11 research outputs found

    Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions

    Get PDF
    This work is dedicated to the simulation of full cycles of the electrical activity of the heart and the corresponding body surface potential. The model is based on a realistic torso and heart anatomy, including ventricles and atria. One of the specificities of our approach is to model the atria as a surface, which is the kind of data typically provided by medical imaging for thin volumes. The bidomain equations are considered in their usual formulation in the ventricles, and in a surface formulation on the atria. Two ionic models are used: the Courtemanche-Ramirez-Nattel model on the atria, and the "Minimal model for human Ventricular action potentials" (MV) by Bueno-Orovio, Cherry and Fenton in the ventricles. The heart is weakly coupled to the torso by a Robin boundary condition based on a resistor- capacitor transmission condition. Various ECGs are simulated in healthy and pathological conditions (left and right bundle branch blocks, Bachmann's bundle block, Wolff-Parkinson-White syndrome). To assess the numerical ECGs, we use several qualitative and quantitative criteria found in the medical literature. Our simulator can also be used to generate the signals measured by a vest of electrodes. This capability is illustrated at the end of the article

    Integrated Cardiac Electromechanics: Modeling and Personalization

    Get PDF
    Cardiac disease remains the leading cause of morbidity and mortality in the world. A variety of heart diagnosis techniques have been developed during the last century, and generally fall into two groups. The first group evaluates the electrical function of the heart using electrophysiological data such as electrocardiogram (ECG), while the second group aims to assess the mechanical function of the heart through medical imaging data. Nevertheless, the heart is an integrated electromechanical organ, where its cyclic pumping arises from the synergy of its electrical and mechanical function which requires first to be electrically excited in order to contract. At the same time, cardiac electrical function experiences feedback from mechanical contraction. This inter-dependent relationship determines that neither electrical function nor mechanical function alone can completely reflect the pathophysiological conditions of the heart. The aim of this thesis is working towards building an integrated framework for heart diagnosis through evaluation of electrical and mechanical functions simultaneously. The basic rational is to obtain quantitative interpretation of a subject-specific heart system by combining an electromechanical heart model and individual clinical measurements of the heart. To this end, we first develop a biologically-inspired mathematical model of the heart that provides a general, macroscopic description of cardiac electromechanics. The intrinsic electromechanical coupling arises from both excitation-induced contraction and deformation-induced mechano-electrical feedback. Then, as a first step towards a fully electromechanically integrated framework, we develop a model-based approach for investigating the effect of cardiac motion on noninvasive transmural imaging of cardiac electrophysiology. Specifically, we utilize the proposed heart model to obtain updated heart geometry through simulation, and further recover the electrical activities of the heart from body surface potential maps (BSPMs) by solving an optimization problem. Various simulations of the heart have been performed under healthy and abnormal conditions, which demonstrate the physiological plausibility of the proposed integrated electromechanical heart model. What\u27s more, this work presents the effect of cardiac motion to the solution of noninvasive estimation of cardiac electrophysiology and shows the importance of integrating cardiac electrical and mechanical functions for heart diagnosis. This thesis also paves the road for noninvasive evaluation of cardiac electromechanics

    Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model

    Get PDF
    International audienceThe objective of this paper is to propose and assess an estimation procedure - based on data assimilation principles - well-suited to obtain some regional values of key biophysical parameters in a beating heart model, using actual Cine-MR images. The motivation is twofold: (1) to provide an automatic tool for personalizing the characteristics of a cardiac model in order to achieve predictivity in patient-specific modeling, and (2) to obtain some useful information for diagnosis purposes in the estimated quantities themselves. In order to assess the global methodology we specifically devised an animal experiment in which a controlled infarct was produced and data acquired before and after infarction, with an estimation of regional tissue contractility - a key parameter directly affected by the pathology - performed for every measured stage. After performing a preliminary assessment of our proposed methodology using synthetic data, we then demonstrate a full-scale application by first estimating contractility values associated with 6 regions based on the AHA subdivision, before running a more detailed estimation using the actual AHA segments. The estimation results are assessed by comparison with the medical knowledge of the specific infarct, and with late enhancement MR images. We discuss their accuracy at the various subdivision levels, in the light of the inherent modeling limitations and of the intrinsic information contents featured in the data

    Early Detection of Doxorubicin-Induced Cardiotoxicity Using Combined Biomechanical Modeling and Multi-Parametric Cardiovascular MRI

