
Graduate Theses, Dissertations, and Problem Reports 

2023 

Flows on Signed Graphs Flows on Signed Graphs 

Chong Li 
cl0081@mix.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Li, Chong, "Flows on Signed Graphs" (2023). Graduate Theses, Dissertations, and Problem Reports. 
12171. 
https://researchrepository.wvu.edu/etd/12171 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F12171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/12171?utm_source=researchrepository.wvu.edu%2Fetd%2F12171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Flows on Signed Graphs

Chong Li

Dissertation submitted to the

Eberly College of Arts and Sciences

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Mathematics

Rong Luo, Ph.D., Chair

John Goldwasser, Ph.D.

Hong-Jian Lai, Ph.D.

Dong Ye, Ph.D.

Cun-Quan Zhang, Ph.D.

Department of Mathematics

Morgantown, West Virginia

2023

Keywords: Signed graph; nowhere-zero flow; 3-edge-colorable; hamiltonian circuit;

K4-minor free; triangularly connected

Copyright 2023 Chong Li



ABSTRACT

Flows on Signed Graphs

Chong Li

This dissertation focuses on integer flow problems within specific signed graphs. The theory

of integer flows, which serves as a dual problem to vertex coloring of planar graphs, was initially

introduced by Tutte as a tool related to the Four-Color Theorem. This theory has been extended

to signed graphs.

In 1983, Bouchet proposed a conjecture asserting that every flow-admissible signed graph

admits a nowhere-zero 6-flow. To narrow dawn the focus, we investigate cubic signed graphs in

Chapter 2. We prove that every flow-admissible 3-edge-colorable cubic signed graph admits a

nowhere-zero 10-flow. This together with the 4-color theorem implies that every flow-admissible

bridgeless planar signed graph admits a nowhere-zero 10-flow. As a byproduct of this research,

we also demonstrate that every flow-admissible hamiltonian signed graph can admit a nowhere-

zero 8-flow.

In Chapter 3, we delve into triangularly connected signed graphs. Here, A triangle-path in

a graph G is defined as a sequence of distinct triangles T1, T2, . . . , Tm in G such that for any

i, j with 1 ≤ i < j ≤ m, |E(Ti) ∩ E(Ti+1)| = 1 and E(Ti) ∩ E(Tj) = ∅ if j > i + 1. We

categorize a connected graph G as triangularly connected if it can be demonstrated that for any

two nonparallel edges e and e′, there exists a triangle-path T1T2 · · ·Tm such that e ∈ E(T1) and

e′ ∈ E(Tm). For ordinary graphs, Fan et al. characterized all triangularly connected graphs

that admit nowhere-zero 3-flows or 4-flows. Corollaries of this result extended to integer flow

in certain families of ordinary graphs, such as locally connected graphs due to Lai and certain

types of products of graphs due to Imrich et al. In this dissertation, we extend Fan’s result

for triangularly connected graphs to signed graphs. We proved that a flow-admissible triangu-

larly connected signed graph (G, σ) admits a nowhere-zero 4-flow if and only if (G, σ) is not

the wheel W5 associated with a specific signature. Moreover, this result is proven to be sharp

since we identify infinitely many unbalance triangularl connected signed graphs that can admit

a nowhere-zero 4-flow but not 3-flow.

Chapter 4 investigates integer flow problems within K4-minor free signed graphs. A minor

of a graph G refers to any graph that can be derived from G through a series of vertex and edge

deletions and edge contractions. A graph is considered K4-minor free if K4 is not a minor of G.

While Bouchet’s conjecture is known to be tight for some signed graphs with a flow number of



6. Kompǐsová and Máčajová extended those signed graph with a specific signature to a family

M, and they also put forward a conjecture that suggests if a flow-admissible signed graph does

not admit a nowhere-zero 5-flow, then it belongs to M. In this dissertation, we delve into the

members in M that are K4-minor free, designating this subfamily as N . We provide proof

demonstrating that every flow-admissible, K4-minor free signed graph admits a nowhere-zero

5-flow if and only if it does not belong to the specified family N .
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Chapter 1

Introduction

1.1 Notations and Terminology

We consider finite graphs and may have multiple edges or loops. For terminology and notations

not defined here we follow [1, 5, 31]. Throughout this dissertation, Let G be a graph with the

vertex set V (G) and edge set E(G). For a graph G, if X ⊆ V (G), then G[X] is the subgraph

induced by X. For each vertex v ∈ V (G), the set of vertices adjacent to v and the set of edges

incident with v are respectively denoted by NG(v) and EG(v), and dG(v) = |EG(v)|. This is

called the number of neighbours of v in G. When G is understood from this dissertation, we

often use N(v) and d(v) for NG(v) and dG(v), respectively.

Let G be a graph. Let U1 and U2 be two disjoint vertex sets. Denote by δG(U1, U2) the

set of edges with one end in U1 and the other in U2. For convenience, we write δG(U1) for

δG(U1, V (G) \ U1). We use B(G) to denote the set of bridges of G. A path in G is said to be a

subdivided edge of G if every internal vertex of P has degree 2.

1.2 Signed Graphs

A signed graph (G, σ) is a graph G together with a signature σ : E(G) → {−1, 1}. An edge

e ∈ E(G) is positive if σ(e) = 1 and negative otherwise. Denote the set of all negative edges of

(G, σ) by EN (G, σ). For a signed graph (G, σ), switching a vertex u means reversing the signs of

all edges incident with u such that in the resulting signed graph (G, σ′), σ′(e) = −σ(e) for each

edge e ∈ E(v) and σ′(e) = σ(e) for all other edges. See Figure 1.1 for an illustration. Two signed

graphs are equivalent if one can be obtained from the other by a sequence of switching operations.

The negativeness of (G, σ) is denoted by ϵ(G, σ) = min{|EN (G, σ′)| : σ′ is equivalent to σ}.
For convenience, the signature σ is usually omitted if no confusion arises or is written as σG

if it needs to emphasize G. If there is no confusion from the context, we simply use EN (G) for
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v v

Figure 1.1: A switching at the vertex v

EN (G, σ) and use ϵ(G) for ϵ(G, σ).

Let e = uv be an edge. By contracting e, we mean to first identify u with v and then to

delete the loop if σ(e) = 1 otherwise to keep the negative loop. An unsigned graph is regarded

as a signed graph with all-positive signature. A circuit is balanced if it contains an even number

of negative edges, and it is unbalanced otherwise. A signed graph is called balanced if it contains

no unbalanced circuit and is called unbalanced otherwise. A signed circuit is defined as a signed

graph of any of the following three types (see Figure 1.2):

(1) a balanced circuit;

(2) a short barbell, that is, the union of two unbalanced circuits that meet at a single vertex;

(3) a long barbell, that is, the union of two disjoint unbalanced circuits with a path that

meets the circuits only at its ends.

(1) A balanced circuit (2) A short barbell (3) A long barbell

Figure 1.2: Three types of signed circuits (dotted edges are negative edges)

We regard an edge e = uv of a signed graph as two half edges hue and hve , where h
u
e is incident

with u and hve is incident with v. LetHG(v) (or simplyH(v) if no confusion may cause) be the set

of all half edges incident with v, and H(G) be the set of all half edges of (G, σ). An orientation

of a signed graph (G, σ) is a mapping τ : H(G) → {−1, 1} such that for each e = uv ∈ E(G),

τ(hue )τ(h
v
e) = −σ(e). It is convenient to consider τ as an assignment of orientations on H(G).

Namely, for hue ∈ H(G), hue is oriented away from u if τ(hue ) = 1 and hue is oriented toward u if

τ(hue ) = −1. A signed graph (G, σ) together with an orientation τ is called an oriented signed

graph, denoted by (G, τ).
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1.3 Background on Nowhere-zero Flow Problems

The theory of integer flows which is a dual problem to vertex coloring of planar graphs was

introduced by Tutte [28, 27] as a tool related to the Four-Color Theorem. He discovered the

following duality relation between these two categories of problems.

Theorem 1.3.1 (Tutte [28]). Let G be a graph strongly embedded on an orientable surface S.

If G is k-face colorable, then G admits a nowhere-zero k-flow. Furthermore, if S is a sphere,

then they are equivalent.

It has been extended to signed graphs. The concept of integer flows on signed graphs

naturally comes from the study of graphs embedded on non-orientable surfaces, where nowhere-

zero flow emerges as the dual notion to local tension.

The collection π = {πv|v ∈ V (G)} is called a rotation system, which means for each vertex

v, πv is a cyclic permutation of the edges incident with v. Thus the embedding of the graph

together with π naturally induces a signature as seen in the following definition.

Definition 1 (Mohar and Thomassen [22]). Let (G, π, S) be an embedding of G on a non-

orientable surface S where π = {πv|v ∈ V (G)} is the rotation system of the embedding. The

signature σπ induced by the embedding is a mapping σπ : E(G) → {±1} where σπ(e) = −1 if

and only if e passes through the cross-caps of S odd times.

Lu et al. [18] showed the following proposition for the existence of an embedding (G, π, S).

Proposition 1.3.2 (Lu et al. [18]). For any signed graph (G, σ), there exists a non-orientable

surface S and an embedding (G, π, S) of G on S such that σ is the induced signature σπ of the

embedding.

The following result extends Theorem 1.3.1 to all the surfaces (including non-orientable

cases).

Theorem 1.3.3 (Bouchet [2]). Let (G, π, S) be a signed graph strongly embedded on a surface

S, π be a rotation system of the embedding. If (G, π, S) is k-face colorable on S, then (G, σπ)

admits a nowhere-zero k-flow. Furthermore, if S is a sphere or a projective plane, then they are

equivalent.

Theorem 1.3.3 is a natural extension of the fundamental result by Tutte (Theorem 1.3.1) to

graphs embedded on all surfaces. If S is orientable, then the rotation system π can be selected

as clockwise on one side of the surface and thus σπ(e) = 1 for each edge, which is an ordinary

graph and has already been well studied in Tutte’s flow theory.

For ordinary graphs, Tutte [28] conjectured that every bridgeless graph admits a nowhere-

zero 5-flow and Seymour [24] showed that every such graph admits a nowhere-zero 6-flow. there
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are signed graphs which have no nowhere-zero 5-flow (see [[2],[14],[25]]) and Bouchet proposed

the following 6-flow conjecture in 1983.

Conjecture 1.3.1. (Bouchet [2]) Every flow-admissible signed graph admits a nowhere-zero

6-flow.

Bouchet [2] himself proved that such signed graphs admit nowhere-zero 216-flows and Zýka

[38] further reduced to 30-flows. Recently DeVos et al. [4] further proved the following best

known result.

Theorem 1.3.4. (DeVos et al. [4]) Every flow-admissible signed graph admits a nowhere-zero

11-flow.

1.4 Definition of Integer Flows on Signed Graphs

Definition 2. Let (G, σ) be a signed graph and τ be an orientation of (G, σ). Let k ≥ 2 be an

integer and f : E(G) → Z be a mapping.

(1) The boundary of (τ, f) is the mapping ∂(τ, f) : V (G) → R defined as

∂(τ, f)(v) =
∑

h∈H(v)

τ(h)f(eh)

for each vertex v, where eh is the edge of (G, στ ) containing h.

(2) The support of f , denoted by supp(f), is the set of edges e with |f(e)| > 0.

(3) If ∂(τ, f)(v) = 0 for each vertex v, then (τ, f) is called a flow of (G, σ). A flow (τ, f) is

said to be nowhere-zero of (G, στ ) if supp(f) = E(G).

(4) If 1 ≤ |f(e)| ≤ k − 1 for each edge e ∈ E(G), then the flow (τ, f) is called a nowhere-zero

k-flow of (G, στ ).

(4) If ∂(τ, f)(v) ≡ 0 (mod k) for each vertex v, then (τ, f) is called a Zk-flow of (G, σ). A

Zk-flow (τ, f) is said to be nowhere-zero if supp(f) = E(G).

For a mapping f : E(G) → Z, denote Ef=±i = {e ∈ E(G) : |f(e)| = i}.
For convenience, we shorten the notation of nowhere-zero k-flow and nowhere-zero Zk-flow

as k-NZF and Zk-NZF, respectively. If the orientation is understood from the context, we use

f instead of (τ, f) to denote a flow. Observe that G admits a k-NZF under an orientation τ if

and only if it admits a k-NZF under any orientation τ ′ which is equivalent to τ .

A signed graph is flow-admissible if it admits a nowhere-zero k-flow for some integer k. Note

that switching a vertex does not change the parity of the number of negative edges in a circuit

4



and although technically it changes the flows, it only reverses the directions of the half edges

incident with the vertex, but the directions of other half edges and the flow values of all edges

remain the same. Bouchet [2] gave a characterization for all flow-admissible signed graphs.

Proposition 1.4.1. (Bouchet [2]) Let (G, σ) be a connected signed graph. The following three

statements are equivalent:

(1) (G, σ) is flow-admissible;

(2) (G, σ) is not equivalent to a signed graph with exactly one negative edge and it has no

cut-edge b such that (G− b, σ|G−b) has a balanced component;

(3) every edge in (G, σ) is contained in a signed circuit.

Given a signed graph (G, σ), let H be a signed subgraph of (G, σ) and C be a balanced

circuit. Define the following operation:

Φ2-operation : add a balanced circuit C into H if |E(C)− E(H)| ≤ 2.

We use ⟨H⟩2 to denote the maximal subgraph of G obtained from H via Φ2-operations. Zýka

[38] proved the following result.

Lemma 1.4.2. (Zýka [38]) Let (G, σ) be a signed graph and H be a subgraph of G. If ⟨H⟩2 = G,

then (G, σ) admits a Z3-flow ϕ such that E(G)− E(H) ⊆ supp(ϕ).

The next lemma gives a characterization of signed graphs admitting a nowhere-zero 2-flow.

Lemma 1.4.3. (Xu and Zhang [33]) A signed graph (G, σ) admits a nowhere-zero 2-flow if and

only if each component of (G, σ) is eulerian and has an even number of negative edges.

The next proposition is a characterization of signed circuits admitting a nowhere-zero 3-flow.

Proposition 1.4.4. (Bouchet [2]) Every balanced circuit or short barbell has a nowhere-zero

2-flow and every long barbell has a nowhere-zero 3-flow where each edge has flow value 2 or −2

if and only if it belongs to the path connecting the two unbalanced circuits.

We further study the relation between modulo flows and integer flows on signed graphs. The

equivalency of modulo flow and integer flow is a fundamental result in the theory of flows on

unsigned graphs.

Theorem 1.4.5. (Tutte [26], or Younger [34]) An unsigned graph admits a nowhere-zero modulo

k-flow if and only if it admits a nowhere-zero k-flow.

However, there is no equivalent result in regard to Theorem 1.4.5 for signed graphs in general.

See an example in Figure 1.3. The next lemmas show how to convert a modulo flow to an integer-

valued flow.

5



Figure 1.3: (G, σ) admits a Z3-NZF with all edges assigned with 1 but no 3-NZF. Dotted edges

are negative.

Lemma 1.4.6. (Xu and Zhang [33]) If a signed graph (G, σ) admits a Z3-flow f1 such that

supp(f1) has no cut edge, then it also admits an integer-valued 3-flow f2 with supp(f1) =

supp(f2).

The next lemma strengthens Lemma 1.4.6.

Lemma 1.4.7. (DeVos et al. [4]) Let (G, σ) be a bridgeless signed graph admitting a Z3- NZF.

Then for any edge e′ ∈ E(G) and for any i ∈ {1, 2}, (G, σ) admits a 3-NZF f such that f(e′) = i.

Let f be a Z2-flow of (G, σ). Then supp(f) is a vertex-disjoint union of Eulerian subgraphs.

A component of supp(f) is called balanced if it contains an even number of negative edges;

otherwise it is called unbalanced.

Lemma 1.4.8. (Cheng et al. [3]) Let (G, σ) be a connected signed graph. If (G, σ) admits a

Z2-flow f1 such that supp(f1) contains an even number of unbalanced components, then it admits

a 3-flow f2 such that supp(f1) = Ef2=±1 and supp(f2)/ supp(f1) is acyclic.

Lemma 1.4.9. (Cheng et al. [3]) Let (G, σ) be a bridgeless signed graph. If (G, σ) admits a

Z3-flow f1, then it admits a 4-flow f2 with supp(f1) ⊆ Ef2=±1 ∪ Ef2=±2.

The following lemma converts a modulo flow to an integer-valued flow if G does not contain

long barbells.

Lemma 1.4.10. (Lu et al. [16]) Let (G, σ) be a signed graph without long barbells, and let k

be an integer with k = 3 or k ≥ 5. Then (G, σ) admits a nowhere-zero Zk-flow if and only if it

admits a nowhere-zero k-flow.

We use B(G) to denote the set of cut-edges of G.

6



Lemma 1.4.11. (DeVos et al. [4]) Let G be a signed graph admitting a Z3-NZF. Then G admits

a 5-NZF g such that Eg=±3 = ∅ and Eg=±4 ⊆ B(G).

Integer flows on signed graphs also have been studied for many specific families of graphs.

We list some following results.

Theorem 1.4.12. (Lu et al. [16]) Let (G, σ) be a flow-admissible signed graph. If (G, σ)

contains no long barbells, then it admits a nowhere-zero 6-flow.

