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ABSTRACT

Integer flows and Modulo Orientations

Yezhou Wu

Tutte’s 3-flow conjecture(1970’s) states that every 4-edge-connected graph admits a

nowhere-zero 3-flow. A graph G admits a nowhere-zero 3-flow if and only if G has an

orientation such that the out-degree equals the in-degree modulo 3 for every vertex. In the

1980ies Jaeger suggested some related conjectures. The generalized conjecture to modulo

k-orientations, called circular flow conjecture, says that, for every odd natural number k,

every (2k-2)-edge-connected graph has an orientation such that the out-degree equals the

in-degree modulo k for every vertex. And the weaker conjecture he made, known as the

weak 3-flow conjecture where he suggests that the constant 4 is replaced by any larger

constant.

The weak version of the circular flow conjecture and the weak 3-flow conjecture are

verified by Thomassen (JCTB 2012) recently. He proved that, for every odd natural

number k, every (2k2 + k)-edge-connected graph has an orientation such that the out-

degree equals the in-degree modulo k for every vertex and for k = 3 the edge-connectivity

8 suffices. Those proofs are refined in this paper to give the same conclusions for 9k-edge-

connected graphs and for 6-edge-connected graphs when k = 3 respectively.
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Chapter 1

Introduction

1.1 Notation and Terminology

We use [6] for terminology and notations not defined here. Graphs in this dissertation are

finite and may have multiple edges but no loops. Let G be a graph. We use V (G) and

E(G) to denote the set of vertices and the set of edges of G, respectively. Two vertices

u, v are adjacent if uv ∈ E(G).

For a graph G and for v ∈ V (G), the neighborhood NG(v) denotes the set of all

vertices adjacent to v in G. The cardinality of NG(v) is called the degree of v in G, and

is denoted by dG(v) or d(v). For a vertex subset A of G.

A edge cut of G is a subset F of E(G) such that G−F is disconnected. A k-edge cut

is a edge cut of k elements. If G has at least one pair of distinct nonadjacent vertices, the

edge-connectivity κ(G) of G is the minimum k for which G has a k-edge cut. G is said

to be k-edge-connected if κ(G) ≥ k. For a vertex subset or an edge subset X of G, G[X]

denotes the subgraph of G induced by X. If A ⊆ V (G), we let G − A = G[V (G) − A].

When A = {v}, we use G− v for G− {v}.
Let X ⊆ E(G). The contraction G/X is the graph obtained from G by identifying

the two ends of each edge in X and then deleting the resulting loops. If H is a subgraph

of G, we write G/H for G/E(H). Note that even if G is a simple graph, contracting some

1



CHAPTER 1. INTRODUCTION 2

edges of G may result in a graph with multiple edges.

1.2 Integer Flows

Integer flow was originally introduced by Tutte [57, 58] as a generalization of map coloring

problems. The following are some definition about basic integer flow concepts.

Definition 1.2.1 Let G be a graph, D be an orientation of G and f : E(G) −→ Z be

a map. For a vertex v ∈ V (G), let E+(v)(or E−(v)) be the set of all arcs of D(G) with

their tails (or heads, respectively) at the vertex v.

Definition 1.2.2 An integer flow of a graph G is an ordered pair (D, f) such that∑
e∈E+(v) f(e) =

∑
e∈E−(v) f(e) every vertex v ∈ V (G).

Definition 1.2.3 A k-flow is an integer flow (D, f) such that |f(e)| < k for each e ∈
E(G). A k-flow is nowhere-zero if f(e) 6= 0 for each e ∈ E(G).

The following are the most famous conjectures in the theory of integer flows proposed

by Tutte.

Conjecture 1.2.4 (3-flow conjecture, Tutte) Every 4-edge-connected graph admits a nowhere-

zero 3-flow.

Conjecture 1.2.5 (4-flow conjecture, [59]) Every bridgeless graph containing no subdi-

vision of the Petersen graph admits a nowhere-zero 4-flow.

Conjecture 1.2.6 (5-flow conjecture, [58]) Every bridgeless graph admits a nowhere-zero

5-flow.

A weak version of Conjecture 1.2.4 was proposed by Jaeger.

Conjecture 1.2.7 (Jaeger [26]) There is an integer h such that every h-edge-connected

graph admits a nowhere-zero 3-flow.
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Conjecture 1.2.7 is recently verified by Thomassen.

Theorem 1.2.8 (Thomassen [56]) Every 8-edge-connected graph admits a nowhere-zero

3-flow.

This theorem is further improved in the dissertation as follows.

Theorem 1.2.9 Every 6-edge-connected graph admits a nowhere-zero 3-flow.

Note that it was proved by Kochol[32] that it suffices to prove the 3-flow conjec-

ture for 5-edge-connected graphs. So our result is just one step to the 3-flow conjecture

(Conjecture 1.2.4).

1.3 Modulo Orientations

Definition 1.3.1 Let G be a graph and k be an odd integer, k ≥ 3. An orientation D of

G is a modulo k-orientation if

d+(x)− d−(x) ≡ 0 (mod k)

for every vertex x ∈ V (G).

A graph admits a nowhere-zero 3-flow if and only if it has a modulo 3-orientation(see

[27], [28] or [63]). Jaeger(1984) generalized the 3-flow conjecture to the following one

which he called the circular flow conjecture.

Conjecture 1.3.2 (Jaeger [27])For every odd natural number k, every (2k − 2)-edge-

connected graph has a modulo k-orientation.

He also suggested the weaker version of circular flow conjecture that the connectivity

(2k − 2) is replaced by any large integer function of k. This weaker conjecture has also

been proved by Thomassen in the same paper[56].
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Theorem 1.3.3 (Thomassen [56]) Every (2k2 + k)-edge-connected graph has a modulo

k-orientation, where k is an odd integer ≥ 3.

The quadratic bound is reduced to linear one in this dissertation.

Theorem 1.3.4 Every 9k-edge-connected graph has a modulo k-orientation, where k is

an odd integer ≥ 3.



Chapter 2

Nowhere-zero 3-flows for

6-edge-connected graphs

2.1 Introduction

2.1.1 3-Flow Conjecture and Weak 3-flow conjecture

One major open problem in the integer flow theory is the following conjecture, which is

the dual version of Grötzsch’s 3-coloring theorem for planar graphs (see [18], [19], [1],

[55]).

Conjecture 2.1.1 (Tutte) Every graph with no 1-edge-cut and no 3-edge-cut admits a

nowhere-zero 3-flow.

This open problem first appeared in the literatures in the 1970’ies, such as, [51],

and [6] (Open Problem 48). It has been recognized as one of major open problems in

graph theory, and has appeared in many standard textbooks and reference books, such

as, [8] (Open Problem 97), [61] (Conjecture 7.3.28), [11] (p. 157), [30] (Section 13.3), [63]

(Conjecture 1.1.8).

The 3-flow conjecture (Conjecture 2.1.1) by Tutte was originally proposed for graphs

with no 1-edge-cut and no 3-edge-cut. It was pointed out in [26], [28], [47] that a 2-edge-

5



CHAPTER 2. NOWHERE-ZERO 3-FLOWS FOR 6-EDGE-CONNECTED GRAPHS6

cut does not exist in any smallest counterexample to some well-known flow conjectures

(including this conjecture). Kochol [32] further proved that it suffices to prove this con-

jecture for 5-edge-connected graphs.

A weak version of Conjecture 2.1.1 was proposed by Jaeger.

Conjecture 2.1.2 (Jaeger [26]) There is an integer h such that every h-edge-connected

graph admits a nowhere-zero 3-flow.

The followings are some early partial results on Conjecture 2.1.2.

Theorem 2.1.3 (Lai and Zhang [35]) Every 4dlog2 noe-edge-connected graph with at most

no odd-degree vertices admits a nowhere-zero 3-flow.

Theorem 2.1.4 (Alon, Linial and Meshulam [2], see also [3].) Every 2dlog2 ne-edge-
connected graph with n vertices admits a nowhere-zero 3-flow.

Conjecture 2.1.2 is recently verified by Thomassen.

Theorem 2.1.5 (Thomassen [56]) Every 8-edge-connected graph admits a nowhere-zero

3-flow.

This theorem is further improved in this paper as follows.

Theorem 2.1.6 Every 6-edge-connected graph admits a nowhere-zero 3-flow.

There is a long list of publications related to Conjecture 2.1.1 and the stronger Con-

jecture 2.1.8 below, such as, [1], [2], [3], [4], [10], [12], [13], [14], [18], [19], [22], [23], [24],

[25], [26], [28], [29], [31], [32], [33], [34], [35], [36], [37], [38], [40], [41], [43], [44], [47], [49],

[51], [52], [53], [54], [55], [62], [65], [66], etc.. Note that many results of those papers

are for graphs with some special properties (instead of edge-connectivity), such as, local

density, local structure, random structure, symmetrical structure, embedding property,

degree, odd-cuts distribution. Many of them remain the best known results for the graph

families they concern, and are not corollaries of Theorem 2.1.6



CHAPTER 2. NOWHERE-ZERO 3-FLOWS FOR 6-EDGE-CONNECTED GRAPHS7

2.1.2 Group connectivity

Group connectivity was introduced in [29] as a generalization of integer flow, and an

inductive approach for flow problems.

