7,536 research outputs found

    Flows on Signed Graphs

    Get PDF
    This dissertation focuses on integer flow problems within specific signed graphs. The theory of integer flows, which serves as a dual problem to vertex coloring of planar graphs, was initially introduced by Tutte as a tool related to the Four-Color Theorem. This theory has been extended to signed graphs. In 1983, Bouchet proposed a conjecture asserting that every flow-admissible signed graph admits a nowhere-zero 6-flow. To narrow dawn the focus, we investigate cubic signed graphs in Chapter 2. We prove that every flow-admissible 3-edge-colorable cubic signed graph admits a nowhere-zero 10-flow. This together with the 4-color theorem implies that every flow-admissible bridgeless planar signed graph admits a nowhere-zero 10-flow. As a byproduct of this research, we also demonstrate that every flow-admissible hamiltonian signed graph can admit a nowhere-zero 8-flow. In Chapter 3, we delve into triangularly connected signed graphs. Here, A triangle-path in a graph G is defined as a sequence of distinct triangles T1,T2,…,TmT_1,T_2,\ldots,T_m in G such that for any i, j with 1≤i3˘cj≤m1\leq i \u3c j \leq m, ∣E(Ti)∩E(Ti+1)∣=1|E(T_i)\cap E(T_{i+1})|=1 and E(Ti)∩E(Tj)=∅E(T_i)\cap E(T_j)=\emptyset if j3˘ei+1j \u3e i+1. We categorize a connected graph GG as triangularly connected if it can be demonstrated that for any two nonparallel edges ee and e2˘7e\u27, there exists a triangle-path T1T2⋯TmT_1T_2\cdots T_m such that e∈E(T1)e\in E(T_1) and e2˘7∈E(Tm)e\u27\in E(T_m). For ordinary graphs, Fan {\it et al.} characterized all triangularly connected graphs that admit nowhere-zero 33-flows or 44-flows. Corollaries of this result extended to integer flow in certain families of ordinary graphs, such as locally connected graphs due to Lai and certain types of products of graphs due to Imrich et al. In this dissertation, we extend Fan\u27s result for triangularly connected graphs to signed graphs. We proved that a flow-admissible triangularly connected signed graph (G,σ)(G,\sigma) admits a nowhere-zero 44-flow if and only if (G,σ)(G,\sigma) is not the wheel W5W_5 associated with a specific signature. Moreover, this result is proven to be sharp since we identify infinitely many unbalanced triangularly connected signed graphs that can admit a nowhere-zero 4-flow but not 3-flow.\\ Chapter 4 investigates integer flow problems within K4K_4-minor free signed graphs. A minor of a graph GG refers to any graph that can be derived from GG through a series of vertex and edge deletions and edge contractions. A graph is considered K4K_4-minor free if K4K_4 is not a minor of GG. While Bouchet\u27s conjecture is known to be tight for some signed graphs with a flow number of 6. Kompi\v{s}ov\\u27{a} and M\\u27{a}\v{c}ajov\\u27{a} extended those signed graph with a specific signature to a family \M, and they also put forward a conjecture that suggests if a flow-admissible signed graph does not admit a nowhere-zero 5-flow, then it belongs to \M. In this dissertation, we delve into the members in \M that are K4K_4-minor free, designating this subfamily as N\N. We provide a proof demonstrating that every flow-admissible, K4K_4-minor free signed graph admits a nowhere-zero 5-flow if and only if it does not belong to the specified family N\N

    Contractors for flows

    Full text link
    We answer a question raised by Lov\'asz and B. Szegedy [Contractors and connectors in graph algebras, J. Graph Theory 60:1 (2009)] asking for a contractor for the graph parameter counting the number of B-flows of a graph, where B is a subset of a finite Abelian group closed under inverses. We prove our main result using the duality between flows and tensions and finite Fourier analysis. We exhibit several examples of contractors for B-flows, which are of interest in relation to the family of B-flow conjectures formulated by Tutte, Fulkerson, Jaeger, and others.Comment: 22 pages, 1 figur