    Get PDF
    RÉSUMÉ La chimiothĂ©rapie Ă  la doxorubicine est efficace et est largement utilisĂ©e pour traiter la leucĂ©mie lymphoblastique aiguĂ«. Toutefois, son efficacitĂ© est entravĂ©e par un large spectre de cardiotoxicitĂ©s incluant des changements affectant Ă  la fois la morphologie et la fonction du myocarde. Ces changements dĂ©pendent principalement de la dose cumulĂ©e administrĂ©e au patient. Actuellement, trĂšs peu de techniques sont disponibles pour dĂ©tecter de telles cardiotoxicitĂ©s. L'utilisation d’images de fibres musculaires (par exemple, Ă  l’aide de l’imagerie des tenseurs de diffusion par IRM) ou des techniques d'imagerie 3D (par exemple, cinĂ© DENSE IRM) sont des alternatives prometteuses, cependant, leur application en clinique est limitĂ©e en raison du temps d'acquisition d’images et les erreurs d'estimation qui en rĂ©sultent. En revanche, l'utilisation de l'IRM multi-paramĂ©trique ainsi que le cinĂ© IRM sont des alternatives prometteuses, puisque ces techniques sont dĂ©jĂ  disponibles au niveau clinique. L’IRM multiparamĂ©trique incluant l’imagerie des temps de relaxation T1 et T2 peut ĂȘtre utile dans la dĂ©tection des lĂ©sions dans le tissu du myocarde alors que l’imagerie cinĂ© IRM peut ĂȘtre plus appropriĂ©e pour dĂ©tecter les changements fonctionnels au sein du myocarde. La combinaison de ces deux techniques peut Ă©galement permettre une caractĂ©risation complĂšte de la fonction du tissu myocardique. Dans ce projet, l'utilisation des temps de relaxation T1 prĂ©- et post-gadolinium et T2 est d'abord Ă©valuĂ©e et proposĂ©e pour dĂ©tecter les dommages myocardiques induits par la chimiothĂ©rapie Ă  la doxorubicine. En second lieu, l'utilisation de patrons 2D de dĂ©placements myocardiques est Ă©valuĂ©e dans le cadre de la dĂ©tection des dommages myocardiques et altĂ©ration fonctionnelle due au traitement Ă  la doxorubicine. Enfin, l'utilisation de la modĂ©lisation par Ă©lĂ©ments finis, incluant les contraintes et dĂ©formations mĂ©caniques est proposĂ©e pour Ă©valuer les changements dans les propriĂ©tĂ©s mĂ©caniques au niveau du myocarde, avec l’hypothĂšse que le traitement Ă  base de doxorubicine induit des changements importants Ă  la fois dans le tissu et au niveau de la fonction myocardique. Dans notre cohorte de survivants de cancer, des changements myocardiques locaux ont Ă©tĂ© trouvĂ©s entre le groupe Ă  risque standard et le groupe Ă  risque Ă©levĂ© lorsque le T1 prĂ©-gadolinium fut utilisĂ©. Ces changements ont Ă©tĂ© amplifiĂ©s avec l’utilisation d’agent de contraste tel que confirmĂ© par le coefficient de partition, ce qui suggĂšre que l’utilisation du T1 post-gadolonium et le coefficient de----------ABSTRACT Doxorubicin chemotherapy is effective and widely used to treat acute lymphoblastic leukemia. However, its effectiveness is hampered by a wide spectrum of dose-dependent cardiotoxicity including both morphological and functional changes affecting the myocardium. Currently, very few techniques are available for detecting such cardiotoxic effect. The use of muscle fibers orientation (e.g., diffusion tensor imaging DT-MRI) or 3D imaging techniques (e.g., cine DENSE MRI) are possible alternatives, however, their clinical application is limited due to the acquisition time and their estimation errors. In contrast, the use of multi-parametric MRI along with cine MRI is a promising alternative, since theses techniques are already available at a clinical level. Multiparametric MRI including T1 and T2 imaging may be helpful in detecting myocardial tissue damage, while cine MRI may be more appropriate to detect functional changes within the myocardium. The combination of these two techniques may further allow an extensive characterization of myocardial tissue function. In this doctoral project, the use of pre- and post-gadolinium T1 and T2 relaxation times is firstly assessed and proposed to detect myocardial damage induced by doxorubicin chemotherapy. Secondly, the use of 2D myocardial displacement patterns is assessed in detecting myocardial damage and functional alteration due to doxorubicin-based treatment. Finally, the use of finite element modeling including mechanical strains and stresses to evaluate mechanical properties changes within the myocardium is alternatively proposed, assuming that doxorubicin-based treatment induces significant changes to both myocardial tissue morphology and function. In our cohort of cancer survivors, local myocardial changes were found between standard risk and high risks group using pre-gadolinium T1 relaxation times. These changes were further amplified with gadolinium enhancement, as confirmed by the use of partition coefficient, suggesting this MRI parameter along with partition coefficient as candidates imaging markers of doxorubicin induced cardiomyopathy. The use of T2 on the other hand showed that the high risk group of cancer survivors had higher T2 relaxation times compared to the standard risk group and similar to reported values. Though, a larger cohort of cancer survivors may be required to assess the use of T1 and T2 relaxation time as possible indices for myocardial tissue damage in the onset of doxorubicin-induced cardiotoxicity

