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Let G be a matrix and M(G) be the matroid defined by linear de-
pendence on the set E of column vectors of G . Roughly speaking,
a parcel is a subset of pairs ( f , g) of functions defined on E to a
suitable Abelian group A satisfying a coboundary condition (that
the difference f − g is a flow over A of G) and a congruence con-
dition (that an algebraic or combinatorial function of f and g, such
as the sum of the size of the supports of f and g, satisfies some
congruence condition). We prove several theorems of the form:
a linear combination of sizes of parcels, with coefficients roots of
unity, equals a multiple of an evaluation of the Tutte polynomial of
M(G) at a point (u, v), usually with complex coordinates, satisfying
(u − 1)(v − 1) = |A|.

© 2012 Elsevier Inc. All rights reserved.

1. Flows in graphs and matrices

There are several results in graph theory saying in essence that a multiple of the chromatic, flow,
or Tutte polynomial evaluated at a certain point equals the difference in size of two sets or “parcels”
of pairs or triples of subsets of the edge set satisfying a coboundary condition and different congru-
ence conditions on their size [6–8,15]. A simple example of such a result is the following analog of
Theorem 18 in Goodall’s paper [8]. (This analog will be proved as a special case of Corollary 4.15 in
this paper.)

Theorem 1.1. Let Γ (V , E) be a graph on the vertex set V and the edge set E with c connected components.
For k = 0,1,2,3, let L(k) (respectively, L̄(k)) be the number of pairs (A, B) of edge subsets such that the
subgraph with edge set the symmetric difference A�B is a disjoint union of minimal cutsets (respectively, is a
disjoint union of cycles) and |A| + |B| ≡ |E| + k modulo 4. Then
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∣∣L(1)
∣∣ = ∣∣L(3)

∣∣ and
∣∣L(0)

∣∣ − ∣∣L(2)
∣∣ = 2|E|−c P (Γ ;2),

where P (Γ ;λ) is the chromatic polynomial of Γ , and∣∣L̄(1)
∣∣ = ∣∣L̄(3)

∣∣ and
∣∣L̄(0)

∣∣ − ∣∣L̄(2)
∣∣ = 2|E| F (Γ ;2),

where F (Γ ;λ) is the flow polynomial of Γ .

An aim of the graph-theoretic results is to reformulate theorems, like the 4-color theorem, in prob-
abilistic terms. The statements of these results involve differences in probabilities and their proofs are
intricate, involving commutative algebra or finite Fourier analysis. Our aim in this paper is different:
it is to put these results in context, as initial cases of infinite families of results about sizes of parcels
constructed using flows of matrices over suitable Abelian groups.

This paper is the second in a series. The earlier paper [13] is about the “parametric” theory. Using
characters, we studied parcels defined by algebraic conditions using actual values of elements in the
Abelian group A. With two exceptions, the present paper is about the “non-parametric” theory. Parcels
are defined using congruence conditions which only use the data whether an element in A is zero
or nonzero. We will use non-parametric parcels to obtain combinatorial interpretations of evaluations
of rank generating polynomials on complex hyperbolas λx = q, where q is an integer greater than 1.
(There seems to be only one interpretation of the evaluation of the rank generating polynomial at
complex points in the literature, the interpretation by Jaeger [11] of the value of the Tutte polynomial
at (e2πι/3,e−2πι/3). Jaeger’s interpretation will be discussed in Section 6.)

We shall assume some knowledge of graph and matroid theory. See, for example, [1,12,16]. We
recall briefly concepts and definitions central to this paper. Let G be a matrix with columns indexed
by the set E and M(G) be the matroid on E defined by linear dependence of the column vectors.
Let Γ (V , E) be a graph with a chosen orientation on the edges. The orientation gives a function
sign(v, e): if e is not a loop, then sign(v, e) equals +1, −1, or 0, depending on whether the edge e is
going into v , going out of v , or not incident at all on v . If e is a loop, then sign(v, e) is always 0. We
will use two matrices defined by Γ . The first is the vertex-edge matrix, the |V | × |E| matrix H with
rows indexed by V and columns indexed by E such that the ve-entry is sign(v, e). The matroid on E
defined by the vertex-edge matrix is the cycle matroid of Γ . The second is the cycle-edge matrix.
We think of a cycle c as a set of edges e0, e1, . . . , et−1 such that there is a sequence v0, v1, . . . , vt−1
of distinct vertices with the edge e j incident on v j and v j+1. The indices are regarded as integers
modulo t . The cycle-edge matrix G has rows indexed by the set of all cycles, columns indexed by E ,
and ce-entry equal to 0 unless e equals one of the edges e j in the cycle c, in which case it equals
sign(v j, e j). The matroid on E defined by the cycle-edge matrix is the cocycle matroid of Γ .

Two row vectors (ue) and (ve) (indexed by the set E) are orthogonal if their inner product∑
e: e∈E ue ve equals zero. Two matrices H and G on the same column set E are orthogonal duals

of each other if every row of H is orthogonal to every row of G and rank(H) + rank(G) = |E|. For
example, the cycle-edge matrix G and the vertex-edge matrix H of a graph Γ are orthogonal duals.
The matroid M(H) is the matroid M(G)⊥ dual to M(G).

Let A be an additive Abelian group. A flow h (over A) on the graph Γ is a function h : E → A

such that at each vertex, the inflow equals the outflow. To state this conservation condition precisely,
associate with the function h : E → A the row vector (h(e))e∈E with coordinates in A indexed by E
and denote both the function and its row vector by h. Then the conservation condition at all the
vertices can be stated succinctly by the matrix equation

HhT = 0,

where 0 is the zero column vector, and ·T is transpose, so that hT is a column vector. Since H is a
matrix with entries in {−1,0,1}, the matrix product is defined.

Flows over fields can be defined over any pairs of orthogonal duals. Let G be a rank-r n×|E| matrix
with columns indexed by E with entries in a field F. Then by solving a system of linear equations,
we can find a matrix H such that G and H are orthogonal duals. We define a flow h of G over F to
be a function h : E → F such that HhT = 0. From linear algebra, a row vector h satisfies HhT = 0 if
and only if it is a linear combination of row vectors of G . Hence, as a row vector, h is a flow over G
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if and only if it is in the row space of G . Note that in the case when G is a 0 × |E| matrix (and the
matroid M(G) has rank 0), there is a unique flow over G , the zero row vector.

A linear functional is a linear function F
n → F. If e is in the column set of an n × |E| matrix G ,

then �(e) is the value of � on the column vector indexed by e.

Lemma 1.2. Let h be a flow of the matrix G over F. Then there exists a linear functional � such that for all e in
E, h(e) = �(e). The linear functional � is uniquely determined by h if n = r.

Proof. Let g1, g2, . . . , gn be the rows of G and h = a1 g1 +a2 g2 +· · ·+an gn . Then the linear functional
�h sending the column vector (x1, x2, . . . , xn)T to a1x1 + a2x2 + · · · + anxn has the required property
that for all e, �h(e) = h(e). �

The description of a flow as a linear combination of row vectors carries over to graphs. A flow h
on a graph Γ over an Abelian group A is minimal if there is a nonzero group element a and a cycle
c of Γ such that h(e) = 0 if e is not in c and h(e j) = sign(v j, e j)a for the edges e j in c. It is easy
to prove that h is a flow over a graph if and only if it is a finite sum of minimal flows. Put another
way, a flow is a “linear combination” of row vectors of the cycle-edge matrix with coefficients in A.
One can dualize the notion of flows on graphs and define a tension h′ on a graph Γ to be a function
h′ : E → A such that Gh′ T = 0, or equivalently, the row vector h′ a “linear combination” of the rows
of the vertex-edge matrix with coefficients in A. A uniform treatment of flows and tensions can be
obtained by viewing them as flows on an orthogonally dual pair of totally unimodular matrices.

Let f : E → A be a function. The kernel of f is the inverse image f −1(0) in E .

Lemma 1.3. The kernel of a flow of the matrix G is a closed set in the matroid M(G).

Proof. For a flow h over a field, h−1(0) is the intersection of E with the null space of the linear
functional �h . Hence, h−1(0) is closed under linear dependence. For a flow on a graph, the kernel is
the complement of an edge-disjoint union of cycles and hence, a closed set in the cocycle matroid.
For a tension on a graph, the kernel is the complement of an edge-disjoint union of minimal cutsets
and hence, a closed set in the cycle matroid. �

The support supp( f ) of a function f : E →A is the complement E\ f −1(0); in other words,

supp( f ) = {
e: f (e) �= 0

}
.

The support of a flow is the complement of a closed set and hence, it is a union of cocircuits. The
minimal subsets among supports of flows are exactly the cocircuits of the matroid M(G). In the case
h is a flow over a field F, supp(h) is contained in the complement of the hyperplane in F

n on which
the linear functional �h is zero; in other words, supp(h) is affine over F.

The field GF(2) of order 2 has exactly one nonzero element. Hence, a function f : E → GF(2) is
determined by its support and one can identify f with the subset supp( f ) in E . For easy reference,
we recall the following elementary results (see, for example, Propositions 9.3.1 and 9.3.2 in [16]).