Definition 2.1.7 Let Γ be an abelian group with “0′′ as the additive identity (zero). Let

G be a graph and β : V (G) 7→ Γ. The mapping β is zero-sum if
∑

v∈V (G) β(v) = 0. The

graph G is Γ-connected if, for every zero-sum mapping β, there is an orientation Dβ and

a weight fβ of E(G) such that

∑

e∈E+
Dβ

(v)

fβ(e) −
∑

e∈E−Dβ
(v)

fβ(e) = β(v)

for every vertex v ∈ V (G). And a zero-sum mapping β is called a boundary.

Conjecture 2.1.8 (Jaeger, Linial, Payan and Tarsi [29]) Every 5-edge-connected graph

is Z3-connected.

Note that the 5-edge-connectivity is sharp for Conjecture 2.1.8 since some 4-edge-

connected counterexamples were discovered in [29] and [38].

Theorem 2.1.9 (Thomassen [56]) Every 8-edge-connected graph is Z3-connected.

This theorem is further improved in this dissertation as follows.

Theorem 2.1.10 Every 6-edge-connected graph is Z3-connected.

2.1.3 Generalized Tutte orientation

Modulo 3-orientation was first introduced by Tutte in the study of orientable cycle double

covering [57].
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Definition 2.1.11 An orientation D of a graph G is called a modulo 3-orientation or

Tutte orientation if

d+
D(v) ≡ d−D(v) (mod 3)

for every vertex v ∈ V (G).

It was observed in [57] that a graph G admits a nowhere-zero 3-flow if and only if G

has a Tutte orientation. This concept is further generalized in [4] as follows.

Definition 2.1.12 Let β : V (G) 7→ Z3 such that
∑

v∈V (G) β(v) = 0. An orientation Dβ

of G is called a generalized Tutte orientation with respect to β if

d+
Dβ

(v)− d−Dβ
(v) ≡ β(v) (mod 3)

for every vertex v ∈ V (G).

Generalized Tutte orientations are a special case of group connectivity. Indeed, it is

not hard to see that G is Z3-connected if and only if G has a generalized Tutte orientation

for every zero-sum mapping β.

2.1.4 Circular flow

Definition 2.1.13 Let k, d be two integers such that 0 < d ≤ k
2
. An integer flow (D, f)

of a graph G is called a circular k
d
-flow if f : E(G) 7→ {±d,±(d+1), · · · ,±(k− d)}∪{0}.

The concept of circular flow, introduced by Goddyn, Tarsi and Zhang in [17], is a

generalization of integer flows, and a dual version of circular colorings ([60], [7]). We refer

to [67], [68] for surveys.

It is proved in [17] that if a graph G admits a nowhere-zero circular p-flow, then G

admits a nowhere-zero circular q-flow for every q ≥ p.

Definition 2.1.14 Let G be a bridgeless graph. The circular flow index of G, denoted

by φ(G), is the smallest rational number q such that G admits a nowhere-zero circular

q-flow.
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It is proved in [17] that the number q in Definition 2.1.14 indeed exists.

The following theorem was proved in [16] as an approach to Conjecture 2.1.1 (and

Conjecture 2.1.2).

Theorem 2.1.15 (Galluccio and Goddyn [16], also see [39].) For every 6-edge-connected

graph G, the circular flow index φ(G) < 4.

Theorem 2.1.6 in the present paper improves Theorem 2.1.15. Specifically, φ(G) is

now a rational number ≤ 3.

2.2 The set function τ (A)

The idea which makes the proof in [56] work is a set function called t(A) with values

0, 1, 2, 3. In the present paper we use the same function except that we allow it to have

negative values. We therefore call it τ(A). This function has values −3,−2,−1, 0, 1, 2, 3,

and t(A) = |τ(A)|.

Suppose β : V (G) 7→ Z3 = {0, 1, 2}. As in Definition 2.1.7, we call β a boundary of

the graph G.

Let x be a vertex of G and let µ be an integer such that

|µ| ≤ d(x),

µ ≡ β(x) (mod 3), and, µ ≡ d(x) (mod 2). (2.1)

Then d(x)−|µ| is even and there is a natural way to direct the edges incident with x, which

we call E(x), such that d+(x)−d−(x) ≡ β(x) (mod 3) as follows: First we choose d(x)−|µ|
2

pairs of edges and direct each pair in opposite directions; Then we direct all the remaining

|µ| edges away from x if µ ≥ 0 or towards x if µ ≤ 0. Such an orientation of E(x) satisfies

that d+(x)− d−(x) ≡ β(x) (mod 3) since d+(x) = d(x)+µ
2

and d−(x) = d(x)−µ
2

.

We may have multiple choices for µ. For example, if d(x) = 5 and β(x) = 1, then we

can have µ = 1 or µ = −5. Following [56], denote τ(x) be the µ, satisfying Equation (2.1),
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such that |µ| is minimum. Notice that if β(x) = 0 and d(x) is odd, then |τ(x)| = 3 and we

can direct d(x)−3
2

pairs of edges in opposite directions and the remaining 3 edges either all

away from x or all toward x. So τ(x) = −3 or τ(x) = 3 under this conditions. Otherwise

we have

τ(x) = β(x) if d(x) ≡ β(x) (mod 2)

and

τ(x) = β(x)− 3 if d(x) 6≡ β(x) (mod 2) and β(x) 6= 0.

Note that the mapping τ may not be a single valued function since, for the case of d(x) ≡ 1

(mod 2) and β(x) = 0, τ(x) has two values: 3 and −3.

The mapping τ is further extended to any nonempty vertex subset A with respect

to β(A) ≡ ∑
x∈A

β(x) (mod 3) and d(A) = |[A, V (G)\A]|, where [A, V (G)\A] is the set of

edges between A and V (G)\A. The mapping τ : P(V (G)) 7→ {0, 1,−1, 2,−2, 3,−3} is

defined as follows, for each non-empty A ⊂ V (G),

τ(A) ≡
{

β(A) (mod 3)

d(A) (mod 2)
(2.2)

where P(V (G)) is the power set of V (G) (the collection of all subsets of V (G)).

For a graph G′ with the boundary β′, we use the notations d′(A), β′(A) and τ ′(A) for

the corresponding values of the vertex subset A of V (G′).

Lifting Operation. Let x be a vertex of G. If xy and xz are edges with y and z distinct,

then the deletion of the edges xy and xz and the addition of the edge yz is called the

lifting of xy and xz (see Figure 2.1). Also, if one of xy and xz, say xz, is a directed edge,

then we direct yz toward z if xz is toward z or away from z otherwise.

Observation 1. Let G′ be the graph constructed from G by lifting two edge xy and

xz. Then, for any boundary β and any β-orientation of G′, there is a corresponding

β-orientation of G such that xy and xz are directed in opposite directions from x.

Pre-direction Operation. Let β be a boundary of a graph G. If xy is an undirected
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Figure 2.1: Lifting of xy and xz

edge or a directed edge from x to y of G, then the removing of xy, decreasing β(x) by 1

and increasing β(y) by 1 is called the pre-directing of xy.

Observation 2. Let G′ be the graph constructed from G by pre-directing edge xy and let

β′ be the corresponding boundary modified from β. Then, for any β′-orientation of G′,

the corresponding orientation of G constructed from the one of G′ by adding the directed

edge xy from x to y is a β-orientation.

Proposition 2.2.1 For any vertex subset A of the graph G,

(1) If d(A) ≥ 6, then d(A) ≥ 4 + |τ(A)|.
(2) If d(A) > 4 + |τ(A)|, then d(A) ≥ 6 + |τ(A)|.
(3) If d(A) < 6 + |τ(A)|, then d(A) ≤ 4 + |τ(A)|.

Proposition 2.2.1 follows from the fact that d(A) and |τ(A)| have the same parities

(by Equation (2.2)).

Proposition 2.2.2 Let G be a graph and β be a boundary G. Suppose G′ is the resulting

graph constructed from G by lifting or pre-directing edges, and β′ is the boundary of G′

modified from β. Let A be a vertex subset such that d(A) ≥ 6 + |τ(A)|. Then

d′(A) ≥ 4 + |τ ′(A)|

if one of the following is satisfied:

(a) β′(A) = β(A) and d′(A) = d(A) or d(A)− 2,

(b) β′(A) = β(A)± 1 and d′(A) = d(A)− 1.
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Proof. If (a) is satisfied, then, by Equation (2.2), we have that

τ ′(A) ≡
{

β′(A) ≡ β(A) ≡ τ(A) (mod 3),

d′(A) ≡ d(A) ≡ τ(A) (mod 2).

Hence, |τ ′(A)| ≡ |τ(A)| (mod 6), and, furthermore, |τ ′(A)| = |τ(A)| since |τ ′(A)| ≤ 3 and

|τ(A)| ≤ 3. So

d′(A) ≥ d(A)− 2 ≥ 6 + |τ(A)| − 2 = 4 + |τ ′(A)|.

If (b) is satisfied, then, by Equation (2.2), we have that

|τ ′(A)− τ(A)| ≡
{
|β′(A)− β(A)| ≡ 1 (mod 3),

|d′(A)− d(A)| ≡ 1 (mod 2).

