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ABSTRACT

The behavior of energetic particles in the solar system is

descrlbed by a well known Fokker-Planck equation. Although
analytic methods yield insight into the nature of its
solutions, especially in the diffusion regime, ealculatlons

that go beyond diffusion are very complicated. Under these
circumstances, numerical computatlons offer the only feaslble

way to obtain concrete results. However, the reliability of
these calculations is of concern, because numerlcal methods
are notorious for their errors and artifacts. To address

this concern, the well known Milne problem of classical
transport theory has been analyzed with the aid of three
different numerical methods. These are:

I. The method of eigenfunctions in which the distribution

function is approximated by a sum of eigenfunctions of the
scattering operator. Its complexity limits the practicality
of this approach, but it is closely related to the analytic

and classical approaches.

2. Numerical solutions of a finite-difference equation.

This is the most practical approach, but it is subject to
subtle errors.

3. Direct simulation of the scattering and streamlng of

individual particles with the aid of Monte Carlo methods.

The accuracy of this approach is limited by statlstlcal
considerations, but it is closely related to the physics.

If proper precautions are taken to ensure its validlty, the

second method gives results that are in precise quantitative
agreement with those of the first. Results of Monte Carlo

calculations are not accurate enough to define non-diffusive
effects, but in the diffusion regime, they are conslstent
with diffusion theory.

I. Introduction. According to Weinberg and Wigner (1958), the Milne

problem is "the touchstone of classical transport theory". It is in
this traditional role as a test for new developments that thls famous

probl_n is addressed here. More specifically, the steady-state
d_ffusion of particles to a free escape boundary from a planar source

deep within a one-dlmensional medium, which is the configuration assumed

in the Milne problem, is treated under the further assumptions that the
diffusing medium is magnetic turbulence superimposed upo_l a uniform

guiding field and that the particles are cosmic rays whose pltch-angles
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relative to the guiding field undergo scattering that is described by

the Fokker-Planck formalism. Within this framework, the algebra needed

to obtain analytic solutions in terms of eigenfunctlons becomes
manageable, because temporal variations are absent. These solutions,
which embody non-diffusive effects, provide a convenient and well
understood standard for judging the accuracy with which numerical
methods describe these effects.

Some basic aspects of this picture are outlined within these

proceedings in Paper SH4.1-4, and this paper deals with the same

transport equation, invokes the same definitions and notation, and
insofar as possible, uses the same numbers.

2. The Method of Ei_enfunctions. This approach follows exactly the
classical treatment in terms of spherical harmonics (Case and Zweifel,
1967, sec 8.4), except that the distributlon function is expanded in
terms of the scattering eigenfunctlons tabulated by Bieber (1977) rather

than in terms of Legendre polynomials. In the diffusion approximation,
the distribution function f{z,_ is approximated essentially by the
first two eigenfunctions. In this case, the isotropic density is finite

at the surface, and if it is extrapolated beyond the boundary along the
same uniform slope that applies to diffusion deep within the medium, it

reaches zero at a distance of (2/3)I outside the boundary. This result
is exactly the one obtained from the classical P1 approximation. To

obtain a better description, assume that solutions of the form

T{_} exp {-z/A}

can be expanded as a finite sum of four or more scattering

eigenfunctions. Then the matrix form of the transport equation can be
solved only for certain specific values of A that correspond to a
distinct set of transient elgenfunctions. (Note that the term

"transient", which derives from classical transport theory, has nothing

to do with temporal variations.) These are summed in such a way that
the returning intensity at the surface is as near as possible to zero
over the outward facing hemisphere. In practice, only the first
transient is significant. For the examples computed with q = 1.8, which

are discussed below, the first characteristic length is A = 1/40.

3. Numerical Solutions of a Finite-Difference Equation. These
computations invoke the same formulation and scattering operator as in

Paper SH4.1-4, except that steady injection was accomplished by
specifying at a fixed value of z a constant angular distribution.

Starting from the diffusion solution, computations were carried out for
a time sufficient to allow a particle moving in a straight llne to
traverse ten times the distance between injection point and boundary.
At this time, the flux was essentially independent of z, which means

that the solution was very close to the steady state. (See Earl, 1974b,
eq. 24.)