Lemma 1.4. Let G be a binary matrix with column set E and B ⊆ E. The following are equivalent: the subset B
is GF(2)-affine; all circuits contained in B have even size; χ(M|B;2) = 1, where M|B is the restriction of M
to B.

Lemma 1.5. Let Γ (V , E) be a graph and h : E → GF(2) be a function. Then

(a) h is a flow if and only if the subgraph on the edge subset supp(h) is a (disjoint) union of cycles, or equiva-
lently, all the vertices on that subgraph have even degree.

(b) h is a tension if and only if the subgraph on supp(h) is a (disjoint) union of minimal cutsets.
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The two cases, graphs and matrices, call for a theory encompassing both. A reasonable theory that
covers all known cases is the theory of totally-P matrices and P-modules, where P is a (concrete) par-
tial field [17]. This theory is described in [13] and we shall not repeat the description here. However,
we shall use the technical hypothesis “Let G be a totally-P matrix and A be a P-module of order q.”
The reader unfamiliar with (or unconvinced by) totally-P matrices should read the hypothesis as a
short way to write “Let G be the vertex-edge matrix or the cycle-edge matrix of a graph, or a totally
unimodular matrix, and A be an Abelian group of order q, or let G be a matrix over GF(ps), A be the
vector space GF(ps)d , and q = psd .”

We begin Section 2 by explaining how two identities due to Tutte can be used to obtain a third
identity relating weights of (m + 1)-tuples of functions to a sum over flows. Parcels are defined next.
In many cases, the third identity specializes to a relation between sizes of parcels and an evaluation of
the rank generating polynomial. We then apply this theory to parcels defined on pairs of functions by
Hamming distances (Section 3), sizes of supports (Section 4), and inner products (Section 6). Parcels
involving triples and (m + 1)-tuples of functions are discussed in Section 5. Finally, in Section 7, we
discuss generic or enumerator versions of our results.

We shall work in the field C of complex numbers with the notation: e = 2.7182 . . . and ι = √−1.

2. The Cheshire-cat identity

Let M be a rank-r matroid on the set E with rank function rk. The rank generating or corank-nullity
polynomial of M is the polynomial R(M;λ, x) in the variables λ and x defined by

R(M;λ, x) =
∑

B: B⊆E

λr−rk(B)x|B|−rk(B).

The rank generating polynomial satisfies the duality condition: if M⊥ is the dual of M , then
R(M⊥;λ, x) = R(M; x, λ). The characteristic polynomial χ(M;λ) of M is defined to be the polynomial∑

B: B⊆E

(−1)|B|λr−rk(B).

Up to a sign, the characteristic polynomial is an evaluation of the rank generating polynomial: indeed,

χ(M;λ) = (−1)r R(M;−λ,−1) = (−1)r R
(
M⊥;−1,−λ

)
. (1)

The Tutte polynomial T (M; u, v) is defined to be the polynomial R(M; u−1, v −1). Despite the title, we
will use the rank generating polynomial instead of the Tutte polynomial. We shall need the following
identity of Crapo and Tutte [2,18].

Lemma 2.1. Let M be a rank-r matroid with lattice L(M) of flats. Then

(x − 1)r R

(
M; λ

x − 1
, x − 1

)
=

∑
U : U∈L(M)

χ(M/U ;λ)x|U |.

When H is the vertex-edge matrix of a graph Γ with c connected components, then the chromatic
polynomial P (Γ ;λ) equals λcχ(M(H);λ). When G is the cycle-edge matrix of Γ , then the flow poly-
nomial F (Γ ;λ) equals χ(M(G);λ). The critical problem ([3]; see also [12]) of Crapo and Rota gives a
counting interpretation of the characteristic polynomial extending the interpretations for graphs. We
state this interpretation in the following general form [13]. Let G be a totally-P matrix with column
set E , A be a P-module of order q, and U ⊆ E . Then

χ
(
M(G)/U ;q

) = ∣∣{h: h is a flow over A, h−1(0) = U
}∣∣,

where M(G)/U is the contraction of the matroid M(G) by U . In particular, χ(M(G);q) is the number
of nowhere-zero flows over A. Together with Lemma 2.1, this interpretation yields another identity of
Tutte [18] as generalized in [13].



1000 J.P.S. Kung / Journal of Combinatorial Theory, Series B 102 (2012) 996–1019
Lemma 2.2. Let G be a rank-r totally-P matrix and A a P-module of order q. Then∑
h: h is a flow over A

x|h−1(0)| =
∑

U : U∈L(M)

χ
(
M(G)/U ;q

)
x|U |

= (x − 1)r R

(
M(G); q

x − 1
, x − 1

)
.

We can now state and prove the Cheshire-cat identity. This identity generalizes identities in [6,13].

Lemma 2.3. Let G be a totally-P matrix, A be a P-module, and B ⊆ A. For each (m + 1)-tuple (b1,b2,

. . . ,bm+1) in B
m+1 , let γ (b1,b2, . . . ,bm+1) be an indeterminate. Then∑

( f1, f2,..., fm+1)

∏
e: e∈E

γ
(

f1(e), f2(e), . . . , fm+1(e)
)

=
∑

(h1,h2,...,hm)

∏
e: e∈E

( ∑
(b1,b2,...,bm+1): b j∈B, b j−b j+1=h j(e)

γ (b1,b2, . . . ,bm+1)

)
,

where the sum on the left-hand side ranges over all (m + 1)-tuples ( f1, f2, . . . , fm+1) of functions f j : E → B

such that f1 − f2, f2 − f3, . . . , fm − fm+1 are flows, the outer sum on the right-hand side ranges over all
m-tuples (h1,h2, . . . ,hm) of flows over A, and the inner sum on the right-hand side ranges over all (m + 1)-
tuples (b1,b2, . . . ,bm+1) such that for 1 � j � m, b j ∈ B and b j − b j+1 = h j(e).

We remark that since the sum of two flows is a flow, the condition that the differences f1 − f2,

f2 − f3, . . . , fm − fm+1 are flows is equivalent to the condition that f j − fl are flows for all in-
dices j and l. Both conditions are equivalent to the condition that the m-tuple ( f1 − f2, f2 − f3, . . . ,

fm − fm+1) is a flow over A
m .

Proof of Lemma 2.3. Let (h1,h2, . . . ,hm) be a given m-tuple of flows. Expanding the product

∏
e: e∈E

( ∑
(b1,b2,...,bm+1): b j∈B, b j−b j+1=h j(e)

γ (b1,b2, . . . ,bm+1)

)
.

on the right-hand side by the distributive law, we obtain a sum of monomials. The monomials are
products∏

e: e∈E

γ
(
be

1,be
2, . . . ,be

m+1

)

with one indeterminate γ (be
1,be

2, . . . ,be
m+1) for each edge e, and for that indeterminate, be

j ∈ B and
be

j − be
j+1 = h j(e). With each monomial, we associate the unique (m + 1)-tuple of functions ( f1, f2,

. . . , fm+1) defined by

f j(e) = be
j.

By definition, f j : E → B and f j − f j+1 = h j . Conversely, each (m + 1)-tuple ( f1, f2, . . . , fm+1) of
functions f j : E → B such that f j − f j+1 = h j contributes the monomial∏

e: e∈E

γ
(

f1(e), f2(e), . . . , fm+1(e)
)
.

Hence,
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∏
e: e∈E

( ∑
(b1,b2,...,bm+1): b j∈B, b j−b j+1=h j(e)

γ (b1,b2, . . . ,bm+1)

)

=
∑

( f1, f2,..., fm+1): f j− f j+1=h j

∏
e: e∈E

γ
(

f1(e), f2(e), . . . , fm+1(e)
)
.

Summing over all m-tuples of flows, we obtain the identity in Lemma 2.3. �
Lemma 2.3 will be used in the following way. We specialize the indeterminates by choosing a

weight function γ defined from (m + 1)-tuples in B
m+1 to a commutative ring S. The weight function

γ is extended to (m + 1)-tuples of functions in the following way: if 
f = ( f1, f2, . . . , fm+1), then

γ (
f ) =
∏

e: e∈E

γ
(

f1(e), f2(e), . . . , fm+1(e)
)
.

Let

F = {
( f1, f2, . . . , fm+1): f j : E → B, f j − f j+1 are flows

}
and ε be an element in the ring S. The parcel P(ε) is the subset of F defined by

P(ε) = {
f : 
f ∈ F, γ (
f ) = ε
}
.

Parcels are disjoint and their union is F . Hence,∑
ε: ε∈S

ε
∣∣P(ε)

∣∣ =
∑


f : 
f ∈F
γ (
f ). (2)

The right-hand sum in Eq. (2) is a specialization of the left-hand sum in Lemma 2.3. Combining
Eq. (2) and Lemma 2.3, we have the following lemma.

Lemma 2.4. Let G be a totally-P matrix, A be a P-module, B ⊆ A, and γ : Bn+1 → S be a weight function.
Then ∑

ε: ε∈S
ε
∣∣P(ε)

∣∣
=

∑
(h1,h2,...,hm): h j are flows

∏
e: e∈E

( ∑
(b1,b2,...,bm+1): b j∈B, b j−b j+1=h j(e)

γ (b1,b2, . . . ,bm+1)

)
.

