25 research outputs found

    Estudio de los repositorios y plataformas de patrimonio digital en 3D

    Full text link
    [EN] Despite the increasing number of three-dimensional (3D) model portals and online repositories catering for digital heritage scholars, students and interested members of the general public, there are very few recent academic publications that offer a critical analysis when reviewing the relative potential of these portals and online repositories. Solid reviews of the features and functions they offer are insufficient; there is also a lack of explanations as to how these assets and their related functionality can further the digital heritage (and virtual heritage) field, and help in the preservation, maintenance, and promotion of real-world 3D heritage sites and assets. What features do they offer? How could their feature list better cater for the needs of the GLAM (galleries, libraries, archives and museums) sector? This article’s priority is to examine the useful features of 8 institutional and 11 commercial repositories designed specifically to host 3D digital models. The available features of their associated 3D viewers, where applicable, are also analysed, connecting recommendations for future-proofing with the need to address current gaps and weaknesses in the scholarly field of 3D digital heritage. Many projects do not address the requirements stipulated by charters, such as access, reusability, and preservation. The lack of preservation strategies and examples highlights the oxymoronic nature of virtual heritage (oxymoronic in the sense that the virtual heritage projects themselves are seldom preserved). To study these concerns, six criteria for gauging the usefulness of the 3D repositories to host 3D digital models and related digital assets are suggested. The authors also provide 13 features that would be useful additions for their 3D viewers.[ES] A pesar del creciente número de portales de modelos tridimensionales (3D) y repositorios en línea que atienden a los estudiosos del patrimonio digital, a los estudiantes y al público en general, hay muy pocas publicaciones académicas recientes que analizan de forma crítica el potencial relativo de esos portales y repositorios en línea. Tampoco hay suficientes revisiones críticas de las características y funciones que ofrecen, ni muchas explicaciones sobre la forma en que estos activos y su funcionalidad pueden impulsar en el campo del patrimonio digital (y el patrimonio virtual), y ayudar a preservar, mantener y promocionar los sitios y activos del patrimonio 3D del mundo real. ¿Qué características ofrecen? ¿Cómo podría su lista de características satisfacer mejor las necesidades del sector GLAM (galerías, bibliotecas, archivos y museos)? La prioridad de este artículo es examinar las características útiles de 8 depósitos institucionales y 11 comerciales diseñados específicamente para albergar modelos digitales en 3D. También son examinadas las características disponibles de su visores 3D asociados, cuando sea aplicable, y ello conecta con lo recomendado sobre las necesidades futuras y mejoradas para abordar las lagunas y debilidades en el campo académico del patrimonio digital 3D. Muchos proyectos no estudian los requisitos estipulados en las cartas, como son los factores de acceso, la reutilización y la preservación. La escasez de estrategias y ejemplos de preservación pone de relieve el carácter oximorónico del patrimonio virtual (oximorónico en el sentido de que los propios proyectos de patrimonio virtual se preservan con muy poca frecuencia). Para hacer frente a estas preocupaciones, se sugieren seis criterios para calibrar la utilidad de los repositorios 3D para albergar modelos digitales 3D y activos digitales relacionados. Los autores también proporcionan 13 características adicionales que serían útiles en los visores 3D.Champion, E.; Rahaman, H. (2020). Survey of 3D digital heritage repositories and platforms. Virtual Archaeology Review. 11(23):1-15. https://doi.org/10.4995/var.2020.13226OJS1151123Aalbersberg, I. J., Cos Alvarez, P., Jomier, J., Marion, C., & Zudilova-Seinstra, E. (2014). Bringing 3D visualization into the online research article. Information Services & Use, 34(1-2), 27-37. https://doi.org/10.3233/ISU-140721Addison, A. C. (2000). Emerging trends in virtual heritage. IEEE Multimedia, 7(2), 22-25. https://doi.org/10.1109/93.848421Alliez, P., Bergerot, L., Bernard, J.