Hence, |τ ′(A) − τ(A)| ≡ 1 (mod 6) and, furthermore, |τ ′(A) − τ(A)| = 1 since |τ ′(A) −
τ(A)| ≤ 6. So |τ(A)| ≥ |τ ′(A)| − 1 and, therefore,

d′(A) = d(A)− 1 ≥ 5 + |τ(A)| ≥ 4 + |τ ′(A)|.

2.3 Main results

Theorem 2.3.1 below is similar to Theorem 1 in [56]. In the conclusion of Theorem 2.3.1

there is an additional condition on the minimum indegrees and outdegrees which can also

easily be added to Theorem 1 in [56] (with 4 replaced by 6). The main modification,

however, is the upper bound on the degree of the vertex z0 incident with the edges with

prescribed orientation. In [56], we allow that vertex z0 to have degree at most 11. In

Theorem 2.3.1, the condition on the degree d(z0) depends on the τ -value.

Theorem 2.3.1 Let G be a graph, β be a boundary of G, z0 ∈ V (G) and Dz0 be a

pre-orientation of E(z0). Assume that

(i) |V (G)| ≥ 3;
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(ii) under the orientation Dz0, the edges incident with z0 are directed such that

d+(z0)− d−(z0) ≡ β(z0) (mod 3);

(iii) d(z0) ≤ 4 + |τ(z0)| and d(A) ≥ 4 + |τ(A)| for each nonempty vertex subset A not

containing z0 such that |V (G)\A| > 1.

Then the pre-orientation Dz0 of E(z0) can be extended to an orientation D of the entire

graph such that, for each vertex x distinct from z0, we have the following conclusions:

(a) d+(x)− d−(x) ≡ β(x) (mod 3),

(b) min{d+(x), d−(x)} ≥ h(x) where h(x) = d(x)−4−|τ(x)|
2

.

Theorem 2.1.10 is a corollary of Theorem 2.3.1. Applying Theorem 2.3.1, Theo-

rem 2.1.10 is proved as follows.

Proof of Theorem 2.1.10. Suppose G is a 6-edge-connected graph.

Let G′ be the graph obtained from G by adding an isolated vertex z0.

For an arbitrary boundary β : V (G) → Z3, define β′ : V (G′) → Z3 such that β′(z0) =

0 and β′(x) = β(x) if x 6= z0.

We now verify the conditions of Theorem 2.3.1 for G′ and β′.

Condition (ii) is obviously satisfied.

As G is 6-edge-connected, |V (G)| ≥ 2. So |V (G′)| ≥ 3 and Condition (i) holds. Fur-

thermore, d′(z0) = 0 ≤ 4 + |τ ′(z0)| and, for any nonempty vertex subset A not containing

z0 such that |V (G′)\A| > 1, we have d′(A) = |[A, V (G′)\A]| = |[A, V (G)\A]| ≥ 6 by the

connectivity of G. So by Proposition 2.2.1, d′(A) ≥ 4 + |τ ′(A)|, proving Condition (iii).

Then, following Theorem 2.3.1, there exists an orientation of G′, which is also an

orientation of G since E(G) = E(G′), such that each vertex x ∈ V (G) satisfies d+(x) −
d−(x) ≡ β(x) (mod 3). So, the graph G is Z3-connected.

By the definition of group connectivity/generalized Tutte orientation, Theorem 2.1.6

is an immediate corollary of Theorem 2.1.10.



CHAPTER 2. NOWHERE-ZERO 3-FLOWS FOR 6-EDGE-CONNECTED GRAPHS14

2.4 Proof of Theorem 2.3.1

The proof is by induction. We assume (reductio ad absurdum) that G is a counterexample

such that |E(G)| is minimum.

The proof is divided into two parts. The first part follows closely the proof of Theorem

1 in [56]. As we have modified the condition on d(z0), and added Conclusion (b) and also

work with the function β(x) instead of the prescribed outdegree p(x) in [56], we include

complete proofs in most cases.

The second part contains further reductions, and in this part Conclusion (b) is used

in the induction hypothesis.

Part I. Basic reductions following [56]

Claim 1 If A is a vertex subset not containing z0 such that |A| > 1 and |V (G)\A| > 1,

then

d(A) ≥ 6 + |τ(A)|.

If d(A) < 6 + |τ(A)|, then d(A) ≤ 4 + |τ(A)| by Proposition 2.2.1. And by Condition

(iii) we have d(A) ≥ 4 + |τ(A)|. So d(A) = 4 + |τ(A)|.
We first contract A and get an orientation of the edges out of G[A] by induction.

Then we contract V (G)\A into a single vertex as a new z0, and again we use induction

to extend the orientation to the edges inside of G[A] (see Figure 2.2). Notice that the

Conclusion (b) remains true during the inductions. ¤

Claim 2 d(x) = 4 + |τ(x)| and h(x) = 0 if x 6= z0.

If d(x) 6= 4+ |τ(x)|, then by Condition (iii) d(x) > 4+ |τ(x)| and by Proposition 2.2.1

we have that d(x) ≥ 6 + |τ(x)| and h(x) ≥ 1.

Assume that x has been chosen such that h(x) is maximum.

Case 1: x has only one neighbor.

Let y be the neighbor of x and let A = {x, y}.
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Figure 2.2: Direct G by inductions

If y = z0, then d(V (G)\A) = d(A) = d(z0) − d(x) ≤ (4 + |τ(z0)|) − (6 + |τ(x)|) ≤ 1

which contradicts Condition (iii) for the vertex subset V (G)\A.

So y 6= z0. By the maximality of h(x) we have that h(y) ≤ h(x) and then d(A) =

d(y) − d(x) = 2(h(y) − h(x)) + |τ(y)| − |τ(x)| ≤ |τ(y)| ≤ 3 which contradicts Claim 1 if

|V (G)\A| > 1. So we must have that {x, y} = V (G) − z0 and therefore all undirected

edges of G are between x and y and all directed edges are between z0 and y. We just

direct d(x)+τ(x)
2

edges away from x and the other d(x)−τ(x)
2

edges towards x. So Conclusion

(a) holds for x. Also it holds for y since d+(y) = d−(x) + d−(z0), d−(y) = d+(x) + d+(z0)

and d+(y)− d−(y) ≡ −β(x)− β(z0) ≡ β(y) (mod 3).

For Conclusion (b), we have min{d+(x), d−(x)} ≥ d(x)−|τ(x)|
2

= h(x) + 2 ≥ h(x) and

min{d+(y), d−(y)} ≥ h(y) since d+(y) ≥ d−(x) ≥ h(x) ≥ h(y) and d−(y) ≥ d+(x) ≥
h(x) ≥ h(y). So Conclusion (b) is also satisfied.

This contradicts that G is a counterexample.

Case 2: x has at least two neighbors.

Let y and z be the two neighbors of x. We lift xy and xz to yz, reduce h(x) by 1 and

apply induction. We verify Condition (iii) for the resulting graph G′ with β′ = β.

Obviously Condition (iii) holds for each single vertex.

Let A be a vertex subset not containing z0 such that |A| > 1 and |V (G′)\A| > 1.

We have that β′(A) = β(A) and d′(A) = d(A)− 2 or = d(A).

By Claim 1 and Proposition 2.2.2-(a), we have d′(A) ≥ 4 + |τ ′(A)|. So G′ satisfies
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the theorem and then there exists an orientation of G′ such that Conclusion (a) and (b)

are satisfied for G′. In particular the edge yz gets some direction, say from y to z, and

there are at least h(x)−1 pairs edges incident with x directed in opposite directions. Now

we delete the edge yz and orient xy away from y and xz towards z, then the resulting

orientation of G satisfies the theorem which contradicts that G is a counterexample. ¤

Claim 3 For any two vertices x, y distinct from z0, there is at most one edge joining x

and y.

Let F be the set of all parallel edges between x and y (|F | ≥ 2).

Case 1. |V (G)| > 3. Let G′ = G/F be the contracted graph and w be the new vertex

from the contraction. By Claim 1, G′ with the modified boundary β(w) ≡ β(x) + β(y)

(mod 3) satisfies Condition (iii) for the new vertex w, and each subset A. By induction,

G′ has an orientation D′ satisfying Conclusions (a) and (b).

Extend the orientation D′ to G by orienting each edge of F from y to x (temporarily).

Note that

[[d+
G(x)− d−G(x)]− β(x)] + [[d+

G(y)− d−G(y)]− β(y)] ≡ 0 (mod 3)

since β(w) ≡ β(x) + β(y) (mod 3). Let

[d+
G(y)− d−G(y)]− β(y) ≡ θ ∈ {0, 1, 2} = Z3.

Then reverse the direction(s) of θ edges of F . It is easy to see that the modified orientation

satisfies Conclusion (a). Note that there is no need to verify Conclusion (b) because of

Claim 2.

Case 2. |V (G)| = 3. In this case, all edges of G− F = E(z0) are pre-oriented. Let D′ be

the orientation of F from y to x. Then a modification of D′ can be obtained by repeating

the second paragraph of Case 1. ¤

Claim 4

|V (G)| > 3.
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Suppose V (G) = {z0, x, y}. By Claim 2, we have

d(x) = 4 + |τ(x)| and d(y) = 4 + |τ(y)|.

By Claim 3, there is at most one edge joining x and y.

Case 1: There is no edge joining x and y.

Then d(z0) = d(x) + d(y) ≥ 4 + 4 > 4 + |τ(z0)| which contradicts Condition (iii).

Case 2: There is exactly one edge joining x and y.