When the weight function is chosen suitably, the left-hand sum in Lemma 2.4 can be written
as (a multiple of) an evaluation of the rank generating polynomial. Whimsically, we might think of
this as extracting the grin from the Cheshire cat. In this paper, we usually begin with a congruence
condition, define parcels with a weight function simulating the congruence condition, and then use
Lemmas 2.4 and 2.2 to obtain an evaluation of the rank generating polynomial. The point of evaluation
is derived at the end.

We can also go in reverse in certain cases, starting from a point given beforehand. We illustrate
this by an example. Suppose that we wish to obtain an interpretation for the characteristic polynomial
χ(M(G);q) evaluated at an integer q greater than 1 using parcels for a totally unimodular rank-r
matrix G . By Eq. (1), this is equivalent to evaluating the rank generating polynomial at (−q,−1) or
(−1,−q). We start with a matrix H (having rank |E| − r) orthogonally dual to G and choose the
Abelian group to be the integers Zq modulo q under addition. If γ is a weight function such that∑

b,c: b−c=0

γ (b, c) = q − 1 and for a �= 0,
∑

b,c: b−c=a

γ (b, c) = −1, (3)
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then by Lemma 2.2, the right-hand side of the equation in Lemma 2.4 (applied to H) simplifies in the
following way:∑

h: h is a flow on H

(q − 1)|h−1(0)|(−1)|E|−|h−1(0)| = (−1)rq|E|−r R
(
M(H);−1,−q

)
= (−1)rq|E|−r R

(
M(H)⊥;−q,−1

)
= q|E|−rχ

(
M(G);q

)
.

Thus, to obtain an interpretation for χ(M(G);q), it suffices to construct a suitable weight function
with a combinatorial or algebraic interpretation.

Observe that for each a in Zq , there are q pairs (b, c) such that b − c = a. Thus, when q is odd, we
can construct a weight function γ satisfying Eq. (3) in the following way. Begin by setting γ (0,0) = 0,
and for a �= 0, γ (a,a) = 1. For each a �= 0, choose an even number s, 0 � s � q − 3, and s pairs (b, c)
such that b − c = a and set γ (b, c) = 0. Next, choose (q − s − 1)/2 pairs (b′, c′) such that b′ − c′ = a
and set γ (b, c) = 1. Finally, for the remaining (q − s + 1)/2 pairs (b′′, c′′) such that b′′ − c′′ = a,
set γ (b′′, c′′) = −1. When q is even, a similar construction works, except that we choose an odd
number s.

To obtain an explicit example, suppose that q is odd. If d is an integer modulo q, let Rem(d,q) be
the non-negative remainder when d is divided by q. It is easy to check that if a �≡ 0 mod q, then there
are (q + 1)/2 pairs (b, c) such that b − c = a and Rem(b + c,q) is even. Let γ : Zq × Zq → C be the
weight function defined by γ (0,0) = 0 and for (a,b) �= (0,0),

γ (a,b) =
{−1 if Rem(a + b,q) is even,

1 if Rem(a + b,q) is odd.

Then γ defines three parcels in the set {( f , g): f , g : E → Zq, f − g is a flow of H}, given by

P(0) = {
( f , g): for some e,

(
f (e), g(e)

) = (0,0)
}
,

P(1) = {
( f , g): for all e,

(
f (e), g(e)

) �= (0,0) and∣∣{e: Rem
(

f (e) + g(e),q
)

is even
}∣∣ ≡ 0 mod 2

}
,

P(−1) = {
( f , g): for all e,

(
f (e), g(e)

) �= (0,0) and∣∣{e: Rem
(

f (e) + g(e),q
)

is even
}∣∣ ≡ 1 mod 2

}
.

We can now apply Lemmas 2.4 and 2.2 to obtain the following proposition.

Proposition 2.5. Let G be a totally unimodular matrix and q be an odd integer greater than 1. Then∣∣P(1)
∣∣ − ∣∣P(−1)

∣∣ = q|E|−rχ
(
M(G);q

)
.

3. Parcels defined using Hamming distances

We shall consider two sets of pairs of functions. Let A be an Abelian group of order q and E be a
set. Let

F = {
( f , g): f , g : E → A, f − g is a flow

}
,

F× = {
( f , g): f , g : E → A

×, f − g is a flow
}
,

where A
× is the set of nonzero elements in A. Since a pair ( f , g) in F defines uniquely a pair ( f ,h),

where h = f − g and h is a flow, and conversely, |F | = q|E|+r . For the size of F× , see Corollary 3.4.
Recall that the Hamming distance between two functions f , g : E → A is the number of elements e

in E such that f (e) �= g(e), or equivalently, the size of supp( f − g).



J.P.S. Kung / Journal of Combinatorial Theory, Series B 102 (2012) 996–1019 1003
3.1. Parcels in F

Let σ be an integer greater than 1. For k = 0,1,2, . . . , σ − 1, let

O(k,σ ) = {
( f , g): ( f , g) ∈ F,

∣∣supp( f − g)
∣∣ ≡ k mod σ

}
.

Theorem 3.1. Let σ be an integer greater than 1, ω be a σ -th primitive root of unity, G be a rank-r totally-P
matrix with column set E, and A be a P-module of order q. Then

σ−1∑
k=0

ωk
∣∣O(k,σ )

∣∣ = ω|E|−r(1 − ω)rq|E|R
(

M(G); qω

1 − ω
,

1 − ω

ω

)
.

Proof. Consider the weight function γ : A × A → C defined by γ (a,a) = 1 and γ (a,b) = ω if a �= b.
Then ∑

b,c: b−c=0

γ (b, c) = q, and for a �= 0,
∑

b,c: b−c=a

γ (b, c) = ωq.

In addition, if f , g : E →A are functions, then∏
e: e∈E

γ
(

f (e), g(e)
) =

∏
e: e∈E, f (e) �=g(e)

ω = ω| supp( f −g)|.

Hence, by Lemmas 2.4 and 2.2, we have

σ−1∑
k=0

ωk
∣∣O(k,σ )

∣∣ =
∑

f ,g: f −g is a flow

∏
e: e∈E

γ
(

f (e), g(e)
)

=
∑

h: h is a flow

q|h−1(0)|(ωq)|E|−|h−1(0)|

= ω|E|q|E| ∑
h: h is a flow

ω−|h−1(0)|

= ω|E|−r(1 − ω)rq|E|R
(

M(G); qω

1 − ω
,

1 − ω

ω

)
. �

Theorem 3.1 is the simplest result about parcels. It can almost be derived by direct substitution
from Lemma 2.1. We shall discuss this further in Section 7. For now, we note the special case when
σ = 2 (and hence, ω = −1).

Corollary 3.2.

∣∣O(0,2)
∣∣ − ∣∣O(1,2)

∣∣ = (−1)|E|−r2rq|E|R
(

M(G);−q

2
,−2

)
.

3.2. Parcels in F×

Let σ be a positive integer. For k = 0,1,2, . . . , σ − 1, let

O×(k,σ ) = {
( f , g): ( f , g) ∈ F×,

∣∣supp( f − g)
∣∣ ≡ k mod σ

}
.

Theorem 3.3. Let σ be a positive integer, ω be a primitive σ -th root of unity, G be a rank-r totally-P matrix
with column set E, and A be a P-module of order q, where q �= 2. Then
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σ−1∑
k=0

ωk
∣∣O×(k,σ )

∣∣ = ω|E|−r(q − 2)|E|−r[(1 − ω)q + 2ω − 1
]r

× R

(
M(G); ωq(q − 2)

(1 − ω)q + 2ω − 1
,
(1 − ω)q + 2ω − 1

ω(q − 2)

)
.

Proof. We use the weight function γ : A× ×A
× →C defined by γ (a,a) = 1 and γ (a,b) = ω if a �= b.

Then ∑
b,c: b−c=0, b �=0, c �=0

γ (b, c) = q − 1,

and for a �= 0,∑
b,c: b−c=a, b �=0, b �=a

γ (b, c) =
∑

b: b �=0, b �=a

γ (b,b − a) = ω(q − 2).

By the argument in the proof of Theorem 3.1, we can finish with the following calculation:

σ−1∑
k=0

ωk
∣∣O×(k,σ )

∣∣ =
∑

h: h is a flow

(q − 1)|h−1(0)|[ω(q − 2)
]|E|−|h−1(0)|

= ω|E|(q − 2)|E| ∑
h: h is a flow

(
q − 1

ω(q − 2)

)|h−1(0)|
. �

The condition that q �= 2 in Theorem 3.3 is needed because we need to divide by q − 2 in the
proof. For completeness, we note that when |A| = 2, there is only one function E → A

× , and hence,
|F×| = 1, |O×(0, σ )| = 1, and for k �= 0, |O×(k, σ )| = 0.

We note three special cases of Theorem 3.3 as corollaries. The first case is when σ = 1 (so that
there is one parcel, F× itself).

Corollary 3.4. If q �= 2, then

∣∣F×∣∣ = (q − 2)|E|−r R

(
M(G);q(q − 2),

1

q − 2

)
.