-F., Boust, C., Bruseker, G., Carboni, N., Chayani, M., Dellepiane, M., Dell'unto, N., & Dutailly, B. (2017). Digital 3D objects in art and humanities: Challenges of creation, interoperability and preservation. In White paper: A result of the PARTHENOS Workshop held in Bordeaux at Maison des Sciences de l'Homme d'Aquitaine and at Archeovision Lab. (France) (pp. 71). France.Beacham, R., Hugh, D., & Niccolucci, F. (2009). The London Charter. In For computer-based visualization of cultural heritage (Vol. Draft 2.1).Bernard, Y., Barreau, J.-B., Bizien-Jaglin, C., Quesnel, L., Langouët, L., & Daire, M.-Y. (2017). 3D model as a dynamic compilation of knowledge: Interim results on the city of Alet. Virtual Archaeology Review, 8(16). https://doi.org/10.4995/var.2017.5862Boutsi, A.-M., Ioannidis, C., & Soile, S. (2019). An integrated approach to 3D web visualization of cultural heritage heterogeneous datasets. Remote Sensing, 11(21). https://doi.org/10.3390/rs11212508Calin, M., Damian, G., Popescu, T., Manea, R., Erghelegiu, B., & Salagean, T. (2015). 3D modeling for digital preservation of Romanian heritage monuments. Agriculture and Agricultural Science Procedia, 6, 421-428. https://doi.org/10.1016/j.aaspro.2015.08.111Champion, E. (2018). The role of 3D models in virtual heritage intrastructures. In A. Benardou, E. Champion, C. Dallas, & L. M. Hughes (Eds.), Cultural Heritage Infrastructures in Digital Humanities (pp. 172). Abingdon, Oxon New York: NY Routledge. https://doi.org/10.4324/9781315575278Champion, E. (2019). From historical models to virtual heritage simulations. In P. Kuroczyński, M. Pfarr-Harfst, & S. Münster (Eds.), Der Modelle Tugend 2.0 Digitale 3d-Rekonstruktion Als Virtueller Raum Der Architekturhistorischen Forschung Computing in Art and Architecture (Vol. 2, pp. 338-351). Heidelberg, Germany: arthistoricum.net. https://doi.org/10.11588/arthistoricum.515Champion, E., & Rahaman, H. (2019). 3D digital heritage models as sustainable scholarly resources. Sustainability, 11(8), 1-8. https://doi.org/10.3390/su11082425Clarke, M. (2015). The digital dilemma: preservation and the digital archaeological record. Advances in Archaeological Practice, 3(4), 313-330. https://doi.org/10.7183/2326-3768.3.4.313Cots, I., Vilà, J., Diloli, J., Ferré, R., & Bricio, L. (2018). La arqueología virtual: de la excavación arqueológica a la gestión y socialización del patrimonio. Les cases de la Catedral (Tortosa) y el yacimiento protohistórico de La Cella(Salou), Tarragona. Virtual Archaeology Review, 9(19). https://doi.org/10.4995/var.2018.9754Di Giuseppantonio Di Franco, P. , Galeazzi, F., & Vassallo, V. (Eds.). (2018). Authenticity and cultural heritage in the age of 3D digital reproductions. Cambridge, UK: McDonald Institute for Archaeological Research. http://doi.org/10.17863/CAM.27029Doyle, J., Viktor, H., & Paquet, E. (2009). Long-term digital preservation: preserving authenticity and usability of 3-D data. International Journal on Digital Libraries, 10(1), 33-47. https://doi.org/10.1007/s00799-009-0051-7Flynn, T. (2019). What happens when you share 3D models online (In 3D)? In J. Grayburn, Z. Lischer-Katz, K. Golubiewski-Davis, & V. Ikeshoji-Orlati (Eds.), 3D/VR in the Academic Library: Emerging Practices and Trends (pp. 73-86). Arlington, USA: Council on Library and Information Resources.Galeazzi, F., Baker, F., Champion, E., Gartski, K., Jeffrey, S., & Kuzminsky, S. (2018). Commentary on 3-D virtual replicas and simulations of the past : "real" or "fake" representations? Current Anthropology, 59(3), 268-286. http://doi.org/10.1086/697489Galeazzi, F., & Franco, P. D. G. D. (2017). Theorising 3D visualisation systems in archaeology: Towards more effective design, evaluations and life cycles. Internet Archaeology(44). http://doi.org/10.11141/ia.44.5Greenop, K., & Barton, J. (2014). Scan, save, and archive: how to protect our digital cultural heritage. The Conversation, 1. https://theconversation.com/scan-save-and-archive-how-to-protect-our-digital-cultural-heritage-22160.Guidazzoli, A., Liguori, M. C., Chiavarini, B., Verri, L., Imboden, S., De Luca, D., & Ponti, F. D. (2017, 31 Oct-4 Nov). From 3D Web to VR historical scenarios: A cross-media digital heritage application for audience development. In 2017 23rd International Conference on Virtual System & Multimedia (VSMM), (pp. 1-8) Dublin, Ireland. https://doi.org/10.1109/VSMM.2017.8346273Huk, T. (2006). Who benefits from learning with 3D models? the case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404. https://doi.org/10.1111/j.1365-2729.2006.00180.xIoannides, M., & Quak, E. (Eds.). (2014). 