    Personalized Electromechanical Modeling of the Human Heart : Challenges and Opportunities for the Simulation of Pathophysiological Scenarios

    Get PDF
    Mathematische Modelle des menschlichen Herzens entwickeln sich zu einem Eckpfeiler der personalisierten Medizin. Sie sind ein nĂŒtzliches Instrument und helfen klinischen EntscheidungstrĂ€gern die zugrundeliegenden Mechanismen von Herzkrankheiten zu erforschen und zu verstehen. Aufgrund der KomplexitĂ€t des Herzens benötigen derartige Modelle allerdings eine detaillierte Beschreibung der physikalischen Prozesse, welche auf verschiedenen rĂ€umlichen und zeitlichen Skalen miteinander interagieren. Aus mathematischer Perspektive stellen vor allem die Entwicklung robuster numerischer Methoden fĂŒr die Lösung des Modells in Raum und Zeit sowie die Identifizierung von Parametern aus patientenspezifischen Messungen eine Herausforderung dar. In dieser Arbeit wird ein detailliertes mathematisches Modell vorgestellt, welches ein vollgekoppeltes Multiskalenmodell des menschlichen Herzens beschreibt. Das Modell beinhaltet unter anderem die Ausbreitung des elektrischen Signals und die mechanische Verformung des Herzmuskels sowie eine Beschreibung des Herz-Kreislauf-Systems. Basierend auf dem neusten Stand der Technik wurden Modelle der Membrankinetik sowie der Entwicklung der aktiven Kraft zu einem einheitlichen Modell einer Herzmuskelzelle zusammengefĂŒhrt. Dieses beschreibt die elektromechanische Kopplung in Herzmuskelzellen der Vorhöfe und der Herzkammern basierend auf der Physiologie im Menschen und wurde mit Hilfe von experimentellen Daten aus einzelnen Zellen neu parametrisiert. Um das elektromechanisch gekoppelte Modell des menschlichen Herzens lösen zu können, wurde ein gestaffeltes Lösungsverfahren entwickelt, welches auf bereits existierenden Softwarelösungen der Elektrophysiologie und Mechanik aufbaut. Das neue Modell wurde verwendet, um den Einfluss elektromechanischer RĂŒckkopplungseffekte auf das Herz im Sinusrhythmus zu untersuchen. Die Simulationsergebnisse zeigten, dass elektromechanische RĂŒckkopplungseffekte auf zellulĂ€rer Ebene einen wesentlichen Einfluss auf das mechanische Verhalten des Herzens haben. Dahingegen hatte die Verformung des Herzens nur einen geringen Einfluss auf den Diffusionskoeffizienten des elektrischen Signals. Um die verschiedenen Komponenten der Simulationssoftware zu verifizieren, wurden spezielle Probleme definiert, welche die wichtigsten Aspekte der Elektrophysiologie und der Mechanik abdecken. ZusĂ€tzlich wurden diese Probleme dazu verwendet, den Einfluss von rĂ€umlicher und zeitlicher Diskretisierung auf die numerische Lösung zu bewerten. Die Ergebnisse zeigten, dass Raum- und Zeitdiskretisierung vor allem fĂŒr das elektrophysiologische Problem die limitierenden Faktoren sind, wĂ€hrend die Mechanik hauptsĂ€chlich anfĂ€llig fĂŒr volumenversteifende Effekte ist. Weiterhin wurde das Modell verwendet, um zu untersuchen, wie sich eine Verteilung der Faserspannung auf den gesamten Herzmuskel auf die Funktion der linken Herzkammer auswirkt. Hierzu wurde zusĂ€tzlich eine Spannung in die Normalenrichtungen der Fasern einer idealisierten linken Herzkammer angewandt. Es zeigte sich, dass insbesondere eine Spannung senkrecht zu den Faserschichten zu einer physiologischeren Kontraktion der Kammer fĂŒhrte. Allerdings konnten diese Ergebnisse auf einem ganzen Herzen nicht vollstĂ€ndig bestĂ€tigt werden. In einem zweiten Projekt wurde mit Hilfe eines Modells der linken Herzkammer untersucht, wie sich das Rotationsmuster der Kammer unter Modifikation der lokalen elektromechanischen Eigenschaften verĂ€ndert. Hierzu wurden in vivo Daten elektromechanischer Parameter von 30 Patienten mit Herzversagen und Linksschenkelblock in das Modell integriert, simuliert und ausgewertet. Die Ergebnisse konnten die klinisch aufgestellte Hypothese nicht bestĂ€tigen und es zeigte sich keine Korrelation zwischen den elektromechanischen Parametern und dem Rotationsverhalten. Die Auswirkungen von standardisierten Ablationsstrategien zur Behandlung von Vorhofflimmern in Bezug auf die kardiovaskulĂ€re Leistung wurde in einem Modell des ganzen Herzens untersucht. Aufgrund der Narben im linken Vorhof wurde die elektrische Aktivierung und die Steifigkeit des Herzmuskels verĂ€ndert. Dies fĂŒhrte zu einem reduzierten Auswurfvolumen, welches in direktem Zusammenhang mit dem inaktiven Gewebe steht. AbhĂ€ngig von der Steifigkeit der Narben hat sich zusĂ€tzlich der Druck im linken Vorhof erhöht. Die linke Herzkammer war nur wenig beeinflusst. Zu guter Letzt wurden schrittweise pathologische Mechanismen in das Herzmodell integriert, welche in Zusammenhang mit Herzversagen stehen und in Patienten mit dilatativer Kardiomyopathie zu beobachten sind. Die Simulationen zeigten, dass vor allem zellulĂ€re VerĂ€nderungen bezĂŒglich der elektrophysiologischen Eigenschaften fĂŒr die schlechte mechanische AktivtĂ€t des Herzens verantwortlich sind. Weiterhin zeigte sich, dass strukturelle VerĂ€nderungen der Anatomie und die erhöhte Steifigkeit des Herzmuskels und die damit einhergehenden Anpassungen des Herz-Kreislauf-Systems nötig sind, um in vivo Messungen zu reproduzieren. In dieser Arbeit wurde eine Simulationsumgebung vorgestellt, welche die Berechnung der elektromechanischen AktivitĂ€t des Herzens und des Herz-Kreislauf-Systems ermöglicht. Die Simulationsumgebung wurde mit Hilfe von einfachen Beispielen verifiziert und unter Einbeziehung von Daten aus der Magnetresonanztomographie validiert. Zu guter Letzt wurde die Simulationsumgebung genutzt, um klinische Fragen zu beantworten, welche andernfalls im Dunkeln blieben