Without loss of generality, let d(x) ≤ d(y). Thus, d(x) ≥ 4 and 2d(x) ≤ d(x)+d(y) =

d(z0) + 2 ≤ 4 + |τ(z0)|+ 2 ≤ 4 + 3 + 2 = 9. Therefore,

d(x) = 4, τ(x) = 0 and β(x) = 0.

Furthermore,

d(z0) = d(x) + d(y)− 2 = d(y) + 2 and β(y) + β(z0) ≡ −β(x) ≡ 0 (mod 3). (2.3)

So |τ(y)| ≡ |β(y)| ≡ |β(z0)| ≡ |τ(z0)| (mod 3) and |τ(y)| ≡ |d(y)| ≡ |d(z0)| ≡ |τ(z0)|
(mod 2).

Therefore, |τ(y)| = |τ(z0)| and, by (2.3), d(z0) = d(y)+2 = 4+ |τ(y)|+2 = 6+ |τ(z0)|
which contradicts Condition (iii). ¤

Claim 5 Every vertex x of G distinct from z0 has at least three neighbors.

Suppose x has at most two neighbors. By Claim 3, z0 must be a neighbor of x and there

are at least d(x)−1 edges joining x and z0. Then d({x, z0}) ≤ d(z0)+d(x)−2(d(x)−1) =

d(z0)− d(x) + 2.

Let A = V (G)− x− z0. We have |V (G)\A| = 2 > 1 and by Claim 4, |A| > 1. Then

d(A) = d({x, z0}) ≤ d(z0) − d(x) + 2 ≤ 7 − 4 + 2 = 5 < 6 + |τ(A)|, a contradiction to

Claim 1. ¤
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Claim 6

τ(x) 6= 0

for every x ∈ V (G)− z0.

Suppose that τ(x) = 0 for some vertex x other than z0. By (2.2), β(x) = 0 and by

Claim 2, d(x) = 4.

If x has four distinct neighbors, then we can lift the edges incident with x randomly.

Otherwise by Claim 3 and Claim 5, x has three neighbors and one of them is z0 such

that there are two edges joining x and z0. Let y and z be the two neighbors of x distinct

from z0. We can delete the four edges incident with x and add two edges yz0 and zz0 to

complete the lifting. Let G′ be the resulting graph. Define the corresponding boundary

β′ such that β′(v) = β(v) if v 6= x. Then, by Observation 1, it suffices to verify Condition

(iii) for G′ and β′.

For any single vertex of G′, the condition clearly holds.

Now consider a vertex subset A of G′ not containing z0 such that |A| > 1 and

|V (G′)\A| > 1.

If A contains all the neighbors of x, then d′(A) = d(A)−d(x) = d(A+x). By Claim 1,

d(A + x) ≥ 6 + |τ(A + x)| since |V (G)\(A + x)| = |V (G′)\A| > 1. So, d′(A) ≥ 6 and by

Proposition 2.2.1, we have d′(A) ≥ 4 + |τ ′(A)|.
Otherwise, let y1, y2, z1, z2 be the neighbors of x such that the resulting edges after the

lifting are y1z1 and y2z2 (see Figure 2.3 and it is possible that z1 = z2 = z0), and suppose

y2 6∈ A. Then d′(A) = d(A) − 2 if both y1 and z1 are contained in A or d′(A) = d(A)

otherwise. By Proposition 2.2.2, we also have d′(A) ≥ 4 + |τ ′(A)| since β′(A) = β(A) and

by Claim 1, d(A) ≥ 6 + |τ(A)|. ¤

Claim 7 There is no edge joining x and y if x 6= z0, y 6= z0 and τ(x)τ(y) < 0. And there

is no directed edge from z0 to x if τ(x) < 0, or, from x to z0 if τ(x) > 0.

(Note that, for the case of β(x) = 0 and d(x) is odd, the vertex x has multiple τ -

values: 3 and −3. That is, the τ -value for such vertex is considered as either positive or

negative.)
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Figure 2.3: Lift the edges incident with x

Assume that e = xy is an edge of G such that τ(x) > 0, τ(y) < 0 and z0 /∈ {x, y},
or e = z0y (or e = xz0) such that τ(y) < 0 and z0y is pre-oriented away from z0 (or

τ(x) > 0 and xz0 is pre-oriented into z0, respectively). Let G′ = G − e be the resulting

graph after pre-directing e = xy (if z0 /∈ {x, y}) or deleting e (if z0 ∈ {x, y}) and let

β′ be the modified boundary such that β′(x) = β(x) − 1 and β′(y) = β(y) + 1. Note

that, for each v ∈ {x, y} − {z0}, both |β(v)| and |τ(v)| are reduced by 1 when they are

replaced by |β′(v)| and |τ ′(v)|, respectively. So, Condition (iii) remains satisfied for v

since d′(v) = 4 + |τ ′(v)|. If z0 is an endvertex of e, then both |β(z0)| and |τ(z0)| increase

by 1, or they both decrease by 1. In either case, Condition (iii) remains satisfied for

z0. Furthermore, Condition (iii) remains satisfied for each non-empty, non-trivial, proper

subset A of V (G′)− {z0} (by Claim 1 and Proposition 2.2.2).

By induction, G′ has an orientation D′ satisfying β′. By including the pre-directed

edge (or deleted directed edge) e, the extended orientation D′ in G satisfies Conclusion

(a). Note that there is no need to check the Conclusion (b) for D′ because the h-value is

zero for every vertex u other than z0 (by Claim 2). ¤

Summary.

The following is a summary of those structural results in Part I (following [56]) about

the smallest counterexample G.

(?) For every non-empty, proper subset A of V (G)− {z0},
{

d(A) = 4 + τ(A) if |A| = 1 (by Claim 2),

d(A) ≥ 6 + τ(A) if |A| > 1 (by Claim 1);
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(?) G− {z0} contains no parallel edges (by Claim 3);

(?) |N(x)| ≥ 3 for every x ∈ V (G)− {z0} (by Claim 5);

(?) τ(x) 6= 0 for every x ∈ V (G)− {z0} (by Claim 6) and

(?) τ(x)τ(y) > 0 for every edge xy ∈ E(G− {z0}) (by Claim 7).

Part II. Additional reductions not contained in [56].

Let V + = {x ∈ V (G)− z0 : τ(x) = 1 or 2} and V − = {x ∈ V (G)− z0 : τ(x) = −1 or

−2}.

Claim 8 Either V (G)− z0 = V + or V (G)− z0 = V −.

First we prove that |τ(x)| 6= 3 for any vertex x ∈ V (G)− z0. Suppose |τ(x)| = 3 for

some x distinct from z0.

By Claim 5 let y be a neighbor of x distinct from z0. By Claim 6 we have τ(y) > 0

or τ(y) < 0. We can choose τ(x) = −3 or τ(x) = 3 such that τ(x)τ(y) < 0 and get a

contradiction to Claim 7. So, Claim 6 implies that {V +, V −} is a partition of V (G)− z0.

Now assume that V + 6= ∅ and V − 6= ∅.
Again by Claim 7 there is no edge such that one end in V + and another in V −.

Therefore all the edges with one end in V + or in V − must be incident with z0. And then

we have that d(z0) = d(V +) + d(V −) ≥ 4 + |τ(V +)|+ 4 + |τ(V −)| ≥ 8 > 4 + |τ(z0)| which

contradicts Condition (iii) for z0. ¤

Without loss of generality, suppose V (G)−z0 = V +. Otherwise if V (G)−z0 = V −, we

can reverse all the directions of the edges incident with z0 and replace β(x) by 3−β(x) for

each vertex x (including z0) if β(x) 6= 0. Then the resulting graph satisfies V (G)−z0 = V +

and is still a minimum counterexample.

By Claim 8 (and the assumption that V (G) − z0 = V +), Claim 2 and by (2.2), we

have that, for each vertex x ∈ V (G)− z0,
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d(x) = 4 + τ(x) = 4 + β(x) with τ(x) = β(x) = 1 or 2. (2.4)

Claim 9 All edges incident with z0 are directed away from z0 and d(z0) ≤ 5.

Let x be a neighbor of z0. By Claim 7 xz0 is directed away from z0 since τ(x) > 0.

So d−(z0) = 0 and d(z0) = d+(z0). If d(z0) = 6, then β(z0) = 0 and τ(z0) = 0. And if

d(z0) = 7, then β(z0) = 1 and τ(z0) = 1. Both cases imply that d(z0) = 6 + |τ(z0)| and,

therefore, contradict Condition (iii). So d(z0) ≤ 5. ¤

Claim 12 will deal with some special structure before the final step of the proof. And

the following Claims 10 and 11 are preparations for the proof of Claim 12.

Claim 10 Let A be a vertex subset not containing z0 such that |A| > 1 and |V (G)\A| > 1.

If d(A) = 6 + |τ(A)|, then τ(A) 6= 0,−1,−2. In particular,

d(A) ≥ 7. (2.5)

Suppose (reductio ad absurdum) that d(A) = 6 + |τ(A)| and τ(A) = 0,−1, or −2 for

some vertex subset A.

We first contract A into a single vertex, say a, and by induction we get an orientation

of all edges out of G[A]. By Conclusion (b) min{d+(a), d−(a)} ≥ h(a) = 1. So there

exists an edge oriented from A to V (G)\A. Let uv be such an edge with u ∈ A and

v ∈ V (G)\A.