Theorem 1.4.13. (Lu et al. [17]) Every flow-admissible signed graph without edge-disjoint

unbalanced circuits admits a nowhere-zero 6-flow.

Theorem 1.4.14. (Kaiser and Rollová [13]) Every flow-admissible signed series-parallel graph

has a nowhere-zero 6-flow.

Theorem 1.4.15. (Máčajová and Rollová [19]) The flow number of a flow-admissible signed

graph whose underlying graph is either complete or complete bipartite is at most 4.

Theorem 1.4.16. (Máčajová and Škoviera [21]) Every flow-admissible signed Eulerian graph

admits a nowhere-zero 4-flow.

Theorem 1.4.17. (Wang et al. [29]) Every flow-admissible signed graph with two negative edges

admits a nowhere-zero 6-flow such that each negative edge has flow value 1.

Theorem 1.4.18. (Wu et al. [32]) A flow-admissible 8-edge-connected signed graph admits a

nowhere-zero 3-flow.

Theorem 1.4.19. (Raspaud and Zhu [23]) A flow-admissible 6-edge-connected signed graph

admits a nowhere-zero 4-flow.

Theorem 1.4.20. (Wei et al. [30]) Every 3-edge-connected flow-admissible signed graph admits

a nowhere-zero 15-flow.

1.5 Main Results

We call a signed graph G antibalanced if its signature is equivalent to the all-negative signature.

Clearly, G is antibalanced if and only if every circuit contains an even number of positive edges,

or equivalently, if and only if all even circuits of G are balanced and all odd circuits of G

are unbalanced. Consequently, an antibalanced graph is balanced if and only if its underlying

unsigned graph is bipartite. The following is a direct consequence of Harary’s balance theorem.

Theorem 1.5.1. (Harary’s balance theorem [9]) A signed graph is antibalanced if and only if

its vertex set can be partitioned into two sets (either of which may be empty) in such a way that

each edge between the sets is positive and each edge within a set is negative.

7



A circuit C with an antibalanced bipartition {A1, A2} will be called half-odd if for some

i ∈ {1, 2}, each component of C −Ai is either a path of odd length or the entire C.

Schubert and Steffen [25] verified Bouchet’s Conjecture for Kotzig graphs. Máčajová and

Škoviera [20] characterized cubic signed graphs that admit a nowhere-zero 3-flow and that admit

a nowhere-zero 4-flow with the following theorem.

Theorem 1.5.2. (Máčajová and Škoviera [20]) Let G be a cubic signed graph.

(1) Then G has a nowhere-zero 3-flow if and only if it is antibalanced and has a perfect

matching.

(2) Then G admits a nowhere-zero 4-flow if and only if it is switching equivalent to one that has

an antibalanced 2-factor with all components half-odd and with complement an all-negative

perfect matching.

We investigated integer flows in 3-edge-colorable cubic signed graphs and prove the following

theorem.

Theorem 1.5.3. Every flow-admissible 3-edge-colorable cubic signed graph admits a nowhere-

zero 10-flow.

By the 4-color theorem, every bridgeless cubic planar graph is 3-edge-colorable. Therefore

we have the following corollary for bridgeless signed planar graphs.

Corollary 1.5.4. Every flow-admissible bridgeless planar signed graph admits a nowhere-zero

10-flow.

Theorem 1.5.3 follows from the following stronger result which shows that every connected

flow-admissible 3-edge-colorable cubic signed graph admits a nowhere-zero 8-flow except one

case which has a nowhere-zero 10-flow.

Theorem 1.5.5. Let (G, σ) be a connected 3-edge-colorable cubic signed graph and EN (G, σ)

be the set of negative edges in (G, σ). Let R,B, Y be the three color classes such that |R ∩
EN (G, σ)| ≡ |B ∩ EN (G, σ)| (mod 2). If (G, σ) is flow-admissible, then it has a nowhere-zero

8-flow unless R ∪ B contains no unbalanced circuits and the numbers of unbalanced circuits in

R ∪ Y and B ∪ Y are both odd and at least 3, in which case it has a nowhere-zero 10-flow.

As a byproduct, we also prove the following 8-flow theorem for Hamiltonian signed graphs.

Theorem 1.5.6. If (G, σ) is a flow-admissible Hamiltonian signed graph, then (G, σ) admits a

nowhere-zero 8-flow.

8



Figure 1.4: (W5, σ
∗) has a 5-NZF but no 4-NZF. Dotted edges are negative.

Secondly, we considered nowhere-zero integer flows in triangularly connected signed graphs.

For triangularly connected ordinary graphs, Fan et al. [7] show that every triangularly connected

ordinary graph admits a nowhere-zero 4-flow and they also characterize all such graphs not

admitting a nowhere-zero 3-flow. For its signed counterpart, we prove the following result.

Theorem 1.5.7. If (G, σ) is a flow-admissible triangularly connected signed graph, then (G, σ)

admits a nowhere-zero 4-flow if and only if (G, σ) ̸= (W5, σ
∗) where (W5, σ

∗) is the signed graph

in Figure 1.4. Moreover, there are infinitely many triangularly connected unbalanced signed

graphs that admit a nowhere-zero 4-flow but no 3-flow.

A graph G is locally connected if the subgraph induced by the neighbor of each vertex

is connected. It is known that locally connected graphs, square of graphs, chordal graphs,

triangulations on surfaces and some types of products of graphs are triangularly connected

(such as [11], [15], for ordinary graphs) and thus we have the following corollary.

Corollary 1.5.8. Let (G, σ) be a flow-admissible signed graph. If G is locally connected, then

(G, σ) admits a nowhere-zero 4-flow if and only if (G, σ) ̸= (W5, σ
∗). In particular, if G is the

square of a connected graph or is the strong product of graphs, then (G, σ) admits a nowhere-zero

4-flow.

Lastly, we worked on the nowhere-zero integer flows in K4-minor-free signed graphs. There

are flow-admissible signed graphs that admit a nowhere-zero 6-flow but no nowhere-zero 5-flow

(see Figure 1.5). Note that the third graph, denoted by Nσ
4k+2, is the smallest signed graph of

an infinite family, in which all the members are signed graphs obtained from a positive circuit

of length 4k + 2 by replacing every even index edge with an unbalanced 2-circuit, where k ≥ 1.

We define contraction in signed graphs as follows. For an edge e ∈ E(G), the contraction

G/e is the signed graph obtained from G by identifying the two ends of e, and then deleting

the resulting positive loop if e is a positive edge, but keeping the resulting negative loop if e is

a negative edge in E(G). Let (G, σ) be a flow-admissible signed graph. We define the following

operations:

9



Figure 1.5: Signed graphs with flow number 6. Dotted edges are negative.

(O1) Let X ⊆ V (G) such that 2 ≤ δG(x) ≤ 3 and G[X] is balanced. First switch at some

vertices so that G[X] contains no negative edges and then contract G[X].

(O2) Let x be a cut-vertex of G and H be a balanced component of G at x. First switch at

some vertices such that H contains no negative edges and then delete H.

(O3) Suppress a degree 2-vertex.

Let (G1, σ1) and (G2, σ2) be two signed graphs. We say that (G1, σ1) is reducible to (G2, σ2)

if (G2, σ2) can be obtained from (G1, σ1) by a sequence of Operations (O1), (O2), and (O3).

The following lemma is proved in [18].

Lemma 1.5.9. (Lu et al. [18]) Let (G1, σ1) and (G2, σ2) be two signed graphs. If (G1, σ1) is

reducible to (G2, σ2), then either both admit a nowhere-zero 6-flow or neither admits a nowhere-

zero 6-flow.

Let M be the set of signed graphs switching equivalent to signed graphs reducible to one

of the three types of signed graphs in Figure ??. Kompǐsová and Máčajová [?] proposed the

following conjecture.

Conjecture 1.5.1. (Kompǐsová and Máčajová [?]) If a flow-admissible signed graph does not

admit a nowhere-zero 5-flow, then it belongs to M.

They also proved the following lemma.

Lemma 1.5.10. (Kompǐsová and Máčajová [?]) Let (G, σ) be a flow-admissible signed graph in

M. Then (G, σ) admits a nowhere-zero 6-flow.

Let N be the family of flow-admissible signed graphs switching equivalent to signed graphs

reducible to Nσ
4k+2 (k ≥ 1).

It is easily to see that every K4-minor free ordinary graph admits a nowhere-zero 3-flow. For

its signed counterpart, we prove the following result, which implies that Conjecture 1.3.1 is true

for flow-admissible K4-minor free signed graphs. Let H be a bridgeless and balanced graph. Let

N be the family of signed graphs switching equivalent to Nσ
4k+2 (k ≥ 1) and all their cut-vertex

10



reducible signed graphs, 2-edge-cut reducible signed graphs, 3-edge-cut reducible signed graphs

such that the bridgeless, balanced component H is nontrivial.

Theorem 1.5.11. Let (G, σ) be a flow-admissible, K4-minor free signed graph. Then (G, σ)

admits a nowhere-zero 5-flow if and only if (G, σ) does not belong to the family N .
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Chapter 2

Flows of 3-edge-colorable cubic

signed graphs

The main purpose of this chapter is to consider the first introduce the following basic notation

and terminology.

2.1 Notation and Terminology

Let G be a graph. A leaf vertex is a vertex of degree 1. A path is nontrivial if it contains at

least two vertices. Let u, v be two vertices in V (G). A (u, v)-path is a path with u and v as its

endvertices. Let C = v1 · · · vrv1 be a circuit where v1, v2, . . . , vr appear in clockwise on C. A

segment of C is the path vivi+1 · · · vj−1vj contained in C and is denoted by viCvj , where the

indices are taken modulo r.

2.2 Uesful Lemmas

It is clear that a signed graph admits a Z2-NZF if and only if each component of (G, σ) is

eulerian. We introduced that Lemma 1.4.3 gives a characterization of signed graphs admitting a

2-NZF. We introduced Lemma 1.4.8 and Lemma 1.4.9 to show how to convert a modulo flow to

an integer-valued flow. Lemma 1.4.8 can be extended to the case when the support of a Z2-flow

contains an odd number of odd components in the following lemma.

Lemma 2.2.1. Let (G, σ) be a connected signed graph. If (G, σ) admits a Z2-flow f1 such that

the number of odd components of supp(f1) is odd and is at least three, then (G, σ) has a 5-flow

f2 satisfying

(1) supp(f2)/ supp(f1) is acyclic;
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(2) supp(f1) ⊆ {e ∈ E(G) : 1 ≤ |f2(e)| ≤ 3} and |f2(e)| ∈ {1, 2} for each negative loop

e ∈ supp(f1).

Proof. Let (G, σ) together with a Z2-flow (τ, f1) be a counterexample to Lemma 2.2.1 such that

|E(G)| is minimized. In the following, we always assume the flows are under the orientation τ

or its restriction on according subgraphs.

Denote by B the set of components of supp(f1) and let H = G/ supp(f1). Thus V (H) can be

partitioned into three parts: X,Y and W where X and Y are the sets of vertices corresponding

to even and odd components in B respectively and W is corresponding to the vertices which are

also the vertices in V (G). For u ∈ X ∪ Y , let Bu denote the corresponding component in B.

Claim 2.2.1.1. G contains no leaf vertices and H is a tree.

Proof. If G contains a leaf vertex, say x, then f1(e) = 0 where e is the edge incident with x and

G− x remains connected. This contradicts to the minimality of G.

Clearly H is connected since G is connected. If H is not a tree, then there is an edge

e ∈ E(G) such that f1(e) = 0 and G − e is connected, a contradiction to the minimality of G

again.

Let u be a leaf vertex of H and v be its neighbor. By Claim 2.2.1.1, u ∈ X ∪ Y . Since u is a

leaf vertex of H, there is only one edge in G with one endvertex in Bu and the other one in Bv.

Let xuxv be the only edge in G where xu ∈ V (Bu) and xv ∈ V (Bv).

Claim 2.2.1.2. u ∈ Y and v ̸∈ Y .

Proof. Suppose to the contrary that either u ∈ X or u ∈ Y and v ∈ Y . Let G′ = G − V (Bu).

Since Bu is a leaf block, G′ is connected.

If u ∈ X, then Bu is an even component and thus B − Bu and B have the same number of

odd components. Since G′ is connected, by the minimality of G, there is an integer 5-flow g1

of (G′, σ|E(G′)) such that supp(f1) − E(Bu) ⊆ supp(g1) and g1 satisfies (1) and (2). Then g1

can be considered as a flow of (G, σ) under the orientation τ such that E(Bu) ∩ supp(g1) = ∅.
Since Bu is an even eulerian component, by Lemma 1.4.3, there is a 2-flow g2 of (G, σ) such that

supp(g2) = E(Bu). Therefore g1+ g2 is a 5-flow of (G, σ) satisfying (1) and (2), a contradiction.

Now assume that u ∈ Y and v ∈ Y . Let B̂v be the subgraph obtained from Bv by deleting

as many negative loops in Bv as possible so that B̂v remains odd. Then B̂v contains at most one

negative loop and B−{Bu, Bv}+{B̂v} has an even number of odd components. By Lemma 1.4.8,

there is a 3-flow g3 such that supp(f1) − [E(Bu) ∪ E(Bv)] + E(B̂v) ⊆ supp(g3) and g3 satisfies

(1) and (2). Note that g3(xuxv) = 0 and g3(e) = 0 for each e ∈ E(Bu) ∪ [E(Bv) \ E(B̂v)].

By Lemma 1.4.8 again, there is a 3-flow g4 such that supp(g4) = E(Bu) ∪ E(Bv) + xuxv,

E(Bu) ∪E(Bv) = Eg4=±1, and {xuxv} = Eg4=±2. Since B̂v contains at most one negative loop,
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we have that supp(g3) contains at most one loop in Bv. Therefore either g3 + 2g4 or g3 − 2g4 is

a desired 5-flow, a contradiction. This proves the claim.

Let (G1, σ1) be the signed graph obtained from G − V (Bu) by adding a negative loop e1

at xv where σ1 is defined as σ1(e) = σ(e) for each e ∈ E(G1) − {e1} and σ1(e1) = −1. The

orientation τ1 of (G1, σ1) is defined as τ1(h) = τ(h) for each h ∈ H(G1) and h is not an half

edge of the loop e1; for each half edge h of e1, τ1(h) = τ(hvuv).

Let (G2, σ2) be the signed graph obtained from Bu by adding a negative loop e2 at xu. Its

signature σ2 and orientation τ2 are defined similarly to σ1 and τ1, respectively.

Denote B′
v = Bv ∪{e1} and B′ = B−Bu−Bv+B′

v if v ∈ X ∪Y ; otherwise denote B′
v = {e1}

and B′ = B −Bu +B′
v. Note that there is a Z2-flow of (G1, σ1) whose support is

⋃
B∈B′ E(B).

By Claim 2.2.1.2, both Bu and B′
v are odd. Thus B′ and B have the same number of odd

components. By the minimality of G, there is a 5-flow (τ1, g5) of (G1, σ1) satisfying (1) and (2).

By Claim 2.2.1.2, (G2, σ2) is a signed eulerian graph with even number of negative edges. By

Lemma 1.4.3, there is a 2-flow (τ2, g6) of (G2, σ2) such that supp(g6) = E(G2). We may assume

g5(e1)g6(e2) > 0 otherwise replacing g6 with −g6. Let a = g5(e1). Then |a| ∈ {1, 2}.
Let (τ, g7) be the integer flow of (G, σ) defined as follows: for each e ∈ E(G),

g7(e) =


g5(e) if e ∈ supp(g5);

ag6(e) if e ∈ supp(g6);

2a if e = uv;

0 otherwise.

Then g7 is a 5-flow of (G, σ) satisfying (1) and (2), a contradiction. This completes the proof

of the lemma.

The following lemma is due to Zaslavsky [35].

Lemma 2.2.2. (Zaslavsky [35]) Let T be a spanning tree of a signed graph (G, σ). For every

e /∈ E(T ), let Ce be the unique circuit contained in T + e. If the circuit Ce is balanced for every

e /∈ E(T ), then G is balanced.

The proof of the following lemma is inspired by the proof of Theorem 4.2 in [21] due to

Máčajová and Škoviera.

Lemma 2.2.3. Let C be an unbalanced circuit of a signed graph (G, σ). If (G, σ) is flow-

admissible and G− E(C) is balanced, then (G, σ) has a 4-flow f satisfying the following:

(1) E(C) ⊆ supp(f);

(2) In H = G[supp(f)] the subgraph induced by supp(f), each vertex in V (H) − V (C) has

degree at most 3 in H and at most one vertex in V (H)− V (C) has degree 3.
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Proof. Denote by G′ = G − E(C). Since G′ is balanced, with some switching operations, we

may assume that all edges in E(G′) are positive and thus EN (G, σ) ⊆ E(C). Fix an orientation

τ of (G, σ) and in the following we always assume the flows are under the orientation τ or its

restriction on according subgraphs.