    Congruence conditions, parcels, and Tutte polynomials of graphs and matroids

    Get PDF
    Let GG be a matrix and M(G)M(G) be the matroid defined by linear dependence on the set EE of column vectors of G.G. Roughly speaking, a parcel is a subset of pairs (f,g)(f,g) of functions defined on EE to an Abelian group AA satisfying a coboundary condition (that f−gf-g is a flow over AA relative to GG) and a congruence condition (that the size of the supports of ff and gg satisfy some congruence condition modulo an integer). We prove several theorems of the form: a linear combination of sizes of parcels, with coefficients roots of unity, equals an evaluation of the Tutte polynomial of M(G)M(G) at a point (λ−1,x−1)(\lambda-1,x-1) on the complex hyperbola $(\lambda - 1)(x-1) = |A|.

    Is the five-flow conjecture almost false?

    Get PDF
    The number of nowhere zero Z_Q flows on a graph G can be shown to be a polynomial in Q, defining the flow polynomial \Phi_G(Q). According to Tutte's five-flow conjecture, \Phi_G(5) > 0 for any bridgeless G.A conjecture by Welsh that \Phi_G(Q) has no real roots for Q \in (4,\infty) was recently disproved by Haggard, Pearce and Royle. These authors conjectured the absence of roots for Q \in [5,\infty). We study the real roots of \Phi_G(Q) for a family of non-planar cubic graphs known as generalised Petersen graphs G(m,k). We show that the modified conjecture on real flow roots is also false, by exhibiting infinitely many real flow roots Q>5 within the class G(nk,k). In particular, we compute explicitly the flow polynomial of G(119,7), showing that it has real roots at Q\approx 5.0000197675 and Q\approx 5.1653424423. We moreover prove that the graph families G(6n,6) and G(7n,7) possess real flow roots that accumulate at Q=5 as n\to\infty (in the latter case from above and below); and that Q_c(7)\approx 5.2352605291 is an accumulation point of real zeros of the flow polynomials for G(7n,7) as n\to\infty.Comment: 44 pages (LaTeX2e). Includes tex file, three sty files, and a mathematica script polyG119_7.m. Many improvements from version 3, in particular Sections 3 and 4 have been mostly re-writen, and Sections 7 and 8 have been eliminated. (This material can now be found in arXiv:1303.5210.) Final version published in J. Combin. Theory

    Flows on the join of two graphs

    Get PDF
    summary:The join of two graphs GG and HH is a graph formed from disjoint copies of GG and HH by connecting each vertex of GG to each vertex of HH. We determine the flow number of the resulting graph. More precisely, we prove that the join of two graphs admits a nowhere-zero 33-flow except for a few classes of graphs: a single vertex joined with a graph containing an isolated vertex or an odd circuit tree component, a single edge joined with a graph containing only isolated edges, a single edge plus an isolated vertex joined with a graph containing only isolated vertices, and two isolated vertices joined with exactly one isolated vertex plus some number of isolated edges

    Integer flows and Modulo Orientations

    Get PDF
    Tutte\u27s 3-flow conjecture (1970\u27s) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. A graph G admits a nowhere-zero 3-flow if and only if G has an orientation such that the out-degree equals the in-degree modulo 3 for every vertex. In the 1980ies Jaeger suggested some related conjectures. The generalized conjecture to modulo k-orientations, called circular flow conjecture, says that, for every odd natural number k, every (2k-2)-edge-connected graph has an orientation such that the out-degree equals the in-degree modulo k for every vertex. And the weaker conjecture he made, known as the weak 3-flow conjecture where he suggests that the constant 4 is replaced by any larger constant.;The weak version of the circular flow conjecture and the weak 3-flow conjecture are verified by Thomassen (JCTB 2012) recently. He proved that, for every odd natural number k, every (2k 2 + k)-edge-connected graph has an orientation such that the out-degree equals the in-degree modulo k for every vertex and for k = 3 the edge-connectivity 8 suffices. Those proofs are refined in this paper to give the same conclusions for 9 k-edge-connected graphs and for 6-edge-connected graphs when k = 3 respectively
    • …
    corecore