3D research challenges in cultural heritage : A roadmap in digital heritage preservation. NewYork, Dordrecht, London: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44630-0Khronos, G. (2009). OpenGL ES for the web. WebGL Overview. Retrieved 4 March, 2020, from https://www.khronos.org/webgl/Kiourt, C., Koutsoudis, A., Markantonatou, S., & Pavlidis, G. (2016). The 'synthesis' virtual museum. Mediterranean Archaeology and Archaeometry, 16(5), 1-9. http://doi.org/10.5281/zenodo.204961Koller, D., Frischer, B., & Humphreys, G. (2009). Research challenges for digital archives of 3D cultural heritage models. Journal on Computing and Cultural Heritage, 2(3), 1-17. https://doi.org/10.1145/1658346.1658347Koutsabasis, P. (2017). Empirical evaluations of interactive systems in cultural heritage: A review. International Journal of Computational Methods in Heritage Science, 1(1), 100-122. https://doi.org/10.4018/IJCMHS.2017010107Kuroczynski, P. (2017). Virtual research environment for digital 3D reconstructions : Standards, thresholds and prospects. Studies in Digital Heritage, 1(2), 456-476. https://doi.org/10.14434/sdh.v1i2.23330Lloyd, J. (2016). Contextualizing 3D cultural heritage. In M. Ioannides, E. Fink, R. Brumana, P. Patias, A. Doulamis, J. Martins, & M. Wallace (Eds.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection (Vol. 1, pp. 859-868). Nicosia, Cyprus: Springer International Publishing. https://doi.org/10.1007/978-3-319-48496-9_69Maiwald, F., Bruschke, J., Lehmann, C., & Niebling, F. (2019). A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR. Virtual Archaeology Review, 10(21). https://doi.org/10.4995/var.2019.11867McHenry, K., & Bajcsy, P. (2008). An overview of 3d data content, file formats and viewers. Retrieved from Urbana, IL: https://www.archives.gov/files/applied-research/ncsa/8-an-overview-of-3d-data-content-file-formats-and-viewers.pdf.Muñoz Morcillo, J., Schaaf, F., Schneider, R. H., & Robertson-von Trotha, C. Y. (2017). Authenticity through VR-based documentation of cultural heritage. A theoretical approach based on conservation and documentation practices. Virtual Archaeology Review, 8(16). https://doi.org/10.4995/var.2017.5932Munster, S. (2018, 26-29 June). Digital 3D modelling in the humanities. In Digital Heritage 2018, (pp. 627-629) Mexico.Münster, S., Pfarr-Harfst, M., Kuroczyński, P., & Ioannides, M. (Eds.). (2016). 3D research challenges in cultural heritage II : How to manage data and knowledge related to interpretative digital 3D reconstructions of cultural heritage. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-47647-6Newe, A., Brandner, J., Aichinger, W., & Becker, L. (2018). An open source tool for creating model files for virtual volume rendering in PDF documents. In Bildverarbeitung für die Medizin 2018, (pp. 133-138) Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_97Niven, K., & Richards, J. D. (2017). The storage and long-term preservation of 3D data. In D. Errickson & T. Thompson (Eds.), Human Remains: Another Dimension (pp. 175-184): Academic Press. https://doi.org/10.1016/B978-0-12-804602-9.00013-8Pauwels, P., Verstraeten, R., De Meyer, R., & Van Campenhout, J. (2008). Architectural Information Modelling for Virtual Heritage Application. In Digital Heritage-Proceedings of the 14th International Conference on Virtual Systems and Multimedia, (pp. 18-23).Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., & Chamzas, C. (2007). Methods for 3D digitization of cultural heritage. Journal of Cultural Heritage, 8(1), 93-98. https://doi.org/10.1016/j.culher.2006.10.007Pletinckx, D., & Nolle, D. (2015). 3D-ICONS: D5.1-Report on 3D publication formats suitable for Europeana. Retrieved from https://zenodo.org/record/1311590#.Xt34Zy97G50. https://doi.org/10.5281/zenodo.1311589Potenziani, M., Callieri, M., Dellepiane, M., Corsini, M., Ponchio, F., & Scopigno, R. (2015). 3DHOP: 3D heritage online presenter. Computers & Graphics, 52, 129-141. http://doi.org/10.1016/j.cag.2015.07.001Rabinowitz, A., Esteva, M., & Trelogan, J. (2013, 26-28 September). Ensuring a future for the past. In Proceedings of The Memory of the World in the Digital Age: Digitization and Preservation, (pp. 940-954) Vancouver, British Columbia, Canada.Rahaman, H., & Champion, E. (2019, 15-18 April). The scholarly rewards and tragic irony of 3D models in virtual heritage discourse. In 24th Annual Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2019), (pp. 695-704) Wellington, New Zealand.Roussou, M. (2002, 24-25 November). Virtual heritage : From the research lab to the broad public. In VAST Euroconference, (pp. 93-100) Arezzo, Italy.Scopigno, R., Callieri, M., Dellepiane, M., Ponchio, F., & Potenziani, M. (2017). Delivering and using 3D models on the web: are we ready? Virtual Archaeology Review, 8(17), 1-9. http://dx.doi.org/10.4995/var.2017.6405Snyder, L. M. (2014). VSim : Scholarly annotations