Let M be a component of G′. The circuit C is divided by the vertices of M into segments

whose endvertices lie in M and all inner vertices lie outside M . An endvertex of a segment is

called an attachment of M . A segment is called positive (negative) if it contains an even (odd)

number of negative edges. Let S be a segment. Note that M ∪ S is unbalanced (balanced) if

and only if the segment S is negative (positive). Since C is unbalanced, the number of negative

segments determined by each component M is odd.

We prove the lemma by contradiction. Suppose to the contrary that (G, σ) has no 4-flow

satisfying (1) and (2).

Claim 2.2.3.1. Each component of G′ determines exactly one negative segment.

Proof. Suppose to the contrary that M determines more than one negative segments. Thus M

determines at least three negative segments. Let u1Cu′1, u2Cu′2, u3Cu′3 be three consecutive

negative segments (in clockwise) where ui and u′i are attachments for i = 1, 2, 3. Then u′1Cu2,

u′2Cu3, u
′
3Cu1 all contain even number of negative edges. This implies that C can be partitioned

into three negative segments: u1Cu2, u2Cu3, and u3Cu1.

We first show that no (u1, u2)-path in M passes through u3. Otherwise let P be a (u1, u2)-

path in M that passes through u3. Then C1 = u1Cu3 + u1Pu3 and C2 = u3Cu2 + u3Pu2 both

are balanced circuits. By Lemma 1.4.3, there is a 2-flow fi of (G, σ) such that supp(fi) = E(Ci)

for each i = 1, 2. Therefore 2f1 + f2 is a 4-flow of (G, σ) and supp(2f1 + f2) = E(C) ∪ E(P ),

which is a desired 4-flow, a contradiction.

By symmetry, no (ui, uj)-path passes through uk where {i, j, k} = {1, 2, 3}. This implies that

u1 and u2 are not adjacent. Otherwise, a (u1, u3)-path together with u1u2 gives a (u2, u3)-path

containing u1.

Let P1 be a (u1, u2)-path. Since M is connected, there is a path P2 from u3 to P1 such that

|V (P2) ∩ V (P1)| = 1. Let v be the only common vertex in P1 and P2. Then C,P1, and P2 form

a signed graph as illustrated in Figure 2.1 which has a desired 4-NZF, a contradiction again.

This completes the proof of the claim.

Let M denote the set of all components of G′. For each component M , denote by SM = uCv

the negative segment determined by M where u and v are two attachments of M on C. Denote

by S′
M = vCu the cosegment of SM . Then E(SM ) ̸= ∅ and E(S′

M ) = E(C)− E(SM ).

Claim 2.2.3.2.
⋂

M∈ME(SM ) = ∅. Therefore
⋃

M∈ME(S′
M ) = C and |M| ≥ 2.

15



v

u1

u2u3

3

21

3

12

Figure 2.1: a 4-flow covers C

Proof. Suppose to the contrary
⋂

M∈ME(SM ) ̸= ∅. Let e∗ ∈
⋂

M∈ME(SM ). Then there is a

spanning tree T of G − e∗ containing the path P ∗ = C − e∗. Let e = uv ∈ E(G) − e∗ − E(T ).

Denote the unique circuit contained in T + e by Ce.

If E(Ce) ∩ E(P ∗) = ∅, then Ce contains no negative edges and thus is balanced.

Assume that Ce and P ∗ have common edges. Since T contains all the edges in C − e∗,

E(Ce) ∩ E(C) is a path P on C. Let u′ and v′ be the two endvertices of P in clockwise order

on C. Then Ce[(V (Ce) − V (P )) ∪ {u′, v′}] is a also a path and thus it is contained in some

component M ∈ M. This implies that u′ and v′ are two attachments of M on C. Since e∗

belongs to the only negative segment of C determined by M , u′Cv′ is the union of some positive

segments of C determined by M . Therefore Ce has an even number of negative edges and thus

is balanced. By Lemma 2.2.2, G − e∗ is balanced, contradicting Lemma 1.4.1. This proves⋂
M∈ME(SM ) = ∅.
Since E(S′

M ) = E(C)− E(SM ) and
⋂

M∈ME(SM ) = ∅, we have
⋃

M∈ME(S′
M ) = C.

Since E(SM ) ̸= ∅ and
⋂

M∈ME(SM ) = ∅, we have |M| ≥ 2.

Let S = {S′
1, S

′
2, . . . , S

′
t} be a minimal cosegment cover of C. Then S′

i ̸⊆ S′
j for any i, j.

Claim 2.2.3.3. (i) For each pair i, j ∈ {1, 2, . . . , t}, either S′
i ∩ S′

j consists of some nontrivial

paths or S′
i and S′

j are vertex-disjoint;

(ii) Each edge e ∈ E(C) is contained in at most two cosegments.

Proof. (i) Note that for any two segments Si and Sj , their endvertices belong to two vertex-

disjoint components Mi and Mj . Thus no component of S′
i ∩ S′

j is an isolated vertex. This

proves (i).

(ii) Suppose to the contrary that there is an edge e = uv that belongs to three cosegments,

say S′
1, S

′
2, S

′
3. Let S

′
i = uiCvi for each i ∈ {1, 2, 3}. Without loss of generality, we may assume

that u1, u2, u3, u, v appear in this clockwise cyclic order. Then there exists a pair i, j such that

uiCvj contains all the ul, v
′
ls (l ∈ {1, 2, 3}) and u, v. Hence, there is a k ∈ {1, 2, 3} − {i, j} such
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Figure 2.2: Minimum cosegment cover and 4-flow

that uk and vk are properly included in uiCvj . In this case, either S \ {S′
k} is still a cover of C

or S′
k ∪ S′

i = C, both in contradiction to the minimality of S. This completes the proof of the

claim.

The final step. For each i = 1, . . . , t, denote by S′
i = xiCyi and let Pi be a path in Mi

connecting xi and yi. Then Ci = S′
i ∪ Pi is a balanced eulerian subgraph. By Claim 2.2.3.3,

we may assume that the vertices x1, yt, x2, y1, . . . , xt, yt−1, x1 appear on C in the acyclic order.

Then Ci ∩ Cj ̸= ∅ if and only if |j − i| ≡ 1 (mod t). Moreover Ci ∩ Ci+1 = xi+1Cyi where the

subindices are taken modulo t. See Figure 2.2 for an illustration with t = 5.

For each i ∈ {1, 2, . . . , t}, let (τ, fi) be a 2-flow of (G, σ) such that supp(fi) = E(Ci). We

may assume that for each i = 1, . . . , t− 1, fi(e) = fi+1(e) for each e ∈ E(Ci) ∩ E(Ci+1). Then

ϕ =
∑t−1

i=1 fi + 2ft is a 4-flow of (G, σ) satisfying E(C) ⊆ supp(ϕ) = E(C) ∪ [∪t
i=1E(Pi)]. Since

P1, . . . , Pt belong to different components of G′, they are pairwise vertex-disjoint. Thus for

each vertex v ∈ V (supp(ϕ)) − V (C), the degree of v in supp(ϕ) is two. Therefore ϕ is a 4-flow

satisfying (1) and (2), a contradiction to the assumption that (G, σ) is a counterexample. This

contradiction completes the proof of the lemma.

The proof of the following lemma is straightforward and thus is omitted.

Lemma 2.2.4. Let (G, σ) be a signed graph and C be a chordless circuit whose edges are all

positive. Suppose that 2 ≤ |δ(V (C))| ≤ 3 and k ≥ 4 is an integer. If (G/C, σ) has a k-NZF f ,

then f can be extended to be a k-NZF of (G, σ).
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2.3 Proofs of Theorem 1.5.5 and Corollary 1.5.4

Let’s first recall Theorem 1.5.5.

Theorem 1.5.5 Let (G, σ) be a connected 3-edge-colorable cubic signed graph and EN (G, σ)

be the set of negative edges in (G, σ). Let R,B, Y be the three color classes such that |R ∩
EN (G, σ)| ≡ |B ∩ EN (G, σ)| (mod 2). If (G, σ) is flow-admissible, then it has a nowhere-zero

8-flow unless R ∪ B contains no unbalanced circuits and the numbers of unbalanced circuits in

R ∪ Y and B ∪ Y are both odd and at least 3, in which case it has a nowhere-zero 10-flow.

Proof. Let τ be an orientation of (G, σ). In the following we always assume the flows are under

the orientation τ or its restriction on according subgraphs. Denote byM1M2 the 2-factor induced

by M1∪M2 for each pair M1,M2 ∈ {R,B, Y }. Since |R∩EN (G, σ)| ≡ |B ∩EN (G, σ)| (mod 2),

RB has an even number of odd components.

Case 1. RB contains an unbalanced circuit.

Then by Lemma 1.4.8, (G, σ) has a 3-flow (τ, f1) such that RB = Ef1=±1 and |f1(e)| = 2

only if e ∈ Y .

Subcase 1.1. |Y ∩ EN (G, σ)| ≡ |R ∩ EN (G, σ)| ≡ |B ∩ EN (G, σ)| (mod 2).

Then RY has an even number of unbalanced circuits. By Lemma 1.4.8 again, (G, σ) has a

3-flow (τf2) such that RY = Ef2=±1 and |f2(e)| = 2 only if e ∈ B.

Then f = f1 + 3f2 is a 9-NZF of (G, σ). Since Ef2=±2 ∩ Ef1=±2 = ∅, |f(e)| ̸= 8. Thus f is

indeed an 8-NZF of (G, σ).

Subcase 1.2. RY or BY has an odd number of unbalanced circuits.

In this case, both RY and BY have an odd number of unbalanced circuits.

Let C be an unbalanced circuit in RB. Let R′ = R △ C and B′ = B △ C with R and B,

respectively (this is equivalent to swap colors R and B on C). This implies that |Y ∩EN (G, σ)| ≡
|R′ ∩ EN (G, σ)| ≡ |B′ ∩ EN (G, σ)| (mod 2). We are back to Subcase 1.1.

Case 2. RB contains no unbalanced circuit.

Then by Lemma 1.4.3, (G, σ) has a 2-flow f3 such that supp(f3) = RB.

Subcase 2.1. The number of unbalanced circuits in RY or BY is even.

Let f2 be the 3-flow in Subcase 1.1. Then supp(f2) ∪ supp(f3) = E(G). Thus 3f3 + f2 is a

6-NZF of (G, σ).

Subcase 2.2. The number of unbalanced circuits in RY or BY is equal to one.

By symmetry, assume that RY has exactly one odd component, say C1. Let C = {C1, . . . , Ct}
be the set of components of RY , where each Ci (i ≥ 2) is balanced, and, with some switching

operations, we may assume that the edges of each Ci (i ≥ 2) are all positive. Let H be the
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signed graph obtained from (G, σ) by contracting C − C1. Then V (H) can be partitioned into

K and K, where K = V (C1) and K is the set of vertices corresponding to the balanced circuits

in C. For u ∈ K, denote the corresponding circuit in C by Cu. Since G is flow-admissible, H

remains flow-admissible. Note that C1 is an unbalanced circuit in H.

We consider the following two cases.

Subcase 2.2.1. H contains an unbalanced circuit C ′ that is edge-disjoint from C1.

Since G is cubic, C ′ is vertex-disjoint from C1. Thus there is a long barbell Q in H with P as

the path connecting C1 and C ′. Let τ1 be the orientation of Q which is a restriction of τ onH(Q).

By Lemma 1.4.8, let (τ1, f
′′) be a 3-NZF in Q. Since dQ(u) = 2 or 3 for any u ∈ V (Q)− V (C1),

u is corresponding to an all-positive circuit Cu in (G, σ) with |δQ(V (Cu))| = 2 or 3. Hence by

Lemma 2.2.4 we can extend f ′′ to a 4-flow f ′ (G, σ) with
⋃

u∈V (Q)E(Cu) ∪ E(C1) ⊆ supp(f ′).

Since for each v ∈ V (H)−V (Q), Cv is a balanced circuit in (G, σ) , (G, σ) admits a 2-flow ϕv with

E(Cv) = supp(ϕv). Thus f4 = f ′ +
∑

u∈V (H)−V (Q) ϕu is a 4-flow of (G, σ) with RY ⊆ supp(f4).

Therefore, f3 + 2f4 is an 8-NZF of (G, σ).

Subcase 2.2.2. H contains no unbalanced circuit that is edge-disjoint from C1.

In this case, H − E(C1) is balanced and thus G− E(C1) is balanced. With some switching

operations we may assume EN (G, σ) ⊆ EG(C1). By Lemma 2.2.3, (G, σ) has a 4-flow f ′′

such that C1 ⊆ supp(f ′′) and every vertex in supp(f ′′)− E(C1) has degree at most 3 in H. By

Lemma 2.2.4, we can extend f ′′ to a 4-flow f5 of (G, σ) with RY ⊆ supp(f5) in (G, σ). Therefore,

f3 + 2f5 is an 8-NZF of (G, σ).

Subcase 2.3. The number of unbalanced circuits in RY or BY is odd and is at least 3.

By symmetry, assume that the number of unbalanced circuits in RY is odd and is at least

3. By Lemma 2.2.1, (G, σ) has a 5-flow f6 such that RY ⊆ supp(f6) and Ef6=±4 ⊆ B. Then

supp(f3) ∪ supp(f6) = E(G). Thus 5f3 + f6 is a 10-NZF of (G, σ).

Next we will prove Corollary 1.5.4.

Corollary 1.5.4 Every flow-admissible bridgeless planar signed graph admits a nowhere-zero

10-flow.

Proof. Let (G, σ) be a flow-admissible bridgeless planar signed graph. Let τ be an orientation of

(G, σ). In the following we always assume the flows are under the orientation τ or its restriction

on according subgraphs.

We may assume that the minimum degree of G is at least 3 otherwise we can suppress all

degree 2 vertices. We may also assume that G contains no positive loops.

If G is cubic, then by Theorem 1.5.3 and the 4-color theorem, G admits a nowhere-zero

10-flow.
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Figure 2.3: blowing up of a vertex v with d(v) = 7 and t = 2. Dotted lines are negative edges.

Suppose that G is not cubic and that G is already embedded in a sphere. Let v be a vertex

with dG(v) ≥ 4 and t be the number of negative loops adjacent to v. First delete the t negative

loops and then blow up v into a circuit Cv of length dG(v)−2t where each edge of Cv is positive.

Let xy be an edge in Cv. Replace it with a subdivided edge u0u1u2 · · ·u2t+1 where x = u0 and

y = u2t+1 and then replace each uiui+1 with an unbalanced digon for each i = 1, 3, . . . , 2t − 1

(see Figure 2.3). Let (G′, σ′) be the resulting signed graph obtained from (G, σ) by applying

the above operations on each vertex in G of degree at least 4. Then (G′, σ′) is cubic, planar,

and flow-admissible. By Theorem 1.5.3 and the 4-color theorem, (G′, σ′) admits a nowhere-zero

10-flow. Note that (G, σ) can be obtained from (G′, σ′) by contracting an all-positive subgraph

of (G′, σ′). Thus (G, σ) admits a nowhere-zero 10-flow.

2.4 Proof of Theorem 1.5.6

Let’s first recall Theorem 1.5.6.

Theorem 1.5.6 If (G, σ) is a flow-admissible hamiltonian signed graph, then (G, σ) admits a

nowhere-zero 8-flow.

Proof. Let τ be an orientation of (G, σ). In the following we always assume the flows are under

the orientation τ or its restriction on according subgraphs. Let C0 be a hamiltonian circuit of

G. We consider two cases according to whether C0 is balanced or unbalanced.

Case 1. C0 is balanced.

We may assume that C0 is all-positive with some switching operations. It is known that

every ordinary graph with a hamiltonian circuit admits a 4-NZF (See Corollary 3.3.7 [36]).

Thus we may further assume that (G, σ) is unbalanced. Hence, by Lemma 1.4.1, G contains

at least two negative edges. Clearly, ⟨C0⟩2 = (G, σ). By Lemma 1.4.2, (G, σ) admits a Z3-flow
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ϕ such that E(G) − E(C0) ⊆ supp(ϕ). By Lemma 1.4.9, (G, σ) admits a 4-flow f1 such that

E(G)− E(C0) ⊆ supp(ϕ) ⊆ supp(f1).

Since C0 is balanced, (G, σ) has a 2-flow f2 such that E(C0) = supp(f2). Note that supp(f2)∪
supp(f1) = E(G). Therefore f = 2f1 + f2 is an 8-NZF of (G, σ).

Case 2. C0 is unbalanced.

Since C0 is unbalanced, for each edge e ̸∈ E(C0), there is a balanced circuit in C0 + e

containing e, denoted by Ce. Let H = △e/∈E(C0)Ce. Then H admits a Z2-NZF and has an even

number of negative edges.

If H doesn’t contain an unbalanced circuit, then we may assume that E(H) are all positive

with some switching operations. Thus EN (G) ⊆ E(C0) and (G, σ) has a 2-flow f3 such that

supp(f3) = E(H). By Lemma 2.2.3, there exists a 4-flow f4 such that E(C0) ⊆ supp(f4). Since

E(C0) ∪ E(H) = E(G), f3 + 2f4 is an 8-NZF of (G, σ).

Now assume that H contains an unbalanced circuit, say C ′
0. Since H admits a Z2-NZF

and has an even number of negative edges, by Lemma 1.4.8, (G, σ) has a 3-flow f5 such that

Ef5=±1 = E(H) and Ef5=±2 ⊆ E(C0)− E(H).

