33 research outputs found

    Numerical representation of geostrophic modes on arbitrarily structured C-grids

    Get PDF
    Copyright © 2009 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational Physics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Physics, Vol. 228, Issue 22 (2009), DOI: 10.1016/j.jcp.2009.08.006A C-grid staggering, in which the mass variable is stored at cell centers and the normal velocity component is stored at cell faces (or edges in two dimensions) is attractive for atmospheric modeling since it enables a relatively accurate representation of fast wave modes. However, the discretization of the Coriolis terms is non-trivial. For constant Coriolis parameter, the linearized shallow water equations support geostrophic modes: stationary solutions in geostrophic balance. A naive discretization of the Coriolis terms can cause geostrophic modes to become non-stationary, causing unphysical behaviour of numerical solutions. Recent work has shown how to discretize the Coriolis terms on a planar regular hexagonal grid to ensure that geostrophic modes are stationary while the Coriolis terms remain energy conserving. In this paper this result is extended to arbitrarily structured C-grids. An explicit formula is given for constructing an appropriate discretization of the Coriolis terms. The general formula is illustrated by showing that it recovers previously known results for the planar regular hexagonal C-grid and the spherical longitude–latitude C-grid. Numerical calculation confirms that the scheme does indeed give stationary geostrophic modes for the hexagonal–pentagonal and triangular geodesic C-grids on the sphere

    Using Power Diagrams to Build Optimal Unstructured Meshes for C-Grid Models

    Get PDF
    The Model for Prediction Across Scales (MPAS) for Ocean (-O), Sea-Ice (-SI) and Land-Ice (-LI), in addition to the Coastal Ocean Marine Prediction Across Scales (COMPAS) are two novel general circulation models designed to resolve coupled ocean-ice dynamics over variable spatial scales using non-uniform unstructured grids. Both models are based on a conservative mimetic finite-difference/volume formulation (TRiSK), in which staggered momentum, vorticity and mass-based degrees- of-freedom are distributed over an orthogonal 'primal-dual' mesh

    Compatible finite element methods for numerical weather prediction

    Full text link
    This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introduction in the case of the one-dimensional wave equation, before summarising recent results in applications to the rotating shallow water equations on the sphere, before taking an outlook towards applications in three-dimensional compressible dynamical cores.Comment: To appear in ECMWF Seminar proceedings 201

    Numerical wave propagation for the triangular P1DGP1_{DG}-P2P2 finite element pair

    Full text link
    Inertia-gravity mode and Rossby mode dispersion properties are examined for discretisations of the linearized rotating shallow-water equations using the P1DGP1_{DG}-P2P2 finite element pair on arbitrary triangulations in planar geometry. A discrete Helmholtz decomposition of the functions in the velocity space based on potentials taken from the pressure space is used to provide a complete description of the numerical wave propagation for the discretised equations. In the ff-plane case, this decomposition is used to obtain decoupled equations for the geostrophic modes, the inertia-gravity modes, and the inertial oscillations. As has been noticed previously, the geostrophic modes are steady. The Helmholtz decomposition is used to show that the resulting inertia-gravity wave equation is third-order accurate in space. In general the \pdgp finite element pair is second-order accurate, so this leads to very accurate wave propagation. It is further shown that the only spurious modes supported by this discretisation are spurious inertial oscillations which have frequency ff, and which do not propagate. The Helmholtz decomposition also allows a simple derivation of the quasi-geostrophic limit of the discretised P1DGP1_{DG}-P2P2 equations in the β\beta-plane case, resulting in a Rossby wave equation which is also third-order accurate.Comment: Revised version prior to final journal submissio

    Mixed finite elements for numerical weather prediction

    Full text link
    We show how two-dimensional mixed finite element methods that satisfy the conditions of finite element exterior calculus can be used for the horizontal discretisation of dynamical cores for numerical weather prediction on pseudo-uniform grids. This family of mixed finite element methods can be thought of in the numerical weather prediction context as a generalisation of the popular polygonal C-grid finite difference methods. There are a few major advantages: the mixed finite element methods do not require an orthogonal grid, and they allow a degree of flexibility that can be exploited to ensure an appropriate ratio between the velocity and pressure degrees of freedom so as to avoid spurious mode branches in the numerical dispersion relation. These methods preserve several properties of the C-grid method when applied to linear barotropic wave propagation, namely: a) energy conservation, b) mass conservation, c) no spurious pressure modes, and d) steady geostrophic modes on the ff-plane. We explain how these properties are preserved, and describe two examples that can be used on pseudo-uniform grids: the recently-developed modified RT0-Q0 element pair on quadrilaterals and the BDFM1-\pdg element pair on triangles. All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of freedom to pressure degrees of freedom. Finally we illustrate the properties with some numerical examples.Comment: Revision after referee comment

    Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    Full text link
    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as quadratic moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence
    corecore