    Comportement mécanique du tissu cardiaque par flux optique et méthode des champs virtuels

    Get PDF
    Les maladies cardiovasculaires (CVD) sont connues pour ĂȘtre l’une des principales causes de mortalitĂ© non accidentelles, en particulier dans les pays dĂ©veloppĂ©s. La dĂ©tection prĂ©coce de ces maladies est donc indispensable pour rĂ©duire le taux de mortalitĂ© qu’elles engendrent. Pour traiter la leucĂ©mie de nos jours, la chimiothĂ©rapie Ă  la Doxorubicine est largement utilisĂ©e. Toutefois, ce traitement engendre une cardiotoxicitĂ© qui affecte la morphologie et la fonction du myocarde. La dose de Doxorubicine cumulĂ©e dicte le degrĂ© de ces changements anatomiques et fonctionnels. Actuellement, trĂšs peu de techniques sont disponibles pour dĂ©tecter de telles cardiotoxicitĂ©s. Les oncologues utilisent des paramĂštres, comme le LVEF (fraction d’éjection du ventricule gauche), pour dĂ©tecter cette cardiotoxicitĂ©. Ces mĂ©thodes n'arrivent pas Ă  dĂ©tecter cette cardiotoxicitĂ© d'une façon prĂ©coce. Les paramĂštres mĂ©caniques jouent un rĂŽle important dans le fonctionnement du muscle cardiaque, qui est un organe qui change de forme tout le long du cycle cardiaque. Le suivi des changements des propriĂ©tĂ©s mĂ©caniques du tissu cardiaque pourrait nous informer sur la viabilitĂ© de celui-ci et dĂ©tecter une cardiomyopathie. Dans ce projet, les patrons 2D de dĂ©formations myocardiques sont Ă©valuĂ©s dans le cadre de la dĂ©tection des dommages myocardiques et altĂ©rations fonctionnelles dus au traitement Ă  la Doxorubicine. En second lieu, ces dĂ©formations sont utilisĂ©es comme donnĂ©es d'entrĂ©e Ă  notre modĂšle numĂ©rique basĂ© sur la mĂ©thode des champs virtuels spĂ©ciaux, dans le but de quantifier les propriĂ©tĂ©s mĂ©caniques du myocarde, avec l’hypothĂšse que le traitement Ă  base de Doxorubicine induit des changements importants Ă  la fois dans le tissu myocardique et au niveau de la fonction cardiaque. Nous appliquons sur des images cinĂ©-IRM, une des mĂ©thodes iconiques qui se base sur le flux optique, pour obtenir les champs de dĂ©placements et de dĂ©formations internes des tissus cardiaques, tout au long du cycle cardiaque. Une mĂ©thode d’inversion basĂ©e sur la mĂ©thode des champs virtuels, permettant de dĂ©duire les champs de contraintes Ă  partir des dĂ©formations obtenues par flux optique, est utilisĂ©e en choisissant des champs virtuels cinĂ©matiquement admissibles. La cohorte Ă©valuĂ©e dans notre Ă©tude se compose de 4 groupes, constituĂ©s chacun de 3 volontaires, 3 groupes de survivants de leucĂ©mie du projet PETALE et un groupe de sujets sains. Les survivants de leucĂ©mie prĂ©sentent diffĂ©rents niveaux de risque basĂ© sur la dose cumulative de doxorubicine reçue. Ces survivants sont sĂ©parĂ©s en deux groupes Ă  haut risque, dont un groupe qui prend un agent protecteur (Dexrazoxane), et un groupe Ă  risque standard. L'acquisition des images se fait avec un appareil IRM (Skyraℱ, Siemens Healthcare, Erlangen, Germany), de 3Tesla avec une antenne tronc de 32 canaux. Le protocole RM consiste en une sĂ©quence cinĂ© ECG- gated Steady state Free Precession (SSFP). Les paramĂštres d'acquisition sont l'Ă©paisseur de la tranche (8 mm), le temps de rĂ©pĂ©tition (TR=34.5 sec), le temps d’écho (TE=1.2 sec), l'angle de bascule (36 degrĂ©s), le facteur iPAT (3), et la taille de la matrice (210×208). Approximativement, 14 tranches sont acquises dans le plan axial, 5 tranches pour la coupe 4 chambres et 5 tranches pour la coupe 2 chambres, avec une rĂ©solution spatiale de 1.4 ×1.4× 0.8 mm. Pour chaque tranche, 25 phases du cycle cardiaque sont acquises pour chaque tranche. Pour la vue 2 chambres, nous avons constatĂ© des diffĂ©rences dans les champs de dĂ©formations entre les quatre groupes. Pour le groupe Ă  haut risque qui a reçu un agent protecteur (dexrazoxane), l’amplitude des champs de dĂ©formations est infĂ©rieure Ă  celle du groupe Ă  haut risque qui n’a pas reçu d'agent protecteur, quelle que soit la phase du cycle cardiaque (systole, diastole prĂ©coce, diastole retardĂ©e). Pour cette mĂȘme vue 2 chambres, la contrainte en cisaillement et la contrainte