Flows on Signed Graphs

Chong Li
cl0081@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Li, Chong, "Flows on Signed Graphs" (2023). Graduate Theses, Dissertations, and Problem Reports. 12171.
https://researchrepository.wvu.edu/etd/12171

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.

Flows on Signed Graphs

Chong Li

Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics

Rong Luo, Ph.D., Chair

John Goldwasser, Ph.D. Hong-Jian Lai, Ph.D. Dong Ye, Ph.D. Cun-Quan Zhang, Ph.D. Department of Mathematics

Morgantown, West Virginia

2023

Keywords: Signed graph; nowhere-zero flow; 3-edge-colorable; hamiltonian circuit; K_{4}-minor free; triangularly connected

ABSTRACT
 Flows on Signed Graphs

Chong Li

This dissertation focuses on integer flow problems within specific signed graphs. The theory of integer flows, which serves as a dual problem to vertex coloring of planar graphs, was initially introduced by Tutte as a tool related to the Four-Color Theorem. This theory has been extended to signed graphs.

In 1983, Bouchet proposed a conjecture asserting that every flow-admissible signed graph admits a nowhere-zero 6 -flow. To narrow dawn the focus, we investigate cubic signed graphs in Chapter 2. We prove that every flow-admissible 3 -edge-colorable cubic signed graph admits a nowhere-zero 10 -flow. This together with the 4 -color theorem implies that every flow-admissible bridgeless planar signed graph admits a nowhere-zero 10 -flow. As a byproduct of this research, we also demonstrate that every flow-admissible hamiltonian signed graph can admit a nowherezero 8 -flow.

In Chapter 3, we delve into triangularly connected signed graphs. Here, A triangle-path in a graph G is defined as a sequence of distinct triangles $T_{1}, T_{2}, \ldots, T_{m}$ in G such that for any i, j with $1 \leq i<j \leq m,\left|E\left(T_{i}\right) \cap E\left(T_{i+1}\right)\right|=1$ and $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ if $j>i+1$. We categorize a connected graph G as triangularly connected if it can be demonstrated that for any two nonparallel edges e and e^{\prime}, there exists a triangle-path $T_{1} T_{2} \cdots T_{m}$ such that $e \in E\left(T_{1}\right)$ and $e^{\prime} \in E\left(T_{m}\right)$. For ordinary graphs, Fan et al. characterized all triangularly connected graphs that admit nowhere-zero 3 -flows or 4 -flows. Corollaries of this result extended to integer flow in certain families of ordinary graphs, such as locally connected graphs due to Lai and certain types of products of graphs due to Imrich et al. In this dissertation, we extend Fan's result for triangularly connected graphs to signed graphs. We proved that a flow-admissible triangularly connected signed graph (G, σ) admits a nowhere-zero 4-flow if and only if (G, σ) is not the wheel W_{5} associated with a specific signature. Moreover, this result is proven to be sharp since we identify infinitely many unbalance triangularl connected signed graphs that can admit a nowhere-zero 4 -flow but not 3 -flow.

Chapter 4 investigates integer flow problems within K_{4}-minor free signed graphs. A minor of a graph G refers to any graph that can be derived from G through a series of vertex and edge deletions and edge contractions. A graph is considered K_{4}-minor free if K_{4} is not a minor of G. While Bouchet's conjecture is known to be tight for some signed graphs with a flow number of
6. Kompišová and Máčajová extended those signed graph with a specific signature to a family \mathcal{M}, and they also put forward a conjecture that suggests if a flow-admissible signed graph does not admit a nowhere-zero 5 -flow, then it belongs to \mathcal{M}. In this dissertation, we delve into the members in \mathcal{M} that are K_{4}-minor free, designating this subfamily as \mathcal{N}. We provide proof demonstrating that every flow-admissible, K_{4}-minor free signed graph admits a nowhere-zero 5 -flow if and only if it does not belong to the specified family \mathcal{N}.

Acknowledgements

First and foremost, I would like to express my deep gratitude to my supervisor, Dr. Rong Luo, for his continued feedback and support over these last few years. It is a pleasure to work under his supervision. Without his mentorship, this dissertation would not have been possible.

I would also like to express my sincere thanks to the other esteemed members of my committee: Dr. John Goldwasser, Dr. Hong-Jian Lai, Dr. Dong Ye and Dr. Cun-Quan Zhang, for their help during my studies in West Virginia University.

Furthermore, I would like to seize this opportunity to convey my appreciation to Dr. Jessica Deshler, Dr. Hong-Jian Lai, Dr. Rong Luo, Dr. Kevin Milans, Dr. Vicki Sealey, Dr. Murong Xu, Ms. Mary Beth Angeline for their support and assistance during my final semester.

Lastly, I am deeply thankful to the Department of Mathematics and Eberly College of Arts and Sciences at West Virginia University for providing me with an exceptional academic environment and unwavering support during my graduate studies.

DEDICATION

my mother Jianxiu Kou, my father Xitong Li

Contents

1 Introduction 1
1.1 Notations and Terminology 1
1.2 Signed Graphs 1
1.3 Background on Nowhere-zero Flow Problems 3
1.4 Definition of Integer Flows on Signed Graphs 4
1.5 Main Results 7
2 Flows of 3-edge-colorable cubic signed graphs 12
2.1 Notation and Terminology 12
2.2 Uesful Lemmas 12
2.3 Proofs of Theorem 1.5.5 and Corollary 1.5.4 18
2.4 Proof of Theorem 1.5.6 20
3 Integer flows on triangularly connected signed graphs 22
3.1 Notations and Terminology 22
3.2 Useful Lemmas 22
3.3 Sharpness of Theorem 1.5.7 26
3.4 Proof of Theorem 1.5.7 27
4 Flows on K_{4}-minor free signed graphs 35
4.1 Notations and Terminology 35
4.2 Uesful Lemmas 37
4.3 Proof of Theorem 1.5.11 43
5 Final Remarks 49
5.1 Flows of 3-edge colorable cubic signed graph 49
5.2 Flows of signed Kotzig graphs 49
5.3 Converting a modulo flow to an integer flow 50
5.4 Modulo orientations 50

Chapter 1

Introduction

1.1 Notations and Terminology

We consider finite graphs and may have multiple edges or loops. For terminology and notations not defined here we follow $[1,5,31]$. Throughout this dissertation, Let G be a graph with the vertex set $V(G)$ and edge set $E(G)$. For a graph G, if $X \subseteq V(G)$, then $G[X]$ is the subgraph induced by X. For each vertex $v \in V(G)$, the set of vertices adjacent to v and the set of edges incident with v are respectively denoted by $N_{G}(v)$ and $E_{G}(v)$, and $d_{G}(v)=\left|E_{G}(v)\right|$. This is called the number of neighbours of v in G. When G is understood from this dissertation, we often use $N(v)$ and $d(v)$ for $N_{G}(v)$ and $d_{G}(v)$, respectively.

Let G be a graph. Let U_{1} and U_{2} be two disjoint vertex sets. Denote by $\delta_{G}\left(U_{1}, U_{2}\right)$ the set of edges with one end in U_{1} and the other in U_{2}. For convenience, we write $\delta_{G}\left(U_{1}\right)$ for $\delta_{G}\left(U_{1}, V(G) \backslash U_{1}\right)$. We use $B(G)$ to denote the set of bridges of G. A path in G is said to be a subdivided edge of G if every internal vertex of P has degree 2 .

1.2 Signed Graphs

A signed graph (G, σ) is a graph G together with a signature $\sigma: E(G) \rightarrow\{-1,1\}$. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative otherwise. Denote the set of all negative edges of (G, σ) by $E_{N}(G, \sigma)$. For a signed graph (G, σ), switching a vertex u means reversing the signs of all edges incident with u such that in the resulting signed graph $\left(G, \sigma^{\prime}\right), \sigma^{\prime}(e)=-\sigma(e)$ for each edge $e \in E(v)$ and $\sigma^{\prime}(e)=\sigma(e)$ for all other edges. See Figure 1.1 for an illustration. Two signed graphs are equivalent if one can be obtained from the other by a sequence of switching operations. The negativeness of (G, σ) is denoted by $\epsilon(G, \sigma)=\min \left\{\left|E_{N}\left(G, \sigma^{\prime}\right)\right|: \sigma^{\prime}\right.$ is equivalent to $\left.\sigma\right\}$.

For convenience, the signature σ is usually omitted if no confusion arises or is written as σ_{G} if it needs to emphasize G. If there is no confusion from the context, we simply use $E_{N}(G)$ for

Figure 1.1: A switching at the vertex v
$E_{N}(G, \sigma)$ and use $\epsilon(G)$ for $\epsilon(G, \sigma)$.
Let $e=u v$ be an edge. By contracting e, we mean to first identify u with v and then to delete the loop if $\sigma(e)=1$ otherwise to keep the negative loop. An unsigned graph is regarded as a signed graph with all-positive signature. A circuit is balanced if it contains an even number of negative edges, and it is unbalanced otherwise. A signed graph is called balanced if it contains no unbalanced circuit and is called unbalanced otherwise. A signed circuit is defined as a signed graph of any of the following three types (see Figure 1.2):
(1) a balanced circuit;
(2) a short barbell, that is, the union of two unbalanced circuits that meet at a single vertex;
(3) a long barbell, that is, the union of two disjoint unbalanced circuits with a path that meets the circuits only at its ends.

(1) A balanced circuit

(2) A short barbell

(3) A long barbell

Figure 1.2: Three types of signed circuits (dotted edges are negative edges)
We regard an edge $e=u v$ of a signed graph as two half edges h_{e}^{u} and h_{e}^{v}, where h_{e}^{u} is incident with u and h_{e}^{v} is incident with v. Let $H_{G}(v)$ (or simply $H(v)$ if no confusion may cause) be the set of all half edges incident with v, and $H(G)$ be the set of all half edges of (G, σ). An orientation of a signed graph (G, σ) is a mapping $\tau: H(G) \rightarrow\{-1,1\}$ such that for each $e=u v \in E(G)$, $\tau\left(h_{e}^{u}\right) \tau\left(h_{e}^{v}\right)=-\sigma(e)$. It is convenient to consider τ as an assignment of orientations on $H(G)$. Namely, for $h_{e}^{u} \in H(G), h_{e}^{u}$ is oriented away from u if $\tau\left(h_{e}^{u}\right)=1$ and h_{e}^{u} is oriented toward u if $\tau\left(h_{e}^{u}\right)=-1$. A signed graph (G, σ) together with an orientation τ is called an oriented signed graph, denoted by (G, τ).

1.3 Background on Nowhere-zero Flow Problems

The theory of integer flows which is a dual problem to vertex coloring of planar graphs was introduced by Tutte [28, 27] as a tool related to the Four-Color Theorem. He discovered the following duality relation between these two categories of problems.

Theorem 1.3.1 (Tutte [28]). Let G be a graph strongly embedded on an orientable surface S. If G is k-face colorable, then G admits a nowhere-zero k-flow. Furthermore, if S is a sphere, then they are equivalent.

It has been extended to signed graphs. The concept of integer flows on signed graphs naturally comes from the study of graphs embedded on non-orientable surfaces, where nowherezero flow emerges as the dual notion to local tension.

The collection $\pi=\left\{\pi_{v} \mid v \in V(G)\right\}$ is called a rotation system, which means for each vertex v, π_{v} is a cyclic permutation of the edges incident with v. Thus the embedding of the graph together with π naturally induces a signature as seen in the following definition.

Definition 1 (Mohar and Thomassen [22]). Let (G, π, S) be an embedding of G on a nonorientable surface S where $\pi=\left\{\pi_{v} \mid v \in V(G)\right\}$ is the rotation system of the embedding. The signature σ_{π} induced by the embedding is a mapping $\sigma_{\pi}: E(G) \rightarrow\{ \pm 1\}$ where $\sigma_{\pi}(e)=-1$ if and only if e passes through the cross-caps of S odd times.

Lu et al. [18] showed the following proposition for the existence of an embedding (G, π, S).
Proposition 1.3.2 (Lu et al. [18]). For any signed graph (G, σ), there exists a non-orientable surface S and an embedding (G, π, S) of G on S such that σ is the induced signature σ_{π} of the embedding.

The following result extends Theorem 1.3.1 to all the surfaces (including non-orientable cases).

Theorem 1.3.3 (Bouchet [2]). Let (G, π, S) be a signed graph strongly embedded on a surface S, π be a rotation system of the embedding. If (G, π, S) is k-face colorable on S, then $\left(G, \sigma_{\pi}\right)$ admits a nowhere-zero k-flow. Furthermore, if S is a sphere or a projective plane, then they are equivalent.

Theorem 1.3.3 is a natural extension of the fundamental result by Tutte (Theorem 1.3.1) to graphs embedded on all surfaces. If S is orientable, then the rotation system π can be selected as clockwise on one side of the surface and thus $\sigma_{\pi}(e)=1$ for each edge, which is an ordinary graph and has already been well studied in Tutte's flow theory.

For ordinary graphs, Tutte [28] conjectured that every bridgeless graph admits a nowherezero 5 -flow and Seymour [24] showed that every such graph admits a nowhere-zero 6 -flow. there
are signed graphs which have no nowhere-zero 5-flow (see [[2],[14],[25]]) and Bouchet proposed the following 6-flow conjecture in 1983.

Conjecture 1.3.1. (Bouchet [2]) Every flow-admissible signed graph admits a nowhere-zero 6 -flow.

Bouchet [2] himself proved that such signed graphs admit nowhere-zero 216-flows and Zýka [38] further reduced to 30-flows. Recently DeVos et al. [4] further proved the following best known result.

Theorem 1.3.4. (DeVos et al. [4]) Every flow-admissible signed graph admits a nowhere-zero 11-flow.

1.4 Definition of Integer Flows on Signed Graphs

Definition 2. Let (G, σ) be a signed graph and τ be an orientation of (G, σ). Let $k \geq 2$ be an integer and $f: E(G) \rightarrow \mathbb{Z}$ be a mapping.
(1) The boundary of (τ, f) is the mapping $\partial(\tau, f): V(G) \rightarrow \mathbb{R}$ defined as

$$
\partial(\tau, f)(v)=\sum_{h \in H(v)} \tau(h) f\left(e_{h}\right)
$$

for each vertex v, where e_{h} is the edge of $\left(G, \sigma_{\tau}\right)$ containing h.
(2) The support of f, denoted by $\operatorname{supp}(f)$, is the set of edges e with $|f(e)|>0$.
(3) If $\partial(\tau, f)(v)=0$ for each vertex v, then (τ, f) is called a flow of (G, σ). A flow (τ, f) is said to be nowhere-zero of $\left(G, \sigma_{\tau}\right)$ if $\operatorname{supp}(f)=E(G)$.
(4) If $1 \leq|f(e)| \leq k-1$ for each edge $e \in E(G)$, then the flow (τ, f) is called a nowhere-zero k-flow of $\left(G, \sigma_{\tau}\right)$.
(4) If $\partial(\tau, f)(v) \equiv 0(\bmod k)$ for each vertex v, then (τ, f) is called a \mathbb{Z}_{k}-flow of (G, σ). A \mathbb{Z}_{k}-flow (τ, f) is said to be nowhere-zero if $\operatorname{supp}(f)=E(G)$.

For a mapping $f: E(G) \rightarrow \mathbb{Z}$, denote $E_{f= \pm i}=\{e \in E(G):|f(e)|=i\}$.
For convenience, we shorten the notation of nowhere-zero k-flow and nowhere-zero Z_{k}-flow as k-NZF and \mathbb{Z}_{k}-NZF, respectively. If the orientation is understood from the context, we use f instead of (τ, f) to denote a flow. Observe that G admits a k-NZF under an orientation τ if and only if it admits a k-NZF under any orientation τ^{\prime} which is equivalent to τ.

A signed graph is flow-admissible if it admits a nowhere-zero k-flow for some integer k. Note that switching a vertex does not change the parity of the number of negative edges in a circuit
and although technically it changes the flows, it only reverses the directions of the half edges incident with the vertex, but the directions of other half edges and the flow values of all edges remain the same. Bouchet [2] gave a characterization for all flow-admissible signed graphs.

Proposition 1.4.1. (Bouchet [2]) Let (G, σ) be a connected signed graph. The following three statements are equivalent:
(1) (G, σ) is flow-admissible;
(2) (G, σ) is not equivalent to a signed graph with exactly one negative edge and it has no cut-edge b such that $\left(G-b,\left.\sigma\right|_{G-b}\right)$ has a balanced component;
(3) every edge in (G, σ) is contained in a signed circuit.

Given a signed graph (G, σ), let H be a signed subgraph of (G, σ) and C be a balanced circuit. Define the following operation:

$$
\Phi_{2} \text {-operation : add a balanced circuit } C \text { into } H \text { if }|E(C)-E(H)| \leq 2
$$

We use $\langle H\rangle_{2}$ to denote the maximal subgraph of G obtained from H via Φ_{2}-operations. Zýka [38] proved the following result.

Lemma 1.4.2. (Zýka [38]) Let (G, σ) be a signed graph and H be a subgraph of G. If $\langle H\rangle_{2}=G$, then (G, σ) admits a \mathbb{Z}_{3}-flow ϕ such that $E(G)-E(H) \subseteq \operatorname{supp}(\phi)$.

The next lemma gives a characterization of signed graphs admitting a nowhere-zero 2-flow.
Lemma 1.4.3. (Xu and Zhang [33]) A signed graph (G, σ) admits a nowhere-zero 2-flow if and only if each component of (G, σ) is eulerian and has an even number of negative edges.

The next proposition is a characterization of signed circuits admitting a nowhere-zero 3-flow.
Proposition 1.4.4. (Bouchet [2]) Every balanced circuit or short barbell has a nowhere-zero 2 -flow and every long barbell has a nowhere-zero 3-flow where each edge has flow value 2 or - 2 if and only if it belongs to the path connecting the two unbalanced circuits.

We further study the relation between modulo flows and integer flows on signed graphs. The equivalency of modulo flow and integer flow is a fundamental result in the theory of flows on unsigned graphs.

