6,562 research outputs found

    Efficient Solution of Large-Scale Algebraic Riccati Equations Associated with Index-2 DAEs via the Inexact Low-Rank Newton-ADI Method

    Full text link
    This paper extends the algorithm of Benner, Heinkenschloss, Saak, and Weichelt: An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations, Applied Numerical Mathematics Vol.~108 (2016), pp.~125--142, doi:10.1016/j.apnum.2016.05.006 to Riccati equations associated with Hessenberg index-2 Differential Algebratic Equation (DAE) systems. Such DAE systems arise, e.g., from semi-discretized, linearized (around steady state) Navier-Stokes equations. The solution of the associated Riccati equation is important, e.g., to compute feedback laws that stabilize the Navier-Stokes equations. Challenges in the numerical solution of the Riccati equation arise from the large-scale of the underlying systems and the algebraic constraint in the DAE system. These challenges are met by a careful extension of the inexact low-rank Newton-ADI method to the case of DAE systems. A main ingredient in the extension to the DAE case is the projection onto the manifold described by the algebraic constraints. In the algorithm, the equations are never explicitly projected, but the projection is only applied as needed. Numerical experience indicates that the algorithmic choices for the control of inexactness and line-search can help avoid subproblems with matrices that are only marginally stable. The performance of the algorithm is illustrated on a large-scale Riccati equation associated with the stabilization of Navier-Stokes flow around a cylinder.Comment: 21 pages, 2 figures, 4 table

    Numerical Solution of Projected Algebraic Riccati Equations

    No full text

    On Hilbert-Schmidt norm convergence of Galerkin approximation for operator Riccati equations

    Get PDF
    An abstract approximation framework for the solution of operator algebraic Riccati equations is developed. The approach taken is based on a formulation of the Riccati equation as an abstract nonlinear operator equation on the space of Hilbert-Schmidt operators. Hilbert-Schmidt norm convergence of solutions to generic finite dimensional Galerkin approximations to the Riccati equation to the solution of the original infinite dimensional problem is argued. The application of the general theory is illustrated via an operator Riccati equation arising in the linear-quadratic design of an optimal feedback control law for a 1-D heat/diffusion equation. Numerical results demonstrating the convergence of the associated Hilbert-Schmidt kernels are included

    Two-Step Relaxation Newton Method for Nonsymmetric Algebraic Riccati Equations Arising from Transport Theory

    Get PDF
    We propose a new idea to construct an effective algorithm to compute the minimal positive solution of the nonsymmetric algebraic Riccati equations arising from transport theory. For a class of these equations, an important feature is that the minimal positive solution can be obtained by computing the minimal positive solution of a couple of fixed-point equations with vector form. Based on the fixed-point vector equations, we introduce a new algorithm, namely, two-step relaxation Newton, derived by combining two different relaxation Newton methods to compute the minimal positive solution. The monotone convergence of the solution sequence generated by this new algorithm is established. Numerical results are given to show the advantages of the new algorithm for the nonsymmetric algebraic Riccati equations in vector form

    On the Parameter Selection Problem in the Newton-ADI Iteration for Large Scale Riccati Equations

    Get PDF
    The numerical treatment of linear-quadratic regulator problems for parabolic partial differential equations (PDEs) on infinite time horizons requires the solution of large scale algebraic Riccati equations (ARE). The Newton-ADI iteration is an efficient numerical method for this task. It includes the solution of a Lyapunov equation by the alternating directions implicit (ADI) algorithm in each iteration step. On finite time intervals the solution of a large scale differential Riccati equation is required. This can be solved by a backward differentiation formula (BDF) method, which needs to solve an ARE in each time step. Here, we study the selection of shift parameters for the ADI method. This leads to a rational min-max-problem which has been considered by many authors. Since knowledge about the complete complex spectrum is crucial for computing the optimal solution, this is infeasible for th

    Low-rank updates and a divide-and-conquer method for linear matrix equations

    Get PDF
    Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differential equations. In this work, we present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized to accelerate the Newton method for solving continuous-time algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches, in terms of computational time and memory consumption

    Order reduction methods for solving large-scale differential matrix Riccati equations

    Full text link
    We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies, by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces, as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices
    • …
    corecore