de Von Mises sont infĂ©rieures, en systole, pour le groupe Ă  haut risque qui reçoit un agent cardioprotecteur (HRdex) par rapport au groupe Ă  haut risque (HR) qui n'en reçoit pas. Nous notons que le module d'Ă©lasticitĂ© est infĂ©rieur pour le groupe Ă  risque standard (SR), comparĂ© aux groupes HR et HRdex, pour la systole et la diastole tardive. La mĂȘme diffĂ©rence est observĂ©e pour le module de cisaillement pour le groupe Ă  risque standard SR, juste pour la systole. Pour la vue 4 chambres, le module d'Ă©lasticitĂ© est significativement plus Ă©levĂ© pour le groupe HRdex, comparĂ© aux groupes HR, SR et Ă  celui du groupe de volontaires sains (HV), pour les trois phases (Systole, Diastole prĂ©coce, Diastole tardive). En considĂ©rant la vue axiale, les contraintes de cisaillement et de Von Mises sont infĂ©rieures pour le groupe HR par rapport au groupe HRdex. Le module d'Ă©lasticitĂ© est infĂ©rieur pour le groupe SR par rapport aux groupes HR et HRdex. La mĂȘme diffĂ©rence est observĂ©e pour le module de cisaillement pour le groups SR en systole. Dans la coupe axiale, en systole, les changements entre les quatre groupes pour les contraintes de cisaillement et de Von Mises ne concordent pas avec les diffĂ©rences trouvĂ©es pour les coupes 2 chambres et 4 chambres, probablement due Ă  l’orientation diffĂ©rentes des fibres musculaires entre les coupes. Pour le module de Young, les changements en systole et en diastole retardĂ©e en coupe axiale concordent avec les diffĂ©rences trouvĂ©es pour les coupes 2 chambres et 4 chambres. Ces changements observĂ©s entre les groupes peuvent ĂȘtre expliquĂ©s par le fait que le muscle cardiaque des patients ayant survĂ©cu Ă  un cancer se comporte diffĂ©remment Ă  cause d'une rĂ©duction de la quantitĂ© de fibres musculaires et d'une augmentation du tissu interstitiel. La sĂ©vĂ©ritĂ© de ces changements est proportionnelle Ă  la dose totale d'anthracyclines, ce qui fait que le muscle cardiaque se dilate plus facilement, surtout, en diastole. Notre modĂšle nous a permis de constater des changements dans les champs de dĂ©formations, de contraintes, ainsi que pour les propriĂ©tĂ©s mĂ©caniques du tissu cardiaque, qui prĂ©sente une carditoxicitĂ© due au traitement Ă  la Doxorubicine, ce qui vĂ©rifie notre hypothĂšse et montre la faisabilitĂ© d’une telle approche. Une des perspectives de cette Ă©tude est de constituer une base de donnĂ©es, comme les courbes de pressions individuelles ou les modules d’élasticitĂ© pour des personnes saines et des personnes prĂ©sentant une cardiomyopathie, pour fin de comparaison prĂ©liminaire, afin de classer les patients par ordre de sĂ©vĂ©ritĂ© de cardiomyopathie.----------ABSTRACT Cardiovascular disease (CVD) is known to be one of the leading non-accidental causes of death, early detection of these diseases is therefore essential to reduce the mortality rate they generated. One of these causes is the effect of the chemotherapy. To treat leukemia today, chemotherapy with doxorubicin is widely used. However, this treatment leads to cardiotoxicity that affects the morphology and function of the myocardium. The cumulative doxorobicine dose dictates the degree of these anatomical and functional changes. Currently, very few techniques are available to detect such cardiotoxicities. Oncology uses the parameters like LVEF (Left ventricle ejection fraction or fractional shortening) to detect this cardiotoxicity. However, these methods fail to detect this cardiotoxicity in an early manner. Mechanical parameters play an important role in the functioning of the heart muscle, which is an organ that changes shape throughout the cardiac cycle. Tracking changes in the mechanical properties of a cardiac tissue informs us about his viability. We apply on cine-MRI images, one of the iconic methods based on optical flow, to obtain the fields of internal deformation of cardiac tissues throughout the cardiac cycle. The optical flow does not require information on the content of the image, so it is not necessary to know the organ to study its movement. An inversion method based on the virtual field method, which makes it possible