Let H ′ = C0 △ C ′
0. Then H ′ admits a Z2-NZF and has an even number of negative edges.

Since C0 ∪ C ′
0 is connected, by Lemma 1.4.8 again, (G, σ) has a 3-flow f6 such that supp(f6) ⊆

E(C0) ∪ E(C ′
0), Ef6=±1 = E(H ′), and Ef6=±2 ⊆ E(C0) ∩ E(C ′

0).

Therefore, 3f5 + f6 is a 9-NZF of (G, σ). Since Ef5=±2 ∩Ef6=±2 = ∅, |(3f5 + f6)(e)| ≠ 8 for

each edge e ∈ E(G). Thus, 3f5 + f6 is indeed an 8-NZF of (G, σ).
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Chapter 3

Integer flows on triangularly

connected signed graphs

3.1 Notations and Terminology

A triangle-path of length m, denoted by T1T2 · · ·Tm in G is a sequence of distinct triangles

T1, T2, . . . , Tm in G such that for any 1 ≤ i < j ≤ m,

|E(Ti) ∩ E(Ti+1)| = 1 and E(Ti) ∩ E(Tj) = ∅ if j > i+ 1.

A connected graph G is triangularly connected if for any two nonparallel distinct edges e and

e′, there is a triangle-path T1T2 · · ·Tm such that e ∈ E(T1) and e′ ∈ E(Tm). Trivially, the graph

with a single edge is triangularly connected. Let H1, H2, . . . ,Ht be subgraphs of G. Denote by

H1△H2△· · ·△Ht the symmetric difference of those subgraphs.

3.2 Useful Lemmas

In this section, we will present some lemmas that will be used in the proof of our main result.

Lemma 3.2.1. Let (G, σ) be a triangularly connected signed graph. Let T be an unbalanced

triangle if there is one otherwise let T be any balanced triangle. Then ⟨T ⟩2 = (G, σ) and

(G, σ) has a Z3-flow ϕ such that Eϕ=0 ⊆ E(T ) and for any triangle T ′, if there are two edges

e1, e2 ∈ E(T ′) such that T ′ is the only triangle containing them, then ϕ(e1) = ϕ(e2).

Proof. If there is a triangle T ′ containing two edges uv, uw such that each is contained in exactly

one triangle which is T ′, then split u into two vertices u1 and u2 such that u1 is adjacent to v and

w, and u2 is adjacent to each vertex in NG(u)− {v, w}. Then the degree of u1 is 2. Repeating

this operation until every pair of such edges share a degree 2-vertex. Denote the resulting graph

by (G′, σ).
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It is clear that ⟨T ⟩2 = (G′, σ). Thus by Lemma 1.4.2, (G′, σ) has a Z3-flow ϕ such that

Eϕ=0 ⊆ E(T ). Then ϕ is a desired Z3-flow of (G, σ).

The next lemma is proved in [18]. For the purpose of self-containment, we include their

proof here.

Lemma 3.2.2. Let (G, σ) be a signed graph with a path containing all the bridges. Then (G, σ)

admits a 3-NZF if (G, σ) admits a Z3-NZF.

Proof. Let (τ, ϕ) be a nowhere-zero Z3-flow of (G, σ). We may assume ϕ(e) = 1 for each edge e.

By Lemma 1.4.3, we may further assume that G has bridges. Since there is a path containing

all the bridges, G has exactly two leaf blocks, say G1 and G2. Let e1 = u1v1 and e2 = u2v2 be

the two bridges such that ui ∈ V (Gi) for each i = 1, 2.

For each i = 1, 2, denote by G′
i the signed graph obtained from Gi by adding a negative loop

e′i at ui such that the two half edges of e′i are oriented the same as the half edge of ei incident

with ui. Then both G1 and G2 are bridgeless and each admits a Z3-NZF. By Lemma 1.4.7, G′
i

admits a nowhere-zero 3-flow gi such that g(ei) = 1 for each i = 1, 2

If e1 and e2 are distinct, denote by G′
3 the signed graph obtained by deleting G1, G2, e1 and

e2, and then adding a new edge e3 = v1v2 where v1v2 consists of the half-edge of e1 incident with

v1 with the same orientation and the half-edge of e2 incident with v2 with the same orientation.

Then G3 is bridgeless and admits a Z3-NZF. By Lemma 1.4.7, G3 admits a nowhere-zero 3-flow

g3 such that g(e3) = 2.

If e1 = e2, then e1 is the only bridge of G and thus G = G1 ∪ G2 ∪ {e1}. It is easy to see

that one can obtain a 3-NZF of (G, σ) from g1 and g2 by deleting the negative loops e′1, e
′
2 and

assigning e1 with the flow value 2, a contradiction

If e1 ̸= e2, one can merge g1, g2 and g3 to obtain a nowhere-zero 3-flow of (G, σ), a contra-

diction. This completes the proof of the lemma.

The following lemma directly follows from the definition of triangularly connected graphs.

Lemma 3.2.3. Let G be a triangularly connected graph and U,W be two disjoint vertex set with

|δG(U,W )| = 3. Then either the three edges in δG(U,W ) share a common end vertex or the

three edges induce a path on four vertices. Moreover in the latter case, the four vertices of the

path induce a K4 minus one edge.

Lemma 3.2.4. Let G be a triangularly connected graph with δ(G) ≥ 3 and E0 be a set of edges

of G. If |E0| ≤ 4 and each component of G − E0 is either an isolated vertex or has minimum

degree at least 2, then in each nontrivial component, there is a path containing all the bridges of

the component.
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Figure 3.1: The structure of a graph with three bridges not contained in a path

Proof. Suppose to the contrary that G′ = G − E0 has a component say H that contains three

bridges, say x1y1, x2y2, x3y3, which don’t belong to a path (see Figure 3.1). Deleting these three

edges, we will get four components and denote the component containing xi by Hi for i = 1, 2, 3

and denote the component containing y1, y2, y3 by H0.

Since G is triangularly connected and δ(G) ≥ 3, G has no cut-vertex and has no 2-edge-cut.

Thus G is 3-edge connected. Since the minimum degree of each nontrivial component of G−E0

is at least 2, |V (Hi)| ≥ 2 for each i = 1, 2, 3.

Claim 3.2.4.1. G′ is connected.

Proof. Suppose to the contrary that G1 and G2 are two components of G′, where Hi ⊆ G1

for each i = 1, 2, 3. This implies that 2|E0| = |δG(G2)| +
∑3

i=0 |δG(V (Hi))| − 3 × 2 ≥ 9. It

contradicts the hypothesis |E0| ≤ 4. □

Claim 3.2.4.2. There exists an integer i ∈ {1, 2, 3} such that δG(Hi) = 3 and for any Hj with

|δG(Hj)| = 3, δG(Hj) ̸= δG(Hj , H0).

Proof. We first prove that there exists an i ∈ {1, 2, 3} such that δG(Hi) = 3. Suppose to the

contrary that δ(Hj) ≥ 4 for each j ∈ {1, 2, 3}. It follows that 2|E0| =
∑3

j=1 |δG(Hj)|+|δG(H0)|−
3× 2 ≥ 3× 4 + 3− 6 = 9, a contradiction.

Without loss of generality, assume that |δG(H1)| = 3. Suppose to the contrary that δG(H1) =

δG(H1, H0). It follows that |δG(H2)| = |δG(H3)| = 3, otherwise 2|E0| =
∑3

j=1 |δG(Hj)| +
|δG(H0)| − 3 × 2 ≥ 9, a contradiction. If |δG(H2) ∩ δG(H3)| ≤ 1, then |E0| ≥

∑3
j=1(|δG(Hj)| −

1) − 1 ≥ 5, a contradiction. Thus |δG(H2) ∩ δG(H3)| = 2. This implies that {x2y2, x3y3} is a

2-edge-cut of G. It contradicts that G is 3-edge-connected. Therefore δG(H1) ̸= δG(H1, H0).

This completes the proof of this claim. □

By Claim 3.2.4.2, in the following without loss of generality we assume that |δG(H1)| = 3

and δG(H1, H2) ̸= ∅.

Claim 3.2.4.3. δG(H1, H3) = ∅, |δG(H3)| = 3, and δG(H2, H0) = {x2y2}.
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Proof. Suppose to the contrary that δG(H1, H3) ̸= ∅. Since δG(H1, H2) ̸= ∅, by Claim 3.2.4.2,

we have |δG(H1, Hi)| = 1 for each i = 0, 2, 3. Since δG(H1) is an edge cut with |δG(H1)| = 3

and clearly the three edges in δG(H1) don’t induce a path, by Lemma 3.2.3, the three edges

share a common end vertex which is x1. Since |V (H1)| ≥ 2, we have that x1 is a cut-vertex, a

contradiction. This proves δG(H1, H3) = ∅.
Since δG(H1, H3) = ∅ and |E0| ≤ 4, we have 3 ≤ |δG(H3)| ≤ 4−2+1 = 3. Thus |δG(H3)| = 3.

Since (δG(H1)∪ δG(H3)) \ {x1y1, x3y3} ⊆ E0 and |(δG(H1)∪ δG(H3)) \ {x1y1, x3y3}| = 4, we

have (δG(H1) ∪ δG(H3)) \ {x1y1, x3y3} = E0. Therefore δG(H2, H0) = {x2y2}. □

The final step. By Claims 3.2.4.2 and 3.2.4.3, there is an edge u1u2 ∈ δG(H1, H2) where

u1 ∈ V (H1) and u1 ̸= x1. By Lemma 3.2.3, u2 and y1 are adjacent. Since δG(H2, H0) = {x2y2}
by Claim 3.2.4.3, we have u2 = x2 and y1 = y2. Similarly there is an edge v3v2 ∈ δG(H3, H2)

where v3 ∈ V (H3) and v3 ̸= x3 and v2 = x2. By Lemma 3.2.3, all the edges in δG(H2) share a

common end vertex x2. Since |V (H2)| ≥ 2, x2 is a cut-vertex, a contradiction to the fact that

G has no cut-vertex. This contradiction completes the proof of the lemma.

The following is a corollary of Lemmas 3.2.2 and 3.2.4.

Lemma 3.2.5. Let (G, σ) be a triangularly connected signed graph and ϕ be a Z3-flow of (G, σ)

with |Eϕ=0| ≤ 4, then (G, σ) admits a 3-flow f with supp(f) = supp(ϕ).

Lemma 3.2.6. Let k ≥ 3 be an integer and C be a balanced circuit of (G, σ). Let g be a 2-flow of

(G, σ) with supp(g) = E(C) and f1 be an integer k-flow of (G, σ) such that | supp(f1)∩E(C)| ≤
k − 2 and |f1(e)| ≤ k

2 for each e ∈ E(C). Then there is an α ∈ {±1,±2, · · · ,±⌊k2⌋} such that

f2 = f1 − αg is an integer k-flow with supp(f2) = supp(f1) ∪ E(C) .

Proof. Since | supp(f1) ∩ E(C)| ≤ k − 2, we have |f1(C)| ≤ k − 1.

If k is odd, then there exists an integer α ∈ {±1, . . . ,±⌊k2⌋} \ f1(C).

If k is even, then there exists at least two integers in {±1, . . . ,±k
2}\f1(C). If {±k

2}∩f1(C) =

∅, let α = k
2 ; otherwise pick one α ∈ {±1, · · · ,±(k2 − 1)} \ f1(C). Let f2 = f1 − αg.

Clearly, when |α| < k
2 , f2 is an integer k-flow with supp(f2) = supp(f1) ∪ E(C).

If α = k
2 , then {±k

2} ∩ f1(C) = ∅. Thus for each e ∈ E(C), |f1(e)| ≤ k
2 − 1, so −(k −

1) ≤ f2(e) = f1(e) − αg(e) ≤ k − 1 and f2(e) ̸= 0. Therefore, f2 is an integer k-flow with

supp(f2) = supp(f1) ∪ E(C). This completes the proof of the lemma.

Lemma 3.2.7. Let C be a balanced circuit of (G, σ) with length at most 4 and g be a 2-flow of

(G, σ) with supp(g1) = E(C). Then for any Z3-flow ϕ of (G, σ), there is an α ∈ Z3 such that

ϕ1 = ϕ− αg is a Z3-flow satisfying |Eϕ1=0 ∩ E(C)| ∈ {0, |E(C)| − 2}.
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Proof. Let ϕ be a Z3-flow of (G, σ). If |Eϕ=0 ∩ E(C)| ∈ {0, |E(C)| − 2}, take α = 0.

If |Eϕ=0 ∩ E(C)| ≥ |E(C)| − 1, we can easily find some α ∈ Z3 such that ϕ1 = ϕ− αg1 is a

Z3-flow satisfying |Eϕ1=0 ∩ E(C)| = 0.

Now we assume |Eϕ=0 ∩ E(C)| ≤ |E(C)| − 3 and |Eϕ=0 ∩ E(C)| ̸∈ {0, |E(C)| − 2}. Then

|E(C)| = 4 and |Eϕ=0∩E(C)| = |E(C)|−3 = 1. Thus |ϕ(C)| ∈ {2, 3}. If |ϕ(C)| = 2, then choose

an α in Z3 \ϕ(C). If |ϕ(C)| = 3, then there is an α ∈ ϕ(C) \ {0} such that there are exactly two

edges e in E(C) with ϕ(e) = α. Then ϕ1 = ϕ− αg is a Z3-flow satisfying ϕ(e) = ϕ1(e) for each

e ∈ E(G)− E(C) and |Eϕ1=0 ∩ E(C)| ∈ {0, |E(C)| − 2}.

Lemma 3.2.8. Let (G, σ) be a triangularly connected signed graph and C1, . . . , Ct (1 ≤ t ≤ 2)

be pairwise edge-disjoint balanced circuits of length at most 4. If ϕ is a Z3-flow of (G, σ) such

that Eϕ=0 ⊆ ∪t
i=1E(Ci) and |Eϕ=0| ≤ 4, then (G, σ) admits a 4-NZF.

Proof. By Lemma 3.2.7, we may assume that |Eϕ=0 ∩ E(Ci)| ∈ {0, |E(Ci)| − 2} for each i =

1, . . . , t. Then |Eϕ=0| ≤ 4. By Lemma 3.2.5, there is a 3-flow f such that supp(f) = supp(ϕ)

and of course f is a 4-flow. Taking k = 4, we have |f(e)| ≤ k
2 and |Ef ̸=0 ∩ E(Ci)| = 2 = k − 2

for each Ci with Ef=0 ∩E(Ci) ̸= ∅. Applying Lemma 3.2.6 on every Ci with Ef=0 ∩E(Ci) ̸= ∅,
one can obtain a desired 4-NZF.

By Lemma 2.2 of [7], the proof of the following lemma is straightforward.

Lemma 3.2.9. Let f be a Z3-flow of (G, σ) and H = T1T2 · · ·Tm be a triangle-path in G such

that each Ti is balanced for 1 ≤ i ≤ m. Given an edge e0 ∈ E(H), then there is another Z3-flow

g of (G, σ) satisfying:

(1) f(e) = g(e) for each e ̸∈ E(H);

(2) g(e) ̸= 0 for each edge e ∈ E(H)− {e0}.

Lemma 3.2.10. Let (G, σ) be a triangularly connected signed graph, C1 be a balanced triangle

and C2 be a balanced circuit of length at most 4 such that |E(C1)∩E(C2)| ≤ 1. If ϕ is a Z3-flow

of G such that Eϕ=0 ⊆ E(C1) ∪ E(C2), then (G, σ) admits a 4-NZF.

Proof. If C1 and C2 are edge-disjoint, then by Lemma 3.2.8, (G, σ) admits a 4-NZF.

If C1 and C2 are not edge-disjoint, then |E(C1) ∩ E(C2)| = 1. Let e0 be the common edge

of C1 and C2. Applying Lemma 3.2.9 on H = C1 and e0, we may assume Eϕ=0 ⊆ E(C2). By

Lemma 3.2.8, (G, σ) admits a 4-NZF.

3.3 Sharpness of Theorem 1.5.7

Fan et al. [7] give a complete characterization of triangularly connected ordinary graphs that

admit a 4-NZF but no 3-NZF. In this subsection we present a family of unbalanced triangularly
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Figure 3.2: an unbalanced signed graph (G8, σ)

connected signed graphs that admit a 4-NZF but no 3-NZF. Interestingly all those graphs do not

contain an unbalanced triangle. This indicates that there are unbalanced triangularly connected

signed graphs without unbalanced triangles.

For each integer t ≥ 4, construct the signed graph (G2t, σ) as follows (see Figure 3.2 for an

illustration with t = 4):

(1) The graph G2t is constructed from the two circuits C1 = x1x2 · · ·xtx1 and C2 =

y1y2 · · · yty1 by adding the edges yixi and yixi+1 for each i ∈ Zt;

(2) EN (G2t, σ) consists of the edges x1x2, y1y2 and all edges yixi, yixi+1 except y1x2.

Theorem 3.3.1. For each t ≥ 4, (G2t, σ) is flow-admissible and admits a 4-NZF but no 3-NZF.

