi näiden työkalujen toiminnallisuutta kertomalla erilaisista simulaatiomahdollisuuksista, joita kumpikin työkalu tarjoaa. Lisäksi kerrotaan mitä toimintoja ja protokollia näihin työkaluihin on mallinnettu, miten hyvin työkalut skaalautuvat kaupallisten MPLS-verkkojen tarpeisiin ja minkälaisita moduuleista työkalut on rakennettu. Työn lopussa on pohdittu näiden kolmen osion perusteella, että mitkä ominaisuudet tulisi ottaa huomioon MPLS-verkon suunnittelutyökalua laadittaessa ja millä tavalla nämä ominaisuudet tulisi toteuttaa työkalussa. Näiden jälkeen on työhön vielä tehty loppuyhteenveto, joka kertoo työ tuloksista ja mahdollisista jatkokehitysmahdollisuuksista. MPLS-verkon suunnittelu koostuu monesta eri vaiheesta, ja jokainen vaihe sisältää suuren määrän toiminnallisuusvaatimuksia. Nämä toiminnallisuusvaatimukset on mallinnettava MPLS-verkkojen suunnitteluun laaditussa työkalussa, jos halutaan että työkalu pystyy mallintamaan koko verkon suunnitteluprosessin alusta loppuun. Tärkeimmät toiminnallisuudet, jotka MPLS-verkon suunnittelutyökalun tulee omata ovat simulointimahdollisuudet MPLS-poluille (LSP:t), MPLS-TE:lle, eri VPN-tyypeille ja DiffServ-liikenteelle, sillä nämä ovat tärkeimmät toiminnallisuudet MPLS-verkoissa tänä päivänä. Jos edellä mainittu toiminnallisuus on toteutettu ja mallinnettu suunnittelutyökalussa ja työkalu osaa optimoida liikennettä hyvin saadaan verkon pääoma- ja operaationaaliset kulut laskemaan. MPLS-verkon suunnittelutyökalua laadittaessa on myös tärkeää ottaa huomioon työkalun skaalautuvuusominaisuudet. Runkoverkot voivat koostua tänä päivänä tuhansista solmuista ja sadoista tuhansista liikennevirroista, joten suunnitelutyökalun tulisi omata toiminnallisuutta joka automatisoi joitain vaiheita verkonsuunnittelussa, mikä mahdollistaa tämän kokoluokan verkkojen suunnittelun. Tällainen toiminnallisuus voisi esimerkiksi olla automatisoitu vuonohjaus ja verkkojen topologiakokonaisuuden vienti ja tuonti suunnittelutyökaluun ja siitä ulos. /Kir1

    MPLS AND ITS APPLICATION

    Get PDF
    Real-time and multimedia applications have grown enormously during the last few years. Such applications require guaranteed bandwidth in a packet switched networks. Moreover, these applications require that the guaranteed bandwidth remains available when a node or a link in the network fails. Multiprotocol Label Switching (MPLS) networks cater to these requirements without compromising scalability. Guaranteed service and protection against failures in an MPLS network requires backup paths to be present in the network. Such backup paths are computed and installed at the same time a primary is provisioned. This thesis explains the single-layer restoration routing by placing primary as well as backup paths in MPLS networks. Our focus will be on computing and establishing backup paths, and bandwidth sharing along such backup paths. We will start by providing a quick overview of MPLS routing. We will identify the elements and quantities that are significant to the understanding of MPLS restoration routing. To this end, we will introduce the information locally stored at MPLS nodes and information propagated through routing protocols, in order to assist in efficient restoration routing. L2VPNs and VPLS will also be covered in the end of this thesis. In the end SDN (software defined networks) will be introduced

    OSPFv3 as a Provider Edge to Customer Edge (PE-CE) Routing Protocol

    Full text link

    MPLS Inter-Autonomous System

    Get PDF
    Suurten yritysten nopea laajentuminen maailmanlaajuisesti on johtanut MPLS- tekniikoiden kehitykseen. MPLS Inter-AS -tekniikkaa hyödynnetään, kun yritysten toimipisteet sijaitsevat eri palvelujentarjoajien toiminta-alueilla. Palveluntarjoajien on nykypäivänä pystyttävä toimimaan luotettavasti toisten palveluntarjoajien kanssa. tämä on johtanut eri MPLS Inter-AS -optioiden kehittämiseen. Opinnäytetyössä hyödynsimme SimuNet-verkkoa, joka on tietoverkkojen kehitys- ja testausympäristö Kymenlaakson ammattikorkeakoulussa. SimuNetin tärkeimpänä tarkoituksena on simuloida nykyaikaista operaattoriverkkoa pienemmässä mittakaavassa. Työn tarkoituksena oli suunnitella ja rakentaa SimuNetin kaltainen verkko Kymenlaakson ammattikorkeakoulun ICT-laboratorioon ja luoda verkkojen välille toimiva Inter-AS-yhteys. Käytännön toteutuksessa luotiin MPLS Inter-AS -yhteys ICT-laboratorion ja SimuNetin välille käyttäen Inter-AS optio B:tä. Kuvitellun yrityksen tietoliikennettä ohjattiin näiden operaattoriverkkojen läpi. Tilannetta simuloitiin kytkemällä kaksi kuvitellun yrityksen toimipistettä eri palveluntarjoajien asiakkaiksi. Tässä tapauksessa palveluntarjoajina toimivat SimuNet ja ICT-laboratorio. Työn tuloksena saatiin rakennettua ja konfiguroitua toimiva SimuNetin kaltainen operaattoriverkko ICT-laboratorioon. MPLS Inter-AS -yhteys todettiin toimivaksi optio B:n osalta, mutta Inter-AS Hybrid -tekniikan suhteen ei päästy haluttuun lopputulokseen.The fast globalization of large companies has led to the development of MPLS-technologies. MPLS Inter-AS –technology is used when the company offices are located in different service provider’s operating areas. Modern-day service providers have to be able to work reliably with other service providers, this has led to the development of different MPLS Inter-AS options. In this study the SimuNet network was utilized, which is a development and testing environment for networks. It is located at Kymenlaakso University of Applied Sciences. The main purpose of the SimuNet is to simulate modern-day operator network in a smaller scale. The purpose of the study was to design and create a working Inter-AS connection between two different service providers. In the empirical part MPLS Inter-AS connection was created between ICT-laboratory and SimuNet by using Inter-AS option B. The dataflow of a fictional company was forwarded through these operator networks. The situation was simulated by connecting two offices of the company to different service providers. In this case service providers were SimuNet and ICT-laboratory. As the result, a working operator network was built and configured to ICT-laboratory similar to SimuNet. The MPLS Inter-AS connection was found to be functional for option B, but the Inter-AS Hybrid –technology did not reach the desired outcome

    A Comparative Analysis of Unicast Routing Protocols for MPLS-VPN

    Get PDF
    MPLS-VPN technology is introduced to provide secure transmission with minimum propagation delay. This paper presents a comparative analysis of unicast routing protocols for MPLSVPN enabled networks. The motive behind this analysis is to observe the consequence of unicast routing protocols on the performance of MPLS-VPN enabled networks and to choose most suitable routing protocol for such type of networks. To conduct the analysis, a test bed is established in GNS3 simulator. Three main unicast routing protocols i.e. Enhanced Interior Gateway Routing Protocol (EIGRP), Open Shortest Path First (OSPF) and Routing Information Protocol (RIP) has been considered in this work. Round-Trip-Time, Jitter and Administrative-distance are used as performance measure metrics. The experimental analysis indicates that EIGRP is the most suitable protocol among the aforementioned protocols for MPLS-VPN
    corecore