Theorem 1.4.5. (Tutte [26], or Younger [34]) An unsigned graph admits a nowhere-zero modulo k-flow if and only if it admits a nowhere-zero k-flow.

However, there is no equivalent result in regard to Theorem 1.4.5 for signed graphs in general. See an example in Figure 1.3. The next lemmas show how to convert a modulo flow to an integervalued flow.

Figure 1.3: (G, σ) admits a \mathbb{Z}_{3}-NZF with all edges assigned with 1 but no 3-NZF. Dotted edges are negative.

Lemma 1.4.6. (Xu and Zhang [33]) If a signed graph (G, σ) admits a \mathbb{Z}_{3}-flow f_{1} such that $\operatorname{supp}\left(f_{1}\right)$ has no cut edge, then it also admits an integer-valued 3 -flow f_{2} with $\operatorname{supp}\left(f_{1}\right)=$ $\operatorname{supp}\left(f_{2}\right)$.

The next lemma strengthens Lemma 1.4.6.
Lemma 1.4.7. (DeVos et al. [4]) Let (G, σ) be a bridgeless signed graph admitting a $\mathbb{Z}_{3}-N Z F$. Then for any edge $e^{\prime} \in E(G)$ and for any $i \in\{1,2\},(G, \sigma)$ admits a $3-N Z F f$ such that $f\left(e^{\prime}\right)=i$.

Let f be a \mathbb{Z}_{2}-flow of (G, σ). Then $\operatorname{supp}(f)$ is a vertex-disjoint union of Eulerian subgraphs. A component of $\operatorname{supp}(f)$ is called balanced if it contains an even number of negative edges; otherwise it is called unbalanced.

Lemma 1.4.8. (Cheng et al. [3]) Let (G, σ) be a connected signed graph. If (G, σ) admits a \mathbb{Z}_{2}-flow f_{1} such that $\operatorname{supp}\left(f_{1}\right)$ contains an even number of unbalanced components, then it admits a 3 -flow f_{2} such that $\operatorname{supp}\left(f_{1}\right)=E_{f_{2}= \pm 1}$ and $\operatorname{supp}\left(f_{2}\right) / \operatorname{supp}\left(f_{1}\right)$ is acyclic.

Lemma 1.4.9. (Cheng et al. [3]) Let (G, σ) be a bridgeless signed graph. If (G, σ) admits a \mathbb{Z}_{3}-flow f_{1}, then it admits a 4-flow f_{2} with $\operatorname{supp}\left(f_{1}\right) \subseteq E_{f_{2}= \pm 1} \cup E_{f_{2}= \pm 2}$.

The following lemma converts a modulo flow to an integer-valued flow if G does not contain long barbells.

Lemma 1.4.10. (Lu et al. [16]) Let (G, σ) be a signed graph without long barbells, and let k be an integer with $k=3$ or $k \geq 5$. Then (G, σ) admits a nowhere-zero \mathbb{Z}_{k}-flow if and only if it admits a nowhere-zero k-flow.

We use $B(G)$ to denote the set of cut-edges of G.

Lemma 1.4.11. (DeVos et al. [4]) Let G be a signed graph admitting a $\mathbb{Z}_{3}-N Z F$. Then G admits $a 5-N Z F g$ such that $E_{g= \pm 3}=\emptyset$ and $E_{g= \pm 4} \subseteq B(G)$.

Integer flows on signed graphs also have been studied for many specific families of graphs. We list some following results.

Theorem 1.4.12. (Lu et al. [16]) Let (G, σ) be a flow-admissible signed graph. If (G, σ) contains no long barbells, then it admits a nowhere-zero 6-flow.

Theorem 1.4.13. (Lu et al. [17]) Every flow-admissible signed graph without edge-disjoint unbalanced circuits admits a nowhere-zero 6-flow.

Theorem 1.4.14. (Kaiser and Rollová [13]) Every flow-admissible signed series-parallel graph has a nowhere-zero 6-flow.

Theorem 1.4.15. (Máčajová and Rollová [19]) The flow number of a flow-admissible signed graph whose underlying graph is either complete or complete bipartite is at most 4.

Theorem 1.4.16. (Máčajová and Škoviera [21]) Every flow-admissible signed Eulerian graph admits a nowhere-zero 4-flow.

Theorem 1.4.17. (Wang et al. [29]) Every flow-admissible signed graph with two negative edges admits a nowhere-zero 6 -flow such that each negative edge has flow value 1 .

Theorem 1.4.18. (Wu et al. [32]) A flow-admissible 8-edge-connected signed graph admits a nowhere-zero 3-flow.

Theorem 1.4.19. (Raspaud and Zhu [23]) A flow-admissible 6-edge-connected signed graph admits a nowhere-zero 4-flow.

Theorem 1.4.20. (Wei et al. [30]) Every 3-edge-connected flow-admissible signed graph admits a nowhere-zero 15 -flow.

1.5 Main Results

We call a signed graph G antibalanced if its signature is equivalent to the all-negative signature. Clearly, G is antibalanced if and only if every circuit contains an even number of positive edges, or equivalently, if and only if all even circuits of G are balanced and all odd circuits of G are unbalanced. Consequently, an antibalanced graph is balanced if and only if its underlying unsigned graph is bipartite. The following is a direct consequence of Harary's balance theorem.

Theorem 1.5.1. (Harary's balance theorem [9]) A signed graph is antibalanced if and only if its vertex set can be partitioned into two sets (either of which may be empty) in such a way that each edge between the sets is positive and each edge within a set is negative.

A circuit C with an antibalanced bipartition $\left\{A_{1}, A_{2}\right\}$ will be called half-odd if for some $i \in\{1,2\}$, each component of $C-A_{i}$ is either a path of odd length or the entire C.

Schubert and Steffen [25] verified Bouchet's Conjecture for Kotzig graphs. Máčajová and Škoviera [20] characterized cubic signed graphs that admit a nowhere-zero 3-flow and that admit a nowhere-zero 4-flow with the following theorem.

Theorem 1.5.2. (Máčajová and Škoviera [20]) Let G be a cubic signed graph.
(1) Then G has a nowhere-zero 3 -flow if and only if it is antibalanced and has a perfect matching.
(2) Then G admits a nowhere-zero 4-flow if and only if it is switching equivalent to one that has an antibalanced 2-factor with all components half-odd and with complement an all-negative perfect matching.

We investigated integer flows in 3-edge-colorable cubic signed graphs and prove the following theorem.

Theorem 1.5.3. Every flow-admissible 3-edge-colorable cubic signed graph admits a nowherezero 10-flow.

By the 4 -color theorem, every bridgeless cubic planar graph is 3-edge-colorable. Therefore we have the following corollary for bridgeless signed planar graphs.

Corollary 1.5.4. Every flow-admissible bridgeless planar signed graph admits a nowhere-zero 10-flow.

Theorem 1.5.3 follows from the following stronger result which shows that every connected flow-admissible 3 -edge-colorable cubic signed graph admits a nowhere-zero 8 -flow except one case which has a nowhere-zero 10 -flow.

Theorem 1.5.5. Let (G, σ) be a connected 3 -edge-colorable cubic signed graph and $E_{N}(G, \sigma)$ be the set of negative edges in (G, σ). Let R, B, Y be the three color classes such that $\mid R \cap$ $E_{N}(G, \sigma)|\equiv| B \cap E_{N}(G, \sigma) \mid(\bmod 2)$. If (G, σ) is flow-admissible, then it has a nowhere-zero 8-flow unless $R \cup B$ contains no unbalanced circuits and the numbers of unbalanced circuits in $R \cup Y$ and $B \cup Y$ are both odd and at least 3 , in which case it has a nowhere-zero 10-flow.

As a byproduct, we also prove the following 8-flow theorem for Hamiltonian signed graphs.
Theorem 1.5.6. If (G, σ) is a flow-admissible Hamiltonian signed graph, then (G, σ) admits a nowhere-zero 8-flow.

Figure 1.4: $\left(W_{5}, \sigma^{*}\right)$ has a 5 -NZF but no 4-NZF. Dotted edges are negative.

Secondly, we considered nowhere-zero integer flows in triangularly connected signed graphs. For triangularly connected ordinary graphs, Fan et al. [7] show that every triangularly connected ordinary graph admits a nowhere-zero 4 -flow and they also characterize all such graphs not admitting a nowhere-zero 3 -flow. For its signed counterpart, we prove the following result.

Theorem 1.5.7. If (G, σ) is a flow-admissible triangularly connected signed graph, then (G, σ) admits a nowhere-zero 4 -flow if and only if $(G, \sigma) \neq\left(W_{5}, \sigma^{*}\right)$ where $\left(W_{5}, \sigma^{*}\right)$ is the signed graph in Figure 1.4. Moreover, there are infinitely many triangularly connected unbalanced signed graphs that admit a nowhere-zero 4-flow but no 3-flow.

A graph G is locally connected if the subgraph induced by the neighbor of each vertex is connected. It is known that locally connected graphs, square of graphs, chordal graphs, triangulations on surfaces and some types of products of graphs are triangularly connected (such as [11], [15], for ordinary graphs) and thus we have the following corollary.

Corollary 1.5.8. Let (G, σ) be a flow-admissible signed graph. If G is locally connected, then (G, σ) admits a nowhere-zero 4-flow if and only if $(G, \sigma) \neq\left(W_{5}, \sigma^{*}\right)$. In particular, if G is the square of a connected graph or is the strong product of graphs, then (G, σ) admits a nowhere-zero 4-flow.

Lastly, we worked on the nowhere-zero integer flows in K_{4}-minor-free signed graphs. There are flow-admissible signed graphs that admit a nowhere-zero 6 -flow but no nowhere-zero 5 -flow (see Figure 1.5). Note that the third graph, denoted by $N_{4 k+2}^{\sigma}$, is the smallest signed graph of an infinite family, in which all the members are signed graphs obtained from a positive circuit of length $4 k+2$ by replacing every even index edge with an unbalanced 2 -circuit, where $k \geq 1$.

We define contraction in signed graphs as follows. For an edge $e \in E(G)$, the contraction G / e is the signed graph obtained from G by identifying the two ends of e, and then deleting the resulting positive loop if e is a positive edge, but keeping the resulting negative loop if e is a negative edge in $E(G)$. Let (G, σ) be a flow-admissible signed graph. We define the following operations:

Figure 1.5: Signed graphs with flow number 6. Dotted edges are negative.
(O1) Let $X \subseteq V(G)$ such that $2 \leq \delta_{G}(x) \leq 3$ and $G[X]$ is balanced. First switch at some vertices so that $G[X]$ contains no negative edges and then contract $G[X]$.
(O2) Let x be a cut-vertex of G and H be a balanced component of G at x. First switch at some vertices such that H contains no negative edges and then delete H.
(O3) Suppress a degree 2 -vertex.
Let $\left(G_{1}, \sigma_{1}\right)$ and $\left(G_{2}, \sigma_{2}\right)$ be two signed graphs. We say that $\left(G_{1}, \sigma_{1}\right)$ is reducible to $\left(G_{2}, \sigma_{2}\right)$ if $\left(G_{2}, \sigma_{2}\right)$ can be obtained from $\left(G_{1}, \sigma_{1}\right)$ by a sequence of Operations (O1), (O2), and (O3).

The following lemma is proved in [18].
Lemma 1.5.9. (Lu et al. [18]) Let $\left(G_{1}, \sigma_{1}\right)$ and $\left(G_{2}, \sigma_{2}\right)$ be two signed graphs. If $\left(G_{1}, \sigma_{1}\right)$ is reducible to $\left(G_{2}, \sigma_{2}\right)$, then either both admit a nowhere-zero 6 -flow or neither admits a nowherezero 6-flow.

Let \mathcal{M} be the set of signed graphs switching equivalent to signed graphs reducible to one of the three types of signed graphs in Figure ??. Kompišová and Máčajová [?] proposed the following conjecture.

Conjecture 1.5.1. (Kompišová and Máčajová [?]) If a flow-admissible signed graph does not admit a nowhere-zero 5 -flow, then it belongs to \mathcal{M}.

They also proved the following lemma.
Lemma 1.5.10. (Kompišová and Máčajová [?]) Let (G, σ) be a flow-admissible signed graph in \mathcal{M}. Then (G, σ) admits a nowhere-zero 6 -flow.

Let \mathcal{N} be the family of flow-admissible signed graphs switching equivalent to signed graphs reducible to $N_{4 k+2}^{\sigma}(k \geq 1)$.

It is easily to see that every K_{4}-minor free ordinary graph admits a nowhere-zero 3 -flow. For its signed counterpart, we prove the following result, which implies that Conjecture 1.3.1 is true for flow-admissible K_{4}-minor free signed graphs. Let H be a bridgeless and balanced graph. Let \mathcal{N} be the family of signed graphs switching equivalent to $N_{4 k+2}^{\sigma}(k \geq 1)$ and all their cut-vertex
reducible signed graphs, 2-edge-cut reducible signed graphs, 3-edge-cut reducible signed graphs such that the bridgeless, balanced component H is nontrivial.

Theorem 1.5.11. Let (G, σ) be a flow-admissible, K_{4}-minor free signed graph. Then (G, σ) admits a nowhere-zero 5-flow if and only if (G, σ) does not belong to the family \mathcal{N}.

Chapter 2

Flows of 3-edge-colorable cubic signed graphs

The main purpose of this chapter is to consider the first introduce the following basic notation and terminology.

2.1 Notation and Terminology

Let G be a graph. A leaf vertex is a vertex of degree 1. A path is nontrivial if it contains at least two vertices. Let u, v be two vertices in $V(G)$. A (u, v)-path is a path with u and v as its endvertices. Let $C=v_{1} \cdots v_{r} v_{1}$ be a circuit where $v_{1}, v_{2}, \ldots, v_{r}$ appear in clockwise on C. A segment of C is the path $v_{i} v_{i+1} \cdots v_{j-1} v_{j}$ contained in C and is denoted by $v_{i} C v_{j}$, where the indices are taken modulo r.

2.2 Uesful Lemmas

It is clear that a signed graph admits a \mathbb{Z}_{2}-NZF if and only if each component of (G, σ) is eulerian. We introduced that Lemma 1.4.3 gives a characterization of signed graphs admitting a 2-NZF. We introduced Lemma 1.4.8 and Lemma 1.4.9 to show how to convert a modulo flow to an integer-valued flow. Lemma 1.4 .8 can be extended to the case when the support of a \mathbb{Z}_{2}-flow contains an odd number of odd components in the following lemma.

Lemma 2.2.1. Let (G, σ) be a connected signed graph. If (G, σ) admits a \mathbb{Z}_{2}-flow f_{1} such that the number of odd components of $\operatorname{supp}\left(f_{1}\right)$ is odd and is at least three, then (G, σ) has a 5 -flow f_{2} satisfying
(1) $\operatorname{supp}\left(f_{2}\right) / \operatorname{supp}\left(f_{1}\right)$ is acyclic;
(2) $\operatorname{supp}\left(f_{1}\right) \subseteq\left\{e \in E(G): 1 \leq\left|f_{2}(e)\right| \leq 3\right\}$ and $\left|f_{2}(e)\right| \in\{1,2\}$ for each negative loop $e \in \operatorname{supp}\left(f_{1}\right)$.

Proof. Let (G, σ) together with a \mathbb{Z}_{2}-flow $\left(\tau, f_{1}\right)$ be a counterexample to Lemma 2.2.1 such that $|E(G)|$ is minimized. In the following, we always assume the flows are under the orientation τ or its restriction on according subgraphs.

Denote by \mathcal{B} the set of components of $\operatorname{supp}\left(f_{1}\right)$ and let $H=G / \operatorname{supp}\left(f_{1}\right)$. Thus $V(H)$ can be partitioned into three parts: X, Y and W where X and Y are the sets of vertices corresponding to even and odd components in \mathcal{B} respectively and W is corresponding to the vertices which are also the vertices in $V(G)$. For $u \in X \cup Y$, let B_{u} denote the corresponding component in \mathcal{B}.

Claim 2.2.1.1. G contains no leaf vertices and H is a tree.
Proof. If G contains a leaf vertex, say x, then $f_{1}(e)=0$ where e is the edge incident with x and $G-x$ remains connected. This contradicts to the minimality of G.

Clearly H is connected since G is connected. If H is not a tree, then there is an edge $e \in E(G)$ such that $f_{1}(e)=0$ and $G-e$ is connected, a contradiction to the minimality of G again.

Let u be a leaf vertex of H and v be its neighbor. By Claim 2.2.1.1, $u \in X \cup Y$. Since u is a leaf vertex of H, there is only one edge in G with one endvertex in B_{u} and the other one in B_{v}. Let $x_{u} x_{v}$ be the only edge in G where $x_{u} \in V\left(B_{u}\right)$ and $x_{v} \in V\left(B_{v}\right)$.

Claim 2.2.1.2. $u \in Y$ and $v \notin Y$.
Proof. Suppose to the contrary that either $u \in X$ or $u \in Y$ and $v \in Y$. Let $G^{\prime}=G-V\left(B_{u}\right)$. Since B_{u} is a leaf block, G^{\prime} is connected.

If $u \in X$, then B_{u} is an even component and thus $\mathcal{B}-B_{u}$ and \mathcal{B} have the same number of odd components. Since G^{\prime} is connected, by the minimality of G, there is an integer 5 -flow g_{1} of $\left(G^{\prime},\left.\sigma\right|_{E\left(G^{\prime}\right)}\right)$ such that $\operatorname{supp}\left(f_{1}\right)-E\left(B_{u}\right) \subseteq \operatorname{supp}\left(g_{1}\right)$ and g_{1} satisfies (1) and (2). Then g_{1} can be considered as a flow of (G, σ) under the orientation τ such that $E\left(B_{u}\right) \cap \operatorname{supp}\left(g_{1}\right)=\emptyset$. Since B_{u} is an even eulerian component, by Lemma 1.4.3, there is a 2-flow g_{2} of (G, σ) such that $\operatorname{supp}\left(g_{2}\right)=E\left(B_{u}\right)$. Therefore $g_{1}+g_{2}$ is a 5 -flow of (G, σ) satisfying (1) and (2), a contradiction.