Now we remove uv, contract V (G)\A into a single vertex as a new z0, decrease β(u)

by 1 and increase β(z0) by 1 (see Figure 2.4). Again we use induction to extend the

orientation to the edges in G[A]. It suffices to verify Condition (iii) for resulting graph

G′ and modified boundary β′.

Since τ ′(A) = τ(A)−1 ≤ −1, we have that τ ′(z0) = −τ ′(A) = −τ(A)+1 = |τ(A)|+1

for the new z0. Then d′(z0) = d′(A) = d(A)− 1 = 6 + |τ(A)| − 1 = 4 + |τ ′(z0)|.
For the vertex u, we have τ ′(u) = τ(u)−1 ≥ 0 since u ∈ V +. Then d′(u) = d(u)−1 =

4 + τ(u)− 1 = 4 + |τ ′(u)|.
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Figure 2.4: Contract edges out G, delete uv and contract V (G)\A

For any vertex subset B not containing the new z0 such that |B| > 1 and |V (G′)\B| >
1, if d′(B) 6= d(B), then d′(B) = d(B) − 1 and β′(B) = β(B) − 1. By Claim 1 and

Proposition 2.2.2, we have d′(B) ≥ 4 + |τ ′(B)|. ¤

Claim 11 Let A be a vertex subset not containing z0 such that |A| > 1, |V (G)\A| > 1.

If d(A) = 8 and τ(A) = 0, then there is an orientation of the contracted graph G/A

satisfying the theorem such that there exist two edges directed from A to V (G)\A and

their ends in A are distinct.

By Equation (2.2),

β(A) = 0. (2.6)

We contract A into a single vertex, say a, then by induction we can get an orientation

of the contracted graph G/A satisfying the theorem.

Note that d+(a) + d−(a) = 8 and by Conclusion (a), d+(a) ≡ d−(a) (mod 3). By

Conclusion (b), d+(a) ≥ 2 and d−(a) ≥ 2 since h(a) = d(A)−4−|τ(A)|
2

= 2. So the only

possibility is that d+(a) = d−(a) = 4. There are four edges directed from A to V (G)\A.

If their ends in A are not the same one, then this orientation satisfies the claim and we

are done.

Now assume that u ∈ A is the common end of the four edges directed from A to

V (G)\A. (See Figure 2.5.) Then

d(A−u) = |[A−u, V (G)\A]|+ |[A−u, {u}]| = d−(a)+ (d(u)−d+(a)) = d(u) ≤ 6. (2.7)
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The last inequality in (2.7) follows from Equation (2.4).

By assumption, |A−u| 6= 0. Also, |A−u| 6= 1. For otherwise, let v be the vertex of A

distinct from u. Then, by Claim 3 and Equation (2.4), we have that β(u) ≥ 1, β(v) ≥ 1

and

8 = d(A) ≥ d(u) + d(v)− 2 = 6 + β(u) + β(v) ≥ 8.

Hence, all equalities hold. That is, β(v) = β(u) = 1 which results that β(A) = 2 and

contradicts (2.6).

So |A− u| > 1. By Claim 1, we have d(A− u) ≥ 6 + |τ(A− u)|. Therefore, by (2.7),

d(A− u) = 6 and τ(A− u) = 0, a contradiction to Claim 10. ¤

Claim 12 If A is a vertex subset not containing z0 such that |A| > 1 and |V (G)\A| > 1,

then d(A) ≥ 7. Furthermore, we have τ(A) = 1 if d(A) = 7 and τ(A) = 2 if d(A) = 8.

By Claim 1 we have d(A) ≥ 6+|τ(A)|. So if d(A) ≤ 8, then, by (2.2), d(A) = 6+|τ(A)|
with τ(A) ∈ {0,±1,±2} or d(A) = 8 + |τ(A)| with τ(A) = 0.

Then by the last statement of Claim 10 (Inequality (2.5)), d(A) ≥ 7. Hence, by

Claim 10 again, τ(A) = 1 if d(A) = 7, and, τ(A) = 0 or 2 if d(A) = 8. To prove the claim

we only need to prove that τ(A) 6= 0 if d(A) = 8.

Assume therefore that

d(A) = 8 and τ(A) = 0. (2.8)

By Claim 11 we can orient all edges not in G[A] such that each vertex of G/A satisfies

the Conclusions (a) and (b) and there exist two edges, say u1v1 and u2v2, directed from A
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to V (G)\A such that u1 6= u2, where u1, u2 ∈ A. Then we remove u1v1 and u2v2, contract

V (G)\A into a single vertex as a new z0, decrease β(u1) and β(u2) by 1 and increase β(z0)

by 2 for the new z0 (see Figure 2.6). Again we use induction to direct the edges inside

G[A]. It suffices to verify Condition (iii) for resulting graph G′ and modified boundary

β′.
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Figure 2.6: Delete u1v1, u2v2 and contract V (G)\A

By Equation (2.8), we have d(A) = 8 and β(A) = τ(A) = 0.

So d′(z0) = d(A)− 2 = 6 and β′(z0) = β(V (G)\A) + 2 = −β(A) + 2 = 2.

Then τ ′(z0) = 2 and d′(z0) = 4 + |τ ′(z0)|. So, Condition (iii) holds for the new z0.

For ui, i = 1, 2, by (2.4) we have d(ui) = 4 + τ(ui) with τ(ui) = 1 or 2. Then

τ ′(ui) = τ(ui)− 1 ≥ 0 and d′(ui) = d(u)− 1 = 4 + τ(ui)− 1 = 4 + τ ′(ui) = 4 + |τ ′(ui)|.
For a vertex subset B not containing the new z0 such that |B| > 1 and |V (G′)\B| >

1, we have d(B) ≥ 7 (implied by Claim 1 and the last statement of Claim 10) since

|V (G)\B| ≥ |V (G′)\B| > 1.

So d′(B) ≥ d(B)− 2 ≥ 5 and, by Proposition 2.2.1-(1), we only need to consider the

case of d′(B) = 5.

Since d′(B) = 5, Condition (iii) fails only if |τ ′(B)| = 3 and β′(B) = 0.

Then d(B) = 7 (by Inequality (2.5)) and therefore, u1, u2 ∈ B. We have β(B) =

β′(B) + 2 = 2 and, by (2.2), τ(B) = −1 which contradicts Claim 10. ¤

Claim 13 For every vertex x ∈ V (G)− z0 we have d(x) = 6.



CHAPTER 2. NOWHERE-ZERO 3-FLOWS FOR 6-EDGE-CONNECTED GRAPHS25

Suppose that there is a vertex x (∈ V (G)− z0) with d(x) 6= 6.

Then, by (2.4), d(x) = 5 with β(x) = τ(x) = 1.

We now pre-direct the edges incident with x all towards x (if z0 is a neighbor of x,

then, by Claim 9, the edges between them are already directed away from z0) and then

modify β for each neighbor of x accordingly.

If the reduced graph G′ = G−x and the modified boundary β′ satisfy the condition of

the theorem, then, by induction, there exists an orientation described in the theorem for

G′ and β′. The corresponding orientation by adding back the pre-directed edges toward

x satisfies the boundary β for G since d+(x)−d−(x) = 0−5 ≡ 1 = β(x) (mod 3). Hence,

it suffices to verify the conditions of the theorem for G′ and β′.

For each single vertex of G′ we only need verify it for z0 and each neighbor of x.

By Claim 9 we have that d(z0) ≤ 5.

So d′(z0) ≤ d(z0) ≤ 5 < 6 + |τ ′(z0)| and by Proposition 2.2.1 d′(z0) ≤ 4 + |τ ′(z0)|.
Let y be a neighbor of x distinct from z0. By (2.4), τ ′(y) = τ(y) − 1 ≥ 0 and

d′(y) = d(y)− 1 = 4 + τ(y)− 1 = 4 + τ ′(y) = 4 + |τ ′(y)|.
Now let A be a nonempty vertex subset not containing z0 such that |A| > 1 and

|V (G′)\A| > 1. Then |V (G)\(A + x)| = |V (G′)\A| > 1.

By Claim 12,

d(A) ≥ 7 and d(A + x) ≥ 7. (2.9)

Hence,

5 = d(x) = (d(A)− d′(A)) + (d(A + x)− d′(A)) ≥ 14− 2d′(A)

and we have d′(A) ≥ 5.

By Proposition 2.2.1-(1), we only need to consider the case of d′(A) = 5.

Let s be the number of neighbors of x contained in A.

Then, by (2.9),

7 ≤ d(A) = d′(A) + s = 5 + s and 7 ≤ d(A + x) = d′(A) + (5− s) = 10− s.

Thus, 2 ≤ s ≤ 3 and 7 ≤ d(A) = 6 + (s− 1) ≤ 8.
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By Claim 12, we have that d(A) = 7 and τ(A) = 1 if s = 2, or d(A) = 8 and τ(A) = 2

if s = 3. Hence, τ(A) = s− 1 > 0.

By (2.2), τ ′(A) ≡ β′(A) ≡ β(A)− s ≡ τ(A)− s = −1 (mod 3) and τ ′(A) ≡ d′(A) =

d(A)− s ≡ τ(A)− s = −1 (mod 2).

