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Abstract 

The diffusion of the internet paradigm in each aspect of human life continuously fosters the widespread of new technologies and 
related services. In the Future Internet scenario, where 5G telecommunication facilities will interact with the internet of things 
world, analyzing in real time big amounts of data to feed a potential infinite set of services belonging to different administrative 
domains, the role of a federated service discovery will become crucial. In this paper the authors propose a distributed workload 
control algorithm to handle efficiently the service discovery requests, with the aim of minimizing the overall latencies 
experienced by the requesting user agents. The authors propose an algorithm based on the Wardrop equilibrium, which is a game-
theoretical concept, applied to the federated service discovery domain. The proposed solution has been implemented and its 
performance has been assessed adopting different network topologies and metrics. An open source simulation environment has 
been created allowing other researchers to test the proposed solution. 
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1. Introduction 

In the last years, an internetization process aimed at interconnecting everything by means of software interfaces 
has characterized the ICT evolution. This process spans off a number of novel research areas and related business 
opportunities. Internet of Things (IoT), Big Data, Future Internet, 5G Networks, etc. are the leaves of the same 
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technology tree having internet as its root. As described in1,2, these technologies transformed the internet into a 
virtual world in which anyone and anything can exchange, consume and provide resources, services, applications, 
data, information or knowledge, no matter what device, location, context, situation or communication technology 
they have. The heart of the internet lies in its network infrastructure: on top of it, all the ICT novelties have 
flourished. The 5G networks represent the beyond the state of the art internet infrastructures. 5G networks will face 
an unprecedented set of requirements, constraints and situations due to necessity of providing a Full Immersive 
Experience to its users and an Anything as a Service handler to all its available resources. The management, control 
and supervision of such a complex, heterogeneous, networked system requires highly scalable approaches and cost-
effective solutions. In particular, to make services available to a generic end user, a service discovery functionality is 
needed. A typical service discovery architecture is based on the interaction of two entities: the service provider and 
the user agent.  The service provider stores the information on services, receives queries, performs filtering 
functionalities, retrieves the services matching the queries. The user agent triggers the service discovery process 
manually or automatically, performs queries on services and receives the list of available and suitable services. 

In literature there are a number of service discovery protocols3, but the totality of them is strictly related to a 
specific network technology, device, operating system or application and is not feasible to cope with the 
heterogeneity of a typical Future Internet context. An attempt to face this challenge has been done by the 5G Public 
Private Partnership (5G-PPP) and Future Internet Public Private Partnership (FI-PPP) initiatives, supported by 
related research projects such as FIWARE  and FICORE (see4 for more details). In these projects, multi-protocol 
service discovery frameworks6 have been presented able to work in a federated environment, where different service 
providers, belonging to different administrative domains, share the overall user agents demand of available services. 
In literature there are many research works presenting architectural solutions that support federated service 
discovery9,10,11,12, but none of them have investigated from a theoretical point of view the problem of balancing the 
user agents’ requests through the service providers to guarantee a homogeneous latency. In this respect, the authors 
after having considered several candidate theoretical methodologies13,14 have selected Wardrop equilibrium theory8. 

This paper is just based on the work performed by the authors in the framework of the PLATINO (Platform for 
Innovative Services in Future Internet) project5. The authors present a distributed algorithm based on control and 
game theory that convergences toward a workload balance between different service providers serving user agents 
in a federated scenario. The algorithm is based on the game theory concept of Wardrop equilibrium (see Section 3), 
which, in the literature, has been mainly applied to the transportation field, to develop routing algorithms17,18, and to 
the communication field, to develop routing19 and load-balancing algorithms20,21. The paper is organized as follows. 
In section 2 some preliminary definitions on graph theory have been provided. In section 3 the federated service 
discovery problem is formulated as a dynamic system, and the properties of its evolution are analyzed to show their 
convergence toward a Wardrop equilibrium. In section 4 some numerical examples show how the proposed solution 
performs in different scenarios and how fast it convergences to a feasible solution. 

2. Graph theory 

Let consider a generic weighted directed graph , where  is the finite set of nodes,  is the 
set of edges, where  if an arc from  to  exists, and , with , is the 
adjacency matrix, where  if ,  otherwise. The order of  is equal to the number  
of nodes; the size of  is equal to the number  of edges. A node  is an adjacent node, or neighbor, of node 

 if there is an edge  connecting them. Let  be the set of neighbours of : 
. The degree of a node is equal to the number  of its neighbors. 

A path is a sequence of distinct edges which connects a sequence of adjacent nodes. Let  be the set of the paths in 
. Two nodes  are connected if there is a path  from  to , otherwise, they are disconnected. A 

weighted directed graph  is strongly connected if every pair of nodes is connected. 
The length of a path  is the weighted number of edges in . The distance between two nodes  is the 
length of a shortest path between them if  and  are connected, it is infinite otherwise. The diameter of a strongly 
connected graph G is the maximum distance between two nodes.  
Finally, a graph  is undirected if  is symmetric, directed otherwise. 
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In this paper, the service providers are identified as nodes, and the communication links connecting them as edges. 