Now assume that $u \in Y$ and $v \in Y$. Let \hat{B}_{v} be the subgraph obtained from B_{v} by deleting as many negative loops in B_{v} as possible so that $\hat{B_{v}}$ remains odd. Then $\hat{B_{v}}$ contains at most one negative loop and $\mathcal{B}-\left\{B_{u}, B_{v}\right\}+\left\{\hat{B}_{v}\right\}$ has an even number of odd components. By Lemma 1.4.8, there is a 3-flow g_{3} such that $\operatorname{supp}\left(f_{1}\right)-\left[E\left(B_{u}\right) \cup E\left(B_{v}\right)\right]+E\left(\hat{B}_{v}\right) \subseteq \operatorname{supp}\left(g_{3}\right)$ and g_{3} satisfies (1) and (2). Note that $g_{3}\left(x_{u} x_{v}\right)=0$ and $g_{3}(e)=0$ for each $e \in E\left(B_{u}\right) \cup\left[E\left(B_{v}\right) \backslash E\left(\hat{B_{v}}\right)\right]$. By Lemma 1.4.8 again, there is a 3-flow g_{4} such that $\operatorname{supp}\left(g_{4}\right)=E\left(B_{u}\right) \cup E\left(B_{v}\right)+x_{u} x_{v}$, $E\left(B_{u}\right) \cup E\left(B_{v}\right)=E_{g_{4}= \pm 1}$, and $\left\{x_{u} x_{v}\right\}=E_{g_{4}= \pm 2}$. Since \hat{B}_{v} contains at most one negative loop,
we have that $\operatorname{supp}\left(g_{3}\right)$ contains at most one loop in B_{v}. Therefore either $g_{3}+2 g_{4}$ or $g_{3}-2 g_{4}$ is a desired 5 -flow, a contradiction. This proves the claim.

Let $\left(G_{1}, \sigma_{1}\right)$ be the signed graph obtained from $G-V\left(B_{u}\right)$ by adding a negative loop e_{1} at x_{v} where σ_{1} is defined as $\sigma_{1}(e)=\sigma(e)$ for each $e \in E\left(G_{1}\right)-\left\{e_{1}\right\}$ and $\sigma_{1}\left(e_{1}\right)=-1$. The orientation τ_{1} of $\left(G_{1}, \sigma_{1}\right)$ is defined as $\tau_{1}(h)=\tau(h)$ for each $h \in H\left(G_{1}\right)$ and h is not an half edge of the loop e_{1}; for each half edge h of $e_{1}, \tau_{1}(h)=\tau\left(h_{u v}^{v}\right)$.

Let $\left(G_{2}, \sigma_{2}\right)$ be the signed graph obtained from B_{u} by adding a negative loop e_{2} at x_{u}. Its signature σ_{2} and orientation τ_{2} are defined similarly to σ_{1} and τ_{1}, respectively.

Denote $B_{v}^{\prime}=B_{v} \cup\left\{e_{1}\right\}$ and $\mathcal{B}^{\prime}=\mathcal{B}-B_{u}-B_{v}+B_{v}^{\prime}$ if $v \in X \cup Y$; otherwise denote $B_{v}^{\prime}=\left\{e_{1}\right\}$ and $\mathcal{B}^{\prime}=\mathcal{B}-B_{u}+B_{v}^{\prime}$. Note that there is a \mathbb{Z}_{2}-flow of $\left(G_{1}, \sigma_{1}\right)$ whose support is $\bigcup_{B \in \mathcal{B}^{\prime}} E(B)$.

By Claim 2.2.1.2, both B_{u} and B_{v}^{\prime} are odd. Thus \mathcal{B}^{\prime} and \mathcal{B} have the same number of odd components. By the minimality of G, there is a 5 -flow $\left(\tau_{1}, g_{5}\right)$ of (G_{1}, σ_{1}) satisfying (1) and (2).

By Claim 2.2.1.2, $\left(G_{2}, \sigma_{2}\right)$ is a signed eulerian graph with even number of negative edges. By Lemma 1.4.3, there is a 2-flow $\left(\tau_{2}, g_{6}\right)$ of $\left(G_{2}, \sigma_{2}\right)$ such that $\operatorname{supp}\left(g_{6}\right)=E\left(G_{2}\right)$. We may assume $g_{5}\left(e_{1}\right) g_{6}\left(e_{2}\right)>0$ otherwise replacing g_{6} with $-g_{6}$. Let $a=g_{5}\left(e_{1}\right)$. Then $|a| \in\{1,2\}$.

Let $\left(\tau, g_{7}\right)$ be the integer flow of (G, σ) defined as follows: for each $e \in E(G)$,

$$
g_{7}(e)= \begin{cases}g_{5}(e) & \text { if } e \in \operatorname{supp}\left(g_{5}\right) \\ a g_{6}(e) & \text { if } e \in \operatorname{supp}\left(g_{6}\right) \\ 2 a & \text { if } e=u v \\ 0 & \text { otherwise }\end{cases}
$$

Then g_{7} is a 5 -flow of (G, σ) satisfying (1) and (2), a contradiction. This completes the proof of the lemma.

The following lemma is due to Zaslavsky [35].
Lemma 2.2.2. (Zaslavsky [35]) Let T be a spanning tree of a signed graph (G, σ). For every $e \notin E(T)$, let C_{e} be the unique circuit contained in $T+e$. If the circuit C_{e} is balanced for every $e \notin E(T)$, then G is balanced.

The proof of the following lemma is inspired by the proof of Theorem 4.2 in [21] due to Máčajová and Škoviera.

Lemma 2.2.3. Let C be an unbalanced circuit of a signed graph (G, σ). If (G, σ) is flowadmissible and $G-E(C)$ is balanced, then (G, σ) has a 4-flow f satisfying the following:
(1) $E(C) \subseteq \operatorname{supp}(f)$;
(2) In $H=G[\operatorname{supp}(f)]$ the subgraph induced by $\operatorname{supp}(f)$, each vertex in $V(H)-V(C)$ has degree at most 3 in H and at most one vertex in $V(H)-V(C)$ has degree 3 .

Proof. Denote by $G^{\prime}=G-E(C)$. Since G^{\prime} is balanced, with some switching operations, we may assume that all edges in $E\left(G^{\prime}\right)$ are positive and thus $E_{N}(G, \sigma) \subseteq E(C)$. Fix an orientation τ of (G, σ) and in the following we always assume the flows are under the orientation τ or its restriction on according subgraphs.

Let M be a component of G^{\prime}. The circuit C is divided by the vertices of M into segments whose endvertices lie in M and all inner vertices lie outside M. An endvertex of a segment is called an attachment of M. A segment is called positive (negative) if it contains an even (odd) number of negative edges. Let S be a segment. Note that $M \cup S$ is unbalanced (balanced) if and only if the segment S is negative (positive). Since C is unbalanced, the number of negative segments determined by each component M is odd.

We prove the lemma by contradiction. Suppose to the contrary that (G, σ) has no 4 -flow satisfying (1) and (2).

Claim 2.2.3.1. Each component of G^{\prime} determines exactly one negative segment.
Proof. Suppose to the contrary that M determines more than one negative segments. Thus M determines at least three negative segments. Let $u_{1} C u_{1}^{\prime}, u_{2} C u_{2}^{\prime}, u_{3} C u_{3}^{\prime}$ be three consecutive negative segments (in clockwise) where u_{i} and u_{i}^{\prime} are attachments for $i=1,2,3$. Then $u_{1}^{\prime} C u_{2}$, $u_{2}^{\prime} C u_{3}, u_{3}^{\prime} C u_{1}$ all contain even number of negative edges. This implies that C can be partitioned into three negative segments: $u_{1} C u_{2}, u_{2} C u_{3}$, and $u_{3} C u_{1}$.

We first show that no $\left(u_{1}, u_{2}\right)$-path in M passes through u_{3}. Otherwise let P be a $\left(u_{1}, u_{2}\right)$ path in M that passes through u_{3}. Then $C_{1}=u_{1} C u_{3}+u_{1} P u_{3}$ and $C_{2}=u_{3} C u_{2}+u_{3} P u_{2}$ both are balanced circuits. By Lemma 1.4.3, there is a 2-flow f_{i} of (G, σ) such that $\operatorname{supp}\left(f_{i}\right)=E\left(C_{i}\right)$ for each $i=1,2$. Therefore $2 f_{1}+f_{2}$ is a 4 -flow of (G, σ) and $\operatorname{supp}\left(2 f_{1}+f_{2}\right)=E(C) \cup E(P)$, which is a desired 4 -flow, a contradiction.

By symmetry, no $\left(u_{i}, u_{j}\right)$-path passes through u_{k} where $\{i, j, k\}=\{1,2,3\}$. This implies that u_{1} and u_{2} are not adjacent. Otherwise, a $\left(u_{1}, u_{3}\right)$-path together with $u_{1} u_{2}$ gives a $\left(u_{2}, u_{3}\right)$-path containing u_{1}.

Let P_{1} be a $\left(u_{1}, u_{2}\right)$-path. Since M is connected, there is a path P_{2} from u_{3} to P_{1} such that $\left|V\left(P_{2}\right) \cap V\left(P_{1}\right)\right|=1$. Let v be the only common vertex in P_{1} and P_{2}. Then C, P_{1}, and P_{2} form a signed graph as illustrated in Figure 2.1 which has a desired 4-NZF, a contradiction again. This completes the proof of the claim.

Let \mathcal{M} denote the set of all components of G^{\prime}. For each component M, denote by $S_{M}=u C v$ the negative segment determined by M where u and v are two attachments of M on C. Denote by $S_{M}^{\prime}=v C u$ the cosegment of S_{M}. Then $E\left(S_{M}\right) \neq \emptyset$ and $E\left(S_{M}^{\prime}\right)=E(C)-E\left(S_{M}\right)$.

Claim 2.2.3.2. $\bigcap_{M \in \mathcal{M}} E\left(S_{M}\right)=\emptyset$. Therefore $\bigcup_{M \in \mathcal{M}} E\left(S_{M}^{\prime}\right)=C$ and $|\mathcal{M}| \geq 2$.

Figure 2.1: a 4-flow covers C
Proof. Suppose to the contrary $\bigcap_{M \in \mathcal{M}} E\left(S_{M}\right) \neq \emptyset$. Let $e^{*} \in \bigcap_{M \in \mathcal{M}} E\left(S_{M}\right)$. Then there is a spanning tree T of $G-e^{*}$ containing the path $P^{*}=C-e^{*}$. Let $e=u v \in E(G)-e^{*}-E(T)$. Denote the unique circuit contained in $T+e$ by C_{e}.

If $E\left(C_{e}\right) \cap E\left(P^{*}\right)=\emptyset$, then C_{e} contains no negative edges and thus is balanced.
Assume that C_{e} and P^{*} have common edges. Since T contains all the edges in $C-e^{*}$, $E\left(C_{e}\right) \cap E(C)$ is a path P on C. Let u^{\prime} and v^{\prime} be the two endvertices of P in clockwise order on C. Then $C_{e}\left[\left(V\left(C_{e}\right)-V(P)\right) \cup\left\{u^{\prime}, v^{\prime}\right\}\right]$ is a also a path and thus it is contained in some component $M \in \mathcal{M}$. This implies that u^{\prime} and v^{\prime} are two attachments of M on C. Since e^{*} belongs to the only negative segment of C determined by $M, u^{\prime} C v^{\prime}$ is the union of some positive segments of C determined by M. Therefore C_{e} has an even number of negative edges and thus is balanced. By Lemma 2.2.2, $G-e^{*}$ is balanced, contradicting Lemma 1.4.1. This proves $\bigcap_{M \in \mathcal{M}} E\left(S_{M}\right)=\emptyset$.

Since $E\left(S_{M}^{\prime}\right)=E(C)-E\left(S_{M}\right)$ and $\bigcap_{M \in \mathcal{M}} E\left(S_{M}\right)=\emptyset$, we have $\bigcup_{M \in \mathcal{M}} E\left(S_{M}^{\prime}\right)=C$.
Since $E\left(S_{M}\right) \neq \emptyset$ and $\bigcap_{M \in \mathcal{M}} E\left(S_{M}\right)=\emptyset$, we have $|\mathcal{M}| \geq 2$.
Let $\mathcal{S}=\left\{S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{t}^{\prime}\right\}$ be a minimal cosegment cover of C. Then $S_{i}^{\prime} \nsubseteq S_{j}^{\prime}$ for any i, j.
Claim 2.2.3.3. (i) For each pair $i, j \in\{1,2, \ldots, t\}$, either $S_{i}^{\prime} \cap S_{j}^{\prime}$ consists of some nontrivial paths or S_{i}^{\prime} and S_{j}^{\prime} are vertex-disjoint;
(ii) Each edge $e \in E(C)$ is contained in at most two cosegments.

Proof. (i) Note that for any two segments S_{i} and S_{j}, their endvertices belong to two vertexdisjoint components M_{i} and M_{j}. Thus no component of $S_{i}^{\prime} \cap S_{j}^{\prime}$ is an isolated vertex. This proves (i).
(ii) Suppose to the contrary that there is an edge $e=u v$ that belongs to three cosegments, say $S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime}$. Let $S_{i}^{\prime}=u_{i} C v_{i}$ for each $i \in\{1,2,3\}$. Without loss of generality, we may assume that $u_{1}, u_{2}, u_{3}, u, v$ appear in this clockwise cyclic order. Then there exists a pair i, j such that $u_{i} C v_{j}$ contains all the $u_{l}, v_{l}^{\prime} s(l \in\{1,2,3\})$ and u, v. Hence, there is a $k \in\{1,2,3\}-\{i, j\}$ such

(a) a minimal cosegment cover with $t=5$
(b) 2-flow f_{5} of C_{5}
(c) 2-flows $f_{1}, f_{2}, f_{3}, f_{4}$

Figure 2.2: Minimum cosegment cover and 4-flow
that u_{k} and v_{k} are properly included in $u_{i} C v_{j}$. In this case, either $\mathcal{S} \backslash\left\{S_{k}^{\prime}\right\}$ is still a cover of C or $S_{k}^{\prime} \cup S_{i}^{\prime}=C$, both in contradiction to the minimality of \mathcal{S}. This completes the proof of the claim.

The final step. For each $i=1, \ldots, t$, denote by $S_{i}^{\prime}=x_{i} C y_{i}$ and let P_{i} be a path in M_{i} connecting x_{i} and y_{i}. Then $C_{i}=S_{i}^{\prime} \cup P_{i}$ is a balanced eulerian subgraph. By Claim 2.2.3.3, we may assume that the vertices $x_{1}, y_{t}, x_{2}, y_{1}, \ldots, x_{t}, y_{t-1}, x_{1}$ appear on C in the acyclic order. Then $C_{i} \cap C_{j} \neq \emptyset$ if and only if $|j-i| \equiv 1(\bmod t)$. Moreover $C_{i} \cap C_{i+1}=x_{i+1} C y_{i}$ where the subindices are taken modulo t. See Figure 2.2 for an illustration with $t=5$.

For each $i \in\{1,2, \ldots, t\}$, let $\left(\tau, f_{i}\right)$ be a 2-flow of (G, σ) such that $\operatorname{supp}\left(f_{i}\right)=E\left(C_{i}\right)$. We may assume that for each $i=1, \ldots, t-1, f_{i}(e)=f_{i+1}(e)$ for each $e \in E\left(C_{i}\right) \cap E\left(C_{i+1}\right)$. Then $\phi=\sum_{i=1}^{t-1} f_{i}+2 f_{t}$ is a 4-flow of (G, σ) satisfying $E(C) \subseteq \operatorname{supp}(\phi)=E(C) \cup\left[\cup_{i=1}^{t} E\left(P_{i}\right)\right]$. Since P_{1}, \ldots, P_{t} belong to different components of G^{\prime}, they are pairwise vertex-disjoint. Thus for each vertex $v \in V(\operatorname{supp}(\phi))-V(C)$, the degree of v in $\operatorname{supp}(\phi)$ is two. Therefore ϕ is a 4 -flow satisfying (1) and (2), a contradiction to the assumption that (G, σ) is a counterexample. This contradiction completes the proof of the lemma.

The proof of the following lemma is straightforward and thus is omitted.
Lemma 2.2.4. Let (G, σ) be a signed graph and C be a chordless circuit whose edges are all positive. Suppose that $2 \leq|\delta(V(C))| \leq 3$ and $k \geq 4$ is an integer. If $(G / C, \sigma)$ has a k-NZF f, then f can be extended to be a k-NZF of (G, σ).

2.3 Proofs of Theorem 1.5.5 and Corollary 1.5.4

Let's first recall Theorem 1.5.5.
Theorem 1.5.5 Let (G, σ) be a connected 3 -edge-colorable cubic signed graph and $E_{N}(G, \sigma)$ be the set of negative edges in (G, σ). Let R, B, Y be the three color classes such that $\mid R \cap$ $E_{N}(G, \sigma)|\equiv| B \cap E_{N}(G, \sigma) \mid(\bmod 2)$. If (G, σ) is flow-admissible, then it has a nowhere-zero 8-flow unless $R \cup B$ contains no unbalanced circuits and the numbers of unbalanced circuits in $R \cup Y$ and $B \cup Y$ are both odd and at least 3 , in which case it has a nowhere-zero 10-flow.

Proof. Let τ be an orientation of (G, σ). In the following we always assume the flows are under the orientation τ or its restriction on according subgraphs. Denote by $M_{1} M_{2}$ the 2-factor induced by $M_{1} \cup M_{2}$ for each pair $M_{1}, M_{2} \in\{R, B, Y\}$. Since $\left|R \cap E_{N}(G, \sigma)\right| \equiv\left|B \cap E_{N}(G, \sigma)\right|(\bmod 2)$, $R B$ has an even number of odd components.

Case 1. $R B$ contains an unbalanced circuit.
Then by Lemma $1.4 .8,(G, \sigma)$ has a 3 -flow $\left(\tau, f_{1}\right)$ such that $R B=E_{f_{1}= \pm 1}$ and $\left|f_{1}(e)\right|=2$ only if $e \in Y$.