Since (G2t, σ) is bridgeless and every edge is contained in a balanced triangle, by Proposi-

tion 1.4.1, it is flow-admissible. Since G2t is Eulerian, the second part of Theorem 3.3.1 follows

from the following result due to Mačajova and Škoviera.

Theorem 3.3.2. (Mačajova and Škoviera[21]) Let (G, σ) be an Eulerian signed graph with an

odd number of negative edges. Then (G, σ) admits a 4-NZF if it it flow-admissible. More-

over (G, σ) admits a 3-NZF if and only if (G, σ) can be decomposed into three signed Eulerian

subgraphs that have a vertex in common and that each has an odd number of negative edges.

3.4 Proof of Theorem 1.5.7

Theorem 1.5.7. If (G, σ) is a flow-admissible triangularly connected signed graph, then (G, σ)

admits a nowhere-zero 4-flow if and only if (G, σ) ̸= (W5, σ
∗) where (W5, σ

∗) is the signed graph

in Figure 1.4. Moreover there are infinitely many triangularly connected unbalanced signed

graphs that admit a nowhere-zero 4-flow but no 3-flow.
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Proof. We prove Theorem 1.5.7 by contradiction. Let (G, σ) be a counterexample such that

β(G) =
∑

v∈V (G)(d(v)− 2) is as small as possible. Let τ be a fixed orientation of (G, σ) in the

proof.

Hu and Li [10] show that (W5, σ
∗) in Figure 1.4 admits a 5-NZF but no 4-NZF. Then (G, σ)

does not admit a 4-NZF. By Lemma 3.2.8 we have the following fact which will be applied

frequently in the proof.

Fact A (G, σ) does not admit a Z3-flow ϕ such that Eϕ=0 ⊆ E(C1)∪· · ·∪E(Ct) where 1 ≤ t ≤ 2

and C1, . . . , Ct are edge-disjoint balanced circuits of length at most four.

If G contains two parallel edges e1 and e2, then after inserting a degree 2-vertex into e1, the

resulting graph G′ remains triangularly connected, flow-admissible, and β(G′) = β(G). Thus in

the following proof, we assume that G is simple.

If G contains no unbalanced triangle, let T be a triangle. By Lemma 3.2.1, let ϕ be a Z3-flow

ϕ with Eϕ=0 ⊆ E(T ), a contradiction to Fact A. Thus G contains an unbalanced triangle.

(I) (G, σ) contains two edge-disjoint unbalanced triangles.

Proof of (I). Suppose to the contrary that (G, σ) contains no edge-disjoint unbalanced triangles.

Let T be an unbalanced triangle and ϕ be a Z3-flow ϕ with Eϕ=0 ⊆ E(T ).

We consider two cases in the following.

Case I.1. (G, σ) contains at least two unbalanced triangles.

Let T1, T2, . . . , Tt be all the unbalanced triangles where T = T1. Then t ≥ 2. Since (G, σ)

contains no edge-disjoint unbalanced triangles, all unbalanced triangles share a common edge,

denoted by uv. For each i denote by wi the third vertex of Ti. Then for any 1 ≤ i < j ≤ t,

Ti △ Tj is a balanced circuit of length 4.

Since T1 △ T2 is a balanced 4-circuit, by Fact A, ϕ(uv) = 0 and uv is not contained in a

balanced triangle. This implies that no other triangle than T1, T2, . . . , Tt contains uv.

Since (G, σ) is flow-admissible, there is a signed circuit C containing uv. By Proposition 1.4.4,

let f be a 2-flow (if C is a balanced circuit or a short barbell) or a 3-flow (if C is a long barbell)

such that supp(f) = E(C). Let ϕ1 = ϕ+ f be the Z3-flow. Then ϕ1(uv) ̸= 0.

Let e ∈ Eϕ1=0−
⋃t

i=1E(Ti). Then there is a triangle-path S1S2 · · ·Sk where e ∈ Sk, uv ∈ S1 ∈
{T1, T2, . . . , Tt}, and S2, S3, . . . , Sk are balanced. Let H = S2S3 · · ·Sk and e′ = E(S1) ∩ E(S2).

By Lemma 3.2.9, there is a Z3-flow g of (G, σ) satisfying:

(1) ϕ1(e) = g(e) for each e ̸∈ E(H);

(2) g(e) ̸= 0 for each edge e ∈ E(H)− {e′}.
By applying the above operation on each edge in Eϕ1=0 −

⋃t
i=1E(Ti), one can obtain a

Z3-flow ϕ2 such that Eϕ2=0 ⊆
⋃t

i=1E(Ti)− {uv}.
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Denote Ci = T1 △ Ti for each i = 2, . . . , t. Then each Ci is a balanced 4-circuit. For

each i = 2, . . . , t, let fi be a 2-flow of (G, σ) with supp(fi) = E(Ci) and let αi ∈ Z3 −
{ϕ2(uwi)fi(uwi), ϕ2(vwi)fi(vwi)}. Let ϕ3 = ϕ2 −

∑t
i=2 αifi. Then ϕ3 is a Z3-flow such that

Eϕ3=0 ⊆ {uw1, vw1} ⊆ E(C2), a contradiction to Fact A.

Case I.2. (G, σ) contains only one unbalanced triangle.

Denote E(T ) = {e1, e2, e3}. If every edge in Eϕ=0 is contained in a triangle other than

T , then every edge in Eϕ=0 is contained in a balanced triangle since T is the only unbalanced

triangle in (G, σ). By Lemma 3.2.8, |Eϕ=0| ≥ 2 and those balanced triangles are not edge-

disjoint. This implies that there is a K4 containing T where T is the only unbalanced triangle

in the K4. However, T is the symmetric difference of the other three balanced triangles in the

K4. Thus T is balanced, a contradiction. Therefore there is one edge in Eϕ=0 that is contained

in only one triangle which is T .

Since (G, σ) is flow-admissible, there is another edge in E(T ) which is contained in a balanced

triangle. Without loss generality, assume that e1 is contained in only one triangle, ϕ(e1) = 0

and e3 is contained a balanced triangle. Note that by Lemma 3.2.1, if e2 is not contained in a

balanced triangle, then ϕ(e1) = ϕ(e2) = 0.

Since (G, σ) is flow-admissible, by Proposition 1.4.1, there is a signed circuit C1 containing

e1 and there is a signed circuit C2 containing e2. We choose C2 = C1 if there is a signed circuit

containing both e1 and e2; otherwise choose any signed circuit C2 containing e2.

By Lemma 1.4.4, let fi be a 2-flow or 3-flow of (G, σ) with supp(fi) = E(Ci) for each i = 1, 2.

We construct another Z3-flow ϕ1 of (G, σ) as follows:

Let α ∈ Z3 − {0, ϕ(e2)f2(e2)}. If C1 = C2, then f1 = f2 and let ϕ1 = ϕ − αf1; if C1 ̸= C2,

then f1(e2) = f2(e1) = 0 and let ϕ1 = ϕ− α(f1 + f2).

Then Eϕ1=0 ∩ {e1, e2} = ∅ and every edge in Eϕ1=0 is contained in a balanced triangle.

Similar to the argument in Case I.1, there is a Z3-flow ϕ2 such that Eϕ2=0 ⊆ {e3} if e2 is not

contained in a balanced triangle or Eϕ2=0 ⊆ {e2, e3} otherwise, a contradiction to Fact A.

We obtain a contradiction in either case and thus completes the proof of (I). 2

(II) G is locally connected.

Proof of (II). Suppose to the contrary that G is not locally connected. Then there is a

vertex v ∈ V (G) such that G[NG(v)] is not connected. Since G is triangularly connected, each

component of G[NG(v)] is nontrivial. Let H be a component of G[NG(v)]. Split v into two

nonadjacent vertices v′ and v′′ where v′ is adjacent to all vertices in H and v′′ is adjacent to all

vertices in NG(v)− V (H). The signs of all edges remain the same. Denote the resulting signed

graph by (G′, σ). By (I), (G′, σ) contains two edge-disjoint unbalanced triangles. Since G′ is

connected and bridgeless, by Proposition 1.4.1, (G′, σ) is flow-admissible. Obviously β(G′) <

β(G) and G′ remains triangularly connected. By the minimality of β(G), (G′, σ) admits a 4-NZF
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f . Identifying v′ and v′′, one can easily obtain a 4-NZF of (G, σ), a contradiction. Therefore G

is locally connected. 2

(III) (G, σ) does not contain any of the 11 configurations in Figure 3.3.

Proof of (III). For a balanced circuit or a short barbell C, denote by χ(C) a 2-flow of (G, σ)

with supp(χ(C)) = E(C) guaranteed by Lemma 1.4.4. In the following argument, all cases only

involve one χ(C) except one which involves three balanced circuits with one common edge. Thus

without loss of generality, we assume that χ(C) is a nonnegative 2-flow.

Take T = T1 if (G, σ) contains FCi if i ∈ {1, 2, 3, 9, 10}, T = T2 if (G, σ) contains FC4 or

FC11, and T = T3 if (G, σ) contains FCi if i ∈ {5, 6, 7, 8}.
Since in FC1 or FC2, E(T1) is contained in two edge-disjoint balanced circuits of length at

most 4, a contradiction to Fact A. This proves that (G, σ) does not contain FC1 or FC2.

In FC3, any two edges in T1 are contained in a balanced 4-circuit, thus by Fact A, Eϕ=0 =

E(T1). Let C = T2△T3. Then C is a balanced 4-circuit and contains the two edges uv1 and uv2.

Let ϕ1 = ϕ+ϕ(v2v3)χ(C). Then ϕ1 is a Z3-flow such that Eϕ1=0 ⊆ E(T1△T3). This contradicts

Fact A since T1 △ T3 is a balanced 4-circuit. This proves that (G, σ) does not contain FC3.

Similarly, in FC4, by Fact A, Eϕ=0 = E(T2). Let C = T2 △ T3 which is a balanced 4-circuit

and let ϕ1 = ϕ+ϕ(v4v5)χ(C). Then ϕ1 is a Z3-flow such that Eϕ1=0 ⊆ {v3v4, v3v5} ⊆ E(T3△T4).

This contradicts Fact A since T3 △ T4 is a balanced 4-circuit. This proves that (G, σ) does not

contain FC4.

Suppose that G contains FCi for some i = 5, 6, 7, 8. By Fact A, ϕ(v4v5) = 0 in FC5 and

in FCi where i = 6, 7, 8, ϕ(v3v5) = 0. Let C = T2 △ T3, which is a balanced 4-circuit. Let

ϕ1 = ϕ+ϕ(v2v3)χ(C). Then ϕ1 is a Z3-flow such that Eϕ1=0 ⊆ E(T1△T2)∪E(T4) when i = 5, 6

and Eϕ1=0 ⊆ E(T1 △ T2) ∪E(T4 △ T5) when i = 7, 8. In the former case, T1 △ T2 is a balanced

4-circuit and T4 is a balanced 3-circuit and they are edg-disjoint. In the latter case, T1 △ T2

and T4 △ T5 are edge-disjoint balanced 4-circuits. This contradicts Fact A and thus proves that

(G, σ) does not contain FCi for each i = 5, 6, 7, 8.

Now we consider the case when (G, σ) contains FC9. Similar to the above argument, we

have ϕ(v1v3) = ϕ(v2v3) = 0.

If ϕ(v1v2) = 0, let ϕ1 = ϕ+ϕ(v3v5)χ(C) where C = T1△T4 is a balanced 4-circuit. Then ϕ1

is a Z3-flow such that Eϕ1=0 ⊆ E(T3 △ T4). This contradicts Fact A since T3 △ T4 is a balanced

4-circuit.

Now we further assume ϕ(v1v2) = α ̸= 0. Note that C = T1 ∪ T3 is a short barbell. If one

of ϕ(v3v4) and ϕ(v3v5) is not equal to −α, without loss of generality, assume ϕ(v3v4) ̸= −α.

Let ϕ1 = ϕ + αχ(C). Then ϕ1 is a Z3-flow such that Eϕ1=0 ⊆ {v3v5, v5v4} ⊆ E(T2 △ T3).

This contradicts Fact A since T2 △ T3 is a balanced 4-circuit. If ϕ(v3v4) = ϕ(v3v5) = −α, let

ϕ1 = ϕ−αχ(C). Then ϕ1 is a Z3-flow such that Eϕ1=0 ⊆ {v1v2, v5v4}, a contradiction to Fact A
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again since v1v2 and v5v4 are contained in the balanced 4-circuit v1v2v4v5v1. This proves that

(G, σ) does not contain FC9.

Suppose that (G, σ) contains FC10. Similarly as before we have that ϕ(v1v3) = 0 and at

least one of ϕ(v2v1) and ϕ(v2v3) is 0. Let ϕ1 = ϕ + ϕ(v4v5)χ(C) where C = T1 ∪ T3 is a short

barbell. Then ϕ1 is a Z3-flow such that Eϕ1=0 ⊆ E(T1△T4)∪E(T2). Since T1△T4 is a balanced

4-circuit, T2 is a balanced triangle, and they share one common edge, by Lemma 3.2.10, (G, σ)

admits a 4-NZF, a contradiction. Thus (G, σ) does not contain FC10.

Finally suppose that (G, σ) contains FC11. Denote C1 = T1△T2, C2 = T2△T3, and C3 = T4.

Note that C1, C2, C3 are all balanced circuits sharing a common edge v2v4.

Claim 3.4.0.1. There is a 3-flow f such that v2v4 ∈ Ef=0 ⊆ E(C1)∪E(C2) and |Ef=0∩E(Ci)| ≥
2 for each i = 1, 2.

Proof. With a similar argument as before, we have ϕ(v2v3) = ϕ(v3v4) = 0. If ϕ(v2v4) = 0, then

by Lemma 3.2.5, let f be a 3-flow with supp(f) = supp(ϕ) which is a desired 3-flow.

Since ϕ is a Z3-flow, we may assume that ϕ(e) ∈ {a, b, 0} for each e ∈ E(G) with a+ b = 0.

Assume ϕ(v2v4) = a. If ϕ(v1v2) = ϕ(v1v3) = b, let ϕ1 = ϕ + bχ(C1), where C1 corresponds to

the orientation of the Z3-flow ϕ of E(G). Then Eϕ1=0 = {v2v3, v2v4} ⊆ E(C1), a contradiction

to Fact A. Thus ϕ(v1v2) ̸= ϕ(v1v3). Then a ∈ {ϕ(v1v2), ϕ(v1v3)}. Let ϕ2 = ϕ − aχ(C1).

Then v2v4 ∈ Eϕ2=0 and |Eϕ2=0 ∩ E(Ci)| = 2 for each i = 1, 2. By Lemma 3.2.5, let g be the

corresponding 3-flow of ϕ2 with supp(g) = supp(ϕ2) which is a desired 3-flow. This prove the

claim.

Let f be a 3-flow described in Claim 3.4.0.1. Note |{±1,±2} \ f(Ci)| ≥ 2 for each i = 1, 2.

If {1,−1} \ f(Ci) ̸= ∅, take αi ∈ {1,−1} \ f(Ci). Otherwise f(Ci) = {0, 1,−1} and take

αi ∈ {2,−2}. In the case when both |α1| = |α2| = 2, we choose α1 = 2 and α2 = −2. Then

g = f + α1χ(C1) + α2χ(C2) is a 4-flow such that Eg=±3 ⊆ E(C1) ∪ E(C2) and Eg=0 ⊆ {v2v4}.
Since (G, σ) does not admit a 4-NZF, g(v2v4) = 0. Since T4 is a balanced triangle and |g(e)| ≤ 2

for each e ∈ E(T4), one can extend g to be a 4-NZF of (G, σ), a contradiction. This proves that

(G, σ) does not contain FC11 and thus completes the proof of (III). 2

(IV) There is no triangle-path T1T2 · · ·Tm in (G, σ) such that m ≥ 3, T1 and Tm are unbalanced,

and Ti is balanced for each i ∈ {2, . . . ,m− 1}.

Proof of (IV). Suppose to the contrary that there is a triangle-path H = T1T2 · · ·Tm such that

m ≥ 3, T1 and Tm are unbalanced and Ti is balanced for each i = {2, . . . ,m−1}. Denote by H ′ =

T2 · · ·Tm−1. Denote E(T1) = {e1, e2, e3} and E(Tm) = {e4, e5, e6} where e3 ∈ E(T1) ∩ E(T2)

and e6 ∈ E(Tm)∩E(Tm−1). Let x be the common endvertex of e1 and e2 and y be the common

endvertex of e4 and e5. Let C = T1 △ T2 △ · · · △ Tm. Then C is a balanced circuit containing

ei for each i = 1, 2, 4, 5.
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Figure 3.3: Forbidden configurations: the dotted lines are negative edges.
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Take T = T1. Then Eϕ=0 ⊆ E(T1). Since e3 belongs to the balanced triangle T2, by Lemma

3.2.8, either ϕ(e1) = 0 or ϕ(e2) = 0.

If d(x) ≥ 3, there is a triangle T0 such that T0 and T1 share exactly one of e1 and e2 since

by (II), G is locally connected. Let C1 = T0 if T0 is balanced otherwise let C1 = T0 △ T1 which

is a balanced 4-circuit. Without loss of generality assume e1 ∈ E(C1).

