73,195 research outputs found

    Inverse heat conduction problems by using particular solutions

    Get PDF
    Based on the method of fundamental solutions, we develop in this paper a new computational method to solve two-dimensional transient heat conduction inverse problems. The main idea is to use particular solutions as radial basis functions (PSRBF) for approximation of the solutions to the inverse heat conduction problems. The heat conduction equations are first analyzed in the Laplace transformed domain and the Durbin inversion method is then used to determine the solutions in the time domain. Least-square and singular value decomposition (SVD) techniques are adopted to solve the ill-conditioned linear system of algebraic equations obtained from the proposed PSRBF method. To demonstrate the effectiveness and simplicity of this approach, several numerical examples are given with satisfactory accuracy and stability.Peer reviewe

    Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients

    Get PDF
    This is the post-print version of the final paper published in Computers & Mathematics with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.This paper presents new formulations of the radial integration boundary integral equation (RIBIE) and the radial integration boundary integro-differential equation (RIBIDE) methods for the numerical solution of two-dimensional diffusion problems with variable coefficients. The methods use either a specially constructed parametrix (Levi function) or the standard fundamental solution for the Laplace equation to reduce the boundary-value problem (BVP) to a boundary–domain integral equation (BDIE) or boundary–domain integro-differential equation (BDIDE). The radial integration method (RIM) is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Furthermore, a subdomain decomposition technique (SDBDIE) is proposed, which leads to a sparse system of linear equations, thus avoiding the need to calculate a large number of domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed approaches

    On the effects of high-order scattering in 3D cubical and rectangular furnaces

    Get PDF
    The discrete ordinates method (DOM/Sn) is implemented to investigate the high order scattering effects of absorbing–emitting–scattering grey gas media inside the three-dimensional cubical and rectangular furnaces. To validate the numerical method, the furnaces are considered first to be filled with non-scattering grey gases, and the results of the higher order approximations of the DOM show an excellent agreement compared with those available in the literature. The DOM is then extended to apply in the scattering media inside the furnaces, and the results of various scattering approaches such as out-scattering, iso-scattering, linear aniso-scattering and nonlinear aniso-scattering are obtained and presented in this paper

    High-order numerical methods for 2D parabolic problems in single and composite domains

    Get PDF
    In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests-with respect to accuracy and convergence-for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.Comment: 45 pages, 12 figures, in revision for Journal of Scientific Computin

    Turbulent convection model in the overshooting region: II. Theoretical analysis

    Full text link
    Turbulent convection models are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied in calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of turbulent convection models, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the turbulent convection model in the overshooting region, and find some important properties of the convective overshooting: I. The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations kk, urTˉ\bar{u_{r}'T'}, and TTˉ\bar{T'T'} are only determined by the parameters of the TCM, and there is an equilibrium value of the anisotropic degree ω\omega. II. The overshooting length of the turbulent heat flux urTˉ\bar{u_{r}'T'} is about 1Hk1H_k(Hk=drdlnkH_k=|\frac{dr}{dlnk}|). III. The value of the turbulent kinetic energy at the convective boundary kCk_C can be estimated by a method called \textsl{the maximum of diffusion}. Turbulent correlations in the overshooting region can be estimated by using kCk_C and exponentially decreasing functions with the decaying indices.Comment: 32 pages, 9 figures, Accepted by The Astrophysical Journa

    An overview of the proper generalized decomposition with applications in computational rheology

    Get PDF
    We review the foundations and applications of the proper generalized decomposition (PGD), a powerful model reduction technique that computes a priori by means of successive enrichment a separated representation of the unknown field. The computational complexity of the PGD scales linearly with the dimension of the space wherein the model is defined, which is in marked contrast with the exponential scaling of standard grid-based methods. First introduced in the context of computational rheology by Ammar et al. [3] and [4], the PGD has since been further developed and applied in a variety of applications ranging from the solution of the Schrödinger equation of quantum mechanics to the analysis of laminate composites. In this paper, we illustrate the use of the PGD in four problem categories related to computational rheology: (i) the direct solution of the Fokker-Planck equation for complex fluids in configuration spaces of high dimension, (ii) the development of very efficient non-incremental algorithms for transient problems, (iii) the fully three-dimensional solution of problems defined in degenerate plate or shell-like domains often encountered in polymer processing or composites manufacturing, and finally (iv) the solution of multidimensional parametric models obtained by introducing various sources of problem variability as additional coordinates
    corecore