3. Problem formulation  

3.1. Service provider workload 

Consider the set  of service providers. At a given time , each service provider  serves a workload 
 associated to the requests coming from the different user agents.  can be measured in terms of job 

units. Each job unit is a mix of processing, caching, network and database actions needed to satisfy each atomic user 
agent request of service discovery. The jobs vector  represents the amount of jobs units 
(workload) served by each provider, at a given time . The initial jobs vector at time  is indicated as 

. The main role of the service providers is to manage the overall workload  requested by the user agents. At a 
given time , a jobs vector is feasible if the sum of the service providers’ workloads is equal to the total 
workload, : 
 

           (1) 

3.2. Latency functions 

Each service provider responds to the  jobs units requested by the user agents with a latency that depends on 
the value of . Each service provider  has a latency function  that maps the workload 

 to the latency (expressed in time units) that the user agents served by the service provider  will experience. 
The following properties characterize a latency function : 

1.  
2.  is non decreasing 

The Kleinrock independence approximation9 can be used to model the latency function of a given provider : 

       (2) 

Let  be the set of latency functions. 

3.3. Federated service providers 

Service providers can exchange jobs units with each other in order to minimize the latency offered to the served user 
agents. In a federated scenario, not all the service providers are neighbours. It means that, due to commercial 
agreements or network constraints, there could not exist a direct link  between a couple of service providers 

. However, in a federated scenario each couple of service providers  is connected, meaning that 
even if they are not neighbours, there exist  service providers  such that the  
couples of service providers  are all neighbours. The service provider sequence 

 is a path connecting the service provider  to the service provider . The adjacency matrix 
 models how the service providers can interact with each other. The generic element  represents the 

maximum rate (expressed as jobs unit per unit of time) the service provider  can swap jobs unit to the service 
provider . In a federated scenario it is assumed that the adjacency matrix  is strongly connected. 

3.4. System dynamics 

In a federated scenario, the service providers’ main objective is to cooperate in a distributed way to guarantee that 
the latency offered to the user agents applying for a service discovery service is minimal. It means that, at time 
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, each service provider  migrates a quantity of job units to another service provider  if 

. The system dynamics is built on the algorithm developed in7. The differential equation describing the 
jobs vector evolution is: 

       (3) 

Where the migration ratio  between two providers  is defined as: 

,       (4) 

where   is the migration policy function, i.e., a function determining the amount of 
job units assigned to the service provider  that are migrated to the service provider . A commonly used migration 
policy is the linear migration policy, defined as: 

.       (5) 

Where . The migration policy set, denoted with , is given by the set of migration policy 

functions associated to each couple of service providers . 

If the system starts from a feasible jobs vector , it evolves always in feasible jobs vectors; indeed, the system 
dynamic defined in (3) has the following property: 

,  (6) 

and, therefore,  
 

. 

3.5. Wardrop equilibrium 

The objective of the system dynamics defined in (3) is the convergence towards stable jobs vectors; a jobs vector is 
stable when no fraction of the user agents’ demand can decrease the overall latency by moving unilaterally from one 
service provider to another. It is easy to see that this implies that all service providers must offer the minimal 
latency: this condition is called Wardrop equilibrium.  
 
Definition 1 (Wardrop Equilibrium). A feasible jobs vector  is at aWardrop equilibrium if, for every 

couple of providers , with ,  holds.  
 
For practical reasons, it is not necessary to wait until the system dynamics achieves a Wardrop equilibrium. The 
evolution of the system dynamics can terminate whenever the maximum variation  between the latencies 
experienced by the user agents is below an acceptable tolerance , i.e., the convergence time, denoted with , is 
the first time instant when the following inequality is met: 

. 

3.6. Distributed workload control problem  

Definition 1 (Federated discovery control problem). Given a set  of service providers, a total user agents demand  
expressed in job units, a set  of latency functions, an initial jobs vector , a strongly connected 

adjacency matrix , a migration policy set  and a tolerance , the 
distributed workload control problem for federated service discovery  is the tuple  
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controlled by the system dynamics defined in (3).  
 
Theorem 1 – Given a distributed workload control problem for federated service discovery 

 controlled by the system dynamics defined in (3), where: 
a.  is the set of service providers with ; 
b. ; 
c.  is a set of Kleinrock latency functions; 
d.  is a feasible jobs vector; 
e.  is a strongly connected adjacency matrix; 
f.  is a set of linear migration policy functions; 
g. . 

The dynamics (3) characterizing problem  admits a solution.  
 
Proof of theorem 1.  
For the sake of simplicity the service providers can be enumerated from 1 to . Given the system dynamics defined 
in (3) and the definition of the migration ratio in (4) it holds that, :    

. 

