1,146 research outputs found

    Controversy in mechanistic modelling with Gaussian processes

    Get PDF
    Parameter inference in mechanistic models based on non-affine differential equations is computationally onerous, and various faster alternatives based on gradient matching have been proposed. A particularly promising approach is based on nonparametric Bayesian modelling with Gaussian processes, which exploits the fact that a Gaussian process is closed under differentiation. However, two alternative paradigms have been proposed. The first paradigm, proposed at NIPS 2008 and AISTATS 2013, is based on a product of experts approach and a marginalization over the derivatives of the state variables. The second paradigm, proposed at ICML 2014, is based on a probabilistic generative model and a marginalization over the state variables. The claim has been made that this leads to better inference results. In the present article, we offer a new interpretation of the second paradigm, which highlights the underlying assumptions, approximations and limitations. In particular, we show that the second paradigm suffers from an intrinsic identifiability problem, which the first paradigm is not affected by

    Dissipative numerical schemes on Riemannian manifolds with applications to gradient flows

    Full text link
    This paper concerns an extension of discrete gradient methods to finite-dimensional Riemannian manifolds termed discrete Riemannian gradients, and their application to dissipative ordinary differential equations. This includes Riemannian gradient flow systems which occur naturally in optimization problems. The Itoh--Abe discrete gradient is formulated and applied to gradient systems, yielding a derivative-free optimization algorithm. The algorithm is tested on two eigenvalue problems and two problems from manifold valued imaging: InSAR denoising and DTI denoising.Comment: Post-revision version. To appear in SIAM Journal on Scientific Computin

    On the critical nature of plastic flow: one and two dimensional models

    Full text link
    Steady state plastic flows have been compared to developed turbulence because the two phenomena share the inherent complexity of particle trajectories, the scale free spatial patterns and the power law statistics of fluctuations. The origin of the apparently chaotic and at the same time highly correlated microscopic response in plasticity remains hidden behind conventional engineering models which are based on smooth fitting functions. To regain access to fluctuations, we study in this paper a minimal mesoscopic model whose goal is to elucidate the origin of scale free behavior in plasticity. We limit our description to fcc type crystals and leave out both temperature and rate effects. We provide simple illustrations of the fact that complexity in rate independent athermal plastic flows is due to marginal stability of the underlying elastic system. Our conclusions are based on a reduction of an over-damped visco-elasticity problem for a system with a rugged elastic energy landscape to an integer valued automaton. We start with an overdamped one dimensional model and show that it reproduces the main macroscopic phenomenology of rate independent plastic behavior but falls short of generating self similar structure of fluctuations. We then provide evidence that a two dimensional model is already adequate for describing power law statistics of avalanches and fractal character of dislocation patterning. In addition to capturing experimentally measured critical exponents, the proposed minimal model shows finite size scaling collapse and generates realistic shape functions in the scaling laws.Comment: 72 pages, 40 Figures, International Journal of Engineering Science for the special issue in honor of Victor Berdichevsky, 201
    • …
    corecore