The second case is when σ = 2 (and ω = −1).

Corollary 3.5. Let G be a rank-r totally-P matrix and A be a P-module of order q, where q �= 2. Then

∣∣O×(0,2)
∣∣ − ∣∣O×(1,2)

∣∣ = (−1)|E|−r(q − 2)|E|−r(2q − 3)r R

(
M(G);−q(q − 2)

2q − 3
,−2q − 3

q − 2

)
.

In particular, when G is a rank-r ternary matrix and A= GF(3), then∣∣O×(0,2)
∣∣ − ∣∣O×(1,2)

∣∣ = (−1)|E|−r3r R
(
M(G);−1,−3

) = 3rχ
(
M(G)⊥;3

)
.

A concrete example of the second part of Corollary 3.5 is when A = GF(3) and G is the vertex-
edge matrix of a graph Γ (V , E) with c connected components. If we fix a total order on V , then a
function from E to {1,−1} defines an orientation on the edges and conversely. Thus O×(k,2) is the
set of pairs ( f , g) of orientations such that f − g is a GF(3)-tension and the number of edges where
f and g disagree is congruent to k modulo 2. Corollary 3.5 says that∣∣O×(0,2)

∣∣ − ∣∣O×(1,2)
∣∣ = 3|V |−c F (Γ ;3),
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where F (Γ ;λ) is the flow polynomial. This situation can be dualized. Let G be the cycle-edge matrix
of Γ , Ō×(k,2) be the set of pairs of the orientations such that f − g is a GF(3)-flow, and the number
of edges where f and g disagree is congruent to k modulo 2. Then∣∣Ō×(0,2)

∣∣ − ∣∣Ō×(1,2)
∣∣ = 3|E|−|V | P (Γ ;3),

where P (Γ ;λ) is the chromatic polynomial.
The third and last case is when σ = 6 and q = 3.

Corollary 3.6. Let G be a rank-r ternary matrix and A= GF(3). Then

5∑
k=0

ekπι/3
∣∣O×(k,6)

∣∣ = e|E|πι/3(−√
3ι)r R

(
M(G);√3ι,−√

3ι
)
.

Proof. Setting q = 3 in Theorem 3.3, we obtain

5∑
k=0

ωk
∣∣O×(k,6)

∣∣ = ω|E|−r(2 − ω)r R

(
M(G); 3ω

2 − ω
,

2 − ω

ω

)
.

To finish the proof, we set ω = eπι/3 and use the facts 2 − ω = √
3e−πι/6 and ω

2−ω = ι/
√

3. �
4. Parcels defined using supports

In this section, we consider parcels in F defined using supports. Let σ be an integer greater
than 1, and α and β be integers. For k = 0,1,2, . . . , σ − 1, let

Mα,β(k,σ ) = {
( f , g): ( f , g) ∈ F, α

∣∣supp( f )
∣∣ + β

∣∣supp(g)
∣∣ ≡ k mod σ

}
.

4.1. The general case

We begin with the generic theorem.

Theorem 4.1. Let σ be an integer greater then 1, α and β be integers not congruent to 0 modulo σ , ω be a
primitive σ -th root of unity, G be a rank-r totally-P matrix with column set E, and A be a P-module of order q.
If ωα + ωβ + (q − 2)ωα+β �= 0, then

σ−1∑
k=0

ωk
∣∣Mα,β(k,σ )

∣∣
= (

1 − ωα
)r(

1 − ωβ
)r[

ωα + ωβ + (q − 2)ωα+β
]|E|−r

× R

(
M(G); q[ωα + ωβ + (q − 2)ωα+β ]

(1 − ωα)(1 − ωβ)
,

(1 − ωα)(1 − ωβ)

ωα + ωβ + (q − 2)ωα+β

)
.

Proof. We use the weight function γ : A × A → C defined by γ (0,0) = 1, and for a and b nonzero
elements (not necessarily distinct) of A,

γ (a,0) = ωα, γ (0,a) = ωβ, γ (a,b) = ωα+β .

Let f , g : E →A be functions, A = supp( f ), and B = supp(g). Then∏
γ

(
f (e), g(e)

) = ωα(|A|−|A∩B|)ωβ(|B|−|A∩B|)ω(α+β)|A∩B| = ωα|A|+β|B|.

e: e∈E
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Next, observe that∑
b,c: b−c=0

γ (b, c) = 1 + (q − 1)ωα+β,

and for a �= 0,∑
b,c: b−c=a

γ (b, c) = γ (a,0) + γ (0,−a) +
∑

b: b �=0, b �=a

γ (b,b − a)

= ωα + ωβ + (q − 2)ωα+β .

Then, as in the proof of Theorem 3.1, we can finish with the following calculations:

σ−1∑
k=0

ωk
∣∣Mα,β(k,σ )

∣∣
=

∑
h: h is a flow

[
1 + (q − 1)ωα+β

]|h−1(0)|[
ωα + ωβ + (q − 2)ωα+β

]|E|−|h−1(0)|

= [
ωα + ωβ + (q − 2)ωα+β

]|E| ∑
h: h is a flow

(
1 + (q − 1)ωα+β

ωα + ωβ + (q − 2)ωα+β

)|h−1(0)|
,

and

1 + (q − 1)ωα+β

ωα + ωβ + (q − 2)ωα+β
− 1 = (1 − ωα)(1 − ωβ)

ωα + ωβ + (q − 2)ωα+β
. �

4.2. The special case when α = β = 1

Let α = β = 1. Then

M1,1(k,σ ) = {
( f , g): ( f , g) ∈ F,

∣∣supp( f )
∣∣ + ∣∣supp(g)

∣∣ ≡ k mod σ
}

and we have the following specialization of Theorem 4.1.

Theorem 4.2. Let σ be an integer greater than 1, ω be a primitive σ -th root of unity, G be a rank-r totally-P
matrix with column set E, and A be a P-module of order q. Then except when σ = 2 and q = 4,

σ−1∑
k=0

ωk
∣∣M1,1(k,σ )

∣∣ = (1 − ω)2r(2ω + ω2(q − 2)
)|E|−r

× R

(
M(G); q(2ω + ω2(q − 2))

(1 − ω)2
,

(1 − ω)2

2ω + ω2(q − 2)

)
.

The exception in Theorem 4.2 is when σ = 2 and q = 4. When this happens, 2ω + ω2(q − 2) = 0.
Following the proof of Theorem 4.1 with α = β = 1 up to the point when we need to divide by
2ω + ω2(q − 2), we obtain∣∣M1,1(0,2)

∣∣ − ∣∣M1,1(1,2)
∣∣ =

∑
h: h is a flow

4|h−1(0)|0|E|−|h−1(0)| = 4|E|.

There are several corollaries of Theorem 4.2 giving evaluations of the rank generating polynomial
at rational or real numbers.
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Corollary 4.3. Let σ = 2 and q �= 4. Then

∣∣M1,1(0,2)
∣∣ − ∣∣M1,1(1,2)

∣∣ = 4r(q − 4)|E|−r R

(
M(G); q(q − 4)

4
,

4

q − 4

)
.

In particular, when G is a binary matrix and A= GF(2),

∣∣M1,1(0,2)
∣∣ − ∣∣M1,1(1,2)

∣∣ = 2|E|+r(−1)|E|−r R
(
M(G);−1,−2

) = 2|E|+rχ
(
M(G)⊥;2

)
. (4)

Eq. (4) in Corollary 4.3 is an analog (extended from graphs to binary matroids) of Proposition 12
in [8]. It may be worthwhile to give a combinatorial proof of Eq. (4). This will give an independent
verification of the evaluation and tell us what counting information that evaluation contains. We need
two easy facts in the proof. First, if h = f − g , then∣∣supp(h)

∣∣ = ∣∣supp( f )
∣∣ + ∣∣supp(g)

∣∣ − 2
∣∣supp( f ) ∩ supp(g)

∣∣ ≡ ∣∣supp( f )
∣∣ + ∣∣supp(g)

∣∣ mod 2.

Second, for each flow h, there are 2|E| pairs ( f , g) such that f − g = h. These two facts imply that
|M1,1(0,2)| (respectively, |M1,1(1,2)|) equals 2|E| times the number of flows with support of even
(respectively, odd) size. Since flows with support of even size form a subspace, either (a) all flows have
support of even size, or (b) half the flows have support of even size, and the other half have support
of odd size. In case (a), |M1,1(0,2)| = 2|E|2r and |M1,1(1,2)| = 0. Moreover, all cocircuits of the
matroid M(G) are even and hence, the dual M(G)⊥ is GF(2)-affine. By Lemma 1.4, χ(M(G)⊥;2) = 1
and thus, the two sides of Eq. (4) are equal. In case (b), |M1,1(0,2)| = |M1,1(1,2)|, and the left-
hand side of Eq. (4) is 0. Since supports of flows of binary matrices are disjoint union of cocircuits,
M(G) has a cocircuit of odd size. Therefore, M(G)⊥ is not GF(2)-affine, χ(M(G)⊥;2) = 0, and both
sides of Eq. (4) equals 0. This completes the combinatorial proof of Eq. (4).

