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Abstract

The objective of this paper is to propose and assess an estimation procedure – based on
data assimilation principles – well-suited to obtain some regional values of key biophysical
parameters in a beating heart model, using actual Cine-MR images. The motivation is
twofold: (1) to provide an automatic tool for personalizing the characteristics of a cardiac
model in order to achieve predictivity in patient-specific modeling, and (2) to obtain some
useful information for diagnosis purposes in the estimated quantities themselves. In order
to assess the global methodology we specifically devised an animal experiment in which
a controlled infarct was produced and data acquired before and after infarction, with an
estimation of regional tissue contractility – a key parameter directly affected by the pathology
– performed for every measured stage. After performing a preliminary assessment of our
proposed methodology using synthetic data, we then demonstrate a full-scale application by
first estimating contractility values associated with 6 regions based on the AHA subdivision,
before running a more detailed estimation using the actual AHA segments. The estimation
results are assessed by comparison with the medical knowledge of the specific infarct, and
with late enhancement MR images. We discuss their accuracy at the various subdivision
levels, in the light of the inherent modeling limitations and of the intrinsic information
contents featured in the data.

1 Introduction

Building adequate patient-specific models is now widely recognized as a most important
challenge for bioengineering applied in medicine [23], and this holds in particular for cardiac
modeling [16, 46]. Of course, as a first major ingredient, this requires the construction of accu-
rate anatomical models which suitably represent the actual geometrical attributes of the patient
considered, usually based on medical imaging data [38]. The next – at least equally important,
and most challenging – stage consists in “personalizing” the biophysical characteristics of a
cardiac model in order to reproduce the specificities of the patient, as e.g. in case of various
pathologies which are most likely to perturb localized values of constitutive parameters. This
step is crucial to render the model predictive, hence to obtain some clinically-relevant quan-
titative information from the model simulations, both in the current state of the patient and
under various scenarii of future evolutions, such as for therapy planning, e.g. to pre-operatively
optimize cardiac resynchronization therapies [45] or surgical procedures.

The complexity of the heart physiology – and of the related models – is such that this bio-
physical personalization procedure cannot be simply performed “manually”, such as by directly
extracting the required quantities from the available measurements, hence some automated
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estimation procedures are much needed in this endeavor [40, 2, 18]. Moreover, as some biophys-
ical parameters are strongly correlated with the functional state of the organ, the automatic
estimation of these parameters can be envisioned as a diagnosis tool. This dual objective of
(1) circumscribing the various sources of uncertainties in the system by using measurements
to estimate some unknown quantities which are key to the model behavior from a physical
and physiological standpoint, thus providing useful information for diagnosis, and (2) thereby
rendering the biophysical model adequately predictive in subsequent simulations, is essential in
this paper. This corresponds – indeed – to the concept of data assimilation already widely em-
ployed in other domains of science and engineering, such as geophysics in general and weather
forecasting in particular, see e.g. [8]. We emphasize that this approach is notably different from
the objective of cardiac motion tracking per se [37, 31, 9, 44], sometimes complemented by
extracting some valuable indices from available data by using some constraining physical model
equations [21, 30]. The discriminating criterion in data assimilation is that once the estimation
has been performed the biophysical model must be able to run independently of any data, while
providing accurate and predictive solutions. Hence, the data assimilation framework requires
two essential components: (1) a biophysical model of well-controlled complexity in order to
ensure predictivity in forward simulations without undue sources of uncertainties relative to
the available data, namely, unobservable phenomena, and (2) an effective data assimilation
procedure well-adapted to the model equations and to the data in question.

In this paper, we will consider a biomechanical heart model as proposed in [43] and further
substantiated in [13], with some clinical validations performed in [11, 45]. For this model we
will demonstrate a complete personalization procedure – namely, both anatomical and biophys-
ical – using actual clinical data consisting of in-vivo Cine-MR image sequences and pressure
measurements, based on some earlier-proposed data assimilation procedures [33, 34, 32]. In
order to allow for a detailed assessment of the estimation results, we specifically devised and
performed an animal experiment in which a controlled infarct was created [11], and imaging and
pressure data acquired before and after infarction – at two subsequent stages. Hence, we can
quantitatively compare the estimation results pertaining to regional values for a major biophys-
ical parameter of interest in this context – namely, the tissue contractility which characterizes
the ability of the muscle fiber to generate active stresses under the effect of electrical activation
– at the various stages. Moreover, we can also qualitatively and semi-quantitatively evaluate
the post-infarct results with respect to a priori knowledge regarding the pathology and to late
enhancement indicators. We point out that we selected the Cine-MRI modality to perform this
estimation trial – despite its rather limited contents through the boundary segmentation post-
processing in terms of volume-distributed physical information, compared to e.g. tagged MRI
– because it is a rather standard clinical imaging protocol for this type of pathology. Therefore,
while the specific modality considered – Cine-MRI – is not by far the most favorable choice
for our specific estimation objectives of determining localized biophysical parameter values, our
estimation procedure can be seen as a challenge deliberately oriented towards actual clinical
practice.

The outline of the paper is as follows. In Section 2 we describe the clinical data collected
in the animal experiment, and the associated anatomical modeling. Then, in Section 3 we
present the biophysical heart model and the proposed data assimilation procedure, with some
related algorithmic and computational considerations for both. Next, in Section 4 we describe
the specific estimation trial performed in this study, namely, the estimation of regional tissue
contractility quantities using Cine-MRI, and we report on the actual results, which are sub-
sequently discussed and assessed in Section 5. Finally we give some concluding remarks in
Section 6.
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2 Clinical data and anatomical modeling

2.1 Experimental protocol

The experimental data used in this article were obtained as part of an animal study approved
by the Institutional Animal Care and Use Committee of the Faculty of Medicine of Université
Paris-Est Créteil, France. The animal – a farm pig of 30 kg – was housed and cared according
to European Union standards. Before each data acquisition, the animal was premedicated with
intramuscular Ketamin (15 mg/kg), anesthetized with Propofol (0.35 mg/kg intravenous bolus
and 0.05 mg/kg/min continuous infusion), intubated and ventilated, see [11] for the detailed
experimental protocol.

Firstly, the subject was examined and data acquired once in a baseline condition (physiologi-
cal heartbeat). Then, an antero-septal myocardial infarction was induced by a 120-min occlusion
of the mid-part of the left anterior descending coronary artery, using a balloon catheter, fol-
lowed by reflow. This occlusion led to an extended myocardial infarction, as was confirmed in
the follow-up by the late enhancement MR images. The animal was re-examined 10 and 38 days
after the infarct creation. These various stages are referred to as baseline, T0+10 and T0+38 in
the sequel. The T0+10 data acquisition corresponds to the acute stage of the infarct (edematous
necrotic tissue with only slightly diminished wall thickness), while at T0+38 we could already
expect – and indeed observed – thinning of the LV wall (caused by resorption of the necrosis
and tissue remodeling).

For each of the studied stages (baseline, T0+10 and T0+38), non-invasive MR image data were
acquired and pressures in the heart cavities and large vessels were measured. More precisely,
the image data were acquired using a Philips Achieva 3T MR system (200 mT/m/ms slew rate,
maximal gradient strength 80 mT/m, 32-channel phased-array cardiac coil). The following
types of MR data were obtained:

• Cine in retrospective ECG gating (incoherent gradient echo, flip angle 15 ◦, TR ∼6 ms,
TE ∼3.5 ms, turbo factor 5, SENSE 1, acq. matrix 210x160, voxel size 1.5x1.7x8 mm, no
intergap between short axis slices, 40 time frames / cardiac cycle);

• Late enhancement images (gadolinium chelate contrast agent – gadoterate dimeglumine,
Dotarem, 0.2 mmol/kg, T1 weighted gradient echo, 3D acquisition, flip angle 15 ◦, TR
∼5.0 ms, TE ∼2.4 ms, TI ∼220 ms, turbo factor 32, SENSE 2, acq. matrix 175x175x15,
voxel size 1.5x1.5x5 mm, magnitude and phase sensitive reconstructions) to visualize the
infarct.