Similarly if d(y) ≥ 3, there is a triangle Tm+1 such that Tm+1 and Tm share exactly one of e4

and e5. Let C2 = Tm+1 if Tm+1 is balanced otherwise let C2 = Tm+1 △ Tm which is a balanced

4-circuit. Without loss of generality assume e4 ∈ E(C2).

Let α = ϕ(e5) and ϕ1 = ϕ+ αχ(C).

We first show ϕ(e1) ̸= ϕ(e2). Suppose the contradiction that ϕ(e1) = ϕ(e2). Then ϕ(e1) =

ϕ(e2) = 0 and thus Eϕ1=0 ⊆ E(H ′) ∪ {e4}.
If ϕ1(e4) ̸= 0, then Eϕ1=0 ⊆ E(H ′). By Lemma 3.2.9, there is a Z3-flow ϕ2 such that

Eϕ2=0 ⊆ {e6}, a contradiction to Fact A.

If ϕ1(e4) = 0, then ϕ(e4) ̸= ϕ(e5). This implies d(y) ≥ 3 and thus C2 exists. If E(C2) ∩
E(H ′) ̸= ∅, let e0 ∈ E(C2)∩E(H ′). Otherwise, let e0 = e6. By Lemma 3.2.9, there is a Z3-flow

ϕ3 such that Eϕ3=0 ⊆ {e0, e4} ⊆ E(C2), a contradiction to Fact A since C2 is a balanced circuit

of length at most 4. This shows that ϕ(e1) ̸= ϕ(e2), which implies d(x) ≥ 3. By symmetry, we

also have d(y) ≥ 3. Therefore both C1 and C2 exist.

Since e1 ∈ E(C1) and e3 ∈ E(T2), we have ϕ(e2) = 0. Then Eϕ1=0 ⊆ E(H ′) ∪ {e1, e4}. If

(E(C1) ∪ E(C2)) ∩ E(H ′) ̸= ∅, let e7 be an edge in (E(C1) ∪ E(C2)) ∩ E(H ′). Otherwise let

e7 = e3. By Lemma 3.2.9, one can obtained a Z3-flow ϕ4 from ϕ1 such that Eϕ4=0 ⊆ {e1, e4, e7}.
Note that if Ci is a circuit of length 4 for some i = 1, 2, then e7 ∈ E(Ci) ∩ E(H ′).

If C1 and C2 are edge-disjoint, then we have either {e1, e4, e7} ⊆ E(C1)∪E(C2) or {e1, e4, e7}
⊆ E(C1)∪E(C2)∪E(T2) where C1, C2, T2 are edge-disjoint balanced triangles. The former case

contradicts Fact A. In the latter case, by Lemma 3.2.5, there is an integer 3-flow flow f such that

supp(f) = supp(ϕ4). By Lemma 3.2.6 (considering f as an integer 4-flow), f can be extended

to a 4-NZF of G, a contradiction. Therefore C1 and C2 are not edge-disjoint.

If C1 is a triangle, then by Lemma 3.2.9, one can obtain a Z3-flow ϕ5 from ϕ4 such that

|Eϕ5=0| ≤ 4 and Eϕ5=0 ⊆ E(C2)∪{e7} since C1 and C2 are not edge-disjoint. Since e7 is contained

in a balanced triangle and C2 is a balanced 4-circuit, by Lemma 3.2.8 or Lemma 3.2.10, (G, σ)

has a 4-NZF, a contradiction. Thus C1 is a 4-circuit. By symmetry, C2 is also a 4-circuit. This

implies e3 ∈ E(C1) and e6 ∈ E(C2) and {e1, e4} ⊆ Eϕ4=0 ⊆ {e1, e4, e7} ⊆ E(C1) ∪ E(C2).

Since C1 and C2 are not edge-disjoint, there is a β ∈ Z3 such that ϕ6 = ϕ4+βχ(C1) satisfying

Eϕ6=0 ⊆ E(C2) ∪ {e3}. Since {e3, e7} ⊆ E(H ′), by Lemma 3.2.9, one can obtain a Z3-flow ϕ7

from ϕ6 such that Eϕ7=0 ⊆ E(C2), a contradiction to Fact A. This completes the proof of (IV).

(V) For any triangle-path H = T1T2T3 with each Ti unbalanced, H is an induced subgraph of
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Γ1 Γ2 Γ3

Figure 3.4: Three graphs formed by four unbalanced triangles

(G, σ).

Proof of (V). Suppose to the contrary thatH is not induced. Denote V (H) = {v1, v2, v3, v4, v5}
where V (Ti) = {vi, vi+1, vi+2} for each i = 1, 2, 3.

Since by (III), (G, σ) does not contain FC9 or FC10, v1 and v5 are not adjacent. Then either

v1 and v4 are adjacent or v2 and v5 are adjacent. Without loss of generality, assume v1 and v4

are adjacent. Denote T4 = v1v3v4. Since by (III) (G, σ) does not contain FC3, T4 is balanced.

Then T2, T3 and T4 form a FC1, a contradiction to (III) again. This completes the proof of (V).

The final step. By (III), (G, σ) does not contain any graph of Figure 3.3 as a subgraph. We

can further assume that (G, σ) contains two edge-disjoint unbalanced triangles by (I).

By (IV), let H = T1T2 . . . Tm be a triangle-path such that each triangle Ti is unbalanced and

E(T1)∩E(Tm) = ∅. We choose H such that m is as large as possible. Since (G, σ) contains two

edge-disjoint unbalanced triangles by (I) and does not contain FC8 by (III), we have 3 ≤ m ≤ 4.

One can easily see that H admits a 4-NZF. Since (G, σ) does not admit a 4-NZF, H ̸= G. Since

G is triangularly connected, there must be a triangle T5 ̸= Ti for each i = 1, 2, 3 such that

E(T5) ∩ E(H) ̸= ∅.
If m = 4, then H = Γ1 or Γ3 in Figure 3.4. If m = 3, by (V), H is an induced subgraph

and hence |E(T4)∩E(H)| = 1. Since by (III), G does not contain FCi for each i = 1, 2, 5, 6, 11,

H must be one of Γi in Figure 3.4. It is easy to see that each Γi admits a 4-NZF and thus

(G, σ) ̸= Γi for each i. Since G is triangularly connected, there is a triangle T6 such that T6 ̸= Ti

for each i = 1, 2, 3, 4 and E(T6) ∩E(H) ̸= ∅. By the maximality of m and since (G, σ) does not

contain FCi for each i = 1, 2, 4, 5, 6, 11, we have |E(T6) ∩E(H)| ≥ 2. By (V), H = Γ3 and thus

by (IV) G = (W5, σ
∗), a contradiction. This completes the proof of the theorem.
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Chapter 4

Flows on K4-minor free signed

graphs

4.1 Notations and Terminology

Let G be a graph. A block of a graph is a subgraph which is 2-connected and is maximal with

respect to this property. If G is a graph with at least one cut-vertex, then at least two of the

blocks of G contains exactly one cut-vertex, each such block is called a leaf block. We also call

a 2-circuit as a digon. If a block H is not a digon, we call it a nontrivial block.

A two-terminal series-parallel signed graph (G, σ;x, y) is defined recursively as follows:

• Let V (K2) = {x, y}. For any signature σ, (K2, σ;x, y) is a two-terminal series-parallel

signed graph.

• (The parallel construction) Let (G1, σ1;x1, y1) and (G2, σ2;x2, y2) be two disjoint two-

terminal series-parallel signed graphs. Define G to be the graph obtained from the union

of G1 and G2 by identifying x1 and x2 into a single vertex x, and identifying y1 and y2

into a single vertex y. For any edge e ∈ E(G), σ(e) = σ1(e) if e ∈ E(G1), σ(e) = σ2(e) if

e ∈ E(G2). Then (G, σ;x, y) is a two-terminal series-parallel signed graph, and is called

the parallel join of (G1, σ1;x1, y1) and (G2, σ2;x2, y2).

• (The series construction) Let (G1, σ1;x1, y1) and (G2, σ2;x2, y2) be two disjoint two-terminal

series-parallel signed graphs. Define G to be the graph obtained from the union of G1 and

G2 by identifying y1 and x2 into a single vertex. For any edge e ∈ E(G1), σ(e) = σ1(e) if

e ∈ E(G), σ(e) = σ2(e) if e ∈ E(G2). Then (G, σ;x1, y2) is a two-terminal series-parallel

signed graph, and is called the series join of (G1, σ1;x1, y1) and (G2, σ2;x2, y2).

• There are no other two-terminal series-parallel signed graphs.
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A series-parallel graph is a two-terminal graph obtained by a sequence of series and parallel

joins, starting with the copies of K2 (with some choice of the terminals). Note that the terminals

of a series-parallel graph are fixed by the definition.

Proposition 4.1.1. (Dirac [6]) Let G be a 2-connected graph. Then G is a series-parallel (with

fixed terminals) if and only if G is a K4-minor free graph.

If G1, · · · , Gn(n ≥ 2) are series-parallel graphs such that G is either a series join or a parallel

join of G1, · · · , Gn and n is maximum with this property, then we refer to the Gi as parts of G.

In the case of a series join, G1 and Gn are the endparts of G.

We introduce the following notation for some specific series-parallel signed graphs: K+
2

denotes the positive K2, K
−
2 stands for the negative K2, D is the balanced digon and D0 is the

unbalanced digon.

A string is a series join of copies of K+
2 and D0 where each nonterminal vertex is contained

in a digon. A string is nontrivial if it contains more than two vertices. A necklace N is a

series-parallel signed graph obtained by the parallel join of two strings, at least one of which is

nontrivial.

A tadpole LQ consists of two vertices v0, v1 and a negative loop Lv1 at v1 and a positive edge

v0v1. The vertex v0 is called the end of tadpole while Lv1 is the head of the tadpole LQ, the

edge v0v1 is the tail of the tadpole LQ.

A subdivided digon is formed by combining two subdivided edges, denoted as e+1 and e+2 , in

such a way that every internal vertex, if any exist, in e+1 and e+2 is incident with either a negative

loop or a tadpole. If the product of the signs of all subdivided edges within e+1 and e+2 equals 1,

then we refer to it as a balanced subdivided digon, represented as D+; conversely, if the product

is −1, it is termed an unbalanced subdivided digon, denoted as D+
0 . Note that if one end of a

digon is incident with a negative loop or a tadpole, then it is also considered an internal vertex

of this subdivided digon. Additionally, a balanced digon D can be obtained from a subdivided

balanced digon D+ by deleting all incident negative loops and tadpoles and then suppressing

any resulting 2-vertices. Similarly, D0 can be obtained from D+
0 using the same process.

A generalized string is a series join of copies of signed K2, unbalanced subdivided digons, neg-

ative loops and tadpoles. Likewise, a generalized necklace N+ is a parallel join of two generalized

strings.

In the following context, we use γ(G) to denote the number of subdivided unbalanced digons

contained in G, and we use γ′(G) to denote the number of subdivided unbalanced digons,

negative loops and tadpoles contained in G. For each pair of tadpoles, if their incident vertices

are two adjacent internal vertices in G, then we refer to these two tadpoles as adjacent.
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4.2 Uesful Lemmas

Lemma 4.2.1. (Lu, Luo and Zhang [17]) Let k be a positive integer, and let G be a graph

with an orientation τ and admitting a k-NZF. If a vertex v of G is of degree at most 3 and

g : EG(v) 7→ {±1, · · · ,±(k− 1)} satisfies ∂g(v) = 0, then there exists a k-NZF (τ, f) on G such

that f |EG(v) = g.

By Lemma 4.2.1, we conclude the following lemma.

Lemma 4.2.2. Let (G, σ) be a bridgeless, K4-minor free signed graphs with EN (G) = {e1, e2}.
If e2 is a negative loop, then (G, σ) admits a 4-NZF f such that f(e1) = f(e2) = 1. Moreover,

for each a ∈ {1, 2}, (G, σ) admits a 5-NZF f such that f(e1) = f(e2) = a.

Proof. Let the negative loop e2 be incident to the vertex x. We construct an ordinary graph G1

as follows:

If e1 is not a negative loop, let e1 = uv and G1 be the graph obtained from G by deleting e2

and replacing the edge e1 with a path uwv where both uw and wv are positive edges.

If e1 is a negative loop, let G1 be the graph obtained from G by deleting e1 and e2. For

convenience we denote the vertex incident with e1 by w.

Since G1 is a bridgeless K4-minor free ordinary graph, G1 admits a 3-NZF. Let G2 be the

ordinary graph obtained from G1 by adding a new edge xw. Then G2 admits a nowhere-zero

4-flow (see Exercise 2.5 in [37]). Let D2 be an orientation of G2 such a way that at the vertex

w, xw is oriented away from w and the edges wu and wv are oriented into w. Since the degree

of w in G2 is 3, by Lemma 4.2.1, G2 admits a 4-NZF (D2, f2) such that f2(wx) = 2 and

f2(wv) = f2(wu) = 1.

Let τ be the orientation of (G, σ) obtained from D2 by orienting the two half edges of the

negative loop e2 into x and the two half edges of the negative edge uv out u and v respectively,

and keeping the orientation of the other edges. Then one can obtain a desired 4-NZF (τ, f) of

(G, σ) where f(e1) = f(e2) = 1 and f(e) = f2(e) for each edge e ∈ E(G) \ {e1, e2}.
The argument for the moreover part is similar to the above by simply choosing f2 such that

f2(wx) = 2a and f2(wv) = f2(wu) = a.

We define f as a pseudoflow in G if f has one source u and one sink v under the orientation

τ , and ∂f(v) = 0 for each v ∈ V (G)− {u, v}. Specifically, a pseudoflow f in G is referred to as

an (a,b)-pseudoflow, where a, b ∈ {±1,±2,±3,±4}, if ∂f(u) = a and ∂f(v) = −b. Note that a

nontrivial string G admits a (0, 0)-pseudoflow with the sequence (0, 2, 4, 2, 4, · · · , 4, 2, 0) if γ(G)

is even; conversely, if γ(G) ≥ 2 and is odd, the sequence becomes (0, 2, 4, 2, · · · , 4, 0), where
each subsequence (ai, ai+1) represents an (ai, ai+1)-pseudoflow in a subgraph of G that contains

precisely one unbalanced digon.
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Lemma 4.2.3. Let G be a K4-minor free 2-connected graph. If G contains at most one vertex

of degree 2, then G contains a 2-circuit.

Proof. Let G be a counterexample with |V (G)| minimum. Clearly δ(G) = 2. Thus G has exactly

one degree 2 vertex, say v. Let x1 and x2 be the two neighbors of v.

Let G be the graph obtained from G after suppressing the degree 2 vertex. Then G is K4-

minor free and δ(G) ≥ 3, and thus G contains a 2-circuit, which is the triangle C = x1x2vx1 in

G.

If dG(x1) = dG(x2) = 3, then G/C has exactly one degree 2-vertex vC which is corresponding

to C. Thus G/C has a 2-circuit not containing vC . Thus the 2-circuit is also a 2-circuit in G, a

contradiction.

Thus we may assume that dG(x2) ≥ 4. Then G− v has at most one vertex of degree 2 and

thus contains a 2-circuit which is also a 2-circuit in G, a contradiction.

Lemma 4.2.4. Let G be a smallest counterexample to Theorem 1.5.11 with respect to |E(G)|.
Then G does not contain two adjacent vertices both incident with a tadpole or a negative loop.

Proof. By our assumption, δ(G) ≥ 3 and G does not contain any balanced digon. Suppose

to the contrary that G contains two adjacent vertices, say u1 and u2, incident with either a

tadpole or a negative loop. Without loss of generality, we may assume that ui is incident with

a tadpole LQi for i = 1, 2 since the proof for the other cases is similar. Let Lv1 and Lv2 be

the heads of LQ1 and LQ2 and let v1u1 and v2u2 be the tails of LQ1 and LQ2 , respectively.

Since {u1u2} ∪ LQ1 ∪ LQ2 forms a long barbell in G, denoted by B, admits a 3-flow f1 with

supp(f1) = E(B) and f1(u1u2) = 2 by Proposition 1.4.4.

We first show that G1 the graph obtained from G by deleting LQ1 and LQ2 is flow-admissible.

Suppose to the contrary, that G1 is not flow-admissible. Then G1 is switch equivalent to a

signed graph with exactly one negative edge, or G1 contains a bridge b = x1x2 such that G1 − b

has a balanced component by Proposition 1.4.1.

We first consider the case when G1 contains a bridge b = x1x2 such that G1−b has a balanced

component. Since G is flow-admissible, then b = x1x2 connects two unbalanced component in

G, denoted by H1 and H2, respectively. Without loss of generality, we assume that H2 contains

the balanced component in G1 − b. We may assume that the balanced component of G1 − b

contains no negative edge.

