1,069,800 research outputs found

    The Nature of the Warm/Hot Intergalactic Medium I. Numerical Methods, Convergence, and OVI Absorption

    Full text link
    We perform a series of cosmological simulations using Enzo, an Eulerian adaptive-mesh refinement, N-body + hydrodynamical code, applied to study the warm/hot intergalactic medium. The WHIM may be an important component of the baryons missing observationally at low redshift. We investigate the dependence of the global star formation rate and mass fraction in various baryonic phases on spatial resolution and methods of incorporating stellar feedback. Although both resolution and feedback significantly affect the total mass in the WHIM, all of our simulations find that the WHIM fraction peaks at z ~ 0.5, declining to 35-40% at z = 0. We construct samples of synthetic OVI absorption lines from our highest-resolution simulations, using several models of oxygen ionization balance. Models that include both collisional ionization and photoionization provide excellent fits to the observed number density of absorbers per unit redshift over the full range of column densities (10^13 cm-2 <= N_OVI <= 10^15 cm^-2). Models that include only collisional ionization provide better fits for high column density absorbers (N_OVI > 10^14 cm^-2). The distribution of OVI in density and temperature exhibits two populations: one at T ~ 10^5.5 K (collisionally ionized, 55% of total OVI) and one at T ~ 10^4.5 K (photoionized, 37%) with the remainder located in dense gas near galaxies. While not a perfect tracer of hot gas, OVI provides an important tool for a WHIM baryon census.Comment: 22 pages, 21 figures, emulateapj, accepted for publication in Ap

    Implicit-Explicit multistep methods for hyperbolic systems with multiscale relaxation

    Get PDF
    We consider the development of high order space and time numerical methods based on Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specifically, we consider hyperbolic balance laws in which the convection and the source term may have very different time and space scales. As a consequence the nature of the asymptotic limit changes completely, passing from a hyperbolic to a parabolic system. From the computational point of view, standard numerical methods designed for the fluid-dynamic scaling of hyperbolic systems with relaxation present several drawbacks and typically lose efficiency in describing the parabolic limit regime. In this work, in the context of Implicit-Explicit linear multistep methods we construct high order space-time discretizations which are able to handle all the different scales and to capture the correct asymptotic behavior, independently from its nature, without time step restrictions imposed by the fast scales. Several numerical examples confirm the theoretical analysis

    Non-iterative and exact method for constraining particles in a linear geometry

    Full text link
    We present a practical numerical method for evaluating the Lagrange multipliers necessary for maintaining a constrained linear geometry of particles in dynamical simulations. The method involves no iterations, and is limited in accuracy only by the numerical methods for solving small systems of linear equations. As a result of the non-iterative and exact (within numerical accuracy) nature of the procedure there is no drift in the constrained geometry, and the method is therefore readily applied to molecular dynamics simulations of, e.g., rigid linear molecules or materials of non-spherical grains. We illustrate the approach through implementation in the commonly used second-order velocity explicit Verlet method.Comment: 12 pages, 2 figure

    Numerical Descriptions of Cosmic-Ray Transport

    Get PDF
    The behavior of energetic particles in the solar system is described by a well known Fokker-Planck equation. Although analytic methods yield insight into the nature of its solutions, especially in the diffusion regime, calculations that go beyond diffusion are very complicated. The reliability of these calculations is of concern, because numerical methods are notorious for their errors and artifacts. The well known Milne problem of classical transport theory was analyzed with the aid of three different numerical methods. These are: (1) The method of eigenfunctions in which the distribution function is approximated by a sum of eigenfunctions of the scattering operator, (2) Numerical solutions of a finite difference aquation; and (3) Direct simulation of the scattering and streaming of individual particles with the aid of Monte Carlo methods

    Hydrodynamics of dense granular systems

    Full text link
    The properties of dense granular systems are analyzed from a hydrodynamical point of view, based on conservation laws for the particle number density and linear momentum. We discuss averaging problems associated with the nature of such systems and the peculiarities of the sources of noise. We perform a quantitative study by combining analytical methods and numerical results obtained by ensemble-averaging of data on creep during compaction and molecular dynamics simulations of convective flow. We show that numerical integration of the hydrodynamic equations gives the expected evolution for the time-dependent fields.Comment: 10 pages, 7 figure

    25 Years of Self-Organized Criticality: Numerical Detection Methods

    Get PDF
    The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines - the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.Comment: Space Science Review series on SO

    An Axisymmetric Gravitational Collapse Code

    Get PDF
    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship, and head-on black hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.Comment: 19 pages, 9 figure
    • …
    corecore