in real-time 3D environments. Paper presented at the DH-CASE II: Collaborative Annotations on Shared Environments: metadata, tools and techniques in the Digital Humanities - DH-CASE '14, (pp. 1-8.) Fort Collins, CA, USA. http://dx.doi.org/10.1145/2657480.2657483Statham, N. (2019). Scientific rigour of online platforms for 3D visualisation of heritage. Virtual Archaeology Review, 10(20), 1-16. https://doi.org/10.4995/var.2019.9715Sullivan, E. (2016). Potential pasts: Taking a humanistic approach to computer visualization of ancient landscapes. Bulletin of the Institute of Classical Studies, 59(2), 71-88. https://doi.org/10.1111/j.2041-5370.2016.12039.xSullivan, E., Nieves, A. D., & Snyder, L. M. (2017). Making the model: Scholarship and rhetoric in 3-D historical reconstructions. In J. Sayers (Ed.), Making Things and Drawing Boundaries : Experiments in the Digital Humanities. Minneapolis, MN: University of Minnesota Press. https://doi.org/10.5749/j.ctt1pwt6wq.38Sullivan, E. A., & Snyder, L. M. (2017). Digital Karnak. Journal of the Society of Architectural Historians, 76(4), 464-482. https://doi.org/10.1525/jsah.2017.76.4.464Thwaites, H. (2013). Digital heritage : What happens when we digitize everything? In E. Ch'ng, V. Gaffney, & H. Chapman (Eds.), Visual heritage in the digital age (pp. 327-348). London, UK: Springer-Verlag. https://doi.org/10.1007/978-1-4471-5535-5Tsiafaki, D., & Michailidou, N. (2015). Benefits and problems through the application of 3D technologies in archaeology: Recording, visualisation, representation and reconstruction. Scientific Culture, 1(3), 37-45. http://doi.org/10.5281/zenodo.18448Tucci, G., Bonora, V., Conti, A., & Fiorini, L. (2017). High-quality 3d models and their use in a cultural heritage conservation project. In The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences : 26th International CIPA Symposium 2017, (pp. 687) Ottawa, Canada. http://doi.org/10.5194/isprs-archives-XLII-2-W5-687-2017Übel, M. V. (2019). Free 3D models - Best download sites & 3D archives of 2019. Get the Best for Free. Retrieved 12 February, 2019, from https://all3dp.com/1/free-3d-models-download-best-sites-3d-archive-3dUNESCO. (2003, 29 Sept-15Oct 2003). Charter on the preservation of the digital heritage. In 32nd Session: The General Conference of the United Nations Educational, Scientific and Cultural Organization, (pp. 74-76) Paris.Zhang, N., Li, Q., Jia, H., Zhang, M., & Liu, J. (2017). U3D file format analyzing and 3DPDF generating method. In IGTA: Chinese Conference on Image and Graphics Technologies : Advances in Image and Graphics Technologies, (pp. 136-146) Singapore. https://doi.org/10.1007/978-981-10-7389-2_1

    Adaptivity of 3D web content in web-based virtual museums : a quality of service and quality of experience perspective

    Get PDF
    The 3D Web emerged as an agglomeration of technologies that brought the third dimension to the World Wide Web. Its forms spanned from being systems with limited 3D capabilities to complete and complex Web-Based Virtual Worlds. The advent of the 3D Web provided great opportunities to museums by giving them an innovative medium to disseminate collections' information and associated interpretations in the form of digital artefacts, and virtual reconstructions thus leading to a new revolutionary way in cultural heritage curation, preservation and dissemination thereby reaching a wider audience. This audience consumes 3D Web material on a myriad of devices (mobile devices, tablets and personal computers) and network regimes (WiFi, 4G, 3G, etc.). Choreographing and presenting 3D Web components across all these heterogeneous platforms and network regimes present a significant challenge yet to overcome. The challenge is to achieve a good user Quality of Experience (QoE) across all these platforms. This means that different levels of fidelity of media may be appropriate. Therefore, servers hosting those media types need to adapt to the capabilities of a wide range of networks and devices. To achieve this, the research contributes the design and implementation of Hannibal, an adaptive QoS & QoE-aware engine that allows Web-Based Virtual Museums to deliver the best possible user experience across those platforms. In order to ensure effective adaptivity of 3D content, this research furthers the understanding of the 3D web in terms of Quality of Service (QoS) through empirical investigations studying how 3D Web components perform and what are their bottlenecks and in terms of QoE studying the subjective perception of fidelity of 3D Digital Heritage artefacts. Results of these experiments lead to the design and implementation of Hannibal