The pressures were measured invasively by means of retrograde catheterization (aortic and left
ventricle pressure) and by antegrade catheterization (right atrium, right ventricle, pulmonary
artery and pulmonary capillary wedged pressure).

2.2 Anatomical Model

Anatomical models were created for each stage based on the end-diastolic time frames of
the Cine-MR images, a state considered to be close to a stress-free configuration. Hence,
reference configurations have been determined from this configuration according to the inverse
procedure described in [35]. Segmentations of the ventricles up to the valve plane were performed
manually in this particular time frame by an expert using the CardioViz3D software [49]. Then
a computational mesh was built in the segmented geometry using the Yams and GHS3D meshing
tools [17], see the resulting mesh in the baseline configuration in Figure 1. Note that the atria
are not contained in this anatomical model. The computational mesh typically features at least
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Figure 1: Computational mesh for baseline (left), distance from endocardium to epicardium
map (center) and generic fibers prescribed in the mesh (right)

two elements across the thickness throughout the whole left ventricular wall, which was shown
to provide reasonable accuracy – especially compared to other modeling and measurement
uncertainties – in our previous validation studies [11, 45].

The fibers – needed in the biomechanical model as privileged directions of contraction (see
Section 3.1) – were defined in the same anatomical model based on general anatomical knowledge
[42]: -60/60 degrees elevation in the left ventricle, -50/50 in the right ventricle from epicardium
to endocardium. To that purpose, we first computed a 3D distance map [4] from any point in the
tissue to the epicardium and endocardium, see Figure 1. This distance and its corresponding
gradient were then employed to compute the fiber elevation across the thickness. The final
fiber directions for the baseline case are also shown in Figure 1, visualized with the MedINRIA

software [50]. We point out that we considered variations of these angle parameters within
the pre-calibration of the model – see Section 4.1 – and found that the above values provided
adequate global motion patterns as regards longitudinal versus radial strains.

2.3 Processed data

The data assimilation procedure uses measurements – also called observations – to estimate
various uncertainties in the biophysical model. These measurements consist in a time sequence
of data. In this study, our purpose is to use a sequence of segmentations for the region of interest
obtained from the MRI as initially presented in [34]. Therefore, we have manually segmented in
the three short axis Cine-MR image sequences (baseline, T0+10, T0+38) the endocardium and
epicardium of the left ventricle, where by LV epicardium we refer to the part of the epicardial
surface adjacent to the LV together with the septal part of the RV endocardium. These two
surface segmentations are transformed into two triangular meshes using CardioViz3D. We point
out that at each time step the two meshes are generated independently of the previous time
steps so that the number of triangles varies for the endocardium from about 4,500 to 5,500 and
for the epicardium from about 5,000 to 6,000.

3 Methods

3.1 Heart model

In this section, we summarize the formulation of the heart model considered – described in
more detail in [43, 13], which also compare this model to other formulations proposed in the
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literature, such as in [36, 22] – and we give the corresponding discrete equations employed in
our numerical simulations.

3.1.1 Continuum mechanics formulation

Let Ω0 be a reference configuration for the system. Denoting the deformation of the solid
medium by

ϕ :
Ω0 × [0, T ] −→ Ω(t),

(ξ, t) 7−→ x = ϕ(ξ, t)

the displacement of the domain is given by y(ξ, t) = ϕ(ξ, t) − ξ, and the velocity of a material
point ξ, ∂tϕ(ξ, t) = ∂ty(ξ, t) is denoted by v. We then introduce the deformation gradient

F (ξ, t) = ∇
ξ
ϕ(ξ, t),

such that the deformed volume is given by JdΩ where J = detF and dΩ is the volume measure

(here in the reference configuration), while a change of area is given by JF−T ·dS. Furthermore,

we introduce the right Cauchy-Green deformation tensor C = F T ·F , while recalling that local
changes of geometry are described by the Green-Lagrange strain tensor

e =
1

2
(C − ✶) =

1

2

(

∇
ξ
y + (∇

ξ
y)T + (∇

ξ
y)T · ∇

ξ
y
)

.

The principle of virtual work written in the reference configuration – namely in Lagrangian
form – reads

∀v∗ ∈ V,

∫

Ω0

ρ0γ · v∗ dΩ+

∫

Ω0

Σ : dye · v
∗ dΩ =

∫

Ω0

ρ0f · v∗ dΩ+

∫

Γs
N

t0 · v
∗ dS, (1)

where γ = ∂tv(ξ, t) denotes the acceleration, ρ0 is the solid mass per unit volume, Σ is the sec-
ond Piola-Kirchhoff stress tensor, f are volume-distributed forces, t0 surface-distributed forces
applied on Γs

N ⊂ ∂Ω0 and

dye · v
∗ =

1

2

(

(dyF · v∗)T · F + F T · dyF · v∗
)

corresponds to the derivative of the Green-Lagrange strain tensor with respect to displacements
in the admissible space of test functions V. Concerning the inclusion of inertia effects which
are not always taken into account in heart models, we point out that order of magnitude
calculations indicate that they are roughly comparable to diastolic ventricular pressure loading.
Furthermore, whereas any mathematical model is bound to contain errors of various sources,
the inertia term per se is hardly prone to any error at all.

3.1.2 Constitutive law

We model the complex behavior of the cardiac tissue by combining an active constitutive
law in the muscle fiber direction τ1 with a visco-hyperelastic material. This mixture is depicted
in Figure 2 as a rheological model describing the combination of constitutive ingredients. In
order to ensure energy consistency, the series law in this schematic is more intricate than the
usual linear rheological rule – namely additive strains. According to [43], this rule becomes

1 + 2e1D = (1 + 2es)(1 + 2ec), (2)
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Figure 2: Hill-Maxwell rheological model – Combination of 3D passive (bottom) and 1D fiber-
oriented active (top) branches

with e1D = τ1 · e · τ1, and

σ1D =
σc

1 + 2es
=

σs
1 + 2ec

. (3)

In addition, the parallel association in Figure 2 consists in decomposing the stress tensor into

Σ = Σ
p
+ σ1D τ1 ⊗ τ1. (4)

Passive 3D branch The rheological model already takes into account the anisotropy in the
myocardial fiber direction τ1 and we will then employ an isotropic hyperelastic law for the
3D passive branch. Note that in the future we could also consider anisotropic passive laws
such as proposed in [36, 15, 19] and e.g. assess the estimation of the corresponding constitutive
parameters [52]. In our case, denoting by We the hyperelastic potential, the corresponding
stress contribution is given by ∂We

∂e where – according to the Rivlin-Ericksen theorem [41] – the

hyperelastic potential is necessarily a function of the so-called invariants (I1, I2, I3) of the tensor
C defined by

I1 = trC, I2 =
1
2

(

(trC)2 − tr(C2)
)

, I3 = det(C) = J2.

When considering nearly incompressible materials as is the case for soft tissues, it is convenient
(see [29]) to instead use the reduced invariants (J1, J2, J3)

J1 = I1I
− 1

3

3 , J2 = I2I
− 2

3

3 , J3 = I
1

2

3 = J, (5)

with which the stress tensor naturally decomposes into its volumic and deviatoric forms. Hence,
in this paper we assume

We = We(J1, J2, J3),

and in practice we employ an extension of the Ciarlet-Geymonat potential [14], namely,

We = κ1(J1 − 3) + κ2(J2 − 3) + κ
(

(J − 1)− ln(J)
)

. (6)

Soft tissues are also highly damped materials, and therefore we complement the hyperelas-
tic behavior by introducing a viscous pseudo-potential Wv assumed to satisfy the dissipation
property

∂Wv

∂ė
(e, ė) : ė ≥ 0, ∀(e, ė). (7)
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Here we choose a simple pseudo-potential, i.e. Wv = η
2 tr(ė

2), so that finally

Σ
p
=

∂We

∂e
+

∂Wv

∂ė
=

∑

1≤i≤3

∂We

∂Ji

∂Ji
∂e

+ η ė. (8)