For each i = 1, 2, we add a negative loop e′i at the vertex x3−i in Hi. The resulting graph is

denoted by H ′
i. Thus H ′

2 contains at most three negative edges and all are negative loops. By

the minimality of G, H ′
1 has a 5-NZF f1. Let a = f1(e

′
2). If H

′
2 has only two negative loop, then

by Lemma 4.2.2, H ′
2 has a 5-NZF f2 such that f2(e

′
1) = a. Thus one can merge f1 and f2 into

a 5-NZF of G, a contradiction.
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Now we assume that H ′
2 contains exactly three negative edges, meaning H ′

2 contains B. Let

H ′′
2 be the graph obtained from H ′

2 by deleting LQ1 and LQ2 and adding a negative edge eB

connecting u1 and u2. Then H ′′
2 contains an unbalanced digon between u1 and u2 and a negative

loop e′1. By Lemma 4.2.2 again H ′′
2 has a 5-NZF f3 such that f3(e

′
1) = a = f3(eB). If a is even,

then one can obtain a 5-NZF f4 of H ′
2 by letting f4(uivi) = a or −a and f4(Lvi) =

a
2 or −a

2 for

each i = 1, 2. Then we can further obtain a 5-NZF of G by merging f4 with f1, a contradiction

again.

If a is odd, then a = 1, let H ′′′
2 be the ordinary graph obtained from H ′′

2 by deleting e′1,

replacing the edge eB with a positive path u1wu2, and adding a new positive edge x2w. Similar

to the argument in the proof of Lemma 4.2.2, H ′′′
2 has a 5-NZF f5 such that f5(x2w) = 2,

f5(u1w) = 2 and f5(wu2) = 4. Thus H ′
2 has a 5-NZF f6 such that f6(e1) = 1 = a. Therefore

one can merge f6 and f1 into a 5-NZF of G, a contradiction.

Next we consider the case when G1 is switch equivalent to a signed graph with exactly one

negative edge. WLOG assume that G1 has only one negative edge e1. We may further assume

that G1 is bridgeless otherwise we go back to the previous case.

If e1 is a negative loop, let G2 be the graph obtained from G− L(Q1)− L(Q2) by adding a

negative edge e3 connecting u1 and u2. Then by Lemma 4.2.2, G2 admits a 5-NZF f7 such that

f7(e2) = 2. Thus one can obtain a 5-NZF of G.

Now assume that e1 is not a negative loop. If there exists i ∈ {1, 2} such that dG(ui) = 3,

without loss of generality, we may assume that dG(u1) = 3. Let G3 be the graph obtained from

G − L(Q1) − L(Q2) by adding a negative loop e4 at u1. By Lemma 4.2.2, G3 has a 4-NZF f8

such that f8(e4) = 1. Since dG(u1) = 3 and f8 is a 4-flow, f8(u1v1) ̸= ±2. Let f9 be a flow of G

such that supp(f9) = E(B) and f9(v1u1) = f9(u1u2) = f9(u2v2) = 4. Then f8 − f9 is a 5-NZF

of G, a contradiction.

In the following we further assume that dG1(u1) ≥ 4 and dG1(u2) ≥ 4. Since δ(G) ≥ 3, we

have δ(G1) ≥ 3, so G1 (and G) contains a digon C. By the minimality of G, G contains no

balanced digons. Thus C is unbalanced which contains the only negative edge e1 in G1. Let

V (C) = {y1, y2}. Then G1 − e1 is a bridgeless ordinary graph and δ(G1 − e1) ≥ 3, by Lemma

4.2.3, G1 − e1 contains a balanced digon, say C1. Assume that V (C1) = {z1, z2}. Then z1z2

is an edge in G and the other edge in D is a subdided path say, P in G1 − e1 contains the

edge in C − e1. By Proposition 1.4.4, C1 admits a 2-flow f ′
1. Also, since G1 − e1 is a K4-minor

free ordinary graph, G1 − e1 admits 3-NZF, by Lemma 1.4.7, G1 − e1 admits a positive 3-NZF

(D1, f10) such that f10(u1u2) = 1. Under the orientation D1, we assume that the positive edge in

C is oriented away from x2, u1u2 is oriented away from u1, and there exists a directed path from

x1 to u1. Let β = {0, 1}. Then f11 = f10+βf ′
1 is a 4-NZF of G1−e1 such that f11(x2x1) = 1 or 3

and f11(u1u2) = 1. After adding a negative edge eB between u1 and u2 in G1, f12 = f11− 2f1 is

a 5-NZF of G1∪{eB}. Therefore G admits a 5-NZF such that f12(uivi) = −2 and f12(Lvi) = −1
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for each i = 1, 2, a contradiction. This contradiction implies that G1 is flow-admissible.

Next we will show that G1 ̸∈ N . Suppose to the contrary that G1 ∈ N
If u1u2 is not contained in an unbalanced digon, then G1 − u1u2 admits a (1, 3)-pseudoflow

g1, and thus G admits a 5-NZF by letting g1(u1u2) = 1, g1(u1v1) = 2, g1(u2v2) = 4, g1(Lv1) =

1, g1(Lv2) = 2, a contradiction.

If u1u2 is not contained in an unbalanced digon, then G1−u1u2 admits a (1,−1)-pseudoflow

g2, and g2 + f1 is a 5-NZF of G, a contradiction again.

By the minimality ofG, G1 admits a 5-NZF g3 with g3(u1u2) = a, for some a ∈ {±1, · · · ,±4}.
Hence either g3 + f1 or g3 − f1is a 5-NZF on G, a contradiction. This completes the proof of

the lemma.

Lemma 4.2.5. Let α, β ∈ {±1,±2,±3,±4} with α ≡ β (mod 2) and α ̸= ±β. Let D0 be

the unbalanced digon obtained from D+
0 by deleting all tadpoles and negative loops and then

suppressing all 2-vertices. If D0 admits an (α, β)-pseudoflow, then it can be extended to D+
0 .

Proof. Let D+
0 be a counterexample with minimum |E(D+

0 )|. By Lemma 4.2.4, every subdivided

edge in D+
0 contains at most one internal vertex. With a similar proof, we may assume that

every internal vertex is incident with a tadpole.

Let E(D+
0 ) = {e+1 , e

+
2 } and x, y be the two-terminal of D+

0 and let ei be the corresponding

edge of e+i in D0. Let g be an (α, β)-pseudoflow on E(D0) under the orientation τ such that

∂g(x) = α and ∂g(y) = β. Without loss of generality, we may assume that e1 is positive,

oriented from x to y, while e2 is negative and both half edges have orientation towards their

respective ends, where α ≡ β (mod 2) and α ̸= ±β. We have g(e1) =
α+β
2 and g(e2) =

β−α
2 and

thus g(e1) ̸= ±g(e2), and both e1,e2 /∈ Eg=±4. We consider the following two cases according to

the number of internal vertices in D+
0 .

We first consider the case where each subdivided edge inD+
0 contains only one internal vertex,

that is, both e1 and e2 are incident with one tadpole, denoted by LQ′ and LQ′′ , respectively. Let

P1 denote the path connecting LQ′ and LQ′′ that passes through the terminal y. Then g(e) ∈
{α+β

2 , β−α
2 } if e ∈ E(P1), and there exists a 3-flow f2 such that supp(f2) = E(P1) ∪ LQ′ ∪ LQ′′

by Lemma 1.4.4. Therefore we can always find some α2 ∈ {±1,±2} such that f = g+α2f2 is an

(α, β)-pseudoflow such that supp(f) = E(D+
0 ) for all possible g(e1) and g(e2), a contradiction

to the assumption of D+
0 .

It remains to consider the case when D+
0 contains exactly one internal vertex, either e+1 or

e+2 contains exactly one internal vertex, by some switching operation, we can further assume

that e+1 is the edge containing the single internal vertex, denoted by w. Suppose that the

tadpole incident with w is denoted by LQ = Lv ∪ {wv}, where Lv is the head and wv is the

tail, with w as the internal vertex. According to Lemma 1.4.4, D0 ∪LQ admits a 3-flow f3 with

supp(f3) = E(D0)∪LQ. As a result, there exists an α3 ∈ {±1,±2} such that f3 = g+α3f3 is an
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(α, β) e2(oriented into x, y) arc (x,w) arc (w, y) tail (w, v) Lv

(1, 3) 2 3 1 2 1

(1,−3) −4 −3 1 −4 −2

(2, 4) 2 4 2 2 1

(2,−4) −1 1 −3 4 2

Table 4.1: An extension in D+
0 to a tadpole

(α, β)-pseudoflow such that supp(f3) = E(D0)∪LQ. The various possible choices are examined

in Table 4.1.

Lemma 4.2.6. Let G = H1 ∪ H2 ∪ H3 be a flow-admissible parallel join of three generalized

strings such that H1 ∪ H2 is a generalized necklace with γ(H1 ∪ H2) ≥ 1 and H3 is a string

containing an even number of unbalanced digons. If G contains no subdivided unbalanced digons

that have at least one internal vertex, then G admits a 5-NZF.

Proof. Without loss of generality, we can assume that γ(H1) ≥ 1 since γ(H1 ∪H2) ≥ 1. Then

γ(H2) ≥ 0. Therefore we need to consider the following three cases according to the parity of

γ′(H1) and γ′(H2) since H1 ∪H2 is a generalized necklace.

Case I. γ′(H1) is even and γ′(H2) is even.

Note that H1 admits a (−3, 1, · · · ,−3, 1,−3)-pseudoflow, H2 admits an (1, 3, · · · , 1, 3, 1)-
pseudoflow (note that if γ′(H2) = 0, then H2 admits a (1, 1)-pseudoflow), and H3 admits a

(2, 4, · · · , 2)-pseudoflow. Then the sum of the pseudoflows in all three generalized strings corre-

sponds to a 5-NZF of G.

Case II. γ′(H1) is odd and γ′(H2) is even.

Note thatH1 contains at least one unbalanced digon, which admits a (2,−4)-pseudoflow. De-

pending on the place of the first unbalanced digon counted in γ′(H1), H1 admits a (2, 4, 2, 4, · · · ,
2,−4, · · · ,−2,−4)-pseudoflow. Similarly, H2 admits a (1, 1)-pseudoflow, and H3 admits a

(−3, 1, 3, · · · , 1, 3)-flow. Then their sum corresponds to a 5-NZF of G.

Case III. Both γ′(H1) and γ′(H2) are odd.

Note thatH1 admits a (−3, 1, · · · ,−3, 1)-pseudoflow, H2 admits an (1,−3, · · · , 1,−3)- pseud-

oflow, and H3 admits a (2, 4, · · · , 2)-pseudoflow. Then their sum corresponds to a 5-NZF of

G.

Lemma 4.2.7. Let G be a flow-admissible generalized necklace with γ(G) ≥ 1. If G contains

no subdivided unbalanced digons that have at least one internal vertex, then there exists an

(a, b)-pseudoflow in G such that a, b ∈ {±1,±2,±3,±4} such that a ≡ b (mod 2) and a ̸= ±b.

Proof. By the assumption, G is a parallel join of two generalized strings, say H1 and H2.
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Note that γ(G) ≥ 1, we can assume that γ′(H1) ≥ γ′(H2) and γ(H1) ≥ 1. Without

loss of generality, we may assume that |a| ≤ |b| by switchings if necessary. For each possible

combination of (a, b), it’s possible to find suitable choices for (a1, b1) and (a2, b2) such that

a1 + a2 = a, b1 + b2 = b and a1 ≡ b1 (mod 2), a2 ≡ b2 (mod 2), as shown in Table 4.2.

Note that H1 contains at least one unbalanced digon. In particular, suppose that H1 is a

generalized odd string. According to the table 4.2, for the case when (a, b) = (1, 3) and (a1, b1) =

(−2, 4), we can assign a (−2, 4)-pseudoflow to the first unbalanced digon counted in γ′(H1),

This allows H1 to admit a (−2,−4, · · · ,−2, 4, 2, 4, · · · , 2, 4)-pseudoflow. For the case when

(a, b) = (2,−4) and and (a1, b1) = (4,−2), we assign a (4,−2)-pseudoflow to the first unbalanced

digon counted in γ′(H1), then it enables H1 to admit a (4, 2, · · · , 4,−2,−4,−2, · · · ,−4,−2)-

pseudoflow. Therefore for all possible choices listed in Table 4.2, we can assign an (a1, b1)-

pseudoflow in H1 and an (a2, b2)-pseudoflow in H2, and their sum corresponds to an (a, b)-

pseudoflow of G.

a a1 a2 a1 a2 a1 a2

b b1 b2 b1 b2 b1 b2

odd string odd string odd string 0 or even even 0 or even

2 −1 3 1 1 −1 3

4 3 1 3 1 1 3

2 −1 3 4 −2 3 −1

−4 −3 −1 −2 −2 −3 −1

1 −2 3 2 −1 −1 2

3 4 −1 4 −1 1 2

1 −2 3 3 −2 2 −1

−3 −4 1 −1 −2 −2 −1

Table 4.2: The choices of (a1, b1) and (a2, b2)

Lemma 4.2.8. Let b ∈ {±2,±4} and G is a flow-admissible generalized necklace with γ(G) ≥ 1.

Let x ∈ V (G) be one end of an unbalanced digon. If G contains no subdivided unbalanced digons

that have at least one internal vertex, then G can be extended to have a (0, b)-pseudoflow f ,

where ∂f(x) = b.

Proof. Since G is a generalized necklace, we may assume that G consists of two generalized

strings, say H1 and H2, with x as a terminal.

Since γ(G) ≥ 1 and G contains no subdivided unbalanced digons that have at least one

internal vertex, we may assume that H1 contains at least one unbalanced digon. Referring to

Table 4.3, we can get a (0, b)-pseudoflow f in G such that supp(f) = E(G) and ∂f(x) = b,
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a a1 a2 a1 a2 a1 a2

b b1 b2 b1 b2 b1 b2

odd string odd string odd string 0 or even even 0 or even

0 3 −3 1 −1 −1 1

2 1 1 3 −1 1 1

0 −4 4 −1 1 −2 2

4 2 2 3 1 2 2

Table 4.3: A (0, b)-pseudoflow in G

where H1 admits an (a1, b1)-pseudoflow and H2 admits an (a2, b2)-pseudoflow, a1 + a2 = 0, and

b1 + b2 = b.

Particularly, as described in Table 4.3, whenH+
1 is a generalized odd string , for the case when

(a, b) = (0, 4) and (a1, b1) = (−4, 2), we can assign a (−4, 2)-pseudoflow to the first unbalanced

digon counted in γ′(H1), then H1 admits a (−4,−2, · · · ,−4, 2, 4, 2 · · · , 4, 2)-pseudoflow.

4.3 Proof of Theorem 1.5.11

Let’s first recall Theorem 1.5.11.

Theorem 1.5.11. Let (G, σ) be a flow-admissible, K4-minor free signed graph. Then (G, σ)

admits a nowhere-zero 5-flow if and only if (G, σ) does not belong to the family N .

Proof. If (G, σ) is a flow-admissible, K4-minor free signed graph which admits a 5-NZF, then

(G, σ) does not belong to M by Lemma 1.5.10, so (G, σ) is also not in N .

If (G, σ) is a flow-admissible, K4-minor free signed graph and does not belong to M, we

shall show that G admits a 5-NZF. Let (G, σ) be a counterexample with |E(G)| minimum.

Then (G, σ) is a flow-admissible, K4-minor free signed graph that does not belong to N and

admits no 5-NZF. By Lemma 1.5.9, (G, σ) can’t be reduced via Operations (O1-O3). Thus we

have the following claim. (G, σ) does not contain any edge-cut T with |T | ≤ 3 such that one

nontrivial component is balanced, and (G, σ) also contains no balanced leaf block, otherwise G

either is not flow-admissible, or contains a contractible configuration, say H. Then G/H admits

a 5-NZF, which implies that G admits a 5-NZF, a contradiction with our assumption.

Claim 4.3.0.1. δ(G) ≥ 3, G has not cut-vertex having an unbalanced component at it, and

there is no X ⊆ V (G) such that δ(X) ≤ 3 and G[X] is nontrivial and balanced.

Claim 4.3.0.2. The number of negative loops and tadpoles incident with a vertex is at most

one.
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Proof. Suppose not, we can assume that there exists a vertex v in G that is incident with two

tadpoles (similar proof for other cases), say LQ1 and LQ2 . Let G′ = G \ LQ2 . Then G′ is not

in N , and G′ is also K4-minor free and flow admissible, otherwise (G, σ) contains 2-edge-cut

T such that one nontrivial component is balanced since δ(G) ≥ 3, so G′ admits a 5-NZF f1

such that f1(Lv) ∈ {±1,±2} if Lv ∈ LQ1 . By Lemma 1.4.4, there exists a 3-flow f2 such that

supp(f2) = LQ1 ∪LQ2 , thus we can pick some α1 = 1 or −1 such that g1 = f1+α1f2 is a 5-NZF

in G. By Lemma 1.4.4, we can assume that v is incident with at most two negative loops. If v is

incident with two negative loops, then there exists a 2-flow f3 such that supp(f3) = LQ1 ∪ LQ2

by Lemma 1.4.4, thus we can pick some α2 = 1 or −1 such that g1 + α2f3 is a 5-NZF in G.

Claim 4.3.0.3. Any internal vertex in every subdivided balanced digon of (G, σ) is not incident

with any negative loops.

Proof. Suppose that there exists a subdivided balanced digon D+ that contains an internal

vertex, say v, incident with a negative loop Lv. Denote by E(D) = {e1, e2}. Without loss of

generality, we can assume that v is contained in e+2 . By Claim 4.3.0.2, every internal vertex of

D+ is incident with at most one negative loop or one tadpole. By Lemma 4.2.4, v is the only

internal vertex in e+2 , as depicted in Figure 4.1-(a).

