9 research outputs found

    Hierarchical approach for deriving a reproducible unblocked LU factorization

    Full text link
    [EN] We propose a reproducible variant of the unblocked LU factorization for graphics processor units (GPUs). For this purpose, we build upon Level-1/2 BLAS kernels that deliver correctly-rounded and reproducible results for the dot (inner) product, vector scaling, and the matrix-vector product. In addition, we draw a strategy to enhance the accuracy of the triangular solve via iterative refinement. Following a bottom-up approach, we finally construct a reproducible unblocked implementation of the LU factorization for GPUs, which accommodates partial pivoting for stability and can be eventually integrated in a high performance and stable algorithm for the (blocked) LU factorization.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The simulations were performed on resources provided by the Swed-ish National Infrastructure for Computing (SNIC) at PDC Centre for High Performance Computing (PDC-HPC). This work was also granted access to the HPC resources of The Institute for Scientific Computing and Simulation financed by Region Ile-de-France and the project Equip@Meso (reference ANR-10-EQPX-29-01) overseen by the French National Agency for Research (ANR) as part of the Investissements d Avenir pro-gram. This work was also partly supported by the FastRelax (ANR-14-CE25-0018-01) project of ANR.Iakymchuk, R.; Graillat, S.; Defour, D.; Quintana-Orti, ES. (2019). Hierarchical approach for deriving a reproducible unblocked LU factorization. International Journal of High Performance Computing Applications. 33(5):791-803. https://doi.org/10.1177/1094342019832968S791803335Arteaga, A., Fuhrer, O., & Hoefler, T. (2014). Designing Bit-Reproducible Portable High-Performance Applications. 2014 IEEE 28th International Parallel and Distributed Processing Symposium. doi:10.1109/ipdps.2014.127Bientinesi, P., Quintana-OrtĂ­, E. S., & Geijn, R. A. van de. (2005). Representing linear algebra algorithms in code: the FLAME application program interfaces. ACM Transactions on Mathematical Software, 31(1), 27-59. doi:10.1145/1055531.1055533Chohra, C., Langlois, P., & Parello, D. (2016). Efficiency of Reproducible Level 1 BLAS. Lecture Notes in Computer Science, 99-108. doi:10.1007/978-3-319-31769-4_8Collange, S., Defour, D., Graillat, S., & Iakymchuk, R. (2015). Numerical reproducibility for the parallel reduction on multi- and many-core architectures. Parallel Computing, 49, 83-97. doi:10.1016/j.parco.2015.09.001Demmel, J., & Hong Diep Nguyen. (2013). Fast Reproducible Floating-Point Summation. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.9Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Falgout, R., Heroux, M., 
 Wild, S. (2014). Applied Mathematics Research for Exascale Computing. doi:10.2172/1149042Fousse, L., Hanrot, G., LefĂšvre, V., PĂ©lissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468Haidar, A., Dong, T., Luszczek, P., Tomov, S., & Dongarra, J. (2015). Batched matrix computations on hardware accelerators based on GPUs. The International Journal of High Performance Computing Applications, 29(2), 193-208. doi:10.1177/1094342014567546Hida, Y., Li, X. S., & Bailey, D. H. (s. f.). Algorithms for quad-double precision floating point arithmetic. Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001. doi:10.1109/arith.2001.930115Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. doi:10.1137/1.9780898718027Iakymchuk, R., Defour, D., Collange, S., & Graillat, S. (2015). Reproducible Triangular Solvers for High-Performance Computing. 2015 12th International Conference on Information Technology - New Generations. doi:10.1109/itng.2015.63Iakymchuk, R., Defour, D., Collange, S., & Graillat, S. (2016). Reproducible and Accurate Matrix Multiplication. Lecture Notes in Computer Science, 126-137. doi:10.1007/978-3-319-31769-4_11Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Li, X. S., Demmel, J. W., Bailey, D. H., Henry, G., Hida, Y., Iskandar, J., 
 Yoo, D. J. (2002). Design, implementation and testing of extended and mixed precision BLAS. ACM Transactions on Mathematical Software, 28(2), 152-205. doi:10.1145/567806.567808Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., LefĂšvre, V., Melquiond, G., 
 Torres, S. (2010). Handbook of Floating-Point Arithmetic. doi:10.1007/978-0-8176-4705-6Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Ortega, J. . (1988). The ijk forms of factorization methods I. Vector computers. Parallel Computing, 7(2), 135-147. doi:10.1016/0167-8191(88)90035-xRump, S. M. (2009). Ultimately Fast Accurate Summation. SIAM Journal on Scientific Computing, 31(5), 3466-3502. doi:10.1137/080738490Skeel, R. D. (1979). Scaling for Numerical Stability in Gaussian Elimination. Journal of the ACM, 26(3), 494-526. doi:10.1145/322139.322148Zhu, Y.-K., & Hayes, W. B. (2010). Algorithm 908. ACM Transactions on Mathematical Software, 37(3), 1-13. doi:10.1145/1824801.182481