Subcase 1.1. $\left|Y \cap E_{N}(G, \sigma)\right| \equiv\left|R \cap E_{N}(G, \sigma)\right| \equiv\left|B \cap E_{N}(G, \sigma)\right|(\bmod 2)$.
Then $R Y$ has an even number of unbalanced circuits. By Lemma 1.4.8 again, (G, σ) has a 3-flow $\left(\tau f_{2}\right)$ such that $R Y=E_{f_{2}= \pm 1}$ and $\left|f_{2}(e)\right|=2$ only if $e \in B$.

Then $f=f_{1}+3 f_{2}$ is a 9-NZF of (G, σ). Since $E_{f_{2}= \pm 2} \cap E_{f_{1}= \pm 2}=\emptyset,|f(e)| \neq 8$. Thus f is indeed an $8-$ NZF of (G, σ).

Subcase 1.2. $R Y$ or $B Y$ has an odd number of unbalanced circuits.
In this case, both $R Y$ and $B Y$ have an odd number of unbalanced circuits.
Let C be an unbalanced circuit in $R B$. Let $R^{\prime}=R \triangle C$ and $B^{\prime}=B \triangle C$ with R and B, respectively (this is equivalent to swap colors R and B on C). This implies that $\left|Y \cap E_{N}(G, \sigma)\right| \equiv$ $\left|R^{\prime} \cap E_{N}(G, \sigma)\right| \equiv\left|B^{\prime} \cap E_{N}(G, \sigma)\right|(\bmod 2)$. We are back to Subcase 1.1.

Case 2. $R B$ contains no unbalanced circuit.
Then by Lemma 1.4.3, (G, σ) has a 2-flow f_{3} such that $\operatorname{supp}\left(f_{3}\right)=R B$.
Subcase 2.1. The number of unbalanced circuits in $R Y$ or $B Y$ is even.
Let f_{2} be the 3 -flow in Subcase 1.1. Then $\operatorname{supp}\left(f_{2}\right) \cup \operatorname{supp}\left(f_{3}\right)=E(G)$. Thus $3 f_{3}+f_{2}$ is a $6-\mathrm{NZF}$ of (G, σ).

Subcase 2.2. The number of unbalanced circuits in $R Y$ or $B Y$ is equal to one.
By symmetry, assume that $R Y$ has exactly one odd component, say C_{1}. Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{t}\right\}$ be the set of components of $R Y$, where each $C_{i}(i \geq 2)$ is balanced, and, with some switching operations, we may assume that the edges of each $C_{i}(i \geq 2)$ are all positive. Let H be the
signed graph obtained from (G, σ) by contracting $\mathcal{C}-C_{1}$. Then $V(H)$ can be partitioned into K and \bar{K}, where $K=V\left(C_{1}\right)$ and \bar{K} is the set of vertices corresponding to the balanced circuits in \mathcal{C}. For $u \in \bar{K}$, denote the corresponding circuit in \mathcal{C} by C_{u}. Since G is flow-admissible, H remains flow-admissible. Note that C_{1} is an unbalanced circuit in H.

We consider the following two cases.
Subcase 2.2.1. H contains an unbalanced circuit C^{\prime} that is edge-disjoint from C_{1}.
Since G is cubic, C^{\prime} is vertex-disjoint from C_{1}. Thus there is a long barbell Q in H with P as the path connecting C_{1} and C^{\prime}. Let τ_{1} be the orientation of Q which is a restriction of τ on $H(Q)$. By Lemma 1.4.8, let $\left(\tau_{1}, f^{\prime \prime}\right)$ be a 3 -NZF in Q. Since $d_{Q}(u)=2$ or 3 for any $u \in V(Q)-V\left(C_{1}\right)$, u is corresponding to an all-positive circuit C_{u} in (G, σ) with $\left|\delta_{Q}\left(V\left(C_{u}\right)\right)\right|=2$ or 3 . Hence by Lemma 2.2.4 we can extend $f^{\prime \prime}$ to a 4-flow $f^{\prime}(G, \sigma)$ with $\bigcup_{u \in V(Q)} E\left(C_{u}\right) \cup E\left(C_{1}\right) \subseteq \operatorname{supp}\left(f^{\prime}\right)$. Since for each $v \in V(H)-V(Q), C_{v}$ is a balanced circuit in $(G, \sigma),(G, \sigma)$ admits a 2-flow ϕ_{v} with $E\left(C_{v}\right)=\operatorname{supp}\left(\phi_{v}\right)$. Thus $f_{4}=f^{\prime}+\sum_{u \in V(H)-V(Q)} \phi_{u}$ is a 4 -flow of (G, σ) with $R Y \subseteq \operatorname{supp}\left(f_{4}\right)$. Therefore, $f_{3}+2 f_{4}$ is an 8 -NZF of (G, σ).

Subcase 2.2.2. H contains no unbalanced circuit that is edge-disjoint from C_{1}.
In this case, $H-E\left(C_{1}\right)$ is balanced and thus $G-E\left(C_{1}\right)$ is balanced. With some switching operations we may assume $E_{N}(G, \sigma) \subseteq E_{G}\left(C_{1}\right)$. By Lemma 2.2.3, (G, σ) has a 4 -flow $f^{\prime \prime}$ such that $C_{1} \subseteq \operatorname{supp}\left(f^{\prime \prime}\right)$ and every vertex in $\operatorname{supp}\left(f^{\prime \prime}\right)-E\left(C_{1}\right)$ has degree at most 3 in H. By Lemma 2.2.4, we can extend $f^{\prime \prime}$ to a 4 -flow f_{5} of (G, σ) with $R Y \subseteq \operatorname{supp}\left(f_{5}\right)$ in (G, σ). Therefore, $f_{3}+2 f_{5}$ is an 8 -NZF of (G, σ).

Subcase 2.3. The number of unbalanced circuits in $R Y$ or $B Y$ is odd and is at least 3 .
By symmetry, assume that the number of unbalanced circuits in $R Y$ is odd and is at least 3. By Lemma 2.2.1, (G, σ) has a 5 -flow f_{6} such that $R Y \subseteq \operatorname{supp}\left(f_{6}\right)$ and $E_{f_{6}= \pm 4} \subseteq B$. Then $\operatorname{supp}\left(f_{3}\right) \cup \operatorname{supp}\left(f_{6}\right)=E(G)$. Thus $5 f_{3}+f_{6}$ is a $10-$ NZF of (G, σ).

Next we will prove Corollary 1.5.4.
Corollary 1.5.4 Every flow-admissible bridgeless planar signed graph admits a nowhere-zero 10-flow.

Proof. Let (G, σ) be a flow-admissible bridgeless planar signed graph. Let τ be an orientation of (G, σ). In the following we always assume the flows are under the orientation τ or its restriction on according subgraphs.

We may assume that the minimum degree of G is at least 3 otherwise we can suppress all degree 2 vertices. We may also assume that G contains no positive loops.

If G is cubic, then by Theorem 1.5.3 and the 4 -color theorem, G admits a nowhere-zero 10-flow.

Figure 2.3: blowing up of a vertex v with $d(v)=7$ and $t=2$. Dotted lines are negative edges.

Suppose that G is not cubic and that G is already embedded in a sphere. Let v be a vertex with $d_{G}(v) \geq 4$ and t be the number of negative loops adjacent to v. First delete the t negative loops and then blow up v into a circuit C_{v} of length $d_{G}(v)-2 t$ where each edge of C_{v} is positive. Let $x y$ be an edge in C_{v}. Replace it with a subdivided edge $u_{0} u_{1} u_{2} \cdots u_{2 t+1}$ where $x=u_{0}$ and $y=u_{2 t+1}$ and then replace each $u_{i} u_{i+1}$ with an unbalanced digon for each $i=1,3, \ldots, 2 t-1$ (see Figure 2.3). Let $\left(G^{\prime}, \sigma^{\prime}\right)$ be the resulting signed graph obtained from (G, σ) by applying the above operations on each vertex in G of degree at least 4. Then $\left(G^{\prime}, \sigma^{\prime}\right)$ is cubic, planar, and flow-admissible. By Theorem 1.5.3 and the 4 -color theorem, $\left(G^{\prime}, \sigma^{\prime}\right)$ admits a nowhere-zero 10 -flow. Note that (G, σ) can be obtained from $\left(G^{\prime}, \sigma^{\prime}\right)$ by contracting an all-positive subgraph of $\left(G^{\prime}, \sigma^{\prime}\right)$. Thus (G, σ) admits a nowhere-zero 10 -flow.

2.4 Proof of Theorem 1.5.6

Let's first recall Theorem 1.5.6.
Theorem 1.5.6 If (G, σ) is a flow-admissible hamiltonian signed graph, then (G, σ) admits a nowhere-zero 8-flow.

Proof. Let τ be an orientation of (G, σ). In the following we always assume the flows are under the orientation τ or its restriction on according subgraphs. Let C_{0} be a hamiltonian circuit of G. We consider two cases according to whether C_{0} is balanced or unbalanced.

Case 1. C_{0} is balanced.
We may assume that C_{0} is all-positive with some switching operations. It is known that every ordinary graph with a hamiltonian circuit admits a 4-NZF (See Corollary 3.3.7 [36]). Thus we may further assume that (G, σ) is unbalanced. Hence, by Lemma 1.4.1, G contains at least two negative edges. Clearly, $\left\langle C_{0}\right\rangle_{2}=(G, \sigma)$. By Lemma 1.4.2, (G, σ) admits a \mathbb{Z}_{3}-flow
ϕ such that $E(G)-E\left(C_{0}\right) \subseteq \operatorname{supp}(\phi)$. By Lemma 1.4.9, (G, σ) admits a 4 -flow f_{1} such that $E(G)-E\left(C_{0}\right) \subseteq \operatorname{supp}(\phi) \subseteq \operatorname{supp}\left(f_{1}\right)$.

Since C_{0} is balanced, (G, σ) has a 2-flow f_{2} such that $E\left(C_{0}\right)=\operatorname{supp}\left(f_{2}\right)$. Note that $\operatorname{supp}\left(f_{2}\right) \cup$ $\operatorname{supp}\left(f_{1}\right)=E(G)$. Therefore $f=2 f_{1}+f_{2}$ is an $8-$ NZF of (G, σ).

Case 2. C_{0} is unbalanced.
Since C_{0} is unbalanced, for each edge $e \notin E\left(C_{0}\right)$, there is a balanced circuit in $C_{0}+e$ containing e, denoted by C_{e}. Let $H=\triangle_{e \notin E\left(C_{0}\right)} C_{e}$. Then H admits a \mathbb{Z}_{2}-NZF and has an even number of negative edges.

If H doesn't contain an unbalanced circuit, then we may assume that $E(H)$ are all positive with some switching operations. Thus $E_{N}(G) \subseteq E\left(C_{0}\right)$ and (G, σ) has a 2-flow f_{3} such that $\operatorname{supp}\left(f_{3}\right)=E(H)$. By Lemma 2.2.3, there exists a 4 -flow f_{4} such that $E\left(C_{0}\right) \subseteq \operatorname{supp}\left(f_{4}\right)$. Since $E\left(C_{0}\right) \cup E(H)=E(G), f_{3}+2 f_{4}$ is an 8 -NZF of (G, σ).

Now assume that H contains an unbalanced circuit, say C_{0}^{\prime}. Since H admits a \mathbb{Z}_{2}-NZF and has an even number of negative edges, by Lemma 1.4.8, (G, σ) has a 3 -flow f_{5} such that $E_{f_{5}= \pm 1}=E(H)$ and $E_{f_{5}= \pm 2} \subseteq E\left(C_{0}\right)-E(H)$.

Let $H^{\prime}=C_{0} \triangle C_{0}^{\prime}$. Then H^{\prime} admits a \mathbb{Z}_{2}-NZF and has an even number of negative edges. Since $C_{0} \cup C_{0}^{\prime}$ is connected, by Lemma 1.4.8 again, (G, σ) has a 3-flow f_{6} such that $\operatorname{supp}\left(f_{6}\right) \subseteq$ $E\left(C_{0}\right) \cup E\left(C_{0}^{\prime}\right), E_{f_{6}= \pm 1}=E\left(H^{\prime}\right)$, and $E_{f_{6}= \pm 2} \subseteq E\left(C_{0}\right) \cap E\left(C_{0}^{\prime}\right)$.

Therefore, $3 f_{5}+f_{6}$ is a 9 -NZF of (G, σ). Since $E_{f_{5}= \pm 2} \cap E_{f_{6}= \pm 2}=\emptyset,\left|\left(3 f_{5}+f_{6}\right)(e)\right| \neq 8$ for each edge $e \in E(G)$. Thus, $3 f_{5}+f_{6}$ is indeed an 8-NZF of (G, σ).

Chapter 3

Integer flows on triangularly connected signed graphs

3.1 Notations and Terminology

A triangle-path of length m, denoted by $T_{1} T_{2} \cdots T_{m}$ in G is a sequence of distinct triangles $T_{1}, T_{2}, \ldots, T_{m}$ in G such that for any $1 \leq i<j \leq m$,

$$
\left|E\left(T_{i}\right) \cap E\left(T_{i+1}\right)\right|=1 \text { and } E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset \text { if } j>i+1 .
$$

A connected graph G is triangularly connected if for any two nonparallel distinct edges e and e^{\prime}, there is a triangle-path $T_{1} T_{2} \cdots T_{m}$ such that $e \in E\left(T_{1}\right)$ and $e^{\prime} \in E\left(T_{m}\right)$. Trivially, the graph with a single edge is triangularly connected. Let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of G. Denote by $H_{1} \triangle H_{2} \triangle \cdots \triangle H_{t}$ the symmetric difference of those subgraphs.

3.2 Useful Lemmas

In this section, we will present some lemmas that will be used in the proof of our main result.
Lemma 3.2.1. Let (G, σ) be a triangularly connected signed graph. Let T be an unbalanced triangle if there is one otherwise let T be any balanced triangle. Then $\langle T\rangle_{2}=(G, \sigma)$ and (G, σ) has a \mathbb{Z}_{3}-flow ϕ such that $E_{\phi=0} \subseteq E(T)$ and for any triangle T^{\prime}, if there are two edges $e_{1}, e_{2} \in E\left(T^{\prime}\right)$ such that T^{\prime} is the only triangle containing them, then $\phi\left(e_{1}\right)=\phi\left(e_{2}\right)$.

Proof. If there is a triangle T^{\prime} containing two edges $u v, u w$ such that each is contained in exactly one triangle which is T^{\prime}, then split u into two vertices u_{1} and u_{2} such that u_{1} is adjacent to v and w, and u_{2} is adjacent to each vertex in $N_{G}(u)-\{v, w\}$. Then the degree of u_{1} is 2. Repeating this operation until every pair of such edges share a degree 2 -vertex. Denote the resulting graph by $\left(G^{\prime}, \sigma\right)$.

It is clear that $\langle T\rangle_{2}=\left(G^{\prime}, \sigma\right)$. Thus by Lemma 1.4.2, $\left(G^{\prime}, \sigma\right)$ has a \mathbb{Z}_{3}-flow ϕ such that $E_{\phi=0} \subseteq E(T)$. Then ϕ is a desired \mathbb{Z}_{3}-flow of (G, σ).

The next lemma is proved in [18]. For the purpose of self-containment, we include their proof here.

Lemma 3.2.2. Let (G, σ) be a signed graph with a path containing all the bridges. Then (G, σ) admits a 3 -NZF if (G, σ) admits a \mathbb{Z}_{3}-NZF.

Proof. Let (τ, ϕ) be a nowhere-zero \mathbb{Z}_{3}-flow of (G, σ). We may assume $\phi(e)=1$ for each edge e. By Lemma 1.4.3, we may further assume that G has bridges. Since there is a path containing all the bridges, G has exactly two leaf blocks, say G_{1} and G_{2}. Let $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ be the two bridges such that $u_{i} \in V\left(G_{i}\right)$ for each $i=1,2$.

For each $i=1,2$, denote by G_{i}^{\prime} the signed graph obtained from G_{i} by adding a negative loop e_{i}^{\prime} at u_{i} such that the two half edges of e_{i}^{\prime} are oriented the same as the half edge of e_{i} incident with u_{i}. Then both G_{1} and G_{2} are bridgeless and each admits a \mathbb{Z}_{3}-NZF. By Lemma 1.4.7, G_{i}^{\prime} admits a nowhere-zero 3 -flow g_{i} such that $g\left(e_{i}\right)=1$ for each $i=1,2$

If e_{1} and e_{2} are distinct, denote by G_{3}^{\prime} the signed graph obtained by deleting G_{1}, G_{2}, e_{1} and e_{2}, and then adding a new edge $e_{3}=v_{1} v_{2}$ where $v_{1} v_{2}$ consists of the half-edge of e_{1} incident with v_{1} with the same orientation and the half-edge of e_{2} incident with v_{2} with the same orientation. Then G_{3} is bridgeless and admits a \mathbb{Z}_{3}-NZF. By Lemma 1.4.7, G_{3} admits a nowhere-zero 3-flow g_{3} such that $g\left(e_{3}\right)=2$.

If $e_{1}=e_{2}$, then e_{1} is the only bridge of G and thus $G=G_{1} \cup G_{2} \cup\left\{e_{1}\right\}$. It is easy to see that one can obtain a 3-NZF of (G, σ) from g_{1} and g_{2} by deleting the negative loops $e_{1}^{\prime}, e_{2}^{\prime}$ and assigning e_{1} with the flow value 2 , a contradiction

If $e_{1} \neq e_{2}$, one can merge g_{1}, g_{2} and g_{3} to obtain a nowhere-zero 3 -flow of (G, σ), a contradiction. This completes the proof of the lemma.

The following lemma directly follows from the definition of triangularly connected graphs.
Lemma 3.2.3. Let G be a triangularly connected graph and U, W be two disjoint vertex set with $\left|\delta_{G}(U, W)\right|=3$. Then either the three edges in $\delta_{G}(U, W)$ share a common end vertex or the three edges induce a path on four vertices. Moreover in the latter case, the four vertices of the path induce a K_{4} minus one edge.