Active 1D branch In the fiber direction, we combine a passive linear series element of
elasticity modulus Es, a linear damping element of coefficient µ, and the active element proposed
in [7] and further refined in [13]. Note in passing that the 1D elastic element in itself induces
passive anisotropy for the overall model. The active element builds up on Huxley’s model
[24] using a multiscale approach, and can be summarized in the following active dynamical
constitutive equations

{

k̇c = −(|u|+ α |ėc|)kc + n0k0 |u|+
τ̇c = −(|u|+ α |ėc|)τc + ėckc + n0σ0 |u|+

(9)

In this system, ec denotes the strain of the active component – directly associated with the
sarcomere units in the myofibers – τc represents the corresponding active stress arising from
the actin-myosin bonds, and kc is an equivalent stiffness. The quantity u should be seen as an
input which summarizes the electrical activation, and is defined by

u(t) = kATP✶[Ca2+]≥C − kSR✶[Ca2+]<C ,

where ✶· denotes the indicator function of the set appearing in the subscript. Hence u takes two
different values – corresponding to two different reaction rates kATP and kSR – and changes sign
according to the concentration of calcium ions bound on troponin-C. When this concentration
is above the threshold C, u = kATP is positive and induces an increase in active stiffness and
stress, namely, contraction (systole). By contrast, a concentration below the threshold induces
u = −kSR < 0 and relaxation (diastole). In addition, the remaining quantities in (9) denote
various biophysical parameters to be prescribed. In particular, k0 and σ0 represent the maximum
values of active stiffness and stress – respectively – which can be reached during systole, while
n0 is the current fraction of recruitable bridges. Hence, n0 may fluctuate depending on various
external variables related to the perfusion state – e.g. the oxygen concentration – the preload
stress and strain reached in the current and/or previous cycles, etc., see [13]. In this work, we
will only consider constant n0 = 1.

Finally, the total stress in the active element is modeled by combining τc with a viscous
contribution in the form

σc = τc + µėc.

We emphasize that in the active behavior the parameter σ0 – which we will now refer to as the
contractility – is particularly important since it directly determines how the electrical activation
is able to induce stress variations. This is why we will focus on the estimation of this specific
parameter in the sequel.

3.1.3 Circulation modeling and boundary conditions

Circulation modeling The effect of the blood pressure in the ventricular cavity – denoted
by Pv – is represented in the principle of virtual work (1) by the variational loading term

∀v∗ ∈ V, Pext(v
∗) = −

∫

Γendo

Pv n · F−1 · v∗J dS, (10)
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Figure 3: Anatomical model, boundary conditions and circulation model

to be incorporated in the boundary traction virtual work, where n is the endocardium outward
unit normal vector in the reference configuration. When the pressure is measured, it can be
directly prescribed in this expression leading to the so-called following pressure non-linear effect
induced by large displacements of the cavity.

When the pressure data is not available or too noisy, we can instead determine Pv using
a simplified model of the circulatory system as explained in [43]. In this case Pv is assumed
to be homogeneous in each compartment – as a reasonable first-order approximation – and
the circulation model consists in combining a Windkessel model (sometimes also called lumped
parameter model) for the arterial pressure and a simplified representation of the mitral and
aortic valves by analogy to diodes (see Figure 3) imposing a constant volume during isovolumic
phases and pressure continuity when a valve is open. Regarding the implementation of the
corresponding constraints, we adopt a penalized strategy by relating for each ventricle cavity
the outward flow Qc – equal to the opposite of the volume change rate V̇c – to the difference of
pressures with the adjacent cavities as follows (see also Fig. 3)

∀c = l, r, Qc = −V̇c = −

∫

∂Cc

n · F−1 · vJdS

= fδ,c(Pv,c, Par,c, Pat,c) =











Kiso,c(Pv,c − Pat,c) if Pat,c ≤ Pv,c ≤ Par,c

Kar,c(Pv,c − Par,c) +Ki
iso(Par,c − Pat,c) if Pv,c ≥ Par,c

Kat,c(Pv,c − Pat,c) if Pv,c ≤ Pat,c

(11)

where Kar and Kat – associated with open valves – are taken much larger than Kiso [43]. The
atrium pressures are prescribed with physiological values at a constant low level during most
of the cardiac cycle, and at a given higher level during atrial contraction. By contrast, the
modeling of arterial pressures dynamics necessitates more care, hence we assume each of these
pressures to be governed by a 4-element Windkessel model of two R-C systems in series as
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represented in Figure 3. This gives


































Qc = −V̇c = −

∫

∂Cc

n · F−1 · vJdS = fδ,c(Pv,c, Par,c, Pat,c), c = l,r

Cp,cṖar,c +
Par,c − Pd,c

Rp,c
= Qc, c = l,r

Cd,cṖd,c +
Pd,c − Par,c

Rp,c
=

Pvs,c − Pd,c

Rd,c

(12)

Boundary conditions The issue of adequate boundary conditions to be prescribed on the
cardiac mechanical system is crucial and remains a challenge, in particular as concerns the effect
of the surrounding organs. More specifically, the heart is in contact with the diaphragm, the
thoracic cage, the lungs and is also partially sustained by the large vessels (aorta, pulmonary
artery and veins). A visible consequence – as seen for example in a Cine-MR image sequence
– of these contact and tethering conditions is that the beating heart descends into the cardiac
cavity blocked by the diaphragm, so that the apex displaces very little.

It is clearly impossible to take into account in detail all the surrounding organs to define
exact boundary conditions that would lead to solving multiple contact problems with complex
contact conditions. Our approach is then to devise relevant simplified boundary conditions as
proposed in [35] by considering viscoelastic support boundary conditions in adequate regions.
From a variational standpoint, this can be written as the additional external load virtual work

∀v∗ ∈ V, Psupp(v
∗) = −

∫

B

(

a(x)y + b(x)v
)

· v∗ dS, (13)

on the boundary B with a and b some positive elastic and viscoelastic moduli.
Using the Cine-MRI for reference we define B in three different parts: (1) the upper boundary

of the system considered, corresponding to the attachment with the atria, large arteries and
veins, namely, the so-called base; (2) a tethering area between the apex and the thoracic cage
and diaphragm; and (3) a contact area between the anterior wall and the thoracic cage.

3.1.4 Electrical activation

The last important ingredient in our model is the definition of the input variable u which
represents the electrical activation of the tissue. This variable could be described using specific
electrophysiological models of various levels of complexity [12, 48]. In the context of this study,
however, the pathology is not associated with electrical activation defects, hence mainly related
to the tissue mechanical response. Therefore, the details of the electrical activation patterns are
of lesser consequence than the global timing of the electrical stimulation propagation. We can
then prescribe the input variable using analytical expressions for u in which the propagation
velocity is adjusted so that the complete activation duration corresponds to the measured QRS
length, with various wave shapes. We more particularly considered a wave pattern obtained by
weighing a planar wave traveling from apex to base by a function representing the transmural
propagation at a lower velocity from endocardium to epicardium, see Figure 4. Alternatively,
we tested other shapes – such as a simple planar or spherical waves – and obtained very similar
behaviors in the mechanical contractions – hence, in the estimation results – provided the wave
propagation was adjusted based on the QRS duration.

3.1.5 Discretization procedures

The above model is solved using a finite element spatial discretization [5]. For the dis-
placement variable, a P1-Lagrange discretization is chosen in order to use the geometrical mesh
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(a) 0 ms – end-
diastole

(b) 30 ms (c) 40 ms (d) 50 ms (e) 60 ms

(f) 70 ms (g) 80 ms (h) 90 ms (i) 100 ms (j) 300 ms –
end-systole

Electrical 

Activation (mV)

20

-80

-55

-30

5

Figure 4: Analytical prescription of the electrical activation at the baseline stage: the planar
wave activating the subendocardial part propagates fast from the apex to the base, together
with the slower transmural propagation

generated from the segmentation. Thus we restrict the bulk modulus to values corresponding
to an equivalent Poisson ratio ν = 0.49, for which numerical experiments show that numerical
locking is not an issue, while the material is still nearly-incompressible. We denote by the vector
Y n = {yn

h
}, the collection of displacement degrees of freedom associated with the P1-Lagrange

solution function yn
h
at time tn. Similarly, we introduce V n = {vnh} the velocity degrees of

freedom vector. Regarding the internal variables (τc, kc, ec), they need to be defined at the
numerical integration points P i in order to compute the second Piola-Kirchhoff stress tensor.
We denote by {enc,h}, {τ

n
c,h} and {knc,h} the associated collection vectors.