We replace e2 ∪ Lv in G with one negative edge e′2, as in Figure 4.1-(b) to get a new graph,

denoted by G′. Then G′ is still K4-minor free. If G′ is not flow-admissible, G′ does not contain

an unbalanced circuit that is edge-disjoint from the circuit C1 = {e+1 , e′2}. Since G is flow-

admissible, there exists exactly one unbalanced circuit that is not edge-disjoint with e+1 in C1.

By some switching operations, G − Lv only contains one negative edge. Then G is switching

equivalent to a signed graph containing two negative edges such that one of them is a negative

loop. Then G admits a 4-NZF by Lemma 4.2.2, a contradiction. So G′ is flow-admissible.

Next we claim that G′ /∈ N . Otherwise, then G′ = Nσ
4k+2 by the choice of G, Consider the

graphs D+ and G−E(D+). Since G−E(D+) is a string, we can assign a (−1, 1)-pseudoflow g1

in D+, and G−E(D+) is a string that admits an (1,−1)-pseudoflow g2. Then g1+g2 is a 4-NZF

in G, a contradiction with the choice of G. So G′ does not belong to N . By the minimality of

G, G′ admits a 5-NZF f1.

Then we insert two internal vertices in e′2 and the signs of the edges in the subdivided path

are shown in Figure 4.1-(c), denoting this graph by G′′, so the flow values on E(G′) still preserve

in G′′ under a certain orientation. After identifying v1 and v2 as a single vertex, we can obtain

a 5-NZF f in G such that f(xv) = f(yv) = f(Lv) = f1(e
′
2), a contradiction again.

Let G0 be the graph obtained from deleting all tadpoles and negative loops and then sup-

pressing all degree 2 vertices. In the following context, we use {x, y} as the two-terminal of an

balanced/unbalanced digon.
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Figure 4.1: An operation in a subdivided digon

Claim 4.3.0.4. G0 contains no balanced digon D.

Proof. Suppose that G0 contains a balanced digonD, which implies that G contains a subdivided

balanced digon D+. By the choice of G and by Lemma 4.2.4, each subdivided edge in D+

contains at most one internal vertex. If D is a leaf block of G0 that share a common vertex x

with G0−D, by the choice of G and Claim 4.3.0.3, D+ contains exactly one tadpole LQ, we can

replace D+ in G by the tadpole LQ to get a smaller flow-admissible, K4-minor free signed graph

that does not belong to N , so G′ admits 5-NZF f ′ by the minimality of G. By Claim 4.3.0.1,

the other terminal y of D is incident with the tadpole LQ. Since D admits a positive 2-flow g

such that supp(g) = E(D), then there exists α = 1 or −1 such that f ′ + αg is a 5-NZF of G, a

contradiction with our assumption. therefore it remains to consider the following two cases.

Case I. If at least one edge of E(D) is also an edge in E(G).

Without loss of generality, suppose that e1 is the edge in E(D)∩E(G). Let e+2 be the other

subdivided edge in D+. By Claim 4.3.0.3, if e+2 contains one internal vertex, say v, then v is

incident with exactly one tadpole, denoted by LQ = Lw ∪ {vw}, where Lw is the head of this

tadpole. Let G1 = G − e1. Then G1 is K4-minor free. Also G1 is flow-admissible. This is

because, even if one of the edges in e+2 ∪ {vw} is a bridge of G1, G1 remains flow-admissible

since G does not contain balanced leaf blocks. Moreover, G1 does not belong to N , hence G1

admits a 5-NZF f1 by the minimality of G. If v and LQ exist in e+2 , then it is not possible for

|f(xv)| = |f(vy)| = 4. Since D+ admits a nonnegative 2-flow g such that supp(g) = {e1 ∪ e+2 },
we can find some α ∈ {±1,±2} such that f1 + αg is a 5-NZF in G.

Case II. Both e1 and e2 contain exactly one internal vertex.

In this case, each internal vertex is incident with exactly one tadpole by Claim 4.3.0.3. Let

LQ be the tadpole that is incident with the internal vertex contained in e+2 . Then G−{e+2 ∪LQ}
is a smaller K4-minor free signed graph that is not part of N . Since G contains no balanced

component and no 2-edge-cut reducible configuration in which one component is balanced, G−
{e+2 ∪LQ} is flow-admissible, and thus it admits a 5-NZF g with an (a, b)-pseudoflow on e+1 , and

it can be extended to a 5-NZF of G by reassigning an (a, b)-pseudoflow on E(D+), as outlined

in Table 4.4.
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(a, b) e+1 e+2

(1, 3) (3, 1) (−2, 2)

(1,−3) (−2,−4) (3, 1)

(2, 4) (−1, 3) (3, 1)

(1,−1) (2,−2) (−1, 1)

(2,−2) (1,−1) (1,−1)

Table 4.4: An (a, b)-pseudoflow in D+

Claim 4.3.0.5. G0 does not contain a balanced leaf block.

Proof. If G0 has a balanced leaf block, say G1, then G1 contains at most one cut vertex v in G0

such that dG1(v) = 2, which is also a cut-vertex of G0, so G1 contains a 2-circuit by Lemma 4.2.3,

which is a balanced digon of G0, a contradiction with Claim 4.3.0.4. So there is no balanced

circuit in G1, contradicts that G1 is balanced.

Claim 4.3.0.6. G0 does not contain any tadpoles or negative loops.

Proof. Suppose not, then we need to consider the following two cases.

The first case is that G0 is a negative loop, so G is a generalized unbalanced digon, denoted

by D+
0 . Let V (D0) = {x, y}. Then x and y are incident with a tadpole or a negative loop

respectively by Claim 4.3.0.1, denoted by L1, L2. Moreover, E(G) − {L1, L2} = E(D0) by

Lemma 4.2.4, so G admits a 5-NZF.

The second case is that G0 contains a tadpole or a negative loop, so G contains a subdivided

unbalanced digon D+
0 as a leaf block. Let {x, y} be the terminals of D0. Then we can use a

tadpole LQ = Lv ∪ {vy} to replace D+
0 , then the resulting graph is smaller by Claim 4.3.0.1,

thus it admits a 5-NZF f ′ since it is K4-minor free, flow-admissible and does not belong to N .

Assume that f ′(vy) = b, then b ∈ {±2,±4}. Since δ(G) ≥ 3, x is incident with a negative loop

or tadpole in G, then we can extend the flow f ′ on the edges of this unbalanced digon D0 such

that ∂f ′(x) = a and a ̸= ±b, a ≡ b (mod 2). By Lemma 4.2.5, f ′ can be extended to a 5-NZF

f in G such that supp(f) = E(G).

Claim 4.3.0.7. G contains a generalized necklace H. More specifically, every nontrivial leaf

block contains a generalized necklace.

Proof. Let G01 be a nontrivial leaf block in G0 (Note that G01 = G0 is possible). Then we can

delete all parallel edges in G01 and suppressing all vertices of degree 2 to get a new graph G′
01,

then δ(G′
01) ≥ 3, by Lemma 4.2.3, G′

01 contains a 2-circuit, which corresponds to a necklace
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of G0 by Claim 4.3.0.6, as the parallel edges are from the unbalanced digons of G0 by Claim

4.3.0.4, therefore G contains a generalized necklace.

Claim 4.3.0.8. G does not contain any subdivided unbalanced digons with at least one internal

vertex.

Proof. Suppose that G contains a subdivided unbalanced digon, which is an unbalanced digon

D0 = {e1, e2} in G0, that contains at least one internal vertex. Suppose that e1 is the negative

edge in D0, by Lemma 4.2.4, each subdivided edge in the subdivided digon D+
0 does not contain

adjacent internal vertices. So γ′(D+
0 ) = 1 or 2 and each internal vertex is incident with precisely

one tadpole or one negative loop by Claim 4.3.0.2.

Suppose that e+2 contains an internal vertex that is incident with one tadpole or negative

loop, say L2, then we can delete e+2 ∪ L2 in G to obtain a smaller K4-minor free signed graph,

denoted by G′.

If G′ belongs to N , then we observe that γ′(D+
0 ) = 1, G−D+

0 admits a (−1,−3)-pseudoflow,

D+
0 admits an (1, 3)-pseudoflow, so the sum of those flows forms a 5-NZF on E(G), a contradic-

tion. Therefore, G′ does not belong to N .

Suppose G′ is flow-admissible, then G′ admits a 5-NZF f1. According to Lemma 1.4.4, G

admits a 3-flow f2 such that supp(f2) = e+1 ∪ e+2 ∪ L. Then there exists an α ∈ {±1,±2} such

that f1 + αf2 is a 5-NZF of G, leading to a contradiction. So G′ is not flow-admissible.

By Lemma 4.2.2, γ′(D+
0 ) = 2. Thus e+1 contains an internal vertex that is incident with one

tadpole or negative loop, say L1. Moreover, G′ does not contain a bridge such that there is a

balanced component, as G does not contain balanced leaf blocks, so G′ has only one negative

edge, which belongs to L1. Also D0 is the only unbalanced digon in G0 and G contains no other

negative loops and tadpoles, so we can use a positive directed subdivided path xvy to replace

e+1 in G′. The resulting graph, denoted by G1, is a signed graph with all positive edges. So G1

admits a 3-NZF g. Define g0(xv) = g0(vy) = 1 such that ∂g0(v) = 0. By Lemma 4.2.1, there

exists a 3-NZF g′ in G1 such that g′|EG1
(v) = g0. Then we can easily extend it to a 5-NZF on

E(G) such that D+
0 admits an (1, 1)-pseudoflow.

The final step of the proof: We denote a series join of G1 and G2 by [G1, G2].

By Claim 4.3.0.7, G0 contains a necklace H. Specifically, if G0 is not 2-connected, then we

can select a necklace H in a leaf block G02 of G0. Note that if the cut vertex that separates G02

and G0 −G02 is contained in H as a nonterminal of H, denoted by x, we shall choose another

necklace in G02. Let H = H1 ∪ H2 be formed of two strings H1 and H2 and H+
1 and H+

2 be

their generalized strings respectively.

Suppose that x ∈ V (H+
1 ). If G+

02 is a generalized necklace, we can use a tadpole LQ to

replace G+
02, then the resulting graph, denoted by G′, admits a 5-NZF f since it is K4-minor
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free, flow-admissible and is not in N . Therefore, ∂fG−G+
02
(x) ∈ {±2,±4}, hence G admits a

5-NZF by Lemma 4.2.8, a contradiction. Therefore G+
02 is not a generalized necklace.

Since G02 is 2-connected, by Lemma 4.1.1, G is equivalent to a series-parallel graph, and G02

is a parallel join of at least two parts. So either H is a proper subgraph of one part of G02, or

H is composed of two parts of G02. In either case, G02−H1 is also a nontrivial block, otherwise

G02−H1 would be an unbalanced digon by Claim 4.3.0.4, contradicts that G02 is not a necklace.

By Claim 4.3.0.7, another necklace H ′ can be found in the nontrivial block G02 −H1, which is

vertex disjoint from x in G.

Therefore we can always find a generalized necklace H+ in G such that x is either one

terminal of H or not contained in V (H+). Subject to this condition, we choose H such that

γ(H) is as small as possible.

Since γ(H) ≥ 1, we can replace the generalized necklace H+ in G with the graph [e0, D0, e1],

where e0, e1 are positive edges.The resulting graph, denoted by G′, is a K4-minor free signed

graph.

If G′ ∈ N , then G0 is 2-connected and G′ = Nσ
4k+2, thus G admits a 5-NZF by Lemma 4.2.6,

a contradiction. Therefore G′ is not part of the family N .

If G′ is not flow-admissible, then D0 contains the only one negative edge and G′ does not

contain any negative loops or tadpoles. Therefore G′ contains a 2-edge-cut reducible configura-

tion which is also a 2-edge-cut reducible configuration in G such that one component is balanced,

a contradiction with the choice of G. Hence G′ is flow-admissible.

If G′ contains smaller number of edges than G, by the choice of G, G′ admits a 5-NZF f ′

such that supp(f ′) = E(G′). Under the restriction of f ′, D0 has an (α, β)-pseudoflow such

that α ≡ β (mod 2) and α ̸= ±β, where α, β ∈ {±1,±2,±3,±4}. Since H+ is a generalized

necklace in G, by Lemma 4.2.7, H+ can be extended to have an (α, β)-pseudoflow, so it is a

5-NZF in G, a contradiction with our assumption. It implies that G′ has the same number of

edges with G, then the necklace H in G is a parallel join of e0 and [e1, D0], where e0, e1 are

positive edges by some switching operations. and we can use the graph [e1, D0] to replace H

to get a smaller K4-minor free flow-admissible signed graph, denoted by G′′. Then G′′ is not

in N , otherwise G −H admits a (1,−1)-pseudoflow, and H admits a (−1, 1)-pseudoflow, their

sum is a 4-NZF in G, a contradiction. So G′′ admits a 5-NZF f ′′ such that D0 has an (α, β)-

pseudoflow, where α ≡ β (mod 2) and α ̸= ±β, where α, β ∈ {0,±1,±2,±3,±4,±5,±6,±7}.
Let E(D0) = {e2, e3} with e3 negative. Then |f ′′(e1)| ≠ |f ′′(e2)|, by Lemma 1.4.4, there exits a

2-flow g1 such that supp(g1) = {e0, e2, e1}, and there exists α ∈ {±1,±2} such that f ′′ + αg1 is

a 5-NZF of G.
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Chapter 5

Final Remarks

5.1 Flows of 3-edge colorable cubic signed graph

Bouchet’s conjecture [2] is equivalent to the restriction to cubic signed graphs: every flow-

admissible, cubic signed graph admits a nowhere-zero 6-flow. So we want to consider the following

problem to improve our previous result.

Problem 1. Let (G, σ) be a connected 3-edge colorable cubic signed graph. If (G, σ) is flow

admissible, then (G, σ) has a nowhere-zero 6-flow.

The following problem is a weaker problem.

Problem 2. Let (G, σ) be a connected 3-edge colorable cubic signed graph. If (G, σ) is flow

admissible and hamiltonian, then (G, σ) has a nowhere-zero 6-flow.

5.2 Flows of signed Kotzig graphs

A cubic graph is a Kotzig graph if there is a 3-edge coloring such that every two color classes

induce a hamiltonian circuit.

Schubert and Steffen [25] proved the following lemma.

Lemma 5.2.1. Let (G, σ) be a flow admissible signed graph. If G is a Kotzig graph, then (G, σ)

admits a nowhere-zero 6-flow.

So we want to consider if we can further reduce to 4-flow.

Problem 3. Let (G, σ) be a flow admissible signed graph. If G is a Kotzig graph, then (G, σ)

admits a nowhere-zero 4-flow.
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We also want to consider a flow for a (2k+1)-regular Kotzig graph. Since a (2k+1)-regular

Kotzig graph is 4-edge-connected and Raspaud and Zhu [23] proved that every flow-admissible

4-edge-connected graph has a nowhere-zero 4-flow. So we want to consider the following problem.

Problem 4. Let (G, σ) be a flow admissible signed graph and k ≥ 2. If G is a (2k + 1)-regular

Kotzig graph, then (G, σ) admits a nowhere-zero 3-flow.

5.3 Converting a modulo flow to an integer flow

We have some results on modulo k-flows and integer flows where k is odd. However we don’t

have any one related to Z4-flow and integer flows, so we want to consider the following theorem.

Problem 5. Let (G, σ) be a flow admissible signed graph. If (G, σ) admits a nowhere-zero

Z4-flow, then it has a nowhere-zero 8-flow.

5.4 Modulo orientations

Proposition 5.4.1. (Goddyn et al. [8], Jaeger [12]) Let G be an ordinary graph. If G has a

modulo (2p+ 1)-orientation for some p ≥ 1, then it has a modulo (2p′ + 1)-orientation for each

integer p′ with 1 ≤ p′ ≤ p.

It is unknown whether Proposition 5.4.1 remains true for signed graphs, so we want to

consider the following problem.

Problem 6. Let p ≥ 2 be an integer. Is it true that for any integer p′ with 1 ≤ p′ < p, if (G, σ)

is modulo-(2p+ 1)-orientable, then it is also modulo-(2p′ + 1)-orientable?
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[14] A. Kompĭsová, E. Rollová, Flow number and circular flow number of signed cubic graphs,

Discrete Math. 345 (2022) 112917.

[15] H.J. Lai, Nowhere-zero 3-flows in locally connected graphs, J. Graph Theory 42 (2003)

211-219.

[16] Y. Lu, R. Luo, M. Schubert, E. Steffen, and C.-Q Zhang, Flows on signed graphs without

long barbells, SIAM J. Discrete Math. 34 (2020) 2166-2182.

[17] Y. Lu, R. Luo, C.-Q. Zhang, Multiple weak 2-linkage and its applications on integer flows

of signed graphs, European J. Combin. 69 (2018) 36-48.

[18] Y. Lu, R. Luo, C.-Q. Zhang, Z. Zhang, Signed graphs, nonorientable surfaces, and integer

flows, preprint.
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