    General Framework for Deriving Reproducible Krylov Subspace Algorithms: BiCGStab Case

    Get PDF
    Parallel implementations of Krylov subspace algorithms often help to accelerate the procedure to find the solution of a linear system. However, from the other side, such parallelization coupled with asynchronous and out-of-order execution often enlarge the non-associativity of floating-point operations. This results in non-reproducibility on the same or different settings. This paper proposes a general framework for deriving reproducible and accurate variants of a Krylov subspace algorithm. The proposed algorithmic strategies are reinforced by programmability suggestions to assure deterministic and accurate executions. The framework is illustrated on the preconditioned BiCGStab method for the solution of non-symmetric linear systems with message-passing. Finally, we verify the two reproducible variants of PBiCGStab on a set matrices from the SuiteSparse Matrix Collection and a 3D Poisson’s equation

    Reproducibility strategies for parallel preconditioned Conjugate Gradient

    Get PDF
    [EN] The Preconditioned Conjugate Gradient method is often used in numerical simulations. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we aim at a twofold goal: enhance the accuracy of the solver but also ensure its reproducibility in a message-passing implementation. We design and employ various strategies starting from the ExBLAS approach (through preserving every bit of information until final rounding) to its more lightweight performance-oriented variant (through expanding the intermediate precision). These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these strategies on modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of only 29% (ExBLAS) and 4% (lightweight) on 768 processes.To begin with, we would like to thank the reviewers for their thorough reading of the article as well as their valuable comments and suggestions. This research was partially supported by the European Union's Horizon 2020 research, innovation programme under the Marie Sklodowska-Curie grant agreement via the Robust project No. 842528 as well as the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the H2020 EC RIA Programme; in particular, the author gratefully acknowledges the support of Vicenc Beltran and the computer resources and technical support provided by BSC. The researchers from Universitat Jaume I (UJI) and Universidad Politecnica de Valencia (UPV) were supported by MINECO, Spain project TIN2017-82972-R. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume I, Spain.Iakymchuk, R.; Barreda, M.; Wiesenberger, M.; Aliaga, JI.; Quintana OrtĂ­, ES. (2020). Reproducibility strategies for parallel preconditioned Conjugate Gradient. Journal of Computational and Applied Mathematics. 371:1-13. https://doi.org/10.1016/j.cam.2019.112697S113371Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3), 308-323. doi:10.1145/355841.355847Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Iakymchuk, R., Graillat, S., Defour, D., & Quintana-OrtĂ­, E. S. (2019). Hierarchical approach for deriving a reproducible unblocked LU factorization. The International Journal of High Performance Computing Applications, 33(5), 791-803. doi:10.1177/1094342019832968Iakymchuk, R., Defour, D., Collange, S., & Graillat, S. (2016). Reproducible and Accurate Matrix Multiplication. Lecture Notes in Computer Science, 126-137. doi:10.1007/978-3-319-31769-4_11Rump, S. M., Ogita, T., & Oishi, S. (2009). Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing, 31(2), 1269-1302. doi:10.1137/07068816xBurgess, N., Goodyer, C., Hinds, C. N., & Lutz, D. R. (2019). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. IEEE Transactions on Computers, 68(7), 967-978. doi:10.1109/tc.2018.2855729D. Mukunoki, T. Ogita, K. Ozaki, Accurate and reproducible BLAS routines with Ozaki scheme for many-core architectures, in: Proc. International Conference on Parallel Processing and Applied Mathematics, PPAM2019, 2019, accepted.Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Boldo, S., & Melquiond, G. (2008). Emulation of a FMA and Correctly Rounded Sums: Proved Algorithms Using Rounding to Odd. IEEE Transactions on Computers, 57(4), 462-471. doi:10.1109/tc.2007.70819Wiesenberger, M., Einkemmer, L., Held, M., Gutierrez-Milla, A., SĂĄez, X., & Iakymchuk, R. (2019). Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures. Computer Physics Communications, 238, 145-156. doi:10.1016/j.cpc.2018.12.006Fousse, L., Hanrot, G., LefĂšvre, V., PĂ©lissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468J. Demmel, H.D. Nguyen, Fast reproducible floating-point summation, in: Proceedings of ARITH-21, 2013, pp. 163–172.Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2011). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118. doi:10.1007/s11075-011-9478-1Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m114081

    Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments

    Get PDF
    [EN] The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations arising in numerical simulations of physical phenomena. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we propose two algorithmic solutions that originate from the ExBLAS project to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI + OpenMP tasks programming environment. One is based on ExBLAS and preserves every bit of information until the final rounding, while the other relies upon floating-point expansions and, hence, expands the intermediate precision. Instead of converting the entire solver into its ExBLAS-related implementation, we identify those parts that violate reproducibility/non-associativity, secure them, and combine this with the sequential executions. These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these approaches on two modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of less than 37.7% on 768 cores.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially supported by the European Union's Horizon 2020 research, innovation program under the Marie Sklodowska-Curie grant agreement via the Robust project No. 842528 as well as the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the H2020 EC RIA Programme; in particular, the author gratefully acknowledges the support of Vicenc comma Beltran and the computer resources and technical support provided by BSC. The researchers from Universitat Jaume I (UJI) and Universitat Polit ' ecnica de Valencia (UPV) were supported by MINECO project TIN2017-82972-R. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume I.Iakymchuk, R.; Barreda VayĂĄ, M.; Graillat, S.; Aliaga, JI.; Quintana OrtĂ­, ES. (2020). Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments. International Journal of High Performance Computing Applications. 34(5):502-518. https://doi.org/10.1177/1094342020932650S502518345Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., & Quintana-OrtĂ­, E. S. (2017). Communication in task-parallel ILU-preconditioned CG solvers using MPI + OmpSs. Concurrency and Computation: Practice and Experience, 29(21), e4280. doi:10.1002/cpe.4280Bailey, D. H. (2013). High-precision computation: Applications and challenges [Keynote I]. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.39Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., 
 van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. doi:10.1137/1.9781611971538Burgess, N., Goodyer, C., Hinds, C. N., & Lutz, D. R. (2019). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. IEEE Transactions on Computers, 68(7), 967-978. doi:10.1109/tc.2018.2855729Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m1140819Collange, S., Defour, D., Graillat, S., & Iakymchuk, R. (2015). Numerical reproducibility for the parallel reduction on multi- and many-core architectures. Parallel Computing, 49, 83-97. doi:10.1016/j.parco.2015.09.001Dekker, T. J. (1971). A floating-point technique for extending the available precision. Numerische Mathematik, 18(3), 224-242. doi:10.1007/bf01397083Demmel, J., & Hong Diep Nguyen. (2013). Fast Reproducible Floating-Point Summation. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.9Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Fousse, L., Hanrot, G., LefĂšvre, V., PĂ©lissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468Hida, Y., Li, X. S., & Bailey, D. H. (s. f.). Algorithms for quad-double precision floating point arithmetic. Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001. doi:10.1109/arith.2001.930115Hunold, S., & Carpen-Amarie, A. (2016). Reproducible MPI Benchmarking is Still Not as Easy as You Think. IEEE Transactions on Parallel and Distributed Systems, 27(12), 3617-3630. doi:10.1109/tpds.2016.2539167IEEE Computer Society (2008) IEEE Standard for Floating-Point Arithmetic. Piscataway: IEEE Standard, pp. 754–2008.Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Kulisch, U. (2013). Computer Arithmetic and Validity. doi:10.1515/9783110301793Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3), 308-323. doi:10.1145/355841.355847Lutz, D. R., & Hinds, C. N. (2017). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH). doi:10.1109/arith.2017.20Mukunoki, D., Ogita, T., & Ozaki, K. (2020). Reproducible BLAS Routines with Tunable Accuracy Using Ozaki Scheme for Many-Core Architectures. Lecture Notes in Computer Science, 516-527. doi:10.1007/978-3-030-43229-4_44Nguyen, H. D., & Demmel, J. (2015). Reproducible Tall-Skinny QR. 2015 IEEE 22nd Symposium on Computer Arithmetic. doi:10.1109/arith.2015.28Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2011). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118. doi:10.1007/s11075-011-9478-1Priest, D. M. (s. f.). Algorithms for arbitrary precision floating point arithmetic. [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic. doi:10.1109/arith.1991.145549Rump, S. M., Ogita, T., & Oishi, S. (2008). Accurate Floating-Point Summation Part I: Faithful Rounding. SIAM Journal on Scientific Computing, 31(1), 189-224. doi:10.1137/050645671Rump, S. M., Ogita, T., & Oishi, S. (2009). Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing, 31(2), 1269-1302. doi:10.1137/07068816xRump, S. M., Ogita, T., & Oishi, S. (2010). Fast high precision summation. Nonlinear Theory and Its Applications, IEICE, 1(1), 2-24. doi:10.1587/nolta.1.2Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003Wiesenberger, M., Einkemmer, L., Held, M., Gutierrez-Milla, A., SĂĄez, X., & Iakymchuk, R. (2019). Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures. Computer Physics Communications, 238, 145-156. doi:10.1016/j.cpc.2018.12.00

    Reproducibility Strategies for Parallel Preconditioned Conjugate Gradient

    Get PDF
    The Preconditioned Conjugate Gradient method is often used in numerical simulations. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we aim at a twofold goal: enhance the accuracy of the solver but also ensure its reproducibility in a message-passing implementation. We design and employ various strategies starting from the ExBLAS approach (through preserving every bit of information until final rounding) to its more lightweight performance-oriented variant (through expanding the intermediate precision). These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these strategies on modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of only 29 % (ExBLAS) and 4 % (lightweight) on 768 processes

    Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into Scientific Contributions

    Get PDF
    International audienceScientific code is not production software. Scientific code participates in the evaluation of a scientific hypothesis. This imposes specific constraints on the code that are often overlooked in practice. We articulate, with a small example, five characteristics that a scientific code in computational science should possess: re-runnable, repeatable, reproducible, reusable and replicable

    Compilation Optimizations to Enhance Resilience of Big Data Programs and Quantum Processors