Let us define:      

. 

It follows that:  

,   

that is: 

. 

In compact notation, the system is written as 

; 

. 
This is a non-linear, autonomous dynamic system. It is worth to note that  satisfies the standard conditions 
for the existence and uniqueness of solutions since, from assumptions c. and f.,  is continuous with respect 
to   and . It means that the system dynamics is well defined.      
 
Theorem 2 – Given a distributed workload control problem for federated service discovery 

 controlled by the system dynamics defined in (3), under the same conditions of Theorem 1, it 
follows that: 

1. The distributed workload control problem for federated service discovery  converges toward a unique 
feasible jobs vector  that is at a Wardrop equilibrium; 

2. At the Wardrop equilibrium all the latencies are equal and minimal, that is  and, 
consequently, the tolerance . 

It means that it necessarily exists a time  such that .    
 
Proof of theorem 2. 
From assumption c. the latency functions have the following properties, : 
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  is strictly increasing 
  is continuously differentiable in  

The proof derives from the proof of the theorem 1 demonstrated in8 (which demonstrates the convergence to 
Wardrop equilibria on time-varying graphs). Furthermore, being the latencies functions strictly increasing, from7 it 
follows that the Wardrop equilibrium is unique.        

4. Numerical examples 

To assess the performances of the proposed solution, the authors performed simulations for different distributed 
workload control problems  controlled by the system dynamics defined in (3).  
Three topologies have been considered: (a) undirected full-mesh; (b) undirected, balanced binary tree; (c) directed 
ring, as shown in Fig. 1. For each topology, an increasing number of nodes , and a 
decreasing tolerance (measured in seconds)  have been considered. In all the 
simulations, the global workload  jobs units was considered. The set  is given by  Kleinrock latency 
functions specified in (2) where:  if ,  otherwise (i.e., two service provider groups are 
defined). The set  uses the linear migration policy function specified in equation (5). The initial feasible jobs vector 

 is randomly generated, and it is equal for the simulation runs having the same number  of service providers. 
 

 

 

            
 

 

 

Fig. 1. : Topologies: (A1) undirected full-mesh; (A2) undirected, balanced binary tree; (A3) directed ring and impact of topology on the 
convergence time: (B) undirected full-mesh, (C) undirected balanced binary tree, (D) directed ring. 

The simulation results show that the convergence time depends on the number of interconnections between the 
federated service providers. In an undirected full-mesh topology the number of interconnection is , 

A1 

A2 A3 

B 

C D 
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consequently when  increases, the convergence time decreases in a more-than-linear fashion. In an undirected, 
balanced binary tree topology, the number of interconnections is  and the diameter is ; when  
increases, the convergence time increases in a more-than-linear fashion. In a directed ring topology the number of 
interconnection is  and the diameter is , and the convergence time increases with n in a more-than-linear fashion. 
The undirected full-mesh and the directed ring topologies represent respectively the best and the worst connectivity 
scenarios, whereas the balanced binary tree is representative of a strict hierarchical topology of federated service 
providers. To show how the proposed algorithm converges to a balanced solution, we considered a balanced binary 
tree topology with , and with tolerance  seconds. The set  is given by  Kleinrock latency 
functions described in (2) where:  if ,  if ,  otherwise (three groups 
of providers). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. : Service providers workloads dynamic (A), service providers latencies dynamic (B). 

As expected the simulation of the service providers latencies’ dynamics shows that the latencies converge to the 
same value (that is at a Wardrop Equilibrium), whereas the service providers workloads’ dynamics convergences 
exponentially to three different steady-state values of the three latency functions. 

A 

B 
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5. Conclusions 

The paper proposes a distributed workload control algorithm to efficiently handle the service discovery requests in a 
federated scenario, with the aim to minimize the overall service provider latencies experienced by the requesting 
user agents. The algorithm behaves as a dynamic system that evolves over the time and the paper demonstrates that, 
under proper assumptions, it converges toward a Wardrop equilibrium. The experimental results show that the 
convergence to the solution is exponential and strictly depends on the number of interactions between the service 
providers. The interesting results obtained in the experimentation phase pave the way to deeply study the properties 
of the proposed solutions, e.g., demonstrating the convergence velocity or showing what happens if the global 
workload  changes rapidly over time. In order to repeat the tests, the authors have created a web-based testing 
platform that can be accessed via a HTML5 browser to the following link: htp://www.icaruservices.it/wardrop. An 
easy to use, web-based graphic user interface allows to control (configure, start, proceed step by step, pause and 
reload) the simulation and to download the results as a comma separated values file that reports, for each simulation 
time-step, the jobs vector, the latency functions and the tolerance values. Furthermore, in combination with 
Reinforcement Learning techniques, similar game-theoretic networked scenarios are currently being investigated, 
with specific focus on resource management and Quality of Experience control problems15,16,24,25, resource 
allocation problems in smart grids22,23 and related security issues26,27. 
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