In the figures below, results are plotted for two different

values of the spatial increment, Az = %/21 (solid curves) and Az = _/210
(dotted curves), which are, respectively, substantially larger and
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smaller than the characteristic length A. Note that both increments are

much less than the value (3/4) X derived by Kota et al. (1982) as a

condition for validity of the diffusive picture. The analytical
solution described above was computed separately, but it cannot be

plotted, because its deviations from the dotted curves are smaller than
the dots. In the figure at the left, the curves at the top glve the
isotroplc density and those below glve ten times the coefficient f2 of
the second scattering eigenfunctlon, which was obtained by expanding
computed angular distributions as a series of four eigenfunctions. The
surface density predicted at z = 0 by the solid curve is ~8% larger than

expected. This discrepancy can be attributed to inae_uracles in the
description of non-diffusive effects that can be seen in the curves

below, which describe an even component that appears in the transient
anisotropy, but not in the diffusion approximation. Here, the dotted
curve follows exactly the expected exponential dependence characterized

by A = X/40, while the solid curve, whose spatial resolution is too
coarse to describe this strong gradient, follows instead an exponential

whlch has only 40% of the amplltude expected at the surface, and whose
decay is characterized by Az = X/21.

In the figure to the right, the intensity at the surface is

plotted as a function ot pitch-angle cosine p. The eigenfunction

solution is again indistinguishable from the dotted curve, whose rms
deviation from expected values is 2.2%. Except for the point nearest to

U = 0, the intensity predicted by the dotted curve wlthln the hemisphere

> 0 is essentially zero, while in contrast, the solid curve, which
refers to an inappropriate choice of Az, exhibits here a small but
finite intensity. Because scattering cannot turn back escaping

particles beyond the boundary, no returning intensity is expected, and
its degree of absence can be taken as a figure of merit for comparison
of different calculations.

4. The Monte Carlo Method. The Fokker-Planck formalism derives from a

statistical model in which scattering results from many tlny deflections

of particle trajectories by turbulent fields. With the aid of
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smaller than the characteristic length A. Note that both increments are much less than the value (3/4) A derived by Kota et al. (1982) as a condition for validity of the diffusive picture. The analytical solution described above was computed separately, but it cannot be plotted, because its deviations from the dotted curves are smaller than the dots. In the figure at the left, the curves at the top give the isotropic density and those below give ten times the coefficient f2 of the second scattering eigenfunction, which was obtained by expanding computed angular distributions as a series of four eigenfunctions. The surface density predicted at z = 0 by the solid curve is ~% larger than expected. This discrepancy can be attributed to inaeeuracies in the description of non-diffusive effects that can be seen in the curves below, which describe an even component that appears in the transient anisotropy, but not in the diffusion approximation. Here, the dotted curve follows exactly the expected exponential dependence characterized by A = A/40, while the solid curve, whose spatial resolution is too coarse to describe this strong gradient, follows instead an exponential 
wh~ch has only 40% of the ampl~tude expected at the surface, and whose decay is characterized by f:,z = A/21. 

In the figure to the right, the intensity at the surface is plotted as a function ot pitch-angle cosine ll' The eigenfunction solution is again indistinguishable from the dotted curve, whose rms deviation from expected values is 2.2%. Except for the point nearest to ~ = 0, the intensity predicted by the dotted curve with~n the hemisphere 
~ > 0 is essentially zero, while in contrast, the solid curve, which refers to an inappropriate choice of /:'z, exhibits here a small but finite intensity. Because scattering cannot turn back escaping particles beyond the boundary, no returning intensity is expected, and its degree of absence can be taken as a figure of merit for comparison of different calculations. 

4. The Monte Carlo Method. The Fokker-Planck formalism derives from a statistical model in which scattering results from many tiny deflections of particle trajectories by turbulent fields. With the aid of 
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computers, these random • 4e

deflections can be _ _o_
simulated directly, and the •
history of individual o _

particles can be traced o _o_
through space and tlme.

Two crucial points of this ¢ _s_• _k

approach are to choose the o _oi
amplitudes of the '
deflections to be o Is_

consistent with the Fokker- _ ooi " , a , i

Planck coefficient _, and o oo ' i'_s 2'_o 3 7s
to adjust time increments

so that the systematlc * .._._.w_
drift in pitch-angle is I

compatible with the random I

spreading.
o _oi

Because of the
o

limitations on accuracy
imposed on this method by o
statistical considerations,

o
it is very difficult to

study the non-diffusive o
effects consldered above. -_ oo -o so o oo o _o

However, the figures to the

right show results obtalned in the diffusion regime from a Monte Carlo
simulation of the Milne problem. Plotted above is the isotropic density

as a function of distance, which shows the expected uniform slope

downward to a finite density on the boundary at the right. The arrow
here designates the point at which the angular distrlbution plotted

below was obtained. This angular distribution is in good agreement with
the one expected from diffusion theory, whose points are designated by +
symbols.

5. Conclusions. The non-diffusive effects discussed above are

miniscule, but the precision with which they are described numerically
leaves little doubt that finite-difference calculations can give valid

results, provided that their parameters are chosen appropriately. In
the diffusion regime, Monte Carlo methods offer a useful alternative.
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