When q = 2, Theorem 4.2 gives evaluations of the rank generating polynomial at real values.

Corollary 4.4. Let G be a binary matrix, A = GF(2), θ = 2ρπ/σ , ω = eιθ , and ρ be an integer relatively
prime to σ . Then

σ−1∑
k=0

ωk
∣∣M1,1(k,σ )

∣∣ = (ω − 1)2r(2ω)|E|−r R

(
M(G); 2

cos θ − 1
, cos θ − 1

)
.

The cases ρ = 1 and σ = 2,3,4, or 6 give interpretations of the rank generating polynomial at
points with rational coordinates. The case σ = 2 was covered in Eq. (4). The cases σ = 3 (cos θ =
−1/2), σ = 4 (cos θ = 0), and σ = 6 (cos θ = 1/2).

Corollary 4.5. Let G be a binary matrix and A= GF(2). Then

2∑
k=0

e2kπι/3
∣∣M1,1(k,3)

∣∣ = e2|E|πι/32|E|−r(−3)r R

(
M(G);−4

3
,−3

2

)
,

3∑
k=0

ιk
∣∣M1,1(k,4)

∣∣ = (−1)r(2ι)|E|R
(
M(G);−2,−1

) = (2ι)|E|χ
(
M(G);2

)
,

5∑
k=0

ekπι/3
∣∣M1,1(k,6)

∣∣ = (−1)re|E|πι/32|E|−r R

(
M(G);−4,−1

2

)
.

This first equation in Corollary 4.5, when σ = 3, is an analog of Theorem 15 in [8]. We note one
more case, when σ = q = 3.
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Corollary 4.6. If G is a rank-r ternary matrix and A= GF(3), then∣∣M1,1(0,3)
∣∣ + e2πι/3

∣∣M1,1(1,3)
∣∣ + e−2πι/3

∣∣M1,1(2,3)
∣∣

= (√
3e5πι/6)|E|+r

R
(
M(G);√3e−5πι/6,

√
3e5πι/6).

Proof. When q = 3 and ω = e2πι/3, 2ω + ω2(q − 2) = ω − 1. Theorem 4.3 yields∣∣M1,1(0,3)
∣∣ + e2πι/3

∣∣M1,1(1,3)
∣∣ + e−2πι/3

∣∣M1,1(2,3)
∣∣

= (−1)|E|−r(1 − ω)|E|+r R

(
M(G); 3

ω − 1
,ω − 1

)
.

To finish the proof, use ω − 1 = √
3e5πι/6. Note that R(M(G);3/(ω − 1),ω − 1) = T (M(G);ω2,ω);

thus, we have an evaluation of the Tutte polynomial at (ω2,ω). �
4.3. The special case when α = 1 and β = −1

Let α = 1 and β = −1. Then

M1,−1(k,σ ) = {
( f , g): ( f , g) ∈ F,

∣∣supp( f )
∣∣ − ∣∣supp(g)

∣∣ ≡ k mod σ
}
.

Theorem 4.7. Let σ be an integer greater than 1, θ = 2ρπ/σ , where ρ is relatively prime to σ , ω = eιθ , G be
a rank-r totally-P matrix with column set E, and A be a P-module of order q. With three exceptions, σ = 2
and q = 4, σ = 3 and q = 3, or σ = 4 and q = 2, we have

σ−1∑
k=0

ωk
∣∣M1,−1(k,σ )

∣∣ = (2 − 2 cos θ)r(2 cos θ − 2 + q)|E|−r

× R

(
M(G); q(2 cos θ − 2 + q)

2 − 2 cos θ
,

2 − 2 cos θ

2 cos θ − 2 + q

)
.

Proof. Set α = 1 and β = −1 in Theorem 4.1 and observe that ω + ω−1 = 2 cos θ and ωω−1 = 1. �
The three exceptional cases in Theorem 4.7 occur because 2 cos θ − 2 + q = 0. We note, for com-

pleteness, that∣∣M1,−1(0,2)
∣∣ − ∣∣M1,−1(1,2)

∣∣ = 4|E|,∣∣M1,−1(0,3)
∣∣ + e2πι/3

∣∣M1,−1(1,3)
∣∣ + e−2πι/3

∣∣M1,−1(2,3)
∣∣ = 3|E|,∣∣M1,−1(0,4)

∣∣ + ι
∣∣M1,−1(1,4)

∣∣ − ∣∣M1,−1(2,4)
∣∣ − ι

∣∣M1,−1(3,4)
∣∣ = 2|E|.

Theorem 4.7 says that a sum of complex numbers equals a real number. Thus, it gives two equa-
tions between real numbers.

Corollary 4.8.

σ−1∑
k=0

(cos kθ)
∣∣M1,−1(k,σ )

∣∣
= (2 − 2 cos θ)r(2 cos θ − 2 + q)|E|−r R

(
M(G); q(2 cos θ − 2 + q)

2 − 2 cos θ
,

2 − 2 cos θ

2 cos θ − 2 + q

)
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and

σ−1∑
k=1

(sin kθ)
∣∣M1,−1(k,σ )

∣∣ = 0.

The second equation is not unexpected. Since |B| − |C | = −[|C | − |B|], the twist sending ( f , g) to
(g, f ) is a bijection from M1,−1(k, σ ) to M1,−1(σ − k, σ ). Hence, we have the following strengthen-
ing of the second equation in Corollary 4.8.

Proposition 4.9. |M1,−1(k, σ )| = |M1,−1(σ − k, σ )|.

As in Section 4.2, the cases ρ = 1 and σ = 2,3,4, or 6 give evaluations of the rank generating
polynomial at rational numbers. The case σ = 2 and q �= 4 was done earlier in Eq. (4) in Corollary 4.3.

When σ = 3, cos θ = cos 2π/3 = − 1
2 . By Proposition 4.9, |M1,−1(1,3)| = |M1,−1(2,3)|. Hence, we

have the following special case of Corollary 4.8.

Corollary 4.10. When q �= 3,

∣∣M1,−1(0,3)
∣∣ − ∣∣M1,−1(1,3)

∣∣ = 3r(q − 3)|E|−r R

(
M(G); q(q − 3)

3
,

3

q − 3

)
.

In particular, when G is a binary matrix and A= GF(2),

∣∣M1,−1(0,3)
∣∣ − ∣∣M1,−1(1,3)

∣∣ = (−1)|E|−r3r R

(
M(G);−2

3
,−3

)
.

The second equation in Corollary 4.10 is an analog of Theorem 14 in [8]. Next, we consider the
case when σ = 4, cos θ = cosπ/2 = 0.

Corollary 4.11. When q �= 2,

∣∣M1,−1(0,4)
∣∣ − ∣∣M1,−1(2,4)

∣∣ = 2r(q − 2)|E|−r R

(
M(G); q(q − 2)

2
,

2

q − 2

)
.

Finally, we consider the case when σ = 6 and cos θ = cosπ/3 = 1
2 .

Corollary 4.12.∣∣M1,−1(0,6)
∣∣ + ∣∣M1,−1(1,6)

∣∣ − ∣∣M1,−1(2,6)
∣∣ − ∣∣M1,−1(3,6)

∣∣
= (q − 1)|E|−r R

(
M(G);q(q − 1),

1

q − 1

)
.

4.4. The special case when σ = 2τ , α = 1, and β = τ − 1

In this subsection, we consider the case when σ = 2τ , where τ is a positive integer, α = 1, and
β = τ − 1. In this case, 2τ parcels in F are defined. For k = 0,1,2, . . . ,2τ − 1, let

M1,τ−1(k,2τ ) = {
( f , g): ( f , g) ∈ F,

∣∣supp( f )
∣∣ + (τ − 1)

∣∣supp(g)
∣∣ ≡ k mod 2τ

}
.

Theorem 4.13. Let τ be a positive integer, θ = ρπ/τ , where ρ is relatively prime to 2τ , ω = eιθ , G be a rank-r
totally-P matrix with column set E, and A be a P-module of order q. Then
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2τ−1∑
k=0

ωk
∣∣M1,τ−1(k,2τ )

∣∣
= (−2ι sin θ)r(2ι sin θ + 2 − q)|E|−r R

(
M(G); −q(2ι sin θ + 2 − q)

2ι sin θ
,

−2ι sin θ

2ι sin θ + 2 − q

)
.

Proof. Set α = 1 and β = τ − 1 in Theorem 4.2 and observe that ω + ωτ−1 = ω − ω−1 = 2ι sin θ and
ωωτ−1 = −1. �

A typical example of Theorem 4.13 is when τ = 6, ω = eπι/6, and sin θ = 1/2. The congruence
condition for defining parcels is | supp( f )| + 5| supp(g)| ≡ k mod 12 and we have

11∑
k=0

ekπι/6
∣∣M1,5(k,12)

∣∣ = (−ι)r(ι + 2 − q)|E|−r R

(
M(G);qι(ι + 2 − q),

−ι

ι + 2 − q

)
.