We have that τ ′(A) = −1 (mod 6) and |τ ′(A)| = 1 since |τ ′(A)| ≤ 3.

Therefore d′(A) = 4 + |τ ′(A)|. This verifies the conditions of the theorem and com-

pletes the proof of the claim. ¤

The final Step.

Now we are going to prove that G is not a counterexample as the final step.

By Claim 13, for each vertex x ∈ V (G)− z0 we have d(x) = 6. Furthermore,

β(x) = τ(x) = 2. (2.10)

By Claim 5 we can lift two undirected edges incident with x, say xu and xv to uv

where u, v 6= z0, pre-direct the other edges all towards x and modify the β values of the

neighbors accordingly. As before, we only need to verify Condition (iii) for the resulting

graph G′ = G− x and the modified boundary β′ for the purpose of induction.

For single vertices of G′, the proofs are similar to those of Claim 13.

Now let A be a vertex subset not containing x and z0 such that |A| > 1 and

|V (G′)\A| > 1. Then |V (G)\(A + x)| = |V (G′)\A| > 1.

By Claim 12, d(A) ≥ 7 and d(A + x) ≥ 7. So d(A) ≥ 8 and d(A + x) ≥ 8 since each

vertex of G has an even degree and each edge cut of G is of even size. Thus,

6 = d(x) = (d(A)− d′(A)) + (d(A + x)− d′(A)) ≥ 8 + 8− 2d′(A). (2.11)

And, therefore, d′(A) ≥ 5.

Assume that d′(A) = 5. Then equalities of (2.11) hold and hence, d(A) = d(A+x) = 8.

By Claim 12, τ(A) = τ(A + x) = 2 and, furthermore, by (2.2), β(A) = β(A + x) = 2.

Then β(x) = 0 which contradicts that β(x) = 2 (Equation (2.10)).
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So d′(A) ≥ 6 and by Proposition 2.2.1-(1), we have d′(A) ≥ 4 + |τ ′(A)|.
By induction, there exists an orientation of G′ such that every vertex distinct from

x satisfying the boundary condition β′ (Conclusion (a)) and the lifted edges xu and xv

receive opposite directions and the other four pre-directed edges are all towards x. (Note

that, by Claim 2, Conclusion (b) is satisfied automatically.)

So d+(x) − d−(x) = 1 − 5 ≡ 2 = β(x) (mod 3) and this orientation satisfies the

theorem for G and β which implies that G is not a counterexample. This completes the

proof.

2.5 Remarks

Thomassen proved in [56] that a graph is Z3-connected (that is, it admits all generalized

Tutte orientations) provided d(A) ≥ 6+ |τ(A)| for every non-empty, proper vertex subset

of G. In the present paper it is shown that 6 can be lowered to 4. The additive constant

4 may be replaced by 3. For, if it is satisfied for 3 it is automatically satisfied for 4

as well, for parity reasons (see Section 2.2). But, it cannot be lowered to 2. The first

example (See figure 2.7), which is 4-regular and 4-connected, was given by Jaeger, Linial,

Payan and Tarsi [29] (also see [63] page 232). And an infinite family of 4-regular 4-edge-

connected planar graphs was recently given by Lai [38](See figure 2.8 and figure 2.9, the

graph in figure 2.8 contains 3k blocks in figure 2.9). For each of those examples ([29],

[38]), the boundary β is a constant 1 for every vertex. So, it is a challenge to modify the

connectivity condition introduced in [56] to obtain group-connectivity information about

graphs of odd edge-connectivity, in particular 5-edge-connected graphs.
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Figure 2.7: A 4-regular, 4-edge-connected graph having no β-orientations with β = 1
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Figure 2.8: 4-regular, 4-edge-connected planar graphs having no β-orientations with β = 1
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Chapter 3

Modulo k-orientations in

9k-edge-connected graphs

3.1 Introduction

Problem 3.1.1 Let G be a graph and let k be an odd integer, k ≥ 3. Decide if G has an

orientation D (called a modulo k-orientation) such that, for every vertex v ∈ V (G),

d+
D(v) ≡ d−D(v) (mod k).

Note that Problem 3.1.1 is trivial if the integer k is even (as a graph has such an

orientation if and only if it is eulerian).

The general problem for all odd integers k (Problem 3.1.1) was introduced by Jaeger

([27], [28]) as a circular flow problem. It has been further generalized in [4], [38] and [42].

Problem 3.1.2 Let G be a graph, let k be an integer, k ≥ 3, and let β : V (G) 7→ Zk.

Decide if G has an orientation D such that, for every vertex v ∈ V (G),

d+
D(v)− d−D(v) ≡ β(v) (mod k).

29
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It is easy to see that the mapping β must satisfy the following necessary conditions:

(C1)
∑

v∈V (G) β(v) ≡ 0 (mod k) and

(C2) for every vertex v ∈ V (G), d(v)− β(v) is even if k is even.

Definition 3.1.3 Let G be a graph and let k be an integer, k ≥ 3.

(i) A mapping β : V (G) 7→ Zk is called a Zk-boundary of G if it satisfying the

necessary conditions (C1) and (C2).

(ii) Let β be a Zk-boundary of G. An orientation D is called a β-orientation of G if

for every vertex v ∈ V (G), d+
D(v)− d−D(v) ≡ β(v) (mod k).

Due to their close relation with flow theory (see [27], [28] or [63]), some important

conjectures have been proposed for Problems 3.1.1 and 3.1.2.

Conjecture 3.1.4 Let G be a graph and k (≥ 3) be an odd integer.

(i) (Jaeger [27], also see [28], [63]) If G is (2k − 2)-edge-connected, then G has a

modulo k-orientation;

(ii) (Galluccio, Goddyn, Hell [15] and Seymour [48], see also [64] p. 149) There exists

an integer f(k) such that every f(k)-edge-connected graph G has a modulo k-orientation.

Conjecture 3.1.5 Let G be a graph, k (≥ 3) be an odd integer and β be a Zk-boundary

of G.

(i) (Lai [38], see also [42]) If G is (2k−1)-edge-connected, then G has a β-orientation;

(ii) (Lai [38], see also [42]) There exists an integer g(k) such that if G is g(k)-edge-

connected, then G has a β-orientation.

Conjecture 3.1.4-(ii) and Conjecture 3.1.5-(ii) have been proved recently by Thomassen

[56] (which also includes the case where k is even).

Theorem 3.1.6 (Thomassen [56]) Let G be a graph and let β be a Zk-boundary of G,

where k ≥ 3 is an integer. Then G has a β-orientation if one of the following is satisfied.
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(i) k is even and G is k2+k
2

-edge-connected;

(ii) k is odd and G is (2k2 + k)-edge-connected.

In the dissertation the quadratic bound is reduced to the following linear bounds.

Theorem 3.1.7 Let G be a graph and let β be a Zk-boundary of G, where k ≥ 3 is an

integer. Then G has a β-orientation if one of the following is satisfied.

(i) k is even and G is (5k)-edge-connected;

(ii) k is odd and G is (10k)-edge-connected.

And the edge-connectivity is further reduced to 9k for a graph having a modulo k-

orientation.

Theorem 3.1.8 Every 9k-edge-connected graph has a modulo k-orientation, where k is

an odd integer ≥ 3.

Problem 3.1.1 has been extensively studied for various families of graphs in [4], [5],

[9], [15], [20], [21], [27], [28], [38], [42], [45], [46], [50], [57], [64] and [67]. Many of them

remain the best known results for the graph families they concern.

3.2 Preliminaries

The definition of a Zk-boundary β : V (G) 7→ Zk is extended to β : P(V (G)) 7→ Zk as

follows, where P(V (G)) is the power set of V (G).

Let A be a vertex subset of V (G). Define

β(A) ≡
∑
x∈A

β(x) (mod k).

Also, let

d(A) = |[A, V (G)\A]|,
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where [A, V (G)\A] is the set of edges between A and V (G)\A.

For a graph G′ with the boundary β′, we use the notations d′(A) and β′(A) for the

corresponding values of the vertex subset A of V (G′).

Let E(x, y) (respectively E(x, U)) be the set of all edges between vertex x and vertex

y (respectively vertex subset U) and denote e(x, y) = |E(x, y)| (respectively e(x, U) =

|E(x, U)|).

Proposition 3.2.1 Let k > 0 be an even integer, and G be a graph with a Zk-boundary

β. If G′ is the resulting graph constructed from G after contracting, lifting and/or pre-

directing operations, then the resulting mapping β′, modified from β, satisfies the necessary

conditions (C1) and (C2), that is, β′ is a Zk-boundary.

Proof. By induction we only need consider the cases that G′ constructed from G after a

single operation. We are to prove it for the contracting operation since the other two cases

are trivial. It suffices to verity that d(A)− β(A) is even for any vertex set A ⊂ V (G).

Suppose A is an vertex subset of V (G). Let m be the number of edges with both

ends in A. By definitions of d(A) and β(A), we have that d(A) =
∑

x∈A d(x) − 2m and

β(A) ≡ ∑
x∈A β(x) (mod 2) since β(A) ≡ ∑

x∈A β(x) (mod k) and k is even. Then

d(A) ≡
∑
x∈A

d(x) ≡
∑
x∈A

β(x) ≡ β(A) (mod 2).

3.3 Main results

All theorems in this chapter are corollaries of the following technical result, which is a

refinement of Theorem 2 in [56]. The additional new idea is the specification of a vertex

set V0 of size at most 1 satisfying condition (iii) below.