    Get PDF
    Modern computers can experience a variety of transient errors due to the surrounding environment, known as soft faults. Although the frequency of these faults is low enough to not be noticeable on personal computers, they become a considerable concern during large-scale distributed computations or systems in more vulnerable environments like satellites. These faults occur as a bit flip of some value in a register, operation, or memory during execution. They surface as either program crashes, hangs, or silent data corruption (SDC), each of which can waste time, money, and resources. Hardware methods, such as shielding or error correcting memory (ECM), exist, though they can be difficult to implement, expensive, and may be limited to only protecting against errors in specific locations. Researchers have been exploring software detection and correction methods as an alternative, commonly trading either overhead in execution time or memory usage to protect against faults. Quantum computers, a relatively recent advancement in computing technology, experience similar errors on a much more severe scale. The errors are more frequent, costly, and difficult to detect and correct. Error correction algorithms like Shor’s code promise to completely remove errors, but they cannot be implemented on current noisy intermediate-scale quantum (NISQ) systems due to the low number of available qubits. Until the physical systems become large enough to support error correction, researchers instead have been studying other methods to reduce and compensate for errors. In this work, we present two methods for improving the resilience of classical processes, both single- and multi-threaded. We then introduce quantum computing and compare the nature of errors and correction methods to previous classical methods. We further discuss two designs for improving compilation of quantum circuits. One method, focused on quantum neural networks (QNNs), takes advantage of partial compilation to avoid recompiling the entire circuit each time. The other method is a new approach to compiling quantum circuits using graph neural networks (GNNs) to improve the resilience of quantum circuits and increase fidelity. By using GNNs with reinforcement learning, we can train a compiler to provide improved qubit allocation that improves the success rate of quantum circuits

    Numerical Reproducibility for the Parallel Reduction on Multi- and Many-Core Architectures

    Get PDF
    International audienceOn modern multi-core, many-core, and heterogeneous architectures, floating-point computations, especially reductions, may become non-deterministic and, therefore, non-reproducible mainly due to the non-associativity of floating-point operations. We introduce an approach to compute the correctly rounded sums of large floating-point vectors accurately and efficiently, achieving deterministic results by construction. Our multi-level algorithm consists of two main stages: first, a filtering stage that relies on fast vectorized floating-point expansion; second, an accumulation stage based on superaccumulators in a high-radix carry-save representation. We present implementations on recent Intel desktop and server processors, Intel Xeon Phi co-processors, and both AMD and NVIDIA GPUs. We show that numerical reproducibility and bit-perfect accuracy can be achieved at no additional cost for large sums that have dynamic ranges of up to 90 orders of magnitude by leveraging arithmetic units that are left underused by standard reduction algorithms

    Automatic Selection of MapReduce Machine Learning Algorithms: A Model Building Approach

    Get PDF
    As the amount of information available for data mining grows larger, the amount of time needed to train models on those huge volumes of data also grows longer. Techniques such as sub-sampling and parallel algorithms have been employed to deal with this growth. Some studies have shown that sub-sampling can have adverse effects on the quality of models produced, and the degree to which it affects different types of learning algorithms varies. Parallel algorithms perform well when enough computing resources (e.g. cores, memory) are available, however for a limited sized cluster the growth in data will still cause an unacceptable growth in model training time. In addition to the data size mitigation problem, picking which algorithms are well suited to a particular dataset, can be a challenge. While some studies have looked at selection criteria for picking a learning algorithm based on the properties of the dataset, the additional complexity of parallel learners or possible run time limitations has not been considered. This study explores run time and model quality results of various techniques for dealing with large datasets, including using different numbers of compute cores, sub-sampling the datasets, and exploiting the iterative anytime nature of the training algorithms. The algorithms were studied using MapReduce implementations of four supervised learning algorithms, logistic regression, tree induction, bagged trees, and boosted stumps for binary classification using probabilistic models. Evaluation of these techniques was done using a modified form of learning curves which has a temporal component. Finally, the data collected was used to train a set of models to predict which type of parallel learner best suits a particular dataset, given run time limitations and the number of compute cores to be used. The predictions of those models were then compared to the actual results of running the algorithms on the datasets they were attempting to predict
    corecore