When G is a rank-r binary matrix and A = GF(2), we obtain evaluations of the characteristic
polynomials. For binary matroids, we may replace a function by its support. Specifically, we have

M1,τ−1(k,2τ ) = {
(A, B): A�B is a union of circuits, |A| + (τ − 1)|B| ≡ k mod 2τ

}
,

where � is symmetric difference of sets. Since q − 2 = 0, cancellations occur in Theorem 4.13, and we
have the following result.

Corollary 4.14. Let G be a binary rank-r matrix with column set E and A= GF(2). Then

2τ−1∑
k=0

ekπι/τ
∣∣M1,τ−1(k,2τ )

∣∣ = (−1)r(2ι sin θ)|E|R
(
M(G);−2,−1

)
= (2ι sin θ)|E|χ

(
M(G);2

)
.

Narrowing further to the case τ = 2 (so that the congruence condition is |A| + |B| ≡ k mod 4), we
have another result.

Corollary 4.15. Let G be a binary rank-r matrix with column set E. Then∣∣M1,1
(|E|,4

)∣∣ − ∣∣M1,1
(|E| + 2,4

)∣∣ = 2|E|χ
(
M(G);2

)
,

and ∣∣M1,1
(|E| + 1,4

)∣∣ = ∣∣M1,1
(|E| + 3,4

)∣∣
where the integers |E|, |E| + 1, |E| + 2, and |E| + 3 are reduced modulo 4. The first equation implies that the
binary matroid M(G) is affine if and only if |M1,1(|E|,4)| �= |M1,1(|E| + 2,4)|.

Proof. Setting τ = 2 in Corollary 4.14, we have∣∣M1,1(0,4)
∣∣ + ι

∣∣M1,1(1,4)
∣∣ − ∣∣M1,1(2,4)

∣∣ − ι
∣∣M1,1(3,4)

∣∣ = (2ι)|E|χ
(
M(G);2

)
.

Shifting the first parameter k of the parcels by |E| and equating real and imaginary parts, we obtain
the two equations in the corollary. �

We end with two remarks. First, Corollary 4.15 can also be obtained as the special case σ = 4 and
q = 2 of Theorem 4.2. Second, the case when G is the vertex-edge or cycle-edge matrix of a graph of
Corollary 4.15, together with Lemma 1.5, yield Theorem 1.1.
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4.5. Parcels defined using a binary set-operation on supports

Let ◦ be a binary operation on sets and σ be a positive integer. For k = 0,1,2, . . . , σ − 1, let

M◦(k,σ ) = {
( f , g): ( f , g) ∈ F,

∣∣supp( f ) ◦ supp(g)
∣∣ ≡ k mod σ

}
There are sixteen binary operations on subsets of a set E . Familiar examples are union, intersection,
and symmetric difference. Exotic examples are the Sheffer stroke |, defined by A|B = (E\A) ∩ (E\B) =
E\(A ∪ B), and implication →, defined by A → B = (E\A) ∪ B .

Theorem 4.16. Let σ be an integer greater than 1, ω be a primitive σ -th root of unity, G be a rank-r totally-P
matrix with column set E, and A be a P-module of order q.

(a)
σ−1∑
k=0

ωk
∣∣M∪(k,σ )

∣∣ = (1 − ω)r(ωq)|E|−r R

(
M(G); ωq2

1 − ω
,

1 − ω

ωq

)
.

(b) If 2 + ω(q − 2) �= 0, then

σ−1∑
k=0

ωk
∣∣M∩(k,σ )

∣∣
= (ω − 1)r(2 + ω(q − 2)

)|E|−r
R

(
M(G); q(2 + ω(q − 2))

ω − 1
,

ω − 1

2 + ω(q − 2)

)
.

(c) If 2ω + q − 2 �= 0, then

σ−1∑
k=0

ωk
∣∣M�(k,σ )

∣∣
= (2 − 2ω)r(2ω + q − 2)|E|−r R

(
M(G); q(2ω + q − 2)

2 − 2ω
,

2 − 2ω

2ω + q − 2

)
.

(d)
σ−1∑
k=0

ωk
∣∣M|(k,σ )

∣∣ = (ω − 1)rq|E|−r R

(
M(G); q2

ω − 1
,
ω − 1

q

)
.

(e) If 1 + ω(q − 1) �= 0, then

σ−1∑
k=0

ωk
∣∣M→(k,σ )

∣∣
= (ω − 1)r(1 + ω(q − 1)

)|E|−r
R

(
M(G); q(1 + ω(q − 1))

ω − 1
,

ω − 1

1 + ω(q − 1)

)
.

Proof. As examples, we prove (c) and (d). To prove (c), we use the weight function defined by
γ (0,0) = γ (a,a) = 1, γ (a,0) = γ (0,a) = ω, γ (a,b) = 1. For this choice of γ ,

x − 1 = q

2ω + q − 2
− 1 = 2 − 2ω

2ω + q − 2
.

To prove (d), we use the weight function defined by γ (0,0) = ω, γ (a,a) = 1, γ (a,0) = γ (0,a) =
γ (a,b) = 1. For this choice of γ , x − 1 = [(ω + q − 1)/q] − 1 = (ω − 1)/q. �

When σ = 2 and ω = −1, we have the following special cases.
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Corollary 4.17. Let G be a rank-r totally-P matrix with column set E, and A be a P-module of order q. Then,

∣∣M∪(0,2)
∣∣ − ∣∣M∪(1,2)

∣∣ = (−1)|E|(−2)rq|E|−r R

(
M(G);−q2

2
,−2

q

)
,

∣∣M|(0,2)
∣∣ − ∣∣M|(1,2)

∣∣ = (−2)rq|E|−r R

(
M(G);−q2

2
,−2

q

)
.

If q �= 4, then

∣∣M∩(0,2)
∣∣ − ∣∣M∩(1,2)

∣∣ = (−2)r(4 − q)|E|−r R

(
M(G);−q(4 − q)

2
,− 2

4 − q

)
,

∣∣M�(0,2)
∣∣ − ∣∣M�(1,2)

∣∣ = 4r(q − 4)|E|−r R

(
M(G); q(q − 4)

4
,

4

q − 4

)
.

If q �= 2, then∣∣M→(0,2)
∣∣ − ∣∣M→(1,2)

∣∣ = (−2)r(2 − q)|E|−r R

(
M(G); q(q − 2)

2
,

2

q − 2

)
.

We note a last special case.

Corollary 4.18. Let G is a ternary matroid and A = GF(3). Then∣∣M→(0,3)
∣∣ + e2πι/3

∣∣M→(1,3)
∣∣ + e4πι/3

∣∣M→(2,3)
∣∣

= √
3

|E|
e(3|E|+5r)πι/6 R

(
M(G);3e−πι/3,eπι/3).

5. Multivariate versions

So far, we have been working with pairs of functions. In this section, we explore parcels of m-
tuples of functions. Let A be an Abelian group of order q. If (a1,a2, . . . ,am) is an m-tuple in A

m , then
there are |A| (m + 1)-tuples (b1,b2, . . . ,bm,bm+1) such that for j = 1,2, . . . ,m, b j − b j+1 = a j . We
say that these (m + 1)-tuples are associated with (a1,a2, . . . ,am). Explicitly, the (m + 1)-tuples

(a1 + a2 + · · · + am−1 + am + b,a2 + · · · + am−1 + am + b, . . . ,am−1 + am + b,am + b,b),

where b ranges over A, are associated with (a1,a2, . . . ,am).
We begin with parcels of triples of functions defined by sums of supports of functions. Let T (k, σ )

be the parcels{
( f1, f2, f3): f j : E → A, f j − f j+1 are flows,∣∣supp( f1)

∣∣ + ∣∣supp( f2)
∣∣ + ∣∣supp( f3)

∣∣ ≡ k mod σ
}
.

Theorem 5.1. Let σ be a positive integer, ω be a primitive σ -th root of unity, P be a partial field in which
2 �= 0, G be a rank-r totally-P matrix, and A be a P-module of order q. Then

σ−1∑
k=0

ωk
∣∣T (k,σ )

∣∣
=

∑

h: 
h=(h1,h2),

h1,h2 are flows

(
1 + (q − 1)ω3)|h̃−1(0,0)| ∏

a: a �=0

(
ω + ω2 + (q − 2)ω3)|
h−1(a,0)|+|
h−1(0,a)|

×
∏

a,b: a �=0, b �=0

(
3ω2 + (q − 3)ω3)|
h−1(a,b)|

.
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Proof. We use the weight function defined by γ (0,0,0) = 1 and for a,b, c nonzero elements (not
necessarily distinct) of A,

γ (a,0,0) = γ (0,a,0) = γ (0,0,a) = ω, γ (a,b,0) = γ (a,0,b) = γ (0,a,b) = ω2,

γ (a,b, c) = ω3.

Then, for f1, f2, f3 : E → A with supp( f1) = A, supp( f2) = B , and supp( f3) = C , we have∏
e: e∈E

(
f1(e), f2(e), f3(e)

) = ω|A|ω|B|ω|C | = ω|A|+|B|+|C |.