We then need to define an adequate time discretization scheme, which we do with a particular
concern for the preservation of energy balances, which ensures the numerical stability of the
simulations [13]. This provides a relationship between the values of the discrete state variable
defined by Xn = (Y n; V n; {enc,h}; {τnc,h}; {knc,h}) at two subsequent time steps. We give the
details of the specific time scheme devised for the above model in Appendix A. Note that, when
the ventricular pressures are not available as data, the valve and Windkessel models need also
be discretized and the state variable then contains the corresponding pressure values, namely,
Xn = (Y n; V n; {enc,h}; {τnc,h}; {knc,h}; Pn

ar,c=l,r; Pn
d,c=l,r).

3.2 Data assimilation method

In order to proceed with the presentation of adequate data assimilation methods, let us
summarize and generalize the above-discussed type of dynamical model in the generic formalism











ẋ = A(x, ϑ, t)

x(0) = x0 + ζx

ϑ = ϑ0 + ζϑ

(14)

where x is the state vector characterizing the trajectory of the system in the phase space, A
denotes a differential operator, and ϑ represents a collection of constitutive parameters. The
state initial condition x(0) and the parameters are each decomposed into two terms, namely,
some a priori values x0 and ϑ0 representative of the type of system of interest, and variations
ζx and ζϑ, which more precisely characterize – or personalize – the specific system at hand. We
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point out that with ϑ we focus only on patient-specific parameters of interest in a given context,
whereas other parameter values are directly embedded into the definition of A.

Modeling and simulating the target real system (14) consists in defining an adequate dis-
cretized model Ah acting on discretized versions xh and θ of the state and parameter variables,
respectively, to approximate the trajectory of (14). In our case, it is the heart model and its
discretization presented in Section 3.1 which we will consider in this formalism, and the state
variable xh can be represented by a finite dimensional state vector denoted by X and of pos-
sibly very large size (typically from thousands to millions of degrees of freedom). Note that
in order to avoid clouding this discussion with unnecessary technical details, we only present
the principles using the space semi-discretized equations, see Sections 3.2.2 and 3.2.3 for the
specific developments of our approach with complete time-space discretization. By contrast to
spatial discretization of the state variable, we suppose that the parameter variations are more
limited. For example, as a simplification we can consider piecewise-constant coefficients in the
rather large regions presented in Figure 8 and defined based on physiological grounds. Clearly,
more complex variation patterns can be defined for the parameters [21], but in any case we can
suppose that θ is a “reasonably small” finite dimensional vector gathering all the parameters of
interest in all regions. Our imperfect knowledge on the system (14) arises from the fact that we
do not have any direct access to ζx and ζϑ, since these two variables represent the specificity of
the subject considered. However, we assume that we have some information on the range within
which these variables may vary. In other words, if we describe the discretized counterparts ζh
and ζθ of the variations ζx and ζϑ as random variables over all the possible subjects, we can
define covariances

Ph = Cov(ζh), and Pθ = Cov(ζθ). (15)

Consequently, simulating the system starting from the a priori initial conditions would result
in a persistent error between the real and simulated systems all along the trajectory. We also
point out that Ah may contain modeling errors (in addition to the discretization errors) that
we could represent by an additional variable with an associated covariance [47].

The general principle of data assimilation then consists in using some available measurements
on the system (14) to obtain a better approximation than with a direct simulation. Then, it is
common in the data assimilation formalism to introduce a so-called observation operator H that
models the measurement processes on the system. Gathering all the observations at a specific
time t into a variable denoted by Z, we have

Z = H(x, t) + χ, (16)

where χ represents the observation noise supposed to be an additive random process of controlled
covariance W . Without loss of generality, we can assume that Z is of finite dimension since
the data are always eventually discrete. We denote by Hh the resulting discrete counterpart
of the observation operator. Remark that this modeling process can be as complex as for the
system itself and we will see in the next sections that the definition (16) can be too restrictive
to adequately represent all the measurements processes.

From these initial definitions, data assimilation procedures fall into two major categories:

• Variational approaches in which the estimation is the result of a minimization principle
based on measurement-related criteria. The most classical type corresponds to

min
ξh,ξθ

{

J (ξh, ξθ, t) =

∫ T

0
‖Z −Hh(xh,ξ)‖

2
W−1 dt+ ‖ξh‖

2
P−1

h

+ ‖ξθ‖
2
P−1

θ

}

, (17)
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for the class of the system defined by











ẋh,ξ = Ah(xh,ξ, θξ, t)

xh,ξ(0) = xh0 + ξh

θξ = θ0 + ξθ

(18)

• Sequential approaches in which the observations are directly incorporated into the dynam-
ical system in order to compensate for the initial uncertainties. The principle is then to
define a gain operator Ge =

(

Gx

Gθ

)

such that the modified system























˙̂xh = Ah(x̂h, θ̂, t) + Gx(Z −Hh(x̂h, t))
˙̂
θ = Gθ(Z −Hh(x̂h, t))

x̂h(0) = xh0

θ̂ = θ0

(19)

is expected to converge over time to the target system.

In the case of linear operators Ah and Hh, the most famous gain operator is given by the
Kalman filter [27]. Then, the variational approach based on the criterion (17) and the sequential
Kalman approach can be shown to be equivalent [6], which – indeed – proves the optimality
of the Kalman filter. As regards complexity considerations, variational approaches typically
require the computation of an adjoint state in order to compute the gradient of the criterion.
This means that – at each minimization step – a double time integration must be performed
(forward and backward in time for the direct and adjoint states, respectively) with a finite
element problem solved at each time step for both states. This induces heavy computations,
together with extensive storage because the direct state is needed at all time steps to solve for
the adjoint state.

On the other hand, sequential approaches are very attractive because they only require
the simulation of a forward dynamical system. In general, however, as described in further
detail below classical sequential methods are intractable when dealing with distributed systems,
because they necessitate the use – hence the computation, storage and various manipulations
– of covariance matrices that have the size of the state vector and have full profile.

In this paper, we thus focus on a sequential algorithm that retains the algorithmic simplicity
of filtering without requiring the computation of this covariance matrix. For the sake of clarity
and compactness since we consider approximation systems, we will limit ourselves to expressions
on the finite element vectors X̂ of degrees of freedom representing the function x̂h. Therefore,
the filtering estimation takes the general matrix form























˙̂
X = A(X̂, θ̂, t) +GX(Z −H(X̂, t))
˙̂
θ = Gθ(Z −H(X̂, t))

X̂(0) = X0

θ̂ = θ0

(20)

3.2.1 Definition of a discrepancy operator

Before presenting our data assimilation procedure, we need to define the observation opera-
tor associated with the available measurements presented in Section 2.3. We focus on kinematic
observations whereas the pressure will be supposed to be a classical source term in the dy-
namics. We refer to Section 4.1 for details on this choice. Therefore, we assume that the only

12



available observations are given by triangular meshes resulting from the segmentation of the LV
endocardium and epicardium for each time frame of the Cine-MRI.

