In this work, we discuss and compare three methods for the numerical
approximation of constant- and variable-coefficient diffusion equations in both
single and composite domains with possible discontinuity in the solution/flux
at interfaces, considering (i) the Cut Finite Element Method; (ii) the
Difference Potentials Method; and (iii) the summation-by-parts Finite
Difference Method. First we give a brief introduction for each of the three
methods. Next, we propose benchmark problems, and consider numerical tests-with
respect to accuracy and convergence-for linear parabolic problems on a single
domain, and continue with similar tests for linear parabolic problems on a
composite domain (with the interface defined either explicitly or implicitly).
Lastly, a comparative discussion of the methods and numerical results will be
given.Comment: 45 pages, 12 figures, in revision for Journal of Scientific Computin