In addition, we have the following types of association between pairs and triples, where a and b are
nonzero elements of A:

(0,0) ←→ (0,0,0); (a,a,a), a �= 0,

(0,a) ←→ (a,a,0), (0,0,−a); (a + c,a + c, c), c �= 0,−a,

(a,0) ←→ (a,0,0), (0,−a,−a); (a + c, c, c), c �= 0,−a,

(a,b) ←→ (a + b,b,0), (a,0,−b), (0,−a,−a − b);
(a + b + c,b + c, c), c �= 0,−b,−a − b.

Under the assumption that 2 �= 0, a �= −a,∑
a: a∈A

γ (a,a,a) = 1 + (q − 1)ω3,

∑
(a,b,c): a,b,c∈A, a−b=0, c−b=a, a �=0

γ (a,b, c) = ω + ω2 + (q − 2)ω3,

∑
(a,b,c): a,b,c∈A, a−b=a, c−b=0, a �=0

γ (a,b, c) = ω + ω2 + (q − 2)ω3,

∑
a: a,b,c∈A, a−b=a, b−c=b, a �=0, b �=0

γ (a,b, c) = 3ω2 + (q − 3)ω3.

The theorem now follows from Lemma 2.4. �
The right-hand side of the equation in Theorem 5.1 cannot be manipulated so that we can use

Lemma 2.2. However, over GF(2), the types of association degenerate on the right-hand side and
Lemma 2.2 can be applied.

Theorem 5.2. Let σ be an integer greater than 2, θ = 2ρπ/σ , where ρ is relatively prime to σ , ω = eιθ , G be
a rank-r binary matrix with column set E, and A= GF(2). Then

σ−1∑
k=0

ωk
∣∣T (k,σ )

∣∣ = ω|E|−r(1 + ω)|E|(1 − ω)2r R

(
M(G); 2

cos θ − 1
,2(cos θ − 1)

)
.

Proof. Over GF(2), we have the simplest association of pairs with triples:

(0,0) ←→ (0,0,0), (1,1,1),

(1,0) ←→ (1,0,0), (0,1,1),

(0,1) ←→ (0,0,1), (1,1,0),

(1,1) ←→ (1,0,1), (0,1,0).
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Using the same weight function γ as in the proof of Theorem 5.1, we have

γ (0,0,0) + γ (1,1,1) = 1 + ω3

and

γ (1,0,0) + γ (0,1,1) = γ (0,0,1) + γ (1,1,0) = γ (1,0,1) + γ (0,1,0) = ω + ω2.

Hence, by Lemma 2.4,∑

h: 
h=(h1,h2), h1,h2 are flows

(
1 + ω3)|
h−1(0,0)|(

ω + ω2)|
h−1(1,0)|+|
h−1(0,1)|+|
h−1(1,1)|
,

where the sum ranges over pairs (h1,h2) of flows over GF(2) or equivalently, over (single) flows 
h
over GF(2) × GF(2). Using Lemma 2.2 with q = |GF(2) × GF(2)| = 4, together with the calculation

x − 1 = 1 + ω3

ω + ω2
− 1 = 1 − ω + ω2

ω
− 1 = 1 − 2ω + ω2

ω
= ω−1 − 2 + ω = 2 cos θ − 2,

we obtain the equation in Theorem 5.2. �
We consider next special cases of Theorem 5.2 for small values of σ . Noting that over GF(2),

T (k, σ ) is essentially the parcel{
(B1, B2, B3): B1, B2, B3 ⊆ E, B1�B2, B2�B3 are unions of circuits,

|B1| + |B2| + |B3| ≡ k mod σ
}
,

these cases are analogs of Theorems 16, 19, and 20 in [8]. When σ = 3, ω3 = 1, (1 − ω)2(1 + ω) = 3,
and ω(1 + ω) = −1. Theorem 5.2 yields the following result.

Corollary 5.3. Let G be a rank-r binary matrix with column set E and A= GF(2). Then

∣∣T (0,3)
∣∣ − 1

2

∣∣T (1,3)
∣∣ − 1

2

∣∣T (2,3)
∣∣ = (−1)|E|−r3r R

(
M(G);−4

3
,−3

)
.

The next result follows from setting σ = 4 (so that ω = ι, (1 − ω)2(1 + ω) = 2(1 − ι), and
ω(1 + ω) = −(1 − ι)) in Theorem 5.2.

Corollary 5.4. Let G be a rank-r binary matrix with column set E and A= GF(2). Then∣∣T (0,4)
∣∣ + ι

∣∣T (1,4)
∣∣ − ∣∣T (2,4)

∣∣ − ι
∣∣T (3,4)

∣∣ = (−1)|E|−r2r(1 − ι)|E|R
(
M(G);−2,−2

)
.

When σ = 6, Theorem 5.2 gives an interpretation for the evaluation of the characteristic polyno-
mial of a binary matroid at 4.

Corollary 5.5. Let G be a rank-r binary matrix with column set E and A= GF(2). If |E| is even,∣∣T (0,6)
∣∣ + ∣∣T (1,6)

∣∣ − ∣∣T (3,6)
∣∣ − ∣∣T (4,6)

∣∣ = (−3)|E|/2χ
(
M(G);4

)
(5)

and ∣∣T (1,6)
∣∣ + ∣∣T (2,6)

∣∣ − ∣∣T (4,6)
∣∣ − ∣∣T (5,6)

∣∣ = 0. (6)

If |E| is odd,

1

2

[∣∣T (1,6)
∣∣ + ∣∣T (2,6)

∣∣ − ∣∣T (4,6)
∣∣ − ∣∣T (5,6)

∣∣]
= ∣∣T (0,6)

∣∣ + ∣∣T (1,6)
∣∣ − ∣∣T (3,6)

∣∣ − ∣∣T (4,6)
∣∣ = (−3)(|E|−1)/2χ

(
M(G);4

)
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and ∣∣T (0,6)
∣∣ + 1

2

∣∣T (1,6)
∣∣ − 1

2

∣∣T (2,6)
∣∣ − ∣∣T (3,6)

∣∣ − 1

2

∣∣T (4,6)
∣∣ + 1

2

∣∣T (5,6)
∣∣ = 0.

Proof. If ω = eπι/3, then (1 − ω)2(1 + ω) = −√
3ι and ω(1 + ω) = √

3ι. Hence, by Theorem 5.2,

5∑
k=0

ekπι/3
∣∣T (k,6)

∣∣ = (−1)r(
√

3ι)|E|R
(
M(G);−4,−1

) = (
√

3ι)|E|χ
(
M(G);4

)
.

When |E| is even, the right-hand side is real and we have two equations:

∣∣T (0,6)
∣∣ + 1

2

∣∣T (1,6)
∣∣ − 1

2

∣∣T (2,6)
∣∣ − ∣∣T (3,6)

∣∣ − 1

2

∣∣T (4,6)
∣∣ + 1

2

∣∣T (5,6)
∣∣

= (−3)|E|/2χ
(
M(G);4

)
,∣∣T (1,6)

∣∣ + ∣∣T (2,6)
∣∣ − ∣∣T (4,6)

∣∣ − ∣∣T (5,6)
∣∣ = 0.

The second equation yields Eq. (6). Adding Eq. (6) to the first equation yields Eq. (5). The proof when
|E| is odd is similar. �

Corollary 5.5 gives a parcel-size condition involving 6 parcels for the existence of a nowhere-zero
4-flow in a binary matroid. This condition is the initial case of a sequence of parcel-size conditions
involving 2m + 2 parcels for the existence of a nowhere-zero 2m-flow.

Theorem 5.6. Let m and τ be integers, m � 2, τ � 1, ω = eπι/τ , G be a rank-r binary matrix, and

Tm(k,2τ ) =
{

( f1, f2, . . . , fm+1): f j : E → GF(2), f j − f j+1 are flows,

m+1∑
j=1

∣∣supp( f j)
∣∣ ≡ k mod 2τ

}
.

Then (when τ = m + 1),

2m+1∑
k=0

ekπι/(m+1)
∣∣Tm(k,2m + 2)

∣∣ �= 0 if and only if χ
(
M(G);2m) �= 0.

Proof. Let (a1,a2, . . . ,am) be an m-tuple in GF(2)m . Then there are two (m + 1)-tuples associated
with it: 
b and its complement 
b + 
1, where


b = (a1 + a2 + · · · + am−1 + am,a2 + a3 + · · · + am−1 + am, . . . ,am−1 + am,am,0) (7)

and 
1 is the vector with all coordinates equal to 1. Let wt(
b) be the number of 1’s in 
b.
Let ω = eπι/τ and choose the weight function

γ (
b) = ωwt(
b).

By Lemma 2.4,

2τ−1∑
k=0

ωk
∣∣Tm(k,2τ )

∣∣
=

∑

h: 
h is a flow over GF(2)m

(
1 + ωm+1)|
h−1(
0)| ∏


a: 
a �=
0

(
ωwt(
b) + ωm+1−wt(
b)

)|
h−1(
a)|
,
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where for a nonzero m-tuple 
a in the product on the right-hand side, 
b is the (m + 1)-tuple defined
in Eq. (7).

Now let τ = m + 1 and ω = eπι/(m+1) . Then 1 + ωm+1 = 0 and

ωwt(
a) + ωm+1−wt(
a) = ωwt(
a) − ω−wt(
a) = 2ι sin

(
wt(
a)π

m + 1

)
.