When dealing with image measurements, in general the available data cannot be modeled
in the simple form (16) because it is nearly impossible to identify material points displacing
from one image to another. Instead, in the case of segmented images, we can typically compare
the boundary of the deformed model with the segmented surfaces and quantify the error by
computing the distance fields between these computed and measured surfaces. Denoting by
dist(y

h
, S) the signed distance field of the boundary of the deformed simulated model to a given

segmented surface S and its corresponding finite element vector Dist(Y, S), we will thus be led
to substituting this quantity for the difference Z−H(X̂, t) used in (20). Note that we also need
to deal with time sampling, meaning that we only have a discrete number of measured contours
Sk corresponding to the successive time steps k∆t, 1 ≤ k ≤ N , which is achieved by using
an interpolation of the distance. For example, with a linear interpolation we define a so-called
discrepancy operator, see [34],

D(X̂, t) =
(

αk(t)Dist(Ŷ , Sk) + (1− αk(t))Dist(Ŷ , Sk+1)
)

, (21)

with αk(t) =
t−tk+1

tk−tk+1
for t ∈ [tk, tk+1] so that the estimator becomes























˙̂
X = A(X̂, θ̂, t) +GXD(X̂, t)
˙̂
θ = GθD(X̂, t)

X̂(0) = X0

θ̂ = θ0

(22)

Since in our case the discrepancy operator does not depend on the velocity, by a slight abuse
of notation we will also write D(Ŷ , t).

3.2.2 State estimate

Regarding complexity considerations, the main challenge for filtering methods is to define
a tractable state gain GX . A full Kalman filter will require for the computing of the gain
GX to store a dense covariance matrix PXX ∈ Mn,n(❘) such that GX = PXXHTW−1. This
computation is clearly intractable when n grows large.

Let us concentrate on this state gain in this section and momentarily disregard the parameter
estimation by supposing that there is no uncertainty in the parameter space. We will denote by
X̄ the estimator in this particular case. In [34], considering the type of observations (21), we
have shown that we can define an adequate GX that does not necessitate the computation of
dense covariance matrices. Instead, we use the specificity of the mechanical system equations
to formulate an effective filter that converges to the reference system, as was mathematically
substantiated for small errors with the analysis of the linearized system in [34]. The estimator
for perfect parameters then consists in incorporating a filtering term in the equation relating
displacements and velocities. This filtered equation takes the following form in continuous
time [34]

˙̄Y = V̄ − γ
(

ǫKel +
∂D

∂Y

T

MΓm

∂D

∂Y

)−1∂D

∂Y

T

MΓm
D(Ȳ , t), (23)

where γ is a gain parameter, Kel denotes a linearized stiffness matrix – e.g. around the reference
configuration or the current trajectory – ǫ a “small” regularization parameter, and MΓm

the
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matrix associated with surface (scalar) dot product on the observed boundary Γm and normal-
ized so that for the specific displacement vector Y1 associated with a constant displacement field
having the 3 components equal to unity:

Y T
1 MΓm

Y1 = 1.

The time discretization of this filtered equation is provided in Appendix A, in the same spirit as
for the direct model, see Eq. (31), and this is the time-discrete system that will be considered
in the next section for the additional stage of parameter identification.

3.2.3 Joint state-parameter estimate

In order to apply the joint state-estimation procedure presented in [32], we summarize the
discretized version of the state estimator defined in (31) of the Appendix as











X̄n+1 = AG
n+1|n(θ)(X̄

n) + Rn

X̄0 = X0

θ = θ0 + ζθ

(24)

where for all n, X̄n = (Ȳ n; V̄ n; {ēnc,h}; {τ̄n
c,h}; {k̄n

c,h}). This space- and time-discrete model is
not computable only because ζθ is unknown. Following exactly [32] we then apply a so-called
unscented Kalman filter (UKF) introduced in [26], albeit here reduced to the parametric space
for a specific choice of the so-called sigma-points as inspired from [39, 20], see also [51] for similar
ideas applied to the estimation of electrophysiology parameters.

Given adequate sampling rules, we precompute the corresponding symplectic unitary sigma-
points I[i], 1 ≤ i ≤ p+1. We associate the corresponding weights collected in a diagonal matrix
Dα and perform

• Sampling:










Cn =
√

(Un)−1

X̂n+

[i] = X̂n+

+ Ln
X
(Cn)T I[i], 1 ≤ i ≤ p+ 1

θ̂n
+

[i] = θ̂n
+

+ Ln
θ (C

n)T I[i], 1 ≤ i ≤ p+ 1

(25a)

• Prediction:










X̂n+1−

[i] = AG
n+1|n(X̂

n+

[i] , θ̂
n+

[i] , t
n+1)

X̂n+1− = Eα(X̂
n+1−

∗ )

θ̂n+1− = θ̂n+1+

(25b)

• Correction:


















































Ln+1
X = [X̂n+1−

∗ ]Dα[I∗]
T ∈ MN,p

Ln+1
θ = [θn+1−

∗ ]Dα[I∗]
T ∈ Mp

Γn+1
[i] = D(Xn+1−

[i] , tn+1)

Ln+1
Γ = [Γn+1

∗ ]Dα[I∗]
T

Un+1 = ✶+ γχ(L
n+1
Γ )T (Wn+1)

−1Ln+1
Γ ∈ Mp

X̂n+1+ = X̂n+1− − γχL
n+1
X (Un+1)−1(Ln+1

Γ )T (Wn+1)
−1Eα(Γ

n+1
∗ )

θ̂n+1+ = θ̂n+1− − γχL
n+1
θ (Un+1)−1(Ln+1

Γ )T (Wn+1)
−1Eα(Γ

n+1
∗ )

(25c)
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Figure 5: Parallel algorithm for joint state-parameter estimation

where for every set of particles X[i], 1 ≤ i ≤ p+ 1, [X∗] ∈ MN,p+1 denotes the concatenation of
the (p+ 1) column vectors arranged side by side, and Eα(X∗) =

∑

1≤i≤p+1 αiX[i], while Wn+1

denotes the discrete-time noise covariance.
This algorithm is fully parallel and can be interpreted in the following manner, as schema-

tized in Figure 5. From given mean value and covariance estimates of the state and parameter
at time tn, we create p + 1 particles centered around the estimate mean value at a distance
given by the standard deviation extracted from the covariance. These particles are sent to
various processors where the model (31) – which includes the state estimate – performs a for-
ward computation of one time step. Furthermore, for each simulated particle we compute the
discrepancy induced by the distance from the generated contours and the given segmentations.
The resulting state variables and discrepancy are sent back to the master processor. There, a
new prediction mean value and covariance are computed and then corrections are introduced in
these predictions from the discrepancy computations. With this parallel approach, the estima-
tion computational cost is comparable to that of a simple forward simulation of the stabilized
model, the complexity of which was discussed in [34]. By contrast, a variational estimation
would require a significant number of successive iterations (typically over a hundred) of both
forward and adjoint simulations.

We emphasize that – by construction of the filtering procedure – the estimated parameter
values evolve during the simulation period – corresponding to a complete heartbeat in our case
– and of course the actual estimation is achieved with the final values. Hence, we expect these
estimation curves to actually stabilize in the course of the simulation, since non-converging
parameter estimation would be likely to indicate persistent modeling error, indeed.
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Figure 6: Comparison of the original initial mesh (yellow) and the mesh obtained by running
the state estimation with a large gain γ (red) with the segmentation (dashed blue)

4 Regional contractility estimation

In this section, we will describe and assess the use of the above-presented modeling and data
assimilation components to estimate localized contractility parameters, with constant values
over pre-defined subregions. Hence, in our case in the data assimilation procedure the dimension
p of the parameter space corresponds to the number of regions employed. This estimation
objective is selected in adequacy with the type of pathology considered, namely, major infarction
without any specific secondary pathology – in particular as regards electrical activation timings.
In such a case we can expect contractility variations in our model to correctly represent the
post-infarct behavior [11].

4.1 Modeling setup

Before presenting the detailed estimation objectives and setup, we should mention that an
important prerequisite is that the biomechanical heart model be adequately pre-calibrated in
order to present a physiological behavior globally compatible with the data. The calibration
procedure for this specific model is summarized in [11] and consists in adjusting one by one
the key biophysical parameters of the model at the baseline stage – with constant values over
the whole myocardium – by making use of the available data, namely, catheter pressures and
MR images, at specific phases of the heart cycle. In particular, passive stiffness is calibrated
based on ventricular filling induced by atrial contraction, while contractility is globally adjusted
in systole in order to obtain a correct ejection fraction. In addition, the fiber angles can be
adapted at this stage to produce a motion pattern in better accordance with image data, in
particular as regards the respective amounts of longitudinal versus radial shortening.