to deduce the stress fields from the deformations obtained by optical flow, is used, by choosing cinematically admissible virtual fields; special virtual fields. Our study included 9 cancer survivors from the PETALE project and 3 healthy control volunteers. The cancer survivors were separated into 3 risk groups according to the cumulative doxorubicin dose received during the treatment, The standard risk (SR), group (n=3), the high risk (HR) group (n=3), the high risk with Dexrazoxane, HRdex group (n=3) that received the same median cumulative dose of Doxorubicin as the HR group along with a dose of a cardioprotective agent. In this project, the use of 2D patterns of myocardial strain is evaluated as part of the detection of myocardial damage and functional impairment due to doxorubicin treatment. Secondly, the use of these strain obtained by optical flow method as input to our model which is based on the method of special virtual fields to have the mechanical properties as well as the internal stresses of the myocardium, with the assumption that the treatment based on Doxorubicin induces significant changes in both tissue and myocardial function. MRI acquisition was done on a 3T device (Skyraℱ, Siemens Healthcare, Erlangen, Germany) using 18-channel phased array body matrix coil and an ECG-gated Steady State Free Precession (SSFP) cine sequence. Acquisition parameters were: slice thickness 8mm, repetition time 34.6ms, effective echo time 1.2ms, flip angle 38°, iPAT factor 3, matrix 208×210 and in-plane pixel size 1.25×1.25mm. Around 14 slices were acquired in the axial plane, and 5 slices in 2 chambers and 4 chambers planes. For the entire cardiac cycle, 25 images were acquired for each slice, with multiple breath holds. Within the 2-chambers view, significant changes were found for the strain fields between the four groups. Strain within HRdex were lower than in HR for the three considered phases (Systole, Early diastole, Late diastole). For the same view, shear stress and Von Mises stress, are inferior, in systole for the HRdex compared to HR. the module of elasticity is inferior for the SR compared to HR and HRdex, for the systole and the late diastole. The same difference is found for the shear modulus for the SR, in systole. Considering the 4CH view, the module of elasticity is significantly higher for the HRdex, compared to HR, and compared to SR's group and healthy volunteers HV's group, for the three considered phases (Systole, Early Diastole, Late diastole). Considering the axial view, shear and Von Mises stress were lower in systole for HR than for HRdex. The modulus of elasticity was found lower for SR than for HR and HRdex, same difference was observed for the shear modulus for the SR group in systole. In the axial view, in systole, significant changes were found between groups, for the shear and Von Mises stress. However, these changes were not found in 2CH and 4CH views, probably due to trhe different collagen fiber orientation between the views. For the modulus of elasticity, the changes in systole and late diastole were in agreement with the results obtained in 2CH and 4CH views. This difference between groups can be explained by the fact that the heart muscle of HR cancer behaves differently due to a reduction in the amount of the muscle fibers and an increase of the interstitial tissue. The severity of these changes is proportional to the cumulative anthracycline dose. If enough damage occurs, the heart expands in size and the chamber wall become thinner, creating a picture similar to dilated cardiomyopathy, in agreement with our results. Our model allowed us to observe the changes in strain fields, stress fields, as well as the mechanical properties of cardiac tissue presenting doxorubicin induced carditoxicity, which verifies our hypothesis and shows the feasibility of our approach. The perspectives of this study is to build a database for healthy volunteers and those presenting a cardiomyopathy, for preliminary comparison purposes, to rank patients according to the severity of the disease. This could help early detection of these cardiomyopathies

