1,037 research outputs found

    On Norm-Based Estimations for Domains of Attraction in Nonlinear Time-Delay Systems

    Get PDF
    For nonlinear time-delay systems, domains of attraction are rarely studied despite their importance for technological applications. The present paper provides methodological hints for the determination of an upper bound on the radius of attraction by numerical means. Thereby, the respective Banach space for initial functions has to be selected and primary initial functions have to be chosen. The latter are used in time-forward simulations to determine a first upper bound on the radius of attraction. Thereafter, this upper bound is refined by secondary initial functions, which result a posteriori from the preceding simulations. Additionally, a bifurcation analysis should be undertaken. This analysis results in a possible improvement of the previous estimation. An example of a time-delayed swing equation demonstrates the various aspects.Comment: 33 pages, 8 figures, "This is a pre-print of an article published in 'Nonlinear Dynamics'. The final authenticated version is available online at https://doi.org/10.1007/s11071-020-05620-8

    Canards in stiction: on solutions of a friction oscillator by regularization

    Get PDF
    We study the solutions of a friction oscillator subject to stiction. This discontinuous model is non-Filippov, and the concept of Filippov solution cannot be used. Furthermore some Carath\'eodory solutions are unphysical. Therefore we introduce the concept of stiction solutions: these are the Carath\'eodory solutions that are physically relevant, i.e. the ones that follow the stiction law. However, we find that some of the stiction solutions are forward non-unique in subregions of the slip onset. We call these solutions singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the non-unique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We identify a repelling slow manifold that separates the forward slipping to forward sticking solutions, leading to a high sensitivity to the initial conditions. On this slow manifold we find canard trajectories, that have the physical interpretation of delaying the slip onset. We show with numerics that the regularized problem has a family of periodic orbits interacting with the canards. We observe that this family has a saddle stability and that it connects, in the rigid body limit, the two regular, slip-stick branches of the discontinuous problem, that were otherwise disconnected.Comment: Submitted to: SIADS. 28 pages, 12 figure

    Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form

    Get PDF
    We present an efficient numerical method for computing Fourier-Taylor expansions of (un)stable manifolds associated with hyperbolic periodic orbits. Three features of the method are that (1) we obtain accurate representation of the invariant manifold as well as the dynamics on the manifold, (2) it admits natural a posteriori error analysis, and (3) it does not require numerically integrating the vector field. Our approach is based on the parameterization method for invariant manifolds, and studies a certain partial differential equation which characterizes a chart map of the manifold. The method requires only that some mild nonresonance conditions hold. The novelty of the present work is that we exploit the Floquet normal form in order to efficiently compute the Fourier-Taylor expansion. A number of example computations are given including manifolds in phase space dimension as high as ten and manifolds which are two and three dimensional. We also discuss computations of cycle-to-cycle connecting orbits which exploit these manifolds

    Galerkin approximations for the optimal control of nonlinear delay differential equations

    Get PDF
    Optimal control problems of nonlinear delay differential equations (DDEs) are considered for which we propose a general Galerkin approximation scheme built from Koornwinder polynomials. Error estimates for the resulting Galerkin-Koornwinder approximations to the optimal control and the value function, are derived for a broad class of cost functionals and nonlinear DDEs. The approach is illustrated on a delayed logistic equation set not far away from its Hopf bifurcation point in the parameter space. In this case, we show that low-dimensional controls for a standard quadratic cost functional can be efficiently computed from Galerkin-Koornwinder approximations to reduce at a nearly optimal cost the oscillation amplitude displayed by the DDE's solution. Optimal controls computed from the Pontryagin's maximum principle (PMP) and the Hamilton-Jacobi-Bellman equation (HJB) associated with the corresponding ODE systems, are shown to provide numerical solutions in good agreement. It is finally argued that the value function computed from the corresponding reduced HJB equation provides a good approximation of that obtained from the full HJB equation.Comment: 29 pages. This is a sequel of the arXiv preprint arXiv:1704.0042

    Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin

    Get PDF
    Transport and mixing properties of surface currents can be detected from altimetric data by both Eulerian and Lagrangian diagnostics. In contrast with Eulerian diagnostics, Lagrangian tools like the local Lyapunov exponents have the advantage of exploiting both spatial and temporal variability of the velocity field and are in principle able to unveil subgrid filaments generated by chaotic stirring. However, one may wonder whether this theoretical advantage is of practical interest in real-data, mesoscale and submesoscale analysis, because of the uncertainties and resolution of altimetric products, and the non-passive nature of biogeochemical tracers. Here we compare the ability of standard Eulerian diagnostics and the finite-size Lyapunov exponent in detecting instantaneaous and climatological transport and mixing properties. By comparing with sea-surface temperature patterns, we find that the two diagnostics provide similar results for slowly evolving eddies like the first Alboran gyre. However, the Lyapunov exponent is also able to predict the (sub-)mesoscale filamentary process occuring along the Algerian current and above the Balearic Abyssal Plain. Such filaments are also observed, with some mismatch, in sea-surface temperature patterns. Climatologies of Lyapunov exponents do not show any compact relation with other Eulerian diagnostics, unveiling a different structure even at the basin scale. We conclude that filamentation dynamics can be detected by reprocessing available altimetric data with Lagrangian tools, giving insight into (sub-)mesoscale stirring processes relevant to tracer observations and complementing traditional Eulerian diagnostics

    Application of polynomial algebras to non-linear equation solvers

    Get PDF
    Ponència presentada en: Mathematical Modelling in Engineering & Human Behaviour 2022 (MME&HB 2022). July 13th-15th, 202
    corecore