Hence,

2m+1∑
k=0

ekπι/(m+1)
∣∣Tm(k,2m + 2)

∣∣

=
∑


h: 
h is a flow over GF(2)m

0|
h−1(
0)| ∏

a: 
a �=
0

(
2ι sin

(
wt(
a)π

m + 1

))|
h−1(
a)|

= (2ι)|E| ∑

h: 
h is a flow over GF(2)m, 
h−1(
0)=∅

∏

a: 
a �=
0

(
sin

(
wt(
a)π

m + 1

))|
h−1(
a)|
.

Since

0 < sin

(
wt(
a)π

m + 1

)
� 1

when 
a �= 
0, the sum is over positive terms, one for each nowhere-zero flow 
h over GF(2)m . Hence,
the sum is nonzero if and only if there is a nowhere-zero flow over GF(2)m , that is to say, if and only
if χ(M(G);2m) �= 0. �
6. Parcels defined using inner products

Let f , g : E → GF(q). Their inner or dot product 〈 f , g〉 is defined by

〈 f , g〉 =
∑

e: e∈E

f (e)g(e).

In this section, we consider parcels in F defined by inner products. For G a matrix over GF(q) and a
an element in GF(q), let

M•(a,q) = {
( f , g): f − g is a flow, 〈 f , g〉 = a

}
.

We shall restrict our attention to fields of prime order.

Theorem 6.1. Let p be an odd prime, ω be a primitive p-th root of unity, and G be a matrix over GF(p), where
p is an odd prime. Then∑

a: a∈GF(p)

ωa
∣∣M•(a, p)

∣∣ = Ω |E| ∑
h: h is a flow

ω− 1
4 〈h,h〉,

where

Ω = 1 +
∑

b: b is a square

2ωb

and the exponent − 1
4 〈h,h〉 is evaluated in GF(p) and interpreted as an integer modulo p.
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Proof. We use the weight function γ (b, c) = ωbc . Then

∑
b,c: b−c=0

γ (b, c) =
p−1∑
b=0

γ (b,b) =
p−1∑
b=0

ωb2 = Ω,

and for a �= 0,

∑
b,c: b−c=a

γ (b, c) =
p−1∑
b=0

ωb(b−a) = ω−a2/4
p−1∑
b=0

ωb2−ba+(a/2)2 = ω−a2/4
p−1∑
b=0

ω(b−a/2)2

= ω−a2/4Ω.

Hence, by Lemma 2.4,∑
a: a∈GF(p)

ωa
∣∣M•(a, p)

∣∣ = Ω |E| ∑
h: h is a flow

∏
a: a∈GF(p)

(
ω−a2/4)|h−1(a)|

.

To finish the proof, we use the fact that∑
a: a∈GF(p)

a2
∣∣h−1(a)

∣∣ = 〈h,h〉. �

We note that because 1 + ω + ω2 + · · · + ωp−1 = 0, we can write

Ω =
p−1∑
a=1

(
a

p

)
ωa,

where the Legendre symbol ( a
p ) equals 1 if a is a square and −1 if a is not a square. In other words,

Ω is a Gauss sum. In particular, it is known that the absolute value of Ω equals
√

p. (See, for example,
[10, Chap. 8].)

We can apply Lemma 2.2 to Theorem 6.1 to obtain an evaluation of the rank generating polynomial
for only one case, that of ternary matroids.

Corollary 6.2. Let G be a rank-r ternary matrix on the column set E. Then∣∣M•(0,3)
∣∣ + e2πι/3

∣∣M•(1,3)
∣∣ + e−2πι/3

∣∣M•(−1,3)
∣∣

= e(5r−|E|)πι/6
√

3
|E|+r

R
(
M(G);√3e−5πι/6,

√
3e5πι/6).

Proof. When p = 3, ω = e2πι/3 and for a ∈ GF(3),

ω−a2/4 =
{

1 if a = 0,

ω−1 if a �= 0.

By Theorem 6.1 and Lemma 2.2,∣∣M•(0,3)
∣∣ + ω

∣∣M•(1,3)
∣∣ + ω−1

∣∣M•(−1,3)
∣∣

= Ω |E| ∑
h: h is a flow

1|h−1(0)|ω−[|h−1(1)|+|h−1(−1)|] = Ω |E|ω−|E| ∑
h: h is a flow

ω|h−1(0)|

= Ω |E|ω−|E|(ω − 1)r R

(
M(G); 3

ω − 1
,ω − 1

)
.

To finish the proof, use ω = e2πι/3, Ω = 1 + 2ω = √
3ι, and ω − 1 = √

3e5πι/6. �
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The value R(M(G);√3e−5πι/6,
√

3e5πι/6) (which is the value T (M(G);e−2πι/3,e2πι/3) of the Tutte
polynomial) was calculated, up to a root of unity by Jaeger [11] and exactly by Gioan and Las Vergnas

[5]. It is a root-of-unity multiple of
√

3
d

, where d is the bicycle dimension of G . (The bicycle dimension
is the dimension of the vector space U ∩ V , where U is the row space of G and V is the row space
of a matrix H orthogonally dual to G .) This is shown by evaluating the sum

∑
h ω〈h,h〉 for a ternary

matrix G . With the knowledge that |Ω| = √
p, one can easily extend the elegant algebraic argument

of Gioan and Las Vergnas to obtain the following result: if p is an odd prime, ω is a primitive p-th
root of unity, and G is a rank-r GF(p)-matrix, then∣∣∣∣ ∑

h: h is a flow

ω〈h,h〉
∣∣∣∣ = √

p r+d
.

However, when p > 3, this sum is not an evaluation of the rank generating polynomial because there
exist matrices with isomorphic column matroid but different bicycle dimension.

Theorem 6.1 covers the cases of odd primes. For completeness, we describe what happens when
p = 2. Over GF(2), 〈 f , g〉 ≡ | supp( f ) ∩ supp(g)| mod 2. Hence, |M•(k,2)| = |M∩(k,2)|. By Corol-
lary 4.17, if G is a binary matrix, then∣∣M•(0,2)

∣∣ − ∣∣M•(1,2)
∣∣ = (−1)r2|E|R

(
M(G);−2,−1

) = 2|E|χ
(
M(G);2

)
.

7. Parcel-weight enumerators

To end this paper, we consider parcels defined by “letting σ go to infinity”. When σ is sufficiently
large (compared with |E|, r, and q), then the congruence condition becomes an absolute condition, in
the sense that “is congruent to k modulo σ ” strengthens to “is equal to k”. As a typical example, we
consider the parcels in Theorem 4.7. Define M1,−1(k,∞) by

M1,−1(k,∞) = {
( f , g): ( f , g) ∈ F,

∣∣supp( f )
∣∣ − ∣∣supp(g)

∣∣ = k
}
.

Since Lemmas 2.2 and 2.3 are formal, we can replace the root ω of unity by an indetermi-
nate X in Theorem 4.7 and its proof. This allows us to express the (parcel-weight) enumerator∑

k |M1,−1(k,∞)|Xk as a specialization of the rank generating polynomial. In general, the weight
enumerator is a Laurent polynomial, that is, a polynomial in X and X−1.

Theorem 7.1. Let X be an indeterminate, G a rank-r totally-P matrix with column set E, and A a P-module of
order q. Then∑

k: k is an integer

∣∣M1,−1(k,∞)
∣∣Xk

= (
X − 2 + X−1)r(

X − 2 + X−1 + q
)|E|−r

× R

(
M(G); q(X − 2 + X−1 + q)

X − 2 + X−1
,

X − 2 + X−1

X − 2 + X−1 + q

)
.

Corollary 7.2. The sizes |M1,−1(k,∞)|, and hence, the sizes |M1,−1(k, σ )|, depend only on the matroid
M(G).

Most of the theorems in this paper have enumerator versions. The enumerator version of Theo-
rem 3.1 extends a theorem of Greene (Corollary 4.5, [9]; see [4] for background and related results).
To see this, let

H(k,σ ) = {
h: h is a flow,

∣∣supp(h)
∣∣ ≡ k mod σ

}
.

The sets H(k, σ ) are not parcels, but |O(k, σ )| = q|E||H(k, σ )| (see Section 3). Hence, we have the
following theorem.
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Theorem 7.3. Let σ be an integer greater than 1, ω be a primitive σ -root of unity, X be an indeterminate,
G be a rank-r totally-P matrix with column set E, and A be a P-module of order q. Then

σ−1∑
k=0

ωk
∣∣H(k,σ )

∣∣ = ω|E|−r(1 − ω)r R

(
M(G); qω

1 − ω
,

1 − ω

ω

)
,

∑
k: k�0

∣∣H(k,∞)
∣∣Xk = X |E|−r(1 − X)r R

(
M(G); qX

1 − X
,

1 − X

X

)
.

When G is a matrix over GF(q) and A = GF(q), the homogeneous bivariate polynomial∑
k: k�0 |H(k,∞)|XkY |E|−k is the weight enumerator of the linear code generated by the matrix G as

defined, say, in [14]. Thus, in this case, the second part of Theorem 7.3 is Greene’s theorem.
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