    Design and creation of a virtual world of Petra, Jordan

    Get PDF
    Includes bibliographical references.This thesis presents the design and creation of a 3D virtual world of Petra, Jordan, based on the digital spatial documentation of this UNESCO World Heritage Site by the Zamani project. Creating digital records of the spatial domain of heritage sites is a well-established practice that employs the technologies of laser scanning, GPS and traditional surveys, aerial and close range photogrammetry, and 360-degree panorama photography to capture spatial data of a site. Processing this data to produce textured 3D models, sections elevations, GISs, and panorama tours to has led to the establishment of the field of virtual heritage. Applications to view this spatial data are considered too specialised to be used by the general public with only trained heritage practitioners being able to use the data. Additionally, data viewing platforms have not been designed to allow for the viewing of combinations of 3D data in an intuitive and engaging manner as currently each spatial data type must be viewed by independent software. Therefore a fully integrated software platform is needed which would allow any interested person, without prior training, easy access to a combination of spatial data, from anywhere in the world. This study seeks to provide a solution to the above requirement by using a game engine to assimilate spatial data of heritage sites in a 3D virtual environment where a virtual visitor is able to interactively engage with combinations of spatial data. The study first begins with an analysis of what virtual heritage applications, in the form of virtual environments, have been created, and the elements that were used in their creation. These elements are then applied to the design and creation of the virtual world of Petra

    Virtual Heritage: new technologies for edutainment

    Get PDF
    Cultural heritage represents an enormous amount of information and knowledge. Accessing this treasure chest allows not only to discover the legacy of physical and intangible attributes of the past but also to provide a better understanding of the present. Museums and cultural institutions have to face the problem of providing access to and communicating these cultural contents to a wide and assorted audience, meeting the expectations and interests of the reference end-users and relying on the most appropriate tools available. Given the large amount of existing tangible and intangible heritage, artistic, historical and cultural contents, what can be done to preserve and properly disseminate their heritage significance? How can these items be disseminated in the proper way to the public, taking into account their enormous heterogeneity? Answering this question requires to deal as well with another aspect of the problem: the evolution of culture, literacy and society during the last decades of 20th century. To reflect such transformations, this period witnessed a shift in the museum’s focus from the aesthetic value of museum artifacts to the historical and artistic information they encompass, and a change into the museums’ role from a mere "container" of cultural objects to a "narrative space" able to explain, describe, and revive the historical material in order to attract and entertain visitors. These developments require creating novel exhibits, able to tell stories about the objects and enabling visitors to construct semantic meanings around them. The objective that museums presently pursue is reflected by the concept of Edutainment, Education + Entertainment. Nowadays, visitors are not satisfied with ‘learning something’, but would rather engage in an ‘experience of learning’, or ‘learning for fun’, being active actors and players in their own cultural experience. As a result, institutions are faced with several new problems, like the need to communicate with people from different age groups and different cultural backgrounds, the change in people attitude due to the massive and unexpected diffusion of technology into everyday life, the need to design the visit by a personal point of view, leading to a high level of customization that allows visitors to shape their path according to their characteristics and interests. In order to cope with these issues, I investigated several approaches. In particular, I focused on Virtual Learning Environments (VLE): real-time interactive virtual environments where visitors can experience a journey through time and space, being immersed into the original historical, cultural and artistic context of the work of arts