CHAPTER 3. MODULO K-ORIENTATIONS IN 9K-EDGE-CONNECTED GRAPHS33

Theorem 3.3.1 Let k be an even integer, k ≥ 4, and let G be a graph with a Zk-boundary

β : V (G) 7→ {0, · · · , k − 1}. Let z0 ∈ V (G), let Dz0 be a pre-orientation of E(z0) and let

V0 ⊆ V (G)− z0 such that |V0| ≤ 1. Assume that

(i) |V (G)| ≥ 3;

(ii) d(z0) < 7k, and the edges incident with z0 are directed such that

d+(z0)− d−(z0) ≡ β(z0) (mod k);

(iii)If V0 6= ∅, then e(z0, V0) ≤ d(V0)− k and

d(V0) ≥
{

3k if β(V0) = 0

4k − β(V0) if β(V0) > 0
.

(iv) For each non-empty vertex subset A not containing z0 such that |V (G)\A| > 1

and A 6= V0, we have that

d(A) ≥ 4k + β(A).

Then the pre-orientation Dz0 of E(z0) can be extended to an orientation D of G such

that, for each vertex x, we have

d+(x)− d−(x) ≡ β(x) (mod k).

Let m be a non-negative integer. We say a graph G with a Zk-boundary β is (m+β)-

edge-connected if d(A) ≥ m + β(A) for every vertex subset A ⊂ V (G).

Corollary 3.3.2 Let G be a graph and let β be a Zk-boundary of G, where k ≥ 3 is an

integer. Then G has a β-orientation if one of the following is satisfied.

(i) k is even and G is (4k + β)-edge-connected;

(ii) k is odd and G is (9k + β)-edge-connected.

Proof.

Let G′ be the graph constructed from G by adding an isolated vertex z0 and let V0 = ∅.
Define β′ : V (G′) → Zk such that β′(z0) = 0 and β′(x) = β(x) if x 6= z0. If (i) is satisfied,
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then G′ and β′ satisfy the conditions of Theorem 3.3.1. There exists an orientation of

G′, which is a β-orientation of G since E(G) = E(G′) and for each vertex x ∈ V (G),

d+(x)− d−(x) ≡ β(x) (mod k).

Now suppose k is odd and G is (9k + β)-edge-connected.

Define β′ : V (G) 7→ Z2k from β as follows: for each vertex x ∈ V (G),

β′(x) =

{
β(x) if d(x)− β(x) is even

β(x) + k if d(x)− β(x) is odd.

So d(x) − β′(x) is even for every vertex x ∈ V (G) since k is odd. Moreover we have

that
∑

x∈V (G) β′(x) ≡ 0 (mod 2k) since
∑

x∈V (G) β′(x) ≡ ∑
x∈V (G) β(x) ≡ 0 (mod k) and∑

x∈V (G) β′(x) ≡ ∑
x∈V (G) d(x) ≡ 2|E(G)| ≡ 0 (mod 2). Therefore the mapping β′ is a

Z2k-boundary of G.

Let A ⊂ V (G) be an arbitrary vertex subset. We have that β′(A) ≡ ∑
x∈A β′(x) ≡∑

x∈A β(x) ≡ β(A) (mod k). So k + β(A) ≥ β′(A) and G is (4(2k) + β′)-edge-connected

since 9k + β(A) ≥ 4(2k) + β′(A) for every vertex subset A ⊂ V (G). By the proof of

previous part, G has an orientation D such that ∀x ∈ V (G),

d+
D(x)− d−D(x) ≡ β′(x) (mod 2k).

So,

d+
D(x)− d−D(x) ≡ β′(x) ≡ β(x) (mod k).

which means that D is also a β-orientation of G.

Theorems 3.1.7 and Theorems 3.1.8 are immediate corollaries of Corollary 3.3.2 since

a 5k-edge-connected graph (respectively 10k-edge-connected graph) is (4k + β)-edge-

connected (respectively (9k +β)-edge-connected) for any Zk-boundary β, and, a 9k-edge-

connected graph is (9k + β)-edge-connected for the special Zk-boundary β = 0.

3.4 Proof of Theorem 3.3.1

Proof. The proof is by induction. We assume (reductio ad absurdum) that G is a

counterexample such that |E(G)| is minimum.
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We are going to apply liftings, pre-directings and/or contractions. By Prososition 3.2.1,

a modified boundary (after such operations) remains a Zk-boundary (satisfying necessary

conditions (C1) and (C2)). For convenience, we will not repeatedly mention it in the

proof.

Claim 14 e(x, y) < k−2
2

for any two vertices x, y ∈ V (G)− z0.

Suppose e(x, y) ≥ k−2
2

.

Let G′ = G/E(x, y), and let w be the new vertex from the contraction. So, G′ with

the modified boundary β(w) ≡ β(x) + β(y) (mod k) satisfies Condition (iv) for the new

vertex w.

If x ∈ V0 or y ∈ V0, then by Condition (iv) d(w) ≥ 4k + β(w). We have that V0 = ∅
for the graph G′.

If |V (G)| > 3, then |V (G′)| ≥ 3 and by induction G′ has an orientation D′ satisfying

the theorem. If |V (G)| = 3, we let D′ = Dz0 .

Extend the orientation D′ to G by orienting each edge of E(x, y) from x to y. Let

[d+
G(x)− d−G(x)]− β(x) ≡ η ∈ {0, 1, . . . , k − 1} = Zk.

Note that [d+(x)− d−(x)]− β(x) = (d(x)− β(x))− 2d−(x) is even by the necessary

condition (C2) on a Zk-boundary. So η ∈ {0, 2, . . . , k − 2}. Reverse the orientations

of the edges E(x, y) one by one (while η is decreasing two by two) until x satisfies the

conclusion of the theorem. Then y satisfies the conclusion as well. ¤

Claim 15 If A is a vertex subset not containing z0 such that |A| > 1 and |V (G)\A| > 1,

then

d(A) ≥
{

6k if |A| = 2

7k if |A| > 2
(3.1)

Case 1. |A| = 2. Suppose A = {x, y}. By Claim 14, 2e(x, y) < k − 2 < k. So,

d(A) = d(x) + d(y)− 2e(x, y) > 3k + 4k − k = 6k.
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Case 2.1. |A| > 2 and V0 6⊆ A. If d(A) < 7k, then we first get an extension of Dz0

to the contracted graph G/A by induction. Then all edges of the edge-cut [A,Ac], where

Ac = V (G)\A, are oriented in this extension. We then contract Ac into a single vertex

as a new z0, and again we use induction to extend the orientation [A,Ac] to the edges in

G[A].

Case 2.2. |A| > 2 and V0 ⊆ A. If d(A) < 7k, similar to the proof of Case 2.1 we

get extensions of Dz0 of the contracted graph G/A (with V0 = ∅) and then G/Ac (with

|V0| = 1) by inductions. The only additional requirement is that we need verify e(z0, V0)

of Condition (iii) for the new z0 of the graph G/Ac if V0 6= ∅. By the conclusions of Case

1 and Case 2.1 we have that d(A\V0) ≥ 6k since |A\V0| ≥ 2. So,

e(z0, V0) =
d(V0) + d(A)− d(A\V0)

2
<

d(V0) + 7k − 6k

2
=

d(V0) + k

2
≤ d(V0)− k

(by Condition (iii)). ¤

Claim 16

|V (G)| > 4.

Case 1. |V0| = 1. Let x0 be the vertex of V0. By Condition (iii) (that d(x0)−e(x0, z0) ≥
k) and Claim 14 (that e(x0, y) < k−2

2
for every y 6= z0), we have

|N(x0)− z0| > d(x0)− e(x0, z0)

(k − 2)/2
≥ 2k

k − 2
> 2.

So, |V (G)| > 4.

Case 2. |V0| = 0. By Conditions (i), we have |V (G)− z0| ≥ 2 and then there exist a

vertex x ∈ V (G)− z0 such that e(x, z0) ≤ d(z0)
2

< 7k
2
. So, by Condition (iv) and Claim 14,

|N(x)− z0| > 2d(x)− 7k

k − 2
≥ k

k − 2
> 1.

Thus, |V (G) − z0| ≥ 3. Again, there exist a vertex y ∈ V (G) − z0 such that e(y, z0) ≤
d(z0)

3
< 3k and

|N(x)− z0| > 2d(x)− 6k

k − 2
≥ 2k

k − 2
> 2

(by Claim 14). So, |V (G)| > 4. ¤
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Claim 17 e(x, z0) < d(x)
2

for every vertex x ∈ V (G)− z0.

Let A = V (G)− x− z0. Then, by Claim 15, d(A) ≥ 7k since |V (G)\A| = 2 > 1 and,

by Claim 16, |A| > 2. So,

e(x, z0) =
d(x) + d(z0)− d(A)

2
<

d(x)

2

since d(z0) < 7k. ¤

Claim 18 β(x) 6= 0 for every vertex x ∈ V (G)− z0.

Suppose β(x) = 0 for some vertex x. Thus, d(x) ≥ 3k by Conditions (iii) and (iv)

and d(x) is even by the necessary condition (C2). We consider two cases d(x) ≥ 4k + 2

and 3k ≤ d(x) ≤ 4k, separately.