The following considerations are also of importance in the model preparation:

• The initial geometry needs to be as close as possible to the observation, in order to
reduce the initial error. This is why the computational mesh used for the joint state-
parameter estimation was created from the original segmented mesh, and corrected by
running the state estimator with a very large gain γ during one complete cardiac cycle.
Hence, the estimation procedure was used here for image processing purposes only in a
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Figure 7: Infarct at T0+38: in the mesh (left, in red) as segmented from the late enhancement
MR images (right, red arrows)

first stage – namely, without any particular concern for physical predictivity. Figure 6
shows a comparison of the original initial mesh, the corrected mesh by means of the state
estimation with the large gain γ and the observation surfaces. This corrected mesh was
then used for the joint state-parameter estimations.

• The initiation of the model contraction and of its relaxation needs to be as synchronous
as possible with the observations. Any offset in the electrical activation of the model can
cause sudden changes of the estimated parameters in arbitrary directions. The electrical
activation pattern is often impaired by the myocardial infarction, and any large dyssyn-
chrony in the contraction should be taken into account in the model activation. In our
case, however, the ECG obtained for each stage of the study showed no irregularity and
the contractions were visibly synchronous. For this reason, we were able to keep using the
same – physiological – electrical activation pattern in all stages, and then the variations
of estimated contractility parameters summarize – via the product σ0|u|+ in (9) – the
combined impact of the pathology on the activation signal intensity and on the ability of
the tissue to respond to this signal.

• In our estimation trials we use prescribed pressures, based on the clinical measurements,
namely, without the Windkessel models. However, rather than directly using the pressure
measurements which are noisy and imperfectly synchronized with the electrical activa-
tion, we exported the pressure values from the pre-calibrated direct model including the
Windkessel components. This provided pressure profiles in very good agreement with the
measurements, albeit smoother and perfectly registered with the electrical activation.

4.2 Estimation setup

Our aim is to estimate some contractility parameter values regionalized according to two
different geometric subdivision schemes. The first subdivision applied to the stages T0+10 and
T0+38 predefines two regions based on a segmentation of the late enhancement imaging projected
in the model, see Figure 7. This two-region subdivision into infarcted and non-infarcted parts
will be primarily used in the calibration of the estimation procedure. In addition, at each
stage we defined a subdivision of the left ventricle myocardium into 6 circumferential parts,
corresponding in their upper third to the basal segments of the standard 17-segment AHA
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Figure 8: Mesh of T0+38 subdivided into 6+1 volumic regions and plotted within MRI (left
and center) – myocardium not in color representing the non-segmented regions with volume
reference ♯0 – and correspondence with AHA segments in bull’s eye schematic (right)

Region AHA segments Name Region vol. Infarct % Thickening

0 – non-segmented 121 mL 3% –
1 1 + 7∗ anterior 11 mL 45% 15%
2 2 + 8∗ antero-septal 15 mL 64% 0%
3 3 + 9∗ infero-septal 10 mL 20% 7%
4 4 + 10∗ inferior 16 mL 0% 52%
5 5 + 11∗ infero-lateral 12 mL 0% 63%
6 6 + 12∗ antero-lateral 13 mL 0% 49%

∗ We extend the 6-region subdivision of AHA ♮1–12 downwards to adjacent 4 AHA segments ♮13–16

Table 1: Description of 6+1 region mesh subdivision in relation to AHA segments, corresponding
volumes, proportion of infarcted tissue, and measured thickening in each region at T0+38

AHA segments 1 2 3 4 5 6 7 8

Volume (mL) 5.2 5.6 4.3 6.7 6.0 6.3 3.6 4.7

Infarct % 41 45 3 0 0 0 35 72

AHA segments 9 10 11 12 13 14 15 16

Volume (mL) 2.8 5.3 4.1 4.3 3.6 6.1 5.2 3.6

Infarct % 13 0 0 0 84 59 0 6

Table 2: Volumes and infarct proportions for each AHA segment at T0+38
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Figure 9: Two-region estimation at stage T0+38 using synthetic observation with two levels of
measurement noise covariance (left wobs ∼ (1.5 mm)2 and right wobs ∼ (4.8 mm)2)

subdivision [10], see Figure 8 and also the description in Table 1. This 6+1 region subdivision
– counting as region ♯0 the apex, the base and the right ventricle that were not segmented, see
Figure 8 – will be prioritarily used in the estimation trial with clinical data in order to assess
the capability of the procedure to both localize and quantify the infarct-related parameters.
We further give in Table 1 the proportion of tissue marked by the late enhancement in each
region, together with systolic thickening indices obtained by considering three short axis slices,
manually measuring thickening at three locations in each AHA segment, and weighing the
results by the AHA segment distribution within each region. Finally, we will provide some
estimation results associated with the complete AHA subdivision, hence we likewise list the
corresponding infarcted proportions in Table 2. In order to avoid any confusion with the 6+1
region subdivision, we will systematically refer to “segment ♮n” versus “region ♯p” in the sequel.

Before being able to apply the above data assimilation procedure to estimate regional con-
tractility values of the model based on the Cine-MRI, we need to calibrate the key parameters
used in this procedure, namely, in particular the measurement noise covariance and the state
estimator gain γ. To that purpose we will employ so-called synthetic measurements, i.e. in our
case contour meshes directly generated from a given simulation of the model, so as to fully
control the ground truth in the estimation. This will be done using the anatomical model
corresponding to the infarcted stage T0+38.

In order to calibrate the measurement noise covariance, we generated synthetic measure-
ments by reducing the model contractility in the infarcted region – as segmented from the late
enhancement MRI, see Figure 7 – by a factor four compared to a reference homogeneous value
obtained by calibrating the whole model in the baseline (healthy) stage. We then started the
state-parameter estimation procedure with two contractility values to be estimated, associated
with the infarcted region and the rest of the tissue, namely, according to the 2-region subdi-
vision. Of course, the contractility parameters were initialized at the reference value at the
start of the estimation, and we compared the estimation results obtained with several choices
of measurement noise in the form:

(Wn)
−1 = w−1MΓm

, ∀n,

with w a parameter to be defined representing the square of the standard deviation of the
distance error. Considering that the computational time step ∆tsim used in the estimation is
very different from – indeed, much smaller than – the imaging time sampling ∆tobs, we need to
rescale this parameter. Assuming that the underlying measurement error process has time-wise
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Region 1st run 2nd run 3rd run Ref.

Healthy 1.04 1.08 1.09 1

Infarct 0.48 0.33 0.29 0.25

Table 3: Two-region estimation at stage T0+38 using synthetic observation with repeated runs

white noise characteristics, this rescaling should be performed according to the standard rule

∆tsimw = ∆tobswobs. (26)

In our case, with ∆tobs ∼ 26 ms and ∆tsim ∼ 1 ms, we tested the following values of w:

• w = 6.1 10−5 m2, corresponding to wobs ∼ (1.5 mm)2 according to Eq. (26);

• w = 6.1 10−4 m2, corresponding to wobs ∼ (4.8 mm)2.

In both cases we took Pθ0 = 1
2 Id, thus defined to have the mean of the Euclidean norm of the

parameter uncertainty vector scaled to unity. The estimation results are shown in Figure 9.
Note that – by construction of filtering estimation – the estimated values vary during the
simulation window corresponding here to the heartbeat, and that they stabilize before the end
of the simulation, indeed. Moreover, as expected, when increasing w more weight is placed in
the estimation on the a priori parameter values, hence the parameter estimation sensitivity is
decreased. Considering both the reference values used for the parameters – namely, 0.25 in the
infarcted area and 1 elsewhere – and the expected accuracy of the measurement process, the
value w = 6.1 10−5 mm2 appears to be a good compromise, and will be used in the sequel.
We remark that, with this calibration, we still do not obtain good relative accuracy for the
contractility in the infarcted region, as the final estimated value is 0.48 (compared to the 0.25
reference). However, this is consistent with the fact that data assimilation intrinsically balances
the expected uncertainties in the data with those assumed in the a priori values prescribed for
the estimated parameters. Here, the fact that the estimated non-infarcted contractility is much
more accurate (1.04 for 1) can be explained by the starting value being much closer to the
ground truth. If we want to change this uncertainty balance assumption, we can place more
confidence in the data by varying the covariance scalings. Alternatively, we can also use data
over a longer time window when available – as is frequently the case in our situation, since
several heartbeats are generally acquired. With synthetic measurements this can be simulated
by restarting the estimation with the parameter values obtained in the previous run. Table 3
displays the results obtained in our case after several runs, with an improved overall accuracy
as the estimation window is increased.