Lemma 3.2.4. Let G be a triangularly connected graph with $\delta(G) \geq 3$ and E_{0} be a set of edges of G. If $\left|E_{0}\right| \leq 4$ and each component of $G-E_{0}$ is either an isolated vertex or has minimum degree at least 2, then in each nontrivial component, there is a path containing all the bridges of the component.

Figure 3.1: The structure of a graph with three bridges not contained in a path

Proof. Suppose to the contrary that $G^{\prime}=G-E_{0}$ has a component say H that contains three bridges, say $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}$, which don't belong to a path (see Figure 3.1). Deleting these three edges, we will get four components and denote the component containing x_{i} by H_{i} for $i=1,2,3$ and denote the component containing y_{1}, y_{2}, y_{3} by H_{0}.

Since G is triangularly connected and $\delta(G) \geq 3, G$ has no cut-vertex and has no 2-edge-cut. Thus G is 3-edge connected. Since the minimum degree of each nontrivial component of $G-E_{0}$ is at least $2,\left|V\left(H_{i}\right)\right| \geq 2$ for each $i=1,2,3$.

Claim 3.2.4.1. G^{\prime} is connected.
Proof. Suppose to the contrary that G_{1} and G_{2} are two components of G^{\prime}, where $H_{i} \subseteq G_{1}$ for each $i=1,2,3$. This implies that $2\left|E_{0}\right|=\left|\delta_{G}\left(G_{2}\right)\right|+\sum_{i=0}^{3}\left|\delta_{G}\left(V\left(H_{i}\right)\right)\right|-3 \times 2 \geq 9$. It contradicts the hypothesis $\left|E_{0}\right| \leq 4$.

Claim 3.2.4.2. There exists an integer $i \in\{1,2,3\}$ such that $\delta_{G}\left(H_{i}\right)=3$ and for any H_{j} with $\left|\delta_{G}\left(H_{j}\right)\right|=3, \delta_{G}\left(H_{j}\right) \neq \delta_{G}\left(H_{j}, H_{0}\right)$.

Proof. We first prove that there exists an $i \in\{1,2,3\}$ such that $\delta_{G}\left(H_{i}\right)=3$. Suppose to the contrary that $\delta\left(H_{j}\right) \geq 4$ for each $j \in\{1,2,3\}$. It follows that $2\left|E_{0}\right|=\sum_{j=1}^{3}\left|\delta_{G}\left(H_{j}\right)\right|+\left|\delta_{G}\left(H_{0}\right)\right|-$ $3 \times 2 \geq 3 \times 4+3-6=9$, a contradiction.

Without loss of generality, assume that $\left|\delta_{G}\left(H_{1}\right)\right|=3$. Suppose to the contrary that $\delta_{G}\left(H_{1}\right)=$ $\delta_{G}\left(H_{1}, H_{0}\right)$. It follows that $\left|\delta_{G}\left(H_{2}\right)\right|=\left|\delta_{G}\left(H_{3}\right)\right|=3$, otherwise $2\left|E_{0}\right|=\sum_{j=1}^{3}\left|\delta_{G}\left(H_{j}\right)\right|+$ $\left|\delta_{G}\left(H_{0}\right)\right|-3 \times 2 \geq 9$, a contradiction. If $\left|\delta_{G}\left(H_{2}\right) \cap \delta_{G}\left(H_{3}\right)\right| \leq 1$, then $\left|E_{0}\right| \geq \sum_{j=1}^{3}\left(\left|\delta_{G}\left(H_{j}\right)\right|-\right.$ 1) $-1 \geq 5$, a contradiction. Thus $\left|\delta_{G}\left(H_{2}\right) \cap \delta_{G}\left(H_{3}\right)\right|=2$. This implies that $\left\{x_{2} y_{2}, x_{3} y_{3}\right\}$ is a 2 -edge-cut of G. It contradicts that G is 3 -edge-connected. Therefore $\delta_{G}\left(H_{1}\right) \neq \delta_{G}\left(H_{1}, H_{0}\right)$. This completes the proof of this claim.

By Claim 3.2.4.2, in the following without loss of generality we assume that $\left|\delta_{G}\left(H_{1}\right)\right|=3$ and $\delta_{G}\left(H_{1}, H_{2}\right) \neq \emptyset$.

Claim 3.2.4.3. $\delta_{G}\left(H_{1}, H_{3}\right)=\emptyset,\left|\delta_{G}\left(H_{3}\right)\right|=3$, and $\delta_{G}\left(H_{2}, H_{0}\right)=\left\{x_{2} y_{2}\right\}$.

Proof. Suppose to the contrary that $\delta_{G}\left(H_{1}, H_{3}\right) \neq \emptyset$. Since $\delta_{G}\left(H_{1}, H_{2}\right) \neq \emptyset$, by Claim 3.2.4.2, we have $\left|\delta_{G}\left(H_{1}, H_{i}\right)\right|=1$ for each $i=0,2,3$. Since $\delta_{G}\left(H_{1}\right)$ is an edge cut with $\left|\delta_{G}\left(H_{1}\right)\right|=3$ and clearly the three edges in $\delta_{G}\left(H_{1}\right)$ don't induce a path, by Lemma 3.2.3, the three edges share a common end vertex which is x_{1}. Since $\left|V\left(H_{1}\right)\right| \geq 2$, we have that x_{1} is a cut-vertex, a contradiction. This proves $\delta_{G}\left(H_{1}, H_{3}\right)=\emptyset$.

Since $\delta_{G}\left(H_{1}, H_{3}\right)=\emptyset$ and $\left|E_{0}\right| \leq 4$, we have $3 \leq\left|\delta_{G}\left(H_{3}\right)\right| \leq 4-2+1=3$. Thus $\left|\delta_{G}\left(H_{3}\right)\right|=3$.
Since $\left(\delta_{G}\left(H_{1}\right) \cup \delta_{G}\left(H_{3}\right)\right) \backslash\left\{x_{1} y_{1}, x_{3} y_{3}\right\} \subseteq E_{0}$ and $\left|\left(\delta_{G}\left(H_{1}\right) \cup \delta_{G}\left(H_{3}\right)\right) \backslash\left\{x_{1} y_{1}, x_{3} y_{3}\right\}\right|=4$, we have $\left(\delta_{G}\left(H_{1}\right) \cup \delta_{G}\left(H_{3}\right)\right) \backslash\left\{x_{1} y_{1}, x_{3} y_{3}\right\}=E_{0}$. Therefore $\delta_{G}\left(H_{2}, H_{0}\right)=\left\{x_{2} y_{2}\right\}$.

The final step. By Claims 3.2.4.2 and 3.2.4.3, there is an edge $u_{1} u_{2} \in \delta_{G}\left(H_{1}, H_{2}\right)$ where $u_{1} \in V\left(H_{1}\right)$ and $u_{1} \neq x_{1}$. By Lemma 3.2.3, u_{2} and y_{1} are adjacent. Since $\delta_{G}\left(H_{2}, H_{0}\right)=\left\{x_{2} y_{2}\right\}$ by Claim 3.2.4.3, we have $u_{2}=x_{2}$ and $y_{1}=y_{2}$. Similarly there is an edge $v_{3} v_{2} \in \delta_{G}\left(H_{3}, H_{2}\right)$ where $v_{3} \in V\left(H_{3}\right)$ and $v_{3} \neq x_{3}$ and $v_{2}=x_{2}$. By Lemma 3.2.3, all the edges in $\delta_{G}\left(H_{2}\right)$ share a common end vertex x_{2}. Since $\left|V\left(H_{2}\right)\right| \geq 2, x_{2}$ is a cut-vertex, a contradiction to the fact that G has no cut-vertex. This contradiction completes the proof of the lemma.

The following is a corollary of Lemmas 3.2.2 and 3.2.4.
Lemma 3.2.5. Let (G, σ) be a triangularly connected signed graph and ϕ be a \mathbb{Z}_{3}-flow of (G, σ) with $\left|E_{\phi=0}\right| \leq 4$, then (G, σ) admits a 3 -flow f with $\operatorname{supp}(f)=\operatorname{supp}(\phi)$.

Lemma 3.2.6. Let $k \geq 3$ be an integer and C be a balanced circuit of (G, σ). Let g be a 2-flow of (G, σ) with $\operatorname{supp}(g)=E(C)$ and f_{1} be an integer k-flow of (G, σ) such that $\left|\operatorname{supp}\left(f_{1}\right) \cap E(C)\right| \leq$ $k-2$ and $\left|f_{1}(e)\right| \leq \frac{k}{2}$ for each $e \in E(C)$. Then there is an $\alpha \in\left\{ \pm 1, \pm 2, \cdots, \pm\left\lfloor\frac{k}{2}\right\rfloor\right\}$ such that $f_{2}=f_{1}-\alpha g$ is an integer k-flow with $\operatorname{supp}\left(f_{2}\right)=\operatorname{supp}\left(f_{1}\right) \cup E(C)$.

Proof. Since $\left|\operatorname{supp}\left(f_{1}\right) \cap E(C)\right| \leq k-2$, we have $\left|f_{1}(C)\right| \leq k-1$.
If k is odd, then there exists an integer $\alpha \in\left\{ \pm 1, \ldots, \pm\left\lfloor\frac{k}{2}\right\rfloor\right\} \backslash f_{1}(C)$.
If k is even, then there exists at least two integers in $\left\{ \pm 1, \ldots, \pm \frac{k}{2}\right\} \backslash f_{1}(C)$. If $\left\{ \pm \frac{k}{2}\right\} \cap f_{1}(C)=$ \emptyset, let $\alpha=\frac{k}{2}$; otherwise pick one $\alpha \in\left\{ \pm 1, \cdots, \pm\left(\frac{k}{2}-1\right)\right\} \backslash f_{1}(C)$. Let $f_{2}=f_{1}-\alpha g$.

Clearly, when $|\alpha|<\frac{k}{2}, f_{2}$ is an integer k-flow with $\operatorname{supp}\left(f_{2}\right)=\operatorname{supp}\left(f_{1}\right) \cup E(C)$.
If $\alpha=\frac{k}{2}$, then $\left\{ \pm \frac{k}{2}\right\} \cap f_{1}(C)=\emptyset$. Thus for each $e \in E(C),\left|f_{1}(e)\right| \leq \frac{k}{2}-1$, so $-(k-$ $1) \leq f_{2}(e)=f_{1}(e)-\alpha g(e) \leq k-1$ and $f_{2}(e) \neq 0$. Therefore, f_{2} is an integer k-flow with $\operatorname{supp}\left(f_{2}\right)=\operatorname{supp}\left(f_{1}\right) \cup E(C)$. This completes the proof of the lemma.

Lemma 3.2.7. Let C be a balanced circuit of (G, σ) with length at most 4 and g be a-flow of (G, σ) with $\operatorname{supp}\left(g_{1}\right)=E(C)$. Then for any \mathbb{Z}_{3}-flow ϕ of (G, σ), there is an $\alpha \in \mathbb{Z}_{3}$ such that $\phi_{1}=\phi-\alpha g$ is a \mathbb{Z}_{3}-flow satisfying $\left|E_{\phi_{1}=0} \cap E(C)\right| \in\{0,|E(C)|-2\}$.

Proof. Let ϕ be a \mathbb{Z}_{3}-flow of (G, σ). If $\left|E_{\phi=0} \cap E(C)\right| \in\{0,|E(C)|-2\}$, take $\alpha=0$.
If $\left|E_{\phi=0} \cap E(C)\right| \geq|E(C)|-1$, we can easily find some $\alpha \in \mathbb{Z}_{3}$ such that $\phi_{1}=\phi-\alpha g_{1}$ is a \mathbb{Z}_{3}-flow satisfying $\left|E_{\phi_{1}=0} \cap E(C)\right|=0$.

Now we assume $\left|E_{\phi=0} \cap E(C)\right| \leq|E(C)|-3$ and $\left|E_{\phi=0} \cap E(C)\right| \notin\{0,|E(C)|-2\}$. Then $|E(C)|=4$ and $\left|E_{\phi=0} \cap E(C)\right|=|E(C)|-3=1$. Thus $|\phi(C)| \in\{2,3\}$. If $|\phi(C)|=2$, then choose an α in $\mathbb{Z}_{3} \backslash \phi(C)$. If $|\phi(C)|=3$, then there is an $\alpha \in \phi(C) \backslash\{0\}$ such that there are exactly two edges e in $E(C)$ with $\phi(e)=\alpha$. Then $\phi_{1}=\phi-\alpha g$ is a \mathbb{Z}_{3}-flow satisfying $\phi(e)=\phi_{1}(e)$ for each $e \in E(G)-E(C)$ and $\left|E_{\phi_{1}=0} \cap E(C)\right| \in\{0,|E(C)|-2\}$.

Lemma 3.2.8. Let (G, σ) be a triangularly connected signed graph and $C_{1}, \ldots, C_{t}(1 \leq t \leq 2)$ be pairwise edge-disjoint balanced circuits of length at most 4 . If ϕ is a \mathbb{Z}_{3}-flow of (G, σ) such that $E_{\phi=0} \subseteq \cup_{i=1}^{t} E\left(C_{i}\right)$ and $\left|E_{\phi=0}\right| \leq 4$, then (G, σ) admits a 4-NZF.

Proof. By Lemma 3.2.7, we may assume that $\left|E_{\phi=0} \cap E\left(C_{i}\right)\right| \in\left\{0,\left|E\left(C_{i}\right)\right|-2\right\}$ for each $i=$ $1, \ldots, t$. Then $\left|E_{\phi=0}\right| \leq 4$. By Lemma 3.2.5, there is a 3 -flow f such that $\operatorname{supp}(f)=\operatorname{supp}(\phi)$ and of course f is a 4-flow. Taking $k=4$, we have $|f(e)| \leq \frac{k}{2}$ and $\left|E_{f \neq 0} \cap E\left(C_{i}\right)\right|=2=k-2$ for each C_{i} with $E_{f=0} \cap E\left(C_{i}\right) \neq \emptyset$. Applying Lemma 3.2.6 on every C_{i} with $E_{f=0} \cap E\left(C_{i}\right) \neq \emptyset$, one can obtain a desired 4 -NZF.

By Lemma 2.2 of [7], the proof of the following lemma is straightforward.
Lemma 3.2.9. Let f be a \mathbb{Z}_{3}-flow of (G, σ) and $H=T_{1} T_{2} \cdots T_{m}$ be a triangle-path in G such that each T_{i} is balanced for $1 \leq i \leq m$. Given an edge $e_{0} \in E(H)$, then there is another \mathbb{Z}_{3}-flow g of (G, σ) satisfying:
(1) $f(e)=g(e)$ for each $e \notin E(H)$;
(2) $g(e) \neq 0$ for each edge $e \in E(H)-\left\{e_{0}\right\}$.

Lemma 3.2.10. Let (G, σ) be a triangularly connected signed graph, C_{1} be a balanced triangle and C_{2} be a balanced circuit of length at most 4 such that $\left|E\left(C_{1}\right) \cap E\left(C_{2}\right)\right| \leq 1$. If ϕ is a \mathbb{Z}_{3}-flow of G such that $E_{\phi=0} \subseteq E\left(C_{1}\right) \cup E\left(C_{2}\right)$, then (G, σ) admits a 4-NZF.

Proof. If C_{1} and C_{2} are edge-disjoint, then by Lemma 3.2.8, (G, σ) admits a 4-NZF.
If C_{1} and C_{2} are not edge-disjoint, then $\left|E\left(C_{1}\right) \cap E\left(C_{2}\right)\right|=1$. Let e_{0} be the common edge of C_{1} and C_{2}. Applying Lemma 3.2.9 on $H=C_{1}$ and e_{0}, we may assume $E_{\phi=0} \subseteq E\left(C_{2}\right)$. By Lemma 3.2.8, (G, σ) admits a 4 -NZF.

3.3 Sharpness of Theorem 1.5.7

Fan et al. [7] give a complete characterization of triangularly connected ordinary graphs that admit a 4-NZF but no 3-NZF. In this subsection we present a family of unbalanced triangularly

Figure 3.2: an unbalanced signed graph $\left(G_{8}, \sigma\right)$
connected signed graphs that admit a 4-NZF but no 3-NZF. Interestingly all those graphs do not contain an unbalanced triangle. This indicates that there are unbalanced triangularly connected signed graphs without unbalanced triangles.

For each integer $t \geq 4$, construct the signed graph $\left(G_{2 t}, \sigma\right)$ as follows (see Figure 3.2 for an illustration with $t=4$):
(1) The graph $G_{2 t}$ is constructed from the two circuits $C_{1}=x_{1} x_{2} \cdots x_{t} x_{1}$ and $C_{2}=$ $y_{1} y_{2} \cdots y_{t} y_{1}$ by adding the edges $y_{i} x_{i}$ and $y_{i} x_{i+1}$ for each $i \in Z_{t}$;
(2) $E_{N}\left(G_{2 t}, \sigma\right)$ consists of the edges $x_{1} x_{2}, y_{1} y_{2}$ and all edges $y_{i} x_{i}, y_{i} x_{i+1}$ except $y_{1} x_{2}$.

Theorem 3.3.1. For each $t \geq 4,\left(G_{2 t}, \sigma\right)$ is flow-admissible and admits a 4 -NZF but no 3-NZF.
Since $\left(G_{2 t}, \sigma\right)$ is bridgeless and every edge is contained in a balanced triangle, by Proposition 1.4.1, it is flow-admissible. Since $G_{2 t}$ is Eulerian, the second part of Theorem 3.3.1 follows from the following result due to Mačajova and Škoviera.

Theorem 3.3.2. (Mačajova and Škoviera[21]) Let (G, σ) be an Eulerian signed graph with an odd number of negative edges. Then (G, σ) admits a 4-NZF if it it flow-admissible. Moreover (G, σ) admits a $3-N Z F$ if and only if (G, σ) can be decomposed into three signed Eulerian subgraphs that have a vertex in common and that each has an odd number of negative edges.