    Évaluation des propriĂ©tĂ©s mĂ©caniques du tissu cardiaque par Ă©chocardiographie

    Get PDF
    RÉSUMÉ Les survivants de leucĂ©mie lymphoblastique aigĂŒe (LLA) sont Ă  risque de dĂ©velopper une insuffisance cardiaque Ă  long terme Ă  cause de l’effet cardiotoxique intrinsĂšque au traitement par anthracyclines. Une dysfonction cardiaque peut apparaĂźtre plusieurs annĂ©es aprĂšs la fin du traitement. Les outils diagnostiques actuels dĂ©tectent tardivement des changements au niveau fonctionnel du coeur. L’hypothĂšse Ă  l’étude dans ce projet est que les changements au niveau cellulaire qui prĂ©cĂšdent la dysfonction cardiaque ont une influence sur les propriĂ©tĂ©s mĂ©caniques du tissu. Ce faisant, l’identification des propriĂ©tĂ©s mĂ©caniques du coeur pourrait ĂȘtre utilisĂ©e pour suivre la progression de la maladie. Ce projet s’intĂšgre au projet PETALE du Centre Universitaire Hospitalier Ste-Justine qui Ă©tudie les effets secondaires tardifs chez les survivants de LLA. L’objectif Ă  long terme est de dĂ©velopper une mĂ©thode diagnostique non-invasive permettant de prĂ©dire des changements fonctionnels du coeur. Les objectifs spĂ©cifiques de ce projet sont 1) Ă©valuer la santĂ© cardiaque d’une cohorte de survivants de leucĂ©mie lymphoblastique aigĂŒe, 2) dĂ©velopper une approche basĂ©e sur la mĂ©thode des champs virtuels (MCV) permettant d’identifier les propriĂ©tĂ©s mĂ©caniques du tissu cardiaque Ă  partir d’images Ă©chocardiographiques et 3) valider cette mĂ©thode Ă  l’aide de modĂšles Ă©lĂ©ments finis. Une Ă©tude clinique a d’abord Ă©tĂ© conduite auprĂšs de la cohorte PETALE. Une Ă©valuation Ă©chocardiographique complĂšte a Ă©tĂ© effectuĂ©e chez tous les patients incluant le mode M, le mode Doppler, Doppler tissulaire et le suivi des dĂ©formations par speckle-tracking. Les rĂ©sultats ont Ă©tĂ© analysĂ©s en fonction du groupe de risque de comorbiditĂ©s et de l’administration d’un agent cardioprotecteur (dexrazoxane). Les patients Ă  haut risque ont reçu une dose cumulative d’anthracycline plus Ă©levĂ©e que les patients Ă  risque standard. Les rĂ©sultats dĂ©montrent que les patients du groupe Ă  risque Ă©levĂ© n’ayant pas reçu de dexrazoxane ont une fonction cardiaque diminuĂ©e par rapport aux patients Ă  haut risque ayant reçu un cardioprotecteur et aux patients Ă  risque standard. De plus, l’obĂ©sitĂ© et la rĂ©sistance Ă  l’insuline sont les facteurs dĂ©terminants de la santĂ© cardiovasculaire Ă  long terme chez cette population. Toutefois, les outils actuels sont limitĂ©s et ne permettent pas d’évaluer de maniĂšre prĂ©cise le risque de dĂ©velopper une insuffisance cardiaque dans un futur rapprochĂ©. Suivant cette analyse, une mĂ©thode d’identification de propriĂ©tĂ©s mĂ©caniques du myocarde spĂ©cifique Ă  l’échocardiographie est dĂ©crite. Dans cette approche, le coeur est considĂ©rĂ© homogĂšne, isotrope et ayant un comportement hyperĂ©lastique suivant une loi d’Ogden incompressible.----------ABSTRACT Long-term cardiotoxicity has been described in acute lymphoblastic leukemia (ALL) survivors. These patients often suffer from a wide spectrum of cardiac abnormalities associated with anthracycline administration. Actual follow-up of these patients is not sensitive enough to detect cardiac changes before the onset of the functional incapacity. As a matter of fact, the evaluation of mechanical properties of the cardiac muscle is not part of the common diagnostic tools. We hypothesized that changes at a cellular level preceding cardiac dysfunction have an impact on the mechanical behaviour of the myocardium. Identification of mechanical properties could be used in the monitoring of patients at risk of developing heart failure. This project was part of the PETALE project at University Hospital Center Ste-Justine that aims to study long-term chronic side effects in ALL survivors. The long-term objective of this project was to develop a non-invasive and sensitive technique that makes use of myocardial mechanical parameters for the prediction of functional changes in the heart. This project specifically aimed to 1) assess the cardiac health of an ALL survivors cohort, 2) develop a framework based on the virtual fields method to identify mechanical properties of myocardium in echocardiographic images and 3) validate this method using finite element models. Therefore, a clinical study was conducted on ALL survivors from the PETALE cohort. These patients underwent a complete echocardiographic assessment, including M mode, Doppler, Tissue Doppler and Speckle-tracking echocardiography. Results were analyzed according to initial ALL risk status and cardioprotection administration (dexrazoxane). Patients treated for high risk ALL received a higher cumulative anthracycline dose than patients treated for standard risk ALL. Results showed that patients treated for high risk ALL who did not receive dexrazoxane had a decreased heart function when compared with patients who received dexrazoxane or those who had a standard risk of comorbidities. Moreover, obesity and insulin resistance are the strongest determinants of cardiovascular health in the long term for ALL survivors. However, current diagnostic tools are limited and cannot evaluate the risk of future heart failure adequately. Following this analysis, an identification method specific to echocardiography was described. In this framework, heart was considered homogeneous with an incompressible isotropic hyperelastic behaviour that fits an Ogden law. Intraventricular pressure was used as a boundary condition. Pressure was obtained from a lumped parameter model that represents the heart as three thick wall mechanically coupled (CircAdapt model)