With a view to calibrating the gain of the state estimator in an experiment closest to
the regional estimation objective, we next considered the 6+1 region subdivision. We then
generated synthetic measurements by prescribing in each region a contractility value consistent
with the extent of the infarct, and tested the estimation procedure using these measurements
with several values of the state filter gain. We show the results in Figure 10, where γ0 denotes a
reference gain value computed by a pole analysis on the model linearized around the reference
configuration [34]. As expected, when increasing the gain we reduce the sensitivity of the
parameter estimation, because the discrepancy quantity on which the parameter filter is applied
is then reduced. Nevertheless, it is also important to use a sufficiently large value of the gain in
order to maintain the model reasonably close to the data, for the parameter sensitivities to be
accurately approximated in the procedure. Therefore, in the sequel we will use the intermediate
value γ = 20γ0. As a final verification, we show in Fig. 11 the estimation results obtained
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Figure 10: Regional contractility estimation at stage T0+38 using synthetic observation and
varying the state filter gain γ. (a) γ = 8γ0 (b) ground truth reference (c) γ = 20γ0 (d) γ = 40γ0
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Figure 11: (a) Regional contractility estimation at stage T0+38 using synthetic observation with
a very low level of measurement noise (wobs ∼ (0.15 mm)2) (b) Reference values

with the same synthetic measurements and still γ = 20γ0 when using a very low measurement
covariance (w = 6.1 10−7 m2, namely, wobs ∼ (0.15 mm)2). In this case, we see that the final
estimation result is accurate, hence also that the parameters of interest are identifiable in this
setup, indeed, see also the discussion section on this issue of observability.

4.3 Results

Figures 12(a,b,c) display the estimation results obtained with the real data – namely, the
actual segmented Cine-MR image sequence – at each of the three stages. For completeness,
we summarize the main numerical parameter values used in Table 4. In the baseline case, the
contractility values do not vary more than by 10% in the course of the estimation. We can
see that the contractility values are quite comparable between the baseline stage and T0+10,
except for regions ♯2 and ♯3 in which we observe a drop of contractility of the order of 10%, and
for region ♯1 where the contractility rises by about 10%. At stage T0+38, a more pronounced
drop of contractility in the regions ♯2 and ♯3 is obtained, together with an increase in regions
♯5 and ♯6 – which may be caused by a compensation hypertrophy. These estimation results are
globally consistent with the late enhancement data – recall Table 1 – except for what concerns
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Figure 12: Regional contractility estimation at each stage: (a) Baseline (b) T0+10 (c) T0+38
(d) Second run of estimation for stage T0+38

Parameter Value Note

γ 20γ0 state estimator gain
w (m2) 6.1 10−5 level of expected noise in the observations

Pθ0
1
7 Id diagonal covariance matrix

κ1 (Pa) 5 · 103 passive stiffness (first modulus)
κ2 (Pa) 40 passive stiffness (second modulus)
κ (Pa) 5 · 105 passive stiffness (bulk)

Table 4: Main parameter values used in the simulation and estimation procedures
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Figure 13: Two slices of the end-systolic phase at stage T0+38. Comparison of direct model with
constant contractility (yellow contour), direct model using the estimated values of contractility
(red), joint state-parameter estimation (black)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 

0.7

0.76

0.82

0.88

0.94

1

1.06

1.12

1.18

1.24

1.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 

1

2

3

4

5

6

1

2

3

4

5

6

Figure 14: Estimated contractilities at T0+38 in 6 regions versus 16 AHA segments after first
(left) and second (right) run

region ♯1, which will be further discussed in Section 5.
In Figure 12(d) we also show the estimation results obtained for stage T0+38 when restarting

the estimation procedure with the contractility values obtained at the end of the first pass
visualized in Figure 12(c), and with the same measurements. This demonstrates that the
parameter estimation is already quite converged – and stable – when completing the first pass.

Next, as a direct validation of the estimated contractility parameters, we performed direct
simulations for stage T0+38 using these estimated parameter values. In Figure 13 we compare
the model contours corresponding to direct simulations with the constant contractility, the
direct model with the estimated contractility and the joint state-parameter estimation. As
expected, the best match with the data was obtained with the joint state-parameter estimation.
Nevertheless, although the direct model with the estimated contractility parameters does not
exactly coincide with the data, the estimated parameters clearly correct the direct model in a
most adequate manner. Note in particular that the right ventricle behavior is much improved,
whereas this part of the myocardium is not included in the discrepancy operator – hence it is
not used in the filtering corrections – which is a sign that model predictivity is enhanced.

Finally, we have performed some estimation computations based on the complete AHA
subdivision, namely, with one contractility value for each AHA segment. We observed a similar
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convergence in the estimation sequential process, but for the sake of visual clarity we only
display in Figure 14 – in a bull’s eye format – the final estimated values obtained. In this figure
we also compare these estimation results with the previous 6-region estimations to assess their
consistency, see the discussion in the next section.

5 Discussion

Regarding the intrinsic capabilities and limitations of the estimation procedure, some valu-
able insight can be gained by assessing the observability by means of the observability Gramian
matrix Υ of the parameters [53], given here by [33]

Υ =
∑

n

(Ln
θ )

−T (Ln
Γ)

T (Wn)
−1Ln

Γ(L
n
θ )

−1.

The error in the estimated parameter θ̃ = θ̂ − θref – with θ = (θ0, . . . , θ6)
T the components of

the parameter θ associated with the various regions – then satisfies

θ̃ = Υ−1ε, (27)

with ε = (ε0, . . . , ε6)
T arising from various error source terms including measurement and

modeling errors. Hence, both low observability in Υ−1 and large input errors in ε lead to
increased estimation errors. We thus obtained observability indices for each region by computing
mean absolute values of each component of θ̃ inferred from the rule (27) considered over large
samples of random noise ε with each component taken independent and normalized in [−0.5, 0.5],
namely,

E(|θ̃i|) ≈
1

Ns

Ns
∑

j=1

|θ̃
(j)
i |.

Table 5 shows these observability indices obtained both for the estimations on synthetic data
corresponding to Fig. 10(c) and on real data corresponding to Fig. 12(c). As we can see in the
table, the region ♯1 (the LV anterior wall) corresponds to the less observable part. A most likely
interpretation is that this is due to the artificial boundary condition applied on the adjacent
epicardial surface and which induces an added stiffness effect by which the sensitivity with
respect to contractility variations decreases. The low observability of region ♯3 (inferior part of
the septum) compared to region ♯2 may be interpreted by the fact that the latter is directly
adjacent to the boundary conditions, hence a change of contractility in region ♯2 has a large
impact on the whole septum motion – including region ♯3 – whereas the contractility in region
♯3 is bound to have a more limited impact.

Concerning our comparisons between estimated contractility values and proportions of in-
farcted tissue, a general word of caution is in order since – in particular – the latter indices were
computed based on manual segmentation and registration of late enhancement images, hence do
not give an “absolute reference”. Nevertheless, in the case of region ♯1 the estimated contrac-
tility values are clearly in excess, as confirmed by the thickening indices given in Table 1. For
this specific region, in addition to the high error index provided by the observability Gramian
– recall Table 5 – the already mentioned added stiffness effect produced by the adjacent artificial
boundary conditions is likely to also have an impact as a modeling error. Namely, this stiffening
tends to be compensated by the estimation, inducing a non-physiological increase of the esti-
mated contractility. By implementing a new type of boundary condition enabling the sliding
of some parts of the epicardium along the parietal pericardium, we would expect to obtain a
more physiological thickening of the anterior wall in the direct modeling. However, such sliding
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Region synth. obs. real obs.