on display. VLE can strongly help archivists and exhibit designers, allowing to create new interesting and captivating ways to present cultural materials. In this dissertation I will tackle many of the different dimensions related to the creation of a cultural virtual experience. During my research project, the entire pipeline involved into the development and deployment of VLE has been investigated. The approach followed was to analyze in details the main sub-problems to face, in order to better focus on specific issues. Therefore, I first analyzed different approaches to an effective recreation of the historical and cultural context of heritage contents, which is ultimately aimed at an effective transfer of knowledge to the end-users. In particular, I identified the enhancement of the users’ sense of presence in VLE as one of the main tools to reach this objective. Presence is generally expressed as the perception of 'being there', i.e. the subjective belief of users that they are in a certain place, even if they know that the experience is mediated by the computer. Presence is related to the number of senses involved by the VLE and to the quality of the sensorial stimuli. But in a cultural scenario, this is not sufficient as the cultural presence plays a relevant role. Cultural presence is not just a feeling of 'being there' but of being - not only physically, but also socially, culturally - 'there and then'. In other words, the VLE must be able to transfer not only the appearance, but also all the significance and characteristics of the context that makes it a place and both the environment and the context become tools capable of transferring the cultural significance of a historic place. The attention that users pay to the mediated environment is another aspect that contributes to presence. Attention is related to users’ focalization and concentration and to their interests. Thus, in order to improve the involvement and capture the attention of users, I investigated in my work the adoption of narratives and storytelling experiences, which can help people making sense of history and culture, and of gamification approaches, which explore the use of game thinking and game mechanics in cultural contexts, thus engaging users while disseminating cultural contents and, why not?, letting them have fun during this process. Another dimension related to the effectiveness of any VLE is also the quality of the user experience (UX). User interaction, with both the virtual environment and its digital contents, is one of the main elements affecting UX. With respect to this I focused on one of the most recent and promising approaches: the natural interaction, which is based on the idea that persons need to interact with technology in the same way they are used to interact with the real world in everyday life. Then, I focused on the problem of presenting, displaying and communicating contents. VLE represent an ideal presentation layer, being multiplatform hypermedia applications where users are free to interact with the virtual reconstructions by choosing their own visiting path. Cultural items, embedded into the environment, can be accessed by users according to their own curiosity and interests, with the support of narrative structures, which can guide them through the exploration of the virtual spaces, and conceptual maps, which help building meaningful connections between cultural items. Thus, VLE environments can even be seen as visual interfaces to DBs of cultural contents. Users can navigate the VE as if they were browsing the DB contents, exploiting both text-based queries and visual-based queries, provided by the re-contextualization of the objects into their original spaces, whose virtual exploration can provide new insights on specific elements and improve the awareness of relationships between objects in the database. Finally, I have explored the mobile dimension, which became absolutely relevant in the last period. Nowadays, off-the-shelf consumer devices as smartphones and tablets guarantees amazing computing capabilities, support for rich multimedia contents, geo-localization and high network bandwidth. Thus, mobile devices can support users in mobility and detect the user context, thus allowing to develop a plethora of location-based services, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits and cultural or tourist sites according to visitors’ personal interest and curiosity

    The BG News February 11, 2004

    Get PDF
    The BGSU campus student newspaper February 11, 2004. Volume 94 - Issue 96https://scholarworks.bgsu.edu/bg-news/8233/thumbnail.jp
    corecore