3.4 Proof of Theorem 1.5.7

Theorem 1.5.7. If (G, σ) is a flow-admissible triangularly connected signed graph, then (G, σ) admits a nowhere-zero 4 -flow if and only if $(G, \sigma) \neq\left(W_{5}, \sigma^{*}\right)$ where $\left(W_{5}, \sigma^{*}\right)$ is the signed graph in Figure 1.4. Moreover there are infinitely many triangularly connected unbalanced signed graphs that admit a nowhere-zero 4 -flow but no 3 -flow.

Proof. We prove Theorem 1.5.7 by contradiction. Let (G, σ) be a counterexample such that $\beta(G)=\sum_{v \in V(G)}(d(v)-2)$ is as small as possible. Let τ be a fixed orientation of (G, σ) in the proof.

Hu and $\mathrm{Li}[10]$ show that $\left(W_{5}, \sigma^{*}\right)$ in Figure 1.4 admits a 5 -NZF but no 4 -NZF. Then (G, σ) does not admit a 4 -NZF. By Lemma 3.2 .8 we have the following fact which will be applied frequently in the proof.

Fact $\mathbf{A}(G, \sigma)$ does not admit a \mathbb{Z}_{3}-flow ϕ such that $E_{\phi=0} \subseteq E\left(C_{1}\right) \cup \cdots \cup E\left(C_{t}\right)$ where $1 \leq t \leq 2$ and C_{1}, \ldots, C_{t} are edge-disjoint balanced circuits of length at most four.

If G contains two parallel edges e_{1} and e_{2}, then after inserting a degree 2 -vertex into e_{1}, the resulting graph G^{\prime} remains triangularly connected, flow-admissible, and $\beta\left(G^{\prime}\right)=\beta(G)$. Thus in the following proof, we assume that G is simple.

If G contains no unbalanced triangle, let T be a triangle. By Lemma 3.2.1, let ϕ be a \mathbb{Z}_{3}-flow ϕ with $E_{\phi=0} \subseteq E(T)$, a contradiction to Fact A. Thus G contains an unbalanced triangle.
(I) (G, σ) contains two edge-disjoint unbalanced triangles.

Proof of (I). Suppose to the contrary that (G, σ) contains no edge-disjoint unbalanced triangles. Let T be an unbalanced triangle and ϕ be a \mathbb{Z}_{3}-flow ϕ with $E_{\phi=0} \subseteq E(T)$.

We consider two cases in the following.
Case I.1. (G, σ) contains at least two unbalanced triangles.
Let $T_{1}, T_{2}, \ldots, T_{t}$ be all the unbalanced triangles where $T=T_{1}$. Then $t \geq 2$. Since (G, σ) contains no edge-disjoint unbalanced triangles, all unbalanced triangles share a common edge, denoted by $u v$. For each i denote by w_{i} the third vertex of T_{i}. Then for any $1 \leq i<j \leq t$, $T_{i} \triangle T_{j}$ is a balanced circuit of length 4.

Since $T_{1} \triangle T_{2}$ is a balanced 4 -circuit, by Fact A, $\phi(u v)=0$ and $u v$ is not contained in a balanced triangle. This implies that no other triangle than $T_{1}, T_{2}, \ldots, T_{t}$ contains $u v$.

Since (G, σ) is flow-admissible, there is a signed circuit C containing $u v$. By Proposition 1.4.4, let f be a 2 -flow (if C is a balanced circuit or a short barbell) or a 3 -flow (if C is a long barbell) such that $\operatorname{supp}(f)=E(C)$. Let $\phi_{1}=\phi+f$ be the \mathbb{Z}_{3}-flow. Then $\phi_{1}(u v) \neq 0$.

Let $e \in E_{\phi_{1}=0}-\bigcup_{i=1}^{t} E\left(T_{i}\right)$. Then there is a triangle-path $S_{1} S_{2} \cdots S_{k}$ where $e \in S_{k}, u v \in S_{1} \in$ $\left\{T_{1}, T_{2}, \ldots, T_{t}\right\}$, and $S_{2}, S_{3}, \ldots, S_{k}$ are balanced. Let $H=S_{2} S_{3} \cdots S_{k}$ and $e^{\prime}=E\left(S_{1}\right) \cap E\left(S_{2}\right)$. By Lemma 3.2.9, there is a \mathbb{Z}_{3}-flow g of (G, σ) satisfying:
(1) $\phi_{1}(e)=g(e)$ for each $e \notin E(H)$;
(2) $g(e) \neq 0$ for each edge $e \in E(H)-\left\{e^{\prime}\right\}$.

By applying the above operation on each edge in $E_{\phi_{1}=0}-\bigcup_{i=1}^{t} E\left(T_{i}\right)$, one can obtain a \mathbb{Z}_{3}-flow ϕ_{2} such that $E_{\phi_{2}=0} \subseteq \bigcup_{i=1}^{t} E\left(T_{i}\right)-\{u v\}$.

Denote $C_{i}=T_{1} \triangle T_{i}$ for each $i=2, \ldots, t$. Then each C_{i} is a balanced 4-circuit. For each $i=2, \ldots, t$, let f_{i} be a 2 -flow of (G, σ) with $\operatorname{supp}\left(f_{i}\right)=E\left(C_{i}\right)$ and let $\alpha_{i} \in \mathbb{Z}_{3}-$ $\left\{\phi_{2}\left(u w_{i}\right) f_{i}\left(u w_{i}\right), \phi_{2}\left(v w_{i}\right) f_{i}\left(v w_{i}\right)\right\}$. Let $\phi_{3}=\phi_{2}-\sum_{i=2}^{t} \alpha_{i} f_{i}$. Then ϕ_{3} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{3}=0} \subseteq\left\{u w_{1}, v w_{1}\right\} \subseteq E\left(C_{2}\right)$, a contradiction to Fact A.

Case I.2. (G, σ) contains only one unbalanced triangle.
Denote $E(T)=\left\{e_{1}, e_{2}, e_{3}\right\}$. If every edge in $E_{\phi=0}$ is contained in a triangle other than T, then every edge in $E_{\phi=0}$ is contained in a balanced triangle since T is the only unbalanced triangle in (G, σ). By Lemma 3.2.8, $\left|E_{\phi=0}\right| \geq 2$ and those balanced triangles are not edgedisjoint. This implies that there is a K_{4} containing T where T is the only unbalanced triangle in the K_{4}. However, T is the symmetric difference of the other three balanced triangles in the K_{4}. Thus T is balanced, a contradiction. Therefore there is one edge in $E_{\phi=0}$ that is contained in only one triangle which is T.

Since (G, σ) is flow-admissible, there is another edge in $E(T)$ which is contained in a balanced triangle. Without loss generality, assume that e_{1} is contained in only one triangle, $\phi\left(e_{1}\right)=0$ and e_{3} is contained a balanced triangle. Note that by Lemma 3.2.1, if e_{2} is not contained in a balanced triangle, then $\phi\left(e_{1}\right)=\phi\left(e_{2}\right)=0$.

Since (G, σ) is flow-admissible, by Proposition 1.4.1, there is a signed circuit C_{1} containing e_{1} and there is a signed circuit C_{2} containing e_{2}. We choose $C_{2}=C_{1}$ if there is a signed circuit containing both e_{1} and e_{2}; otherwise choose any signed circuit C_{2} containing e_{2}.

By Lemma 1.4.4, let f_{i} be a 2 -flow or 3 -flow of (G, σ) with $\operatorname{supp}\left(f_{i}\right)=E\left(C_{i}\right)$ for each $i=1,2$.
We construct another \mathbb{Z}_{3}-flow ϕ_{1} of (G, σ) as follows:
Let $\alpha \in \mathbb{Z}_{3}-\left\{0, \phi\left(e_{2}\right) f_{2}\left(e_{2}\right)\right\}$. If $C_{1}=C_{2}$, then $f_{1}=f_{2}$ and let $\phi_{1}=\phi-\alpha f_{1}$; if $C_{1} \neq C_{2}$, then $f_{1}\left(e_{2}\right)=f_{2}\left(e_{1}\right)=0$ and let $\phi_{1}=\phi-\alpha\left(f_{1}+f_{2}\right)$.

Then $E_{\phi_{1}=0} \cap\left\{e_{1}, e_{2}\right\}=\emptyset$ and every edge in $E_{\phi_{1}=0}$ is contained in a balanced triangle. Similar to the argument in Case I.1, there is a \mathbb{Z}_{3}-flow ϕ_{2} such that $E_{\phi_{2}=0} \subseteq\left\{e_{3}\right\}$ if e_{2} is not contained in a balanced triangle or $E_{\phi_{2}=0} \subseteq\left\{e_{2}, e_{3}\right\}$ otherwise, a contradiction to Fact A.

We obtain a contradiction in either case and thus completes the proof of (I).
(II) G is locally connected.

Proof of (II). Suppose to the contrary that G is not locally connected. Then there is a vertex $v \in V(G)$ such that $G\left[N_{G}(v)\right]$ is not connected. Since G is triangularly connected, each component of $G\left[N_{G}(v)\right]$ is nontrivial. Let H be a component of $G\left[N_{G}(v)\right]$. Split v into two nonadjacent vertices v^{\prime} and $v^{\prime \prime}$ where v^{\prime} is adjacent to all vertices in H and $v^{\prime \prime}$ is adjacent to all vertices in $N_{G}(v)-V(H)$. The signs of all edges remain the same. Denote the resulting signed graph by $\left(G^{\prime}, \sigma\right)$. By (I), $\left(G^{\prime}, \sigma\right)$ contains two edge-disjoint unbalanced triangles. Since G^{\prime} is connected and bridgeless, by Proposition 1.4.1, $\left(G^{\prime}, \sigma\right)$ is flow-admissible. Obviously $\beta\left(G^{\prime}\right)<$ $\beta(G)$ and G^{\prime} remains triangularly connected. By the minimality of $\beta(G),\left(G^{\prime}, \sigma\right)$ admits a 4-NZF
f. Identifying v^{\prime} and $v^{\prime \prime}$, one can easily obtain a 4-NZF of (G, σ), a contradiction. Therefore G is locally connected.
(III) (G, σ) does not contain any of the 11 configurations in Figure 3.3.

Proof of (III). For a balanced circuit or a short barbell C, denote by $\chi(C)$ a 2-flow of (G, σ) with $\operatorname{supp}(\chi(C))=E(C)$ guaranteed by Lemma 1.4.4. In the following argument, all cases only involve one $\chi(C)$ except one which involves three balanced circuits with one common edge. Thus without loss of generality, we assume that $\chi(C)$ is a nonnegative 2-flow.

Take $T=T_{1}$ if (G, σ) contains $F C_{i}$ if $i \in\{1,2,3,9,10\}, T=T_{2}$ if (G, σ) contains $F C_{4}$ or $F C_{11}$, and $T=T_{3}$ if (G, σ) contains $F C_{i}$ if $i \in\{5,6,7,8\}$.

Since in $F C_{1}$ or $F C_{2}, E\left(T_{1}\right)$ is contained in two edge-disjoint balanced circuits of length at most 4, a contradiction to Fact A. This proves that (G, σ) does not contain $F C_{1}$ or $F C_{2}$.

In $F C_{3}$, any two edges in T_{1} are contained in a balanced 4 -circuit, thus by Fact A, $E_{\phi=0}=$ $E\left(T_{1}\right)$. Let $C=T_{2} \triangle T_{3}$. Then C is a balanced 4-circuit and contains the two edges $u v_{1}$ and $u v_{2}$. Let $\phi_{1}=\phi+\phi\left(v_{2} v_{3}\right) \chi(C)$. Then ϕ_{1} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{1}=0} \subseteq E\left(T_{1} \triangle T_{3}\right)$. This contradicts Fact A since $T_{1} \triangle T_{3}$ is a balanced 4-circuit. This proves that (G, σ) does not contain $F C_{3}$.

Similarly, in $F C_{4}$, by Fact A, $E_{\phi=0}=E\left(T_{2}\right)$. Let $C=T_{2} \triangle T_{3}$ which is a balanced 4-circuit and let $\phi_{1}=\phi+\phi\left(v_{4} v_{5}\right) \chi(C)$. Then ϕ_{1} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{1}=0} \subseteq\left\{v_{3} v_{4}, v_{3} v_{5}\right\} \subseteq E\left(T_{3} \triangle T_{4}\right)$. This contradicts Fact A since $T_{3} \triangle T_{4}$ is a balanced 4-circuit. This proves that (G, σ) does not contain $F C_{4}$.

Suppose that G contains $F C_{i}$ for some $i=5,6,7,8$. By Fact A, $\phi\left(v_{4} v_{5}\right)=0$ in $F C_{5}$ and in $F C_{i}$ where $i=6,7,8, \phi\left(v_{3} v_{5}\right)=0$. Let $C=T_{2} \triangle T_{3}$, which is a balanced 4-circuit. Let $\phi_{1}=\phi+\phi\left(v_{2} v_{3}\right) \chi(C)$. Then ϕ_{1} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{1}=0} \subseteq E\left(T_{1} \triangle T_{2}\right) \cup E\left(T_{4}\right)$ when $i=5,6$ and $E_{\phi_{1}=0} \subseteq E\left(T_{1} \triangle T_{2}\right) \cup E\left(T_{4} \triangle T_{5}\right)$ when $i=7$, 8 . In the former case, $T_{1} \triangle T_{2}$ is a balanced 4 -circuit and T_{4} is a balanced 3-circuit and they are edg-disjoint. In the latter case, $T_{1} \triangle T_{2}$ and $T_{4} \triangle T_{5}$ are edge-disjoint balanced 4 -circuits. This contradicts Fact A and thus proves that (G, σ) does not contain $F C_{i}$ for each $i=5,6,7,8$.

Now we consider the case when (G, σ) contains $F C_{9}$. Similar to the above argument, we have $\phi\left(v_{1} v_{3}\right)=\phi\left(v_{2} v_{3}\right)=0$.

If $\phi\left(v_{1} v_{2}\right)=0$, let $\phi_{1}=\phi+\phi\left(v_{3} v_{5}\right) \chi(C)$ where $C=T_{1} \triangle T_{4}$ is a balanced 4 -circuit. Then ϕ_{1} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{1}=0} \subseteq E\left(T_{3} \triangle T_{4}\right)$. This contradicts Fact A since $T_{3} \triangle T_{4}$ is a balanced 4-circuit.

Now we further assume $\phi\left(v_{1} v_{2}\right)=\alpha \neq 0$. Note that $C=T_{1} \cup T_{3}$ is a short barbell. If one of $\phi\left(v_{3} v_{4}\right)$ and $\phi\left(v_{3} v_{5}\right)$ is not equal to $-\alpha$, without loss of generality, assume $\phi\left(v_{3} v_{4}\right) \neq-\alpha$. Let $\phi_{1}=\phi+\alpha \chi(C)$. Then ϕ_{1} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{1}=0} \subseteq\left\{v_{3} v_{5}, v_{5} v_{4}\right\} \subseteq E\left(T_{2} \triangle T_{3}\right)$. This contradicts Fact A since $T_{2} \triangle T_{3}$ is a balanced 4-circuit. If $\phi\left(v_{3} v_{4}\right)=\phi\left(v_{3} v_{5}\right)=-\alpha$, let $\phi_{1}=\phi-\alpha \chi(C)$. Then ϕ_{1} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{1}=0} \subseteq\left\{v_{1} v_{2}, v_{5} v_{4}\right\}$, a contradiction to Fact A
again since $v_{1} v_{2}$ and $v_{5} v_{4}$ are contained in the balanced 4-circuit $v_{1} v_{2} v_{4} v_{5} v_{1}$. This proves that (G, σ) does not contain $F C_{9}$.

Suppose that (G, σ) contains $F C_{10}$. Similarly as before we have that $\phi\left(v_{1} v_{3}\right)=0$ and at least one of $\phi\left(v_{2} v_{1}\right)$ and $\phi\left(v_{2} v_{3}\right)$ is 0 . Let $\phi_{1}=\phi+\phi\left(v_{4} v_{5}\right) \chi(C)$ where $C=T_{1} \cup T_{3}$ is a short barbell. Then ϕ_{1} is a \mathbb{Z}_{3}-flow such that $E_{\phi_{1}=0} \subseteq E\left(T_{1} \triangle T_{4}\right) \cup E\left(T_{2}\right)$. Since $T_{1} \triangle T_{4}$ is a balanced 4 -circuit, T_{2} is a balanced triangle, and they share one common edge, by Lemma 3.2.10, (G, σ) admits a 4-NZF, a contradiction. Thus (G, σ) does not contain $F C_{10}$.

Finally suppose that (G, σ) contains $F C_{11}$. Denote $C_{1}=T_{1} \triangle T_{2}, C_{2}=T_{2} \triangle T_{3}$, and $C_{3}=T_{4}$. Note that C_{1}, C_{2}, C_{3} are all balanced circuits sharing a common edge $v_{2} v_{4}$.

Claim 3.4.0.1. There is a 3 -flow f such that $v_{2} v_{4} \in E_{f=0} \subseteq E\left(C_{1}\right) \cup E\left(C_{2}\right)$ and $\left|E_{f=0} \cap E\left(C_{i}\right)\right| \geq$ 2 for each $i=1,2$.
Proof. With a similar argument as before, we have $\phi\left(v_{2} v_{3}\right)=\phi\left(v_{3} v_{4}\right)=0$. If $\phi\left(v_{2} v_{4}\right)=0$, then by Lemma 3.2.5, let f be a 3 -flow with $\operatorname{supp}(f)=\operatorname{supp}(\phi)$ which is a desired 3 -flow.

