28,110 research outputs found

    Development of flow focusing device for the visualization of leukocyte rolling adhesion

    Get PDF
    La microfluídica es un área de la microtecnología basada en chips de PDMS que está siendo utilizada cada vez más en multitud de aplicaciones. Una de estas aplicaciones es la investigación biomédica. La microfluídica o “Lab on a Chip” se ha convertido en una manera de realizar experimentos biomédicos y diagnósticos de una manera barata, rápida y eficaz. Cuando se realizan estudios sobre la extravasación leucocitaria utilizando chips microfluídicos, podemos observar la inconsistencia en la trayectoria de rodadura de los leucocitos debido a un flujo laminar. En este trabajo de fin de grado presentamos un método para centrar la interfaz de células en el centro de canal microfluídico. Cuando las células circulan por los sistemas microfluídicos, las células tienden a circular de manera aleatoria por los canales. Por tanto, con el sistema propuesto en este trabajo, dichas células serán redirigidas a la porción central del canal con el fin de recrear el fenómeno de rodadura presente en nuestro sistema circulatorio y así obtener información más detallada. Los resultados de este trabajo muestran la utilidad y la versatilidad de este dispositivo para experimentos relacionados

    Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis

    Get PDF
    In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing

    Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces.

    Get PDF
    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces

    Distributed workload control for federated service discovery

    Get PDF
    The diffusion of the internet paradigm in each aspect of human life continuously fosters the widespread of new technologies and related services. In the Future Internet scenario, where 5G telecommunication facilities will interact with the internet of things world, analyzing in real time big amounts of data to feed a potential infinite set of services belonging to different administrative domains, the role of a federated service discovery will become crucial. In this paper the authors propose a distributed workload control algorithm to handle efficiently the service discovery requests, with the aim of minimizing the overall latencies experienced by the requesting user agents. The authors propose an algorithm based on the Wardrop equilibrium, which is a gametheoretical concept, applied to the federated service discovery domain. The proposed solution has been implemented and its performance has been assessed adopting different network topologies and metrics. An open source simulation environment has been created allowing other researchers to test the proposed solution

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Agglomeration, Integration and Tax Harmonization

    Get PDF
    This paper considers tax competition and tax harmonization in the presence of agglomeration forces and falling trade costs. With agglomerative forces operating, industry is not indifferent to location in equilibrium, so perfectly mobile capital becomes a quasi-fixed factor. This suggests that the tax game is something subtler than a race to the bottom. Advanced 'core' nations may act like limit-pricing monopolists toward less advanced 'periphery' countries. Consequently, integration need not lead to falling tax rates, and might well be consistent with the maintenance of large welfare states. "Limit taxing" also means that that simple tax harmonization - adoption of a common tax rate - always harms at least one nation and adoption of a rate between the two unharmonised rates harms both nations. A tax floor set at the lowest equilibrium tax rate leads to a weak Pareto improvement.Tax Competition; Tax Harmonization; New Economic Geography; Geography; Agglomeration; Trade; European Integration
    • …
    corecore