    Numerical approximation of cardiac electro-fluid-mechanical models:coupling strategies for large-scale simulation

    Get PDF
    The mathematical modeling of the heart involves several challenges, which are intrinsically related to the complexity of its function. A satisfactory cardiac model must be able to describe a wide range of different processes, such as the evolution of the transmembrane potential in the myocardium, the deformation caused by the muscles contraction, and the dynamics of the blood inside the heart chambers. In this work, we focus on the coupling of the electrophysiology, the active and the passive mechanics, and the fluid dynamics of the blood in the left ventricle (LV) of the human heart. The models describing the previously mentioned processes are called Ăąsingle core modelsĂą, and can be regarded as the building blocks of an Ăąintegrated modelĂą. In this thesis, we first review the isolated single core mathematical models for the description of the LV function, and discuss their space and time discretizations with particular emphasis on the coupling conditions. We consider both implicit and semi-implicit schemes for the time discretization. The fully discretized single core problems thus obtained are then combined to define integrated electromechanics and electrofluidmechanics problems. We then focus on the numerical coupling strategy for the electromechanics solver in the framework of the active strain formulation. First, we propose a monolithic strategy where the discretized core models are solved simultaneously; then, several novel segregated strategies, where the discretized core models are solved sequentially, are proposed and systematically compared with each other. The segregated strategies are obtained by exploiting a Godunov splitting scheme, which introduces a first order error on the solution. We show that, while the monolithic approach is more accurate and more stable for relatively large timesteps, segregated approaches allow to solve the integrated problem much more efficiently in terms of computational resources. Moreover, with segregated approaches, it is possible to use different timesteps for the different core models in a staggered fashion, thus further improving the computational efficiency of the schemes. The monolithic and the segregated strategies for the electromechanics are used to solve a benchmark problem with idealized geometry: the results are then compared in terms of accuracy and efficiency. We numerically confirm that the segregated strategies are accurate at least of order one. In light of the results obtained, we employ the proposed strategies to simulate the electromechanics of a subject-specific LV for a full heartbeat. We simulate both healthy and pathological scenarios: in the latter case, we account for an ischemic necrosis of the tissue and analyze several clinical indicators such as pressure-volume loops and the end systolic pressure-volume relationship. Finally, we use the proposed strategies to simulate the electrofluidmechanics of a realistic LV during the systolic phase of the heartbeat. When defining the integrated cardiac models, we establish a preprocess pipeline aimed at preparing geometries and data for both idealized and subject-specific simulations. The pipeline is succesfully used for the setting up of large scale simulations in a high performance computing framework, where the (strong and weak) scalability of the proposed coupling strategies is assessed

    Numerical simulation of the electromechanical activity of the heart

    No full text
    International audienceWe present numerical results obtained with a three-dimensional electromechanical model of the heart with a complete realistic anatomy. The electrical activity of the heart-torso domain is described by the bidomain equations in the heart and a Laplace equation in the torso. The mechanical model is based on a chemically-controlled contraction law of the myofibres integrated in a 3D continuum mechanics description accounting for large displacements and strains, and the main cardiovascular blood compartments are represented by simplified lumped models. We considered a normal case and a pathological condition and the medical indicators resulting from the simulations show physiological values, both for mechanical and electrical quantities of interest, in particular pressures, volumes and ECGs
    corecore