Since ϕ is a \mathbb{Z}_{3}-flow, we may assume that $\phi(e) \in\{a, b, 0\}$ for each $e \in E(G)$ with $a+b=0$. Assume $\phi\left(v_{2} v_{4}\right)=a$. If $\phi\left(v_{1} v_{2}\right)=\phi\left(v_{1} v_{3}\right)=b$, let $\phi_{1}=\phi+b \chi\left(C_{1}\right)$, where C_{1} corresponds to the orientation of the \mathbb{Z}_{3}-flow ϕ of $E(G)$. Then $E_{\phi_{1}=0}=\left\{v_{2} v_{3}, v_{2} v_{4}\right\} \subseteq E\left(C_{1}\right)$, a contradiction to Fact A. Thus $\phi\left(v_{1} v_{2}\right) \neq \phi\left(v_{1} v_{3}\right)$. Then $a \in\left\{\phi\left(v_{1} v_{2}\right), \phi\left(v_{1} v_{3}\right)\right\}$. Let $\phi_{2}=\phi-a \chi\left(C_{1}\right)$. Then $v_{2} v_{4} \in E_{\phi_{2}=0}$ and $\left|E_{\phi_{2}=0} \cap E\left(C_{i}\right)\right|=2$ for each $i=1,2$. By Lemma 3.2.5, let g be the corresponding 3 -flow of ϕ_{2} with $\operatorname{supp}(g)=\operatorname{supp}\left(\phi_{2}\right)$ which is a desired 3 -flow. This prove the claim.

Let f be a 3-flow described in Claim 3.4.0.1. Note $\left|\{ \pm 1, \pm 2\} \backslash f\left(C_{i}\right)\right| \geq 2$ for each $i=1,2$.
If $\{1,-1\} \backslash f\left(C_{i}\right) \neq \emptyset$, take $\alpha_{i} \in\{1,-1\} \backslash f\left(C_{i}\right)$. Otherwise $f\left(C_{i}\right)=\{0,1,-1\}$ and take $\alpha_{i} \in\{2,-2\}$. In the case when both $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=2$, we choose $\alpha_{1}=2$ and $\alpha_{2}=-2$. Then $g=f+\alpha_{1} \chi\left(C_{1}\right)+\alpha_{2} \chi\left(C_{2}\right)$ is a 4-flow such that $E_{g= \pm 3} \subseteq E\left(C_{1}\right) \cup E\left(C_{2}\right)$ and $E_{g=0} \subseteq\left\{v_{2} v_{4}\right\}$. Since (G, σ) does not admit a $4-$ NZF, $g\left(v_{2} v_{4}\right)=0$. Since T_{4} is a balanced triangle and $|g(e)| \leq 2$ for each $e \in E\left(T_{4}\right)$, one can extend g to be a $4-\mathrm{NZF}$ of (G, σ), a contradiction. This proves that (G, σ) does not contain $F C_{11}$ and thus completes the proof of (III).
(IV) There is no triangle-path $T_{1} T_{2} \cdots T_{m}$ in (G, σ) such that $m \geq 3, T_{1}$ and T_{m} are unbalanced, and T_{i} is balanced for each $i \in\{2, \ldots, m-1\}$.

Proof of (IV). Suppose to the contrary that there is a triangle-path $H=T_{1} T_{2} \cdots T_{m}$ such that $m \geq 3, T_{1}$ and T_{m} are unbalanced and T_{i} is balanced for each $i=\{2, \ldots, m-1\}$. Denote by $H^{\prime}=$ $T_{2} \cdots T_{m-1}$. Denote $E\left(T_{1}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $E\left(T_{m}\right)=\left\{e_{4}, e_{5}, e_{6}\right\}$ where $e_{3} \in E\left(T_{1}\right) \cap E\left(T_{2}\right)$ and $e_{6} \in E\left(T_{m}\right) \cap E\left(T_{m-1}\right)$. Let x be the common endvertex of e_{1} and e_{2} and y be the common endvertex of e_{4} and e_{5}. Let $C=T_{1} \triangle T_{2} \triangle \cdots \triangle T_{m}$. Then C is a balanced circuit containing e_{i} for each $i=1,2,4,5$.

Figure 3.3: Forbidden configurations: the dotted lines are negative edges.

Take $T=T_{1}$. Then $E_{\phi=0} \subseteq E\left(T_{1}\right)$. Since e_{3} belongs to the balanced triangle T_{2}, by Lemma 3.2 .8 , either $\phi\left(e_{1}\right)=0$ or $\phi\left(e_{2}\right)=0$.

If $d(x) \geq 3$, there is a triangle T_{0} such that T_{0} and T_{1} share exactly one of e_{1} and e_{2} since by (II), G is locally connected. Let $C_{1}=T_{0}$ if T_{0} is balanced otherwise let $C_{1}=T_{0} \triangle T_{1}$ which is a balanced 4 -circuit. Without loss of generality assume $e_{1} \in E\left(C_{1}\right)$.

Similarly if $d(y) \geq 3$, there is a triangle T_{m+1} such that T_{m+1} and T_{m} share exactly one of e_{4} and e_{5}. Let $C_{2}=T_{m+1}$ if T_{m+1} is balanced otherwise let $C_{2}=T_{m+1} \triangle T_{m}$ which is a balanced 4 -circuit. Without loss of generality assume $e_{4} \in E\left(C_{2}\right)$.

Let $\alpha=\phi\left(e_{5}\right)$ and $\phi_{1}=\phi+\alpha \chi(C)$.
We first show $\phi\left(e_{1}\right) \neq \phi\left(e_{2}\right)$. Suppose the contradiction that $\phi\left(e_{1}\right)=\phi\left(e_{2}\right)$. Then $\phi\left(e_{1}\right)=$ $\phi\left(e_{2}\right)=0$ and thus $E_{\phi_{1}=0} \subseteq E\left(H^{\prime}\right) \cup\left\{e_{4}\right\}$.

If $\phi_{1}\left(e_{4}\right) \neq 0$, then $E_{\phi_{1}=0} \subseteq E\left(H^{\prime}\right)$. By Lemma 3.2.9, there is a Z_{3}-flow ϕ_{2} such that $E_{\phi_{2}=0} \subseteq\left\{e_{6}\right\}$, a contradiction to Fact A.

If $\phi_{1}\left(e_{4}\right)=0$, then $\phi\left(e_{4}\right) \neq \phi\left(e_{5}\right)$. This implies $d(y) \geq 3$ and thus C_{2} exists. If $E\left(C_{2}\right) \cap$ $E\left(H^{\prime}\right) \neq \emptyset$, let $e_{0} \in E\left(C_{2}\right) \cap E\left(H^{\prime}\right)$. Otherwise, let $e_{0}=e_{6}$. By Lemma 3.2.9, there is a Z_{3}-flow ϕ_{3} such that $E_{\phi_{3}=0} \subseteq\left\{e_{0}, e_{4}\right\} \subseteq E\left(C_{2}\right)$, a contradiction to Fact A since C_{2} is a balanced circuit of length at most 4 . This shows that $\phi\left(e_{1}\right) \neq \phi\left(e_{2}\right)$, which implies $d(x) \geq 3$. By symmetry, we also have $d(y) \geq 3$. Therefore both C_{1} and C_{2} exist.

Since $e_{1} \in E\left(C_{1}\right)$ and $e_{3} \in E\left(T_{2}\right)$, we have $\phi\left(e_{2}\right)=0$. Then $E_{\phi_{1}=0} \subseteq E\left(H^{\prime}\right) \cup\left\{e_{1}, e_{4}\right\}$. If $\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right) \cap E\left(H^{\prime}\right) \neq \emptyset$, let e_{7} be an edge in $\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right) \cap E\left(H^{\prime}\right)$. Otherwise let $e_{7}=e_{3}$. By Lemma 3.2.9, one can obtained a Z_{3}-flow ϕ_{4} from ϕ_{1} such that $E_{\phi_{4}=0} \subseteq\left\{e_{1}, e_{4}, e_{7}\right\}$. Note that if C_{i} is a circuit of length 4 for some $i=1,2$, then $e_{7} \in E\left(C_{i}\right) \cap E\left(H^{\prime}\right)$.

If C_{1} and C_{2} are edge-disjoint, then we have either $\left\{e_{1}, e_{4}, e_{7}\right\} \subseteq E\left(C_{1}\right) \cup E\left(C_{2}\right)$ or $\left\{e_{1}, e_{4}, e_{7}\right\}$ $\subseteq E\left(C_{1}\right) \cup E\left(C_{2}\right) \cup E\left(T_{2}\right)$ where C_{1}, C_{2}, T_{2} are edge-disjoint balanced triangles. The former case contradicts Fact A. In the latter case, by Lemma 3.2.5, there is an integer 3-flow flow f such that $\operatorname{supp}(f)=\operatorname{supp}\left(\phi_{4}\right)$. By Lemma 3.2.6 (considering f as an integer 4 -flow), f can be extended to a 4 -NZF of G, a contradiction. Therefore C_{1} and C_{2} are not edge-disjoint.

If C_{1} is a triangle, then by Lemma 3.2.9, one can obtain a Z_{3}-flow ϕ_{5} from ϕ_{4} such that $\left|E_{\phi_{5}=0}\right| \leq 4$ and $E_{\phi_{5}=0} \subseteq E\left(C_{2}\right) \cup\left\{e_{7}\right\}$ since C_{1} and C_{2} are not edge-disjoint. Since e_{7} is contained in a balanced triangle and C_{2} is a balanced 4 -circuit, by Lemma 3.2.8 or Lemma 3.2.10, (G, σ) has a $4-$ NZF, a contradiction. Thus C_{1} is a 4 -circuit. By symmetry, C_{2} is also a 4 -circuit. This implies $e_{3} \in E\left(C_{1}\right)$ and $e_{6} \in E\left(C_{2}\right)$ and $\left\{e_{1}, e_{4}\right\} \subseteq E_{\phi_{4}=0} \subseteq\left\{e_{1}, e_{4}, e_{7}\right\} \subseteq E\left(C_{1}\right) \cup E\left(C_{2}\right)$.

Since C_{1} and C_{2} are not edge-disjoint, there is a $\beta \in \mathbb{Z}_{3}$ such that $\phi_{6}=\phi_{4}+\beta \chi\left(C_{1}\right)$ satisfying $E_{\phi_{6}=0} \subseteq E\left(C_{2}\right) \cup\left\{e_{3}\right\}$. Since $\left\{e_{3}, e_{7}\right\} \subseteq E\left(H^{\prime}\right)$, by Lemma 3.2.9, one can obtain a Z_{3}-flow ϕ_{7} from ϕ_{6} such that $E_{\phi_{7}=0} \subseteq E\left(C_{2}\right)$, a contradiction to Fact A. This completes the proof of (IV).
(V) For any triangle-path $H=T_{1} T_{2} T_{3}$ with each T_{i} unbalanced, H is an induced subgraph of

Figure 3.4: Three graphs formed by four unbalanced triangles
(G, σ).
Proof of (V). Suppose to the contrary that H is not induced. Denote $V(H)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ where $V\left(T_{i}\right)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ for each $i=1,2,3$.

Since by (III), (G, σ) does not contain $F C_{9}$ or $F C_{10}, v_{1}$ and v_{5} are not adjacent. Then either v_{1} and v_{4} are adjacent or v_{2} and v_{5} are adjacent. Without loss of generality, assume v_{1} and v_{4} are adjacent. Denote $T_{4}=v_{1} v_{3} v_{4}$. Since by (III) (G, σ) does not contain $F C_{3}, T_{4}$ is balanced. Then T_{2}, T_{3} and T_{4} form a $F C_{1}$, a contradiction to (III) again. This completes the proof of (V).

The final step. By (III), (G, σ) does not contain any graph of Figure 3.3 as a subgraph. We can further assume that (G, σ) contains two edge-disjoint unbalanced triangles by (I).

By (IV), let $H=T_{1} T_{2} \ldots T_{m}$ be a triangle-path such that each triangle T_{i} is unbalanced and $E\left(T_{1}\right) \cap E\left(T_{m}\right)=\emptyset$. We choose H such that m is as large as possible. Since (G, σ) contains two edge-disjoint unbalanced triangles by (I) and does not contain $F C_{8}$ by (III), we have $3 \leq m \leq 4$. One can easily see that H admits a 4-NZF. Since (G, σ) does not admit a 4-NZF, $H \neq G$. Since G is triangularly connected, there must be a triangle $T_{5} \neq T_{i}$ for each $i=1,2,3$ such that $E\left(T_{5}\right) \cap E(H) \neq \emptyset$.

If $m=4$, then $H=\Gamma_{1}$ or Γ_{3} in Figure 3.4. If $m=3$, by (V), H is an induced subgraph and hence $\left|E\left(T_{4}\right) \cap E(H)\right|=1$. Since by (III), G does not contain $F C_{i}$ for each $i=1,2,5,6,11$, H must be one of Γ_{i} in Figure 3.4. It is easy to see that each Γ_{i} admits a 4-NZF and thus $(G, \sigma) \neq \Gamma_{i}$ for each i. Since G is triangularly connected, there is a triangle T_{6} such that $T_{6} \neq T_{i}$ for each $i=1,2,3,4$ and $E\left(T_{6}\right) \cap E(H) \neq \emptyset$. By the maximality of m and since (G, σ) does not contain $F C_{i}$ for each $i=1,2,4,5,6,11$, we have $\left|E\left(T_{6}\right) \cap E(H)\right| \geq 2$. By (V), $H=\Gamma_{3}$ and thus by (IV) $G=\left(W_{5}, \sigma^{*}\right)$, a contradiction. This completes the proof of the theorem.

Chapter 4

Flows on K_{4}-minor free signed graphs

4.1 Notations and Terminology

Let G be a graph. A block of a graph is a subgraph which is 2-connected and is maximal with respect to this property. If G is a graph with at least one cut-vertex, then at least two of the blocks of G contains exactly one cut-vertex, each such block is called a leaf block. We also call a 2-circuit as a digon. If a block H is not a digon, we call it a nontrivial block.

A two-terminal series-parallel signed graph $(G, \sigma ; x, y)$ is defined recursively as follows:

- Let $V\left(K_{2}\right)=\{x, y\}$. For any signature $\sigma,\left(K_{2}, \sigma ; x, y\right)$ is a two-terminal series-parallel signed graph.
- (The parallel construction) Let $\left(G_{1}, \sigma_{1} ; x_{1}, y_{1}\right)$ and $\left(G_{2}, \sigma_{2} ; x_{2}, y_{2}\right)$ be two disjoint twoterminal series-parallel signed graphs. Define G to be the graph obtained from the union of G_{1} and G_{2} by identifying x_{1} and x_{2} into a single vertex x, and identifying y_{1} and y_{2} into a single vertex y. For any edge $e \in E(G), \sigma(e)=\sigma_{1}(e)$ if $e \in E\left(G_{1}\right), \sigma(e)=\sigma_{2}(e)$ if $e \in E\left(G_{2}\right)$. Then $(G, \sigma ; x, y)$ is a two-terminal series-parallel signed graph, and is called the parallel join of $\left(G_{1}, \sigma_{1} ; x_{1}, y_{1}\right)$ and $\left(G_{2}, \sigma_{2} ; x_{2}, y_{2}\right)$.
- (The series construction) Let $\left(G_{1}, \sigma_{1} ; x_{1}, y_{1}\right)$ and $\left(G_{2}, \sigma_{2} ; x_{2}, y_{2}\right)$ be two disjoint two-terminal series-parallel signed graphs. Define G to be the graph obtained from the union of G_{1} and G_{2} by identifying y_{1} and x_{2} into a single vertex. For any edge $e \in E\left(G_{1}\right), \sigma(e)=\sigma_{1}(e)$ if $e \in E(G), \sigma(e)=\sigma_{2}(e)$ if $e \in E\left(G_{2}\right)$. Then $\left(G, \sigma ; x_{1}, y_{2}\right)$ is a two-terminal series-parallel signed graph, and is called the series join of $\left(G_{1}, \sigma_{1} ; x_{1}, y_{1}\right)$ and $\left(G_{2}, \sigma_{2} ; x_{2}, y_{2}\right)$.
- There are no other two-terminal series-parallel signed graphs.

A series-parallel graph is a two-terminal graph obtained by a sequence of series and parallel joins, starting with the copies of K_{2} (with some choice of the terminals). Note that the terminals of a series-parallel graph are fixed by the definition.

Proposition 4.1.1. (Dirac [6]) Let G be a 2-connected graph. Then G is a series-parallel (with fixed terminals) if and only if G is a K_{4}-minor free graph.

If $G_{1}, \cdots, G_{n}(n \geq 2)$ are series-parallel graphs such that G is either a series join or a parallel join of G_{1}, \cdots, G_{n} and n is maximum with this property, then we refer to the G_{i} as parts of G. In the case of a series join, G_{1} and G_{n} are the endparts of G.

We introduce the following notation for some specific series-parallel signed graphs: K_{2}^{+} denotes the positive K_{2}, K_{2}^{-}stands for the negative K_{2}, D is the balanced digon and D_{0} is the unbalanced digon.

A string is a series join of copies of K_{2}^{+}and D_{0} where each nonterminal vertex is contained in a digon. A string is nontrivial if it contains more than two vertices. A necklace N is a series-parallel signed graph obtained by the parallel join of two strings, at least one of which is nontrivial.

A tadpole L_{Q} consists of two vertices v_{0}, v_{1} and a negative loop $L_{v_{1}}$ at v_{1} and a positive edge $v_{0} v_{1}$. The vertex v_{0} is called the end of tadpole while $L_{v_{1}}$ is the head of the tadpole L_{Q}, the edge $v_{0} v_{1}$ is the tail of the tadpole L_{Q}.

A subdivided digon is formed by combining two subdivided edges, denoted as e_{1}^{+}and e_{2}^{+}, in such a way that every internal vertex, if any exist, in e_{1}^{+}and e_{2}^{+}is incident with either a negative loop or a tadpole. If the product of the signs of all subdivided edges within e_{1}^{+}and e_{2}^{+}equals 1 , then we refer to it as a balanced subdivided digon, represented as D^{+}; conversely, if the product is -1 , it is termed an unbalanced subdivided digon, denoted as D_{0}^{+}. Note that if one end of a digon is incident with a negative loop or a tadpole, then it is also considered an internal vertex of this subdivided digon. Additionally, a balanced digon D can be obtained from a subdivided balanced digon D^{+}by deleting all incident negative loops and tadpoles and then suppressing any resulting 2-vertices. Similarly, D_{0} can be obtained from D_{0}^{+}using the same process.

A generalized string is a series join of copies of signed K_{2}, unbalanced subdivided digons, negative loops and tadpoles. Likewise, a generalized necklace N^{+}is a parallel join of two generalized strings.