0 0.25 0.23

1 0.71 0.75

2 0.32 0.31

3 0.59 0.57

4 0.18 0.18

5 0.25 0.23

6 0.28 0.26

Table 5: Estimation error indices obtained for each region from observability Gramian (T0+38,
γ = 20γ0, time 300 ms) with synthetic and real observations

conditions are notoriously difficult to handle, and in particular require very smooth surfaces for
the sliding to occur without artifacts, which of course is quite challenging for anatomical models
obtained from segmented images.

We also note that the estimation at T0+38 provides similar contractility values for regions
♯2 and ♯3, whereas the corresponding measured infarct proportions significantly differ (64%
versus 20%, respectively). However, the estimated values are consistent with the thickening
indices (0% versus 7%, respectively) which show that region ♯3 is almost akinetic. Beyond the
above-mentioned limited accuracy of late enhancement post-processing, this discrepancy may
be explained by the fact that – while late enhancement accurately maps the non-viable tissue
[28], the akinetic or hypokinetic myocardium in fact extends quite deeply into the infarct border
zone [1].

We now discuss some other interpretations of the estimation results over the various stages.
At stage T0+10, the variations of estimated contractility parameters between the healthy and
the infarcted regions are lower than at stage T0+38. This is consistent with the fact that at
T0+10 the ventricle does not yet show any evidence of remodeling in the form of infarcted wall
thinning, and that the akinetic parts are mainly located in 2 mid-cavity short axis slices, while
the remaining infarcted tissue is only hypokinetic. In addition, whereas there should be an
increase of the actual tissue stiffness in the infarct at stage T0+38 due to the fibrous tissue,
by contrast the stiffness may be reduced at stage T0+10 due to tissue edema and the acute
inflammation that accompanies the infarction. In our estimation procedure we do not vary
the passive stiffness parameter, hence by compensation this should lead to overestimating and
underestimating the infarcted tissue contractility at stages T0+10 and T0+38, respectively. Note
that we could have accordingly modified the stiffness moduli before starting the estimation,
but this would mean using some a priori knowledge of the infarct location, which is somewhat
in contradiction to our purpose. In the future, we will instead consider performing the joint
estimation of both contractility and passive tissue stiffness parameters.

At the final stage (T0+38), however, the large contractility values obtained in regions ♯5
and ♯6 remain to be interpreted. Compensatory hypertrophy in the healthy tissue may provide
an explanation, and this is corroborated by the very large thickening values measured in these
regions, indeed – recall Table 1. In addition, it should be noted that the animal grew between
the acquisition of the baseline stage and the stage T0+38, and this factor could also contribute
to the increased contractility.

Finally, as regards the estimation based on the 17-segment AHA subdivision, a detailed
analysis of the results shows that they are fully consistent with the 6-region estimation. As
a result, the estimated values in AHA segments ♮1, ♮7 and ♮13 – associated with the above-
discussed region ♯1 in the 6-region subdivision – are all clearly in excess. Nevertheless, when
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comparing e.g. the estimated values in the AHA segments ♮3, ♮9 and ♮14 – corresponding to
the infero-septal region ♯3 in the 6-region subdivision – the trend shown is in accordance with
the late enhancement respective infarct proportions. Therefore, even though we cannot expect
excellent quantitative accuracy at this level of detail in the regional subdivision – due to to the
limited information contents featured in the boundary segmentation of Cine-MRI data – our
preliminary trial with AHA segments shows adequate sensitivities while providing a feasibility
study which paves the way for further applications with other types of data, such as tagged-MRI.

6 Concluding remarks

In this paper, we proposed a methodology of sequential joint state-parameter data assim-
ilation adapted to a biomechanical heart model with medical imaging measurements, and we
demonstrated the application of this approach with actual cardiac Cine-MRI data. As a result,
this approach provides an automatic biophysical personalization of the model, which enables
further uses for predictive purposes with key perspectives in therapy planning, as e.g. already
presented in [45]. In particular, we have obtained much improved simulations when using the
estimated parameter values in the model, including in large regions of the model which were
not included in the measurements used to perform the estimation procedure, which provides
a partial predictivity validation in itself. Furthermore, we were able to localize and quantify
myocardial infarction via regional contractility parameters, which shows some valuable poten-
tial for diagnosis assistance. We point out that the good correlation of these estimated values
with independent data provided by late enhancement imaging – except for one region in which
incorrect estimation results have been interpreted in detail – combined with improved simu-
lated kinematics, shows that the estimation procedure does not simply “fit” the simulation
with images, and truly enhances predictivity, indeed.

Of course, this work should be primarily seen as a feasibility study, and more extensive
validation is required in the perspective of clinical applications. In particular, more cases
should be considered, and the predictivity improvements provided by personalized modeling
ought to be quantitatively evaluated by resorting to additional independent data, and/or when
investigating therapeutic strategies with the model as in [45]. However, with this study we
have demonstrated the applicability – and some benefits – of a complete estimation procedure
workflow making use of a biophysical heart model with actual clinical data.

Furthermore, with a view to diagnosis assistance, detailed regional contractility maps – in
particular with a 17-segment AHA subdivision of the left ventricle, possibly further subdivided
into several layers – are an important objective. In this regard, our results indicate that ob-
servability conditions intrinsically restrain the information which can be extracted from mere
segmented Cine-MR image sequences. Indeed, our preliminary assessments performed with
synthetic data have shown that, with a realistic measurement noise level, the accuracy of con-
tractility estimation is good when using the late enhancement information to subdivide the
myocardium into two distinct regions, but it is more limited – although a correct sensitivity was
obtained – when considering six regions without any prior information on the infarct location.
Hence, our preliminary trial with 17-segment contractility estimated from actual data cannot
be assessed in a thoroughly quantitative manner, although the results obtained are consistent
with the six-region estimation, with some adequate trends observed when comparing with late
enhancement imaging. In the future, however, we will also employ tagged MR images, either
with directly extracted myocardium displacements [3], or by extending in a straightforward
manner the estimator used in this work based on measuring distances between the simulated
and observed surfaces with the tag planes [25]. We can conjecture that the level of details
accessible with this type of data would be significantly enhanced, and we could also expect to
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benefit from this to estimate some other physical parameters, such as passive tissue stiffness or
quantities pertaining to the electrical activation.

A Time discretization schemes

Regarding the time discretization of the model itself, we choose a second-order mid-point
Newmark scheme for the virtual work equation. The time dependent constitutive law is also
discretized using a mid-point rule, meaning that the quantities 1
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We finally obtain the following total discretized formulation
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c,h}), System (28) can be rewritten

in a compact form using standard finite element operators. We thus have
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where M denotes the classical mass matrix, the non-linear operator Kn+ 1
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and B0, B1 and B2 are directly inferred from (28)4, (28)5 and (28)6, respectively. In practice,
the non-linear system (29) is solved by a Newton algorithm, and as described in [43] the internal
variables defined at the numerical integration points are computed using a Schur complement
procedure.

When the ventricular pressures are not available as data, the valve and Windkessel models
are also discretized using a mid-point rule, viz.
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We then obtain a state vector Xn = (Y n; V n; {enc,h}; {τnc,h}; {knc,h}; Pn
ar,c=l,r; Pn

d,c=l,r) that
includes the pressure variables. This system is also solved with a Newton procedure and a
Schur complement for the internal variables. Regarding the phase changes that modify fδ, the
algorithm is as follows: at the beginning of each time step a phase is chosen and the solution
of the system (29)-(30) is computed with the adequate expression of the fδ function for this
phase. After convergence, we check whether the solution is compatible with the selected phase
and otherwise change the phase and restart the Newton algorithm. If no phase is compatible,
the time step is adapted.
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Finally, regarding the time discretization of the state estimation, we follow exactly [34] and
simulate
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where Dn = D(Ȳ n, tn). This problem is solved with a Newton algorithm involving Ȳ n+1 and
V̄ n+1 with a computational cost close to the original discretization (29) complexity.
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