Case 1. d(x) ≥ 4k + 2.

By Claim 14 and Claim 17, x has at least two neighbors distinct from z0. We lift

one pair of edges incident with x and apply induction to the resulting graph G′ with

d′(x) ≥ 4k = 4k + β′(x). If V0 6= ∅, then e′(z0, V0) ≤ e(z0, V0) + 1 and the equality

holds only if the new edge produced by lifting is between z0 and V0. By Claim 17,

e(z0, V0) < d(V0)
2

= d′(V0)
2

. So, e′(z0, V0) < d′(V0)
2

+ 1 ≤ d′(V0) − k and Condition (iii) still

holds.

For any single vertex of V (G) − z0, Conditions (iv) clearly hold. And for any non-

trivial vertex subset A described in Condition (iv), d(A) remains the same or decreases

by two. By Claim 15, it still satisfies Condition (iv).

Applying induction to the smaller graph G′, an extension of Dz0 exists, and, it can

be considered as an extension of the original graph G.

Case 2. 3k ≤ d(x) ≤ 4k.

It follows from Claims 14 and Claim 17 that x has at least two neighbors distinct from

z0. Moreover, no edge-multiplicity of an edge incident with x is greater than the sum of

others incident with x, and, therefore, we can successively lift the edges incident with x

and keep (at each stage) that property.
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Let G′ be the resulting graph with β′(y) = β(y) for every vertex y ∈ V (G′), where

V (G′) = V (G)− x and |V ′(G)| ≥ 4(By Claim 16).

If V0 6= ∅, then e(x, V0) ≤ k−2
2

by Claim 14, and e(z0, V0) < d(V0)
2

= d′(V0)
2

by Claim 17.

So, we have that

e′(z0, V0) ≤ e(z0, V0) + e(x, V0) <
d′(V0)

2
+

k

2
≤ d′(V0)− k

and Condition (iii) is still satisfied.

For any single vertex of G′ not contained in V0 and other than z0, Conditions (iv)

clearly hold. Now Condition (iv) is to be verified for any non-trivial vertex subset A of

G′ described in Condition (iv).

If |A| = 2, say A = {x1, x2}, then d′(A) ≥ d(A) − e(x, x1) − e(x, x2). By Claim 14

and Claim 15, we have that d′(A) ≥ 6k − k−2
2
− k−2

2
> 5k > 4k + β′(A).

If |A| > 2, then, by Claim 15, d(A) ≥ 7k and d(A + x) ≥ 7k since |V (G)\(A + x)| =
|V (G′)\A| > 1.

We have (d(A)− d′(A)) + (d(A + x)− d′(A)) ≤ d(x).

So,

d′(A) ≥ 7k − d(x)

2
= 5k > 4k + β′(A).

Since both Conditions (iii) and (iv) are verified, we can apply induction on the smaller

graph G′: an extension of Dz0 exists for G′. And, it can be further considered as an

extension of the original graph G. ¤

The final step.

By Claim 18,

β(v) > 0

for every vertex v distinct from z0.

If V0 = ∅, then we choose an arbitrary vertex x other than z0. And if V0 6= ∅, then

we choose x be the unique element of V0. We are to apply pre-directing and/or lifting

operations to edges of E(x).
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Let y ∈ N(x)− z0 be a neighbor of x. We pre-direct xy from y to x. Let G′ and β′ be

the resulting graph and the modified boundary with V ′
0 = {x}. Here, β′(y) = β(y) − 1.

So, for any single vertex distinct from x and z0, Condition (iv) still holds.

Now consider a non-trivial vertex subset A of G′ described in Condition (iv). It is

obvious that, by Claim 15, we have

d′(A) ≥ 6k − 1 > 5k > 4k + β′(A).

By Claim 17 we have

e′(z0, x) = e(z0, x) <
d(x)

2
=

d′(x) + 1

2
≤ d′(x)− k.

Note that β(x) > 0 and d(x) ≥ 4k − β(x) by Condition (iii) and Claim 18. So, if

0 < β(x) ≤ k − 2, then
{

β′(x) = β(x) + 1 > 0

d′(x) = d(x)− 1 ≥ 4k − β(x)− 1 = 4k − β′(x)

and, if β(x) = k − 1, then
{

β′(x) = 0

d′(x) = d(x)− 1 ≥ 4k − β(x)− 1 = 3k

Condition (iii) is therefore verified.

This contradicts that G is a counterexample since an extension of Dz0 to G′ can be

considered as an extension to the entire graph G.

3.5 Remarks

Definition 3.5.1 Let G be a graph, k > 0 be an integer and θ : V (G) 7→ Zk be a function

such that
∑

v∈V (G) θ(x) ≡ |E(G)| (mod k). An orientation D of G is a θ-orientation such

that, for every vertex x ∈ V (G),

d+(x) ≡ θ(x) (mod k).
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Note that for a Zk-boundary β of G with odd integer k, a θ-orientation of G is exactly

a β-orientation if 2θ(x) ≡ d(x) + β(x) (mod k) for every vertex x ∈ V (G).

Theorem 3.1.6 is a reformulation of the following, which is Theorem 2 in [56]:

Theorem 3.5.2 (Thomassen [56]) Let G be a graph, k ≥ 3 be an integer and θ : V (G) 7→
Zk be a function such that

∑
v∈V (G) θ(x) ≡ |E(G)| (mod k). If G is (2k2 + k)-edge-

connected, then G has a θ-orientation.

Theorem 3.5.2 also implies the following tree-decomposition conjecture proposed by

Barát and Thomassen when restricted to stars.

Conjecture 3.5.3 (Barát and Thomassen [4]) For each tree T , there exists an inte-

ger kT such that if G is kT -edge-connected and |E(T )| divides E(G), then G has a T -

decomposition.

Denote Mk be the collection of all graphs having a β-orientation for every Zk-

boundary β of G. And denote Nk be the collection of all graphs having a θ-orientation

for every function θ : V (G) 7→ Zk such that
∑

x∈V (G) θ(x) ≡ |E(G)| (mod k).

An easy calculation shows the following relation between Nk and Mk.

Proposition 3.5.4 Let G be a graph and k > 0 be an integer.

(i)

G ∈ Nk ⇐⇒ G ∈M2k.

(i) If k is odd, then

G ∈ Nk ⇐⇒ G ∈Mk.

Theorem 3.1.6 follows from Theorem 3.5.2 and Proposition 3.5.4. With Proposi-

tion 3.5.4 and Theorem 3.1.7, we have the following strengthening of Theorem 3.5.2.

Corollary 3.5.5 Let G be a graph, let k be an integer, k ≥ 3, and let θ : V (G) 7→ Zk be

a function such that
∑

v∈V (G) θ(x) ≡ |E(G)| (mod k). If G is 10k-edge-connected, then

G has a θ-orientation.
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Final Remarks

By Proposition 3.5.4-(i) we have G ∈ N3 ⇐⇒ G ∈ M6 and by Proposition 3.5.4-(ii)

we have G ∈ N3 ⇐⇒ G ∈ M3. So G ∈ M6 ⇐⇒ G ∈ M3, that is, a graph G

is Z3-connected (particularly G admits a nowhere-zero 3-flow) if and only if it has a β-

orientation for every Z6-boundary β. As we mentioned in Section 2.5 we proved that a

graph is Z3-connected if d(A) ≥ 3+ |τ(A)| for every non-empty, proper vertex subset A of

G but here the constant 3 can not be lowered to constant 2 since there are counterexamples

which are 4-edge-connected. However it is easy to check that those counterexamples with

Z6 boundary β = 4 are not (2 + β)-edge-connected. Therefore we give the following

conjecture.

Conjecture 4.0.6 Let G be a graph, and β : V (G) 7→ {0, 1, · · · , 5} be a Z6-boundary of

G. If G is (2 + β)-edge-connected, then it has a β-orientation.

Let G be a graph with no 1-edge-cut and no 3-edge-cut, and let β be a Z6 boundary

of G such that β(v) = 0 if d(v) is even and β(v) = 3 if d(v) is odd. It is easy to check

that G is (2 + β)-edge connected. G admits a nowhere-zero 3-flow is equivalent that G

has a β-orientation. So, if Conjecture 4.0.6 is true, then Tutte’s 3-flow conjecture follows.

As we can see in the proofs of of Theorem 2.3.1 and Theorem 3.3.1 we apply lifting

or/and pre-directing operations which are local reductions and the resulting graphs still

satisfy certain edge connectivity corresponding to τ or β. But local reductions may not

41
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works to prove Conjecture 4.0.6. Consider a 5-regular, 5-edge-connected graph G such

that the Z3 boundary β is a constant 3 for every vertex. G is (2 + β)-edge-connected but

the resulting graphs are not after any local reductions.

We say a proper vertex subset A of G is trivial if |A| = 1 or |V (G)\A| = 1. A

graph G with Z6 boundary β is called essential β-edge-connected if d(v) ≥ 2 + β(v) or

d(V (G)− v) ≥ 2 + β(V (G)− v) for any vertex v and d(A) ≥ 2 + β(A) for any non-trivial

proper vertex subset A of G. We can give a stronger conjecture which local reductions

may still work to prove.

Conjecture 4.0.7 Let G be a graph, and β be a Z6-boundary of G. If G is essential

(2 + β)-edge-connected, then it has a β-orientation.
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