In the following context, we use $\gamma(G)$ to denote the number of subdivided unbalanced digons contained in G, and we use $\gamma^{\prime}(G)$ to denote the number of subdivided unbalanced digons, negative loops and tadpoles contained in G. For each pair of tadpoles, if their incident vertices are two adjacent internal vertices in G, then we refer to these two tadpoles as adjacent.

4.2 Uesful Lemmas

Lemma 4.2.1. (Lu, Luo and Zhang [17]) Let k be a positive integer, and let G be a graph with an orientation τ and admitting a k-NZF. If a vertex v of G is of degree at most 3 and $g: E_{G}(v) \mapsto\{ \pm 1, \cdots, \pm(k-1)\}$ satisfies $\partial g(v)=0$, then there exists a k-NZF (τ, f) on G such that $\left.f\right|_{E_{G}(v)}=g$.

By Lemma 4.2.1, we conclude the following lemma.
Lemma 4.2.2. Let (G, σ) be a bridgeless, K_{4}-minor free signed graphs with $E_{N}(G)=\left\{e_{1}, e_{2}\right\}$. If e_{2} is a negative loop, then (G, σ) admits a $4-N Z F$ fuch that $f\left(e_{1}\right)=f\left(e_{2}\right)=1$. Moreover, for each $a \in\{1,2\},(G, \sigma)$ admits a $5-N Z F f$ such that $f\left(e_{1}\right)=f\left(e_{2}\right)=a$.

Proof. Let the negative loop e_{2} be incident to the vertex x. We construct an ordinary graph G_{1} as follows:

If e_{1} is not a negative loop, let $e_{1}=u v$ and G_{1} be the graph obtained from G by deleting e_{2} and replacing the edge e_{1} with a path $u w v$ where both $u w$ and $w v$ are positive edges.

If e_{1} is a negative loop, let G_{1} be the graph obtained from G by deleting e_{1} and e_{2}. For convenience we denote the vertex incident with e_{1} by w.

Since G_{1} is a bridgeless K_{4}-minor free ordinary graph, G_{1} admits a 3-NZF. Let G_{2} be the ordinary graph obtained from G_{1} by adding a new edge $x w$. Then G_{2} admits a nowhere-zero 4-flow (see Exercise 2.5 in [37]). Let D_{2} be an orientation of G_{2} such a way that at the vertex $w, x w$ is oriented away from w and the edges $w u$ and $w v$ are oriented into w. Since the degree of w in G_{2} is 3 , by Lemma 4.2.1, G_{2} admits a 4 -NZF $\left(D_{2}, f_{2}\right)$ such that $f_{2}(w x)=2$ and $f_{2}(w v)=f_{2}(w u)=1$.

Let τ be the orientation of (G, σ) obtained from D_{2} by orienting the two half edges of the negative loop e_{2} into x and the two half edges of the negative edge $u v$ out u and v respectively, and keeping the orientation of the other edges. Then one can obtain a desired 4-NZF (τ, f) of (G, σ) where $f\left(e_{1}\right)=f\left(e_{2}\right)=1$ and $f(e)=f_{2}(e)$ for each edge $e \in E(G) \backslash\left\{e_{1}, e_{2}\right\}$.

The argument for the moreover part is similar to the above by simply choosing f_{2} such that $f_{2}(w x)=2 a$ and $f_{2}(w v)=f_{2}(w u)=a$.

We define f as a pseudoflow in G if f has one source u and one $\operatorname{sink} v$ under the orientation τ, and $\partial f(v)=0$ for each $v \in V(G)-\{u, v\}$. Specifically, a pseudoflow f in G is referred to as an (a,b)-pseudoflow, where $a, b \in\{ \pm 1, \pm 2, \pm 3, \pm 4\}$, if $\partial f(u)=a$ and $\partial f(v)=-b$. Note that a nontrivial string G admits a (0,0)-pseudoflow with the sequence ($0,2,4,2,4, \cdots, 4,2,0$) if $\gamma(G)$ is even; conversely, if $\gamma(G) \geq 2$ and is odd, the sequence becomes $(0,2,4,2, \cdots, 4,0)$, where each subsequence (a_{i}, a_{i+1}) represents an (a_{i}, a_{i+1})-pseudoflow in a subgraph of G that contains precisely one unbalanced digon.

Lemma 4.2.3. Let G be a K_{4}-minor free 2 -connected graph. If G contains at most one vertex of degree 2, then G contains a 2-circuit.

Proof. Let G be a counterexample with $|V(G)|$ minimum. Clearly $\delta(G)=2$. Thus G has exactly one degree 2 vertex, say v. Let x_{1} and x_{2} be the two neighbors of v.

Let \bar{G} be the graph obtained from G after suppressing the degree 2 vertex. Then \bar{G} is $K_{4^{-}}$ minor free and $\delta(\bar{G}) \geq 3$, and thus \bar{G} contains a 2 -circuit, which is the triangle $C=x_{1} x_{2} v x_{1}$ in G.

If $d_{G}\left(x_{1}\right)=d_{G}\left(x_{2}\right)=3$, then G / C has exactly one degree 2-vertex v_{C} which is corresponding to C. Thus G / C has a 2 -circuit not containing v_{C}. Thus the 2 -circuit is also a 2 -circuit in G, a contradiction.

Thus we may assume that $d_{G}\left(x_{2}\right) \geq 4$. Then $G-v$ has at most one vertex of degree 2 and thus contains a 2 -circuit which is also a 2 -circuit in G, a contradiction.

Lemma 4.2.4. Let G be a smallest counterexample to Theorem 1.5 .11 with respect to $|E(G)|$. Then G does not contain two adjacent vertices both incident with a tadpole or a negative loop.

Proof. By our assumption, $\delta(G) \geq 3$ and G does not contain any balanced digon. Suppose to the contrary that G contains two adjacent vertices, say u_{1} and u_{2}, incident with either a tadpole or a negative loop. Without loss of generality, we may assume that u_{i} is incident with a tadpole $L_{Q_{i}}$ for $i=1,2$ since the proof for the other cases is similar. Let $L_{v_{1}}$ and $L_{v_{2}}$ be the heads of $L_{Q_{1}}$ and $L_{Q_{2}}$ and let $v_{1} u_{1}$ and $v_{2} u_{2}$ be the tails of $L_{Q_{1}}$ and $L_{Q_{2}}$, respectively. Since $\left\{u_{1} u_{2}\right\} \cup L_{Q_{1}} \cup L_{Q_{2}}$ forms a long barbell in G, denoted by B, admits a 3 -flow f_{1} with $\operatorname{supp}\left(f_{1}\right)=E(B)$ and $f_{1}\left(u_{1} u_{2}\right)=2$ by Proposition 1.4.4.

We first show that G_{1} the graph obtained from G by deleting $L_{Q_{1}}$ and $L_{Q_{2}}$ is flow-admissible.
Suppose to the contrary, that G_{1} is not flow-admissible. Then G_{1} is switch equivalent to a signed graph with exactly one negative edge, or G_{1} contains a bridge $b=x_{1} x_{2}$ such that $G_{1}-b$ has a balanced component by Proposition 1.4.1.

We first consider the case when G_{1} contains a bridge $b=x_{1} x_{2}$ such that $G_{1}-b$ has a balanced component. Since G is flow-admissible, then $b=x_{1} x_{2}$ connects two unbalanced component in G, denoted by H_{1} and H_{2}, respectively. Without loss of generality, we assume that H_{2} contains the balanced component in $G_{1}-b$. We may assume that the balanced component of $G_{1}-b$ contains no negative edge.

For each $i=1,2$, we add a negative loop e_{i}^{\prime} at the vertex x_{3-i} in H_{i}. The resulting graph is denoted by H_{i}^{\prime}. Thus H_{2}^{\prime} contains at most three negative edges and all are negative loops. By the minimality of G, H_{1}^{\prime} has a 5 -NZF f_{1}. Let $a=f_{1}\left(e_{2}^{\prime}\right)$. If H_{2}^{\prime} has only two negative loop, then by Lemma $4.2 .2, H_{2}^{\prime}$ has a 5 -NZF f_{2} such that $f_{2}\left(e_{1}^{\prime}\right)=a$. Thus one can merge f_{1} and f_{2} into a $5-\mathrm{NZF}$ of G, a contradiction.

Now we assume that H_{2}^{\prime} contains exactly three negative edges, meaning H_{2}^{\prime} contains B. Let $H_{2}^{\prime \prime}$ be the graph obtained from H_{2}^{\prime} by deleting $L_{Q_{1}}$ and $L_{Q_{2}}$ and adding a negative edge e_{B} connecting u_{1} and u_{2}. Then $H_{2}^{\prime \prime}$ contains an unbalanced digon between u_{1} and u_{2} and a negative loop e_{1}^{\prime}. By Lemma 4.2.2 again $H_{2}^{\prime \prime}$ has a 5-NZF f_{3} such that $f_{3}\left(e_{1}^{\prime}\right)=a=f_{3}\left(e_{B}\right)$. If a is even, then one can obtain a 5 -NZF f_{4} of H_{2}^{\prime} by letting $f_{4}\left(u_{i} v_{i}\right)=a$ or $-a$ and $f_{4}\left(L_{v_{i}}\right)=\frac{a}{2}$ or $-\frac{a}{2}$ for each $i=1,2$. Then we can further obtain a 5 -NZF of G by merging f_{4} with f_{1}, a contradiction again.

If a is odd, then $a=1$, let $H_{2}^{\prime \prime \prime}$ be the ordinary graph obtained from $H_{2}^{\prime \prime}$ by deleting e_{1}^{\prime}, replacing the edge e_{B} with a positive path $u_{1} w u_{2}$, and adding a new positive edge $x_{2} w$. Similar to the argument in the proof of Lemma 4.2.2, $H_{2}^{\prime \prime \prime}$ has a 5 -NZF f_{5} such that $f_{5}\left(x_{2} w\right)=2$, $f_{5}\left(u_{1} w\right)=2$ and $f_{5}\left(w u_{2}\right)=4$. Thus H_{2}^{\prime} has a 5-NZF f_{6} such that $f_{6}\left(e_{1}\right)=1=a$. Therefore one can merge f_{6} and f_{1} into a 5 -NZF of G, a contradiction.

Next we consider the case when G_{1} is switch equivalent to a signed graph with exactly one negative edge. WLOG assume that G_{1} has only one negative edge e_{1}. We may further assume that G_{1} is bridgeless otherwise we go back to the previous case.

If e_{1} is a negative loop, let G_{2} be the graph obtained from $G-L\left(Q_{1}\right)-L\left(Q_{2}\right)$ by adding a negative edge e_{3} connecting u_{1} and u_{2}. Then by Lemma 4.2.2, G_{2} admits a 5 -NZF f_{7} such that $f_{7}\left(e_{2}\right)=2$. Thus one can obtain a 5 -NZF of G.

Now assume that e_{1} is not a negative loop. If there exists $i \in\{1,2\}$ such that $d_{G}\left(u_{i}\right)=3$, without loss of generality, we may assume that $d_{G}\left(u_{1}\right)=3$. Let G_{3} be the graph obtained from $G-L\left(Q_{1}\right)-L\left(Q_{2}\right)$ by adding a negative loop e_{4} at u_{1}. By Lemma 4.2.2, G_{3} has a 4 -NZF f_{8} such that $f_{8}\left(e_{4}\right)=1$. Since $d_{G}\left(u_{1}\right)=3$ and f_{8} is a 4 -flow, $f_{8}\left(u_{1} v_{1}\right) \neq \pm 2$. Let f_{9} be a flow of G such that $\operatorname{supp}\left(f_{9}\right)=E(B)$ and $f_{9}\left(v_{1} u_{1}\right)=f_{9}\left(u_{1} u_{2}\right)=f_{9}\left(u_{2} v_{2}\right)=4$. Then $f_{8}-f_{9}$ is a 5 -NZF of G, a contradiction.

In the following we further assume that $d_{G_{1}}\left(u_{1}\right) \geq 4$ and $d_{G_{1}}\left(u_{2}\right) \geq 4$. Since $\delta(G) \geq 3$, we have $\delta\left(G_{1}\right) \geq 3$, so G_{1} (and G) contains a digon C. By the minimality of G, G contains no balanced digons. Thus C is unbalanced which contains the only negative edge e_{1} in G_{1}. Let $V(C)=\left\{y_{1}, y_{2}\right\}$. Then $G_{1}-e_{1}$ is a bridgeless ordinary graph and $\delta\left(\overline{G_{1}-e_{1}}\right) \geq 3$, by Lemma 4.2.3, $\overline{G_{1}-e_{1}}$ contains a balanced digon, say C_{1}. Assume that $V\left(C_{1}\right)=\left\{z_{1}, z_{2}\right\}$. Then $z_{1} z_{2}$ is an edge in G and the other edge in D is a subdided path say, P in $G_{1}-e_{1}$ contains the edge in $C-e_{1}$. By Proposition 1.4.4, C_{1} admits a 2-flow f_{1}^{\prime}. Also, since $G_{1}-e_{1}$ is a K_{4}-minor free ordinary graph, $G_{1}-e_{1}$ admits 3-NZF, by Lemma 1.4.7, $G_{1}-e_{1}$ admits a positive 3 -NZF (D_{1}, f_{10}) such that $f_{10}\left(u_{1} u_{2}\right)=1$. Under the orientation D_{1}, we assume that the positive edge in C is oriented away from $x_{2}, u_{1} u_{2}$ is oriented away from u_{1}, and there exists a directed path from x_{1} to u_{1}. Let $\beta=\{0,1\}$. Then $f_{11}=f_{10}+\beta f_{1}^{\prime}$ is a 4 -NZF of $G_{1}-e_{1}$ such that $f_{11}\left(x_{2} x_{1}\right)=1$ or 3 and $f_{11}\left(u_{1} u_{2}\right)=1$. After adding a negative edge e_{B} between u_{1} and u_{2} in $G_{1}, f_{12}=f_{11}-2 f_{1}$ is a 5-NZF of $G_{1} \cup\left\{e_{B}\right\}$. Therefore G admits a 5 -NZF such that $f_{12}\left(u_{i} v_{i}\right)=-2$ and $f_{12}\left(L_{v_{i}}\right)=-1$
for each $i=1,2$, a contradiction. This contradiction implies that G_{1} is flow-admissible.
Next we will show that $G_{1} \notin \mathcal{N}$. Suppose to the contrary that $G_{1} \in \mathcal{N}$
If $u_{1} u_{2}$ is not contained in an unbalanced digon, then $G_{1}-u_{1} u_{2}$ admits a (1,3)-pseudoflow g_{1}, and thus G admits a 5 -NZF by letting $g_{1}\left(u_{1} u_{2}\right)=1, g_{1}\left(u_{1} v_{1}\right)=2, g_{1}\left(u_{2} v_{2}\right)=4, g_{1}\left(L_{v_{1}}\right)=$ $1, g_{1}\left(L_{v_{2}}\right)=2$, a contradiction.

If $u_{1} u_{2}$ is not contained in an unbalanced digon, then $G_{1}-u_{1} u_{2}$ admits a $(1,-1)$-pseudoflow g_{2}, and $g_{2}+f_{1}$ is a 5 -NZF of G, a contradiction again.

By the minimality of G, G_{1} admits a $5-\mathrm{NZF} g_{3}$ with $g_{3}\left(u_{1} u_{2}\right)=a$, for some $a \in\{ \pm 1, \cdots, \pm 4\}$. Hence either $g_{3}+f_{1}$ or $g_{3}-f_{1}$ is a 5 -NZF on G, a contradiction. This completes the proof of the lemma.

Lemma 4.2.5. Let $\alpha, \beta \in\{ \pm 1, \pm 2, \pm 3, \pm 4\}$ with $\alpha \equiv \beta(\bmod 2)$ and $\alpha \neq \pm \beta$. Let D_{0} be the unbalanced digon obtained from D_{0}^{+}by deleting all tadpoles and negative loops and then suppressing all 2-vertices. If D_{0} admits an (α, β-pseudoflow, then it can be extended to D_{0}^{+}.

Proof. Let D_{0}^{+}be a counterexample with minimum $\left|E\left(D_{0}^{+}\right)\right|$. By Lemma 4.2.4, every subdivided edge in D_{0}^{+}contains at most one internal vertex. With a similar proof, we may assume that every internal vertex is incident with a tadpole.

Let $E\left(D_{0}^{+}\right)=\left\{e_{1}^{+}, e_{2}^{+}\right\}$and x, y be the two-terminal of D_{0}^{+}and let e_{i} be the corresponding edge of e_{i}^{+}in D_{0}. Let g be an (α, β)-pseudoflow on $E\left(D_{0}\right)$ under the orientation τ such that $\partial g(x)=\alpha$ and $\partial g(y)=\beta$. Without loss of generality, we may assume that e_{1} is positive, oriented from x to y, while e_{2} is negative and both half edges have orientation towards their respective ends, where $\alpha \equiv \beta(\bmod 2)$ and $\alpha \neq \pm \beta$. We have $g\left(e_{1}\right)=\frac{\alpha+\beta}{2}$ and $g\left(e_{2}\right)=\frac{\beta-\alpha}{2}$ and thus $g\left(e_{1}\right) \neq \pm g\left(e_{2}\right)$, and both $e_{1}, e_{2} \notin E_{g= \pm 4}$. We consider the following two cases according to the number of internal vertices in D_{0}^{+}.

We first consider the case where each subdivided edge in D_{0}^{+}contains only one internal vertex, that is, both e_{1} and e_{2} are incident with one tadpole, denoted by $L_{Q^{\prime}}$ and $L_{Q^{\prime \prime}}$, respectively. Let P_{1} denote the path connecting $L_{Q^{\prime}}$ and $L_{Q^{\prime \prime}}$ that passes through the terminal y. Then $g(e) \in$ $\left\{\frac{\alpha+\beta}{2}, \frac{\beta-\alpha}{2}\right\}$ if $e \in E\left(P_{1}\right)$, and there exists a 3-flow f_{2} such that $\operatorname{supp}\left(f_{2}\right)=E\left(P_{1}\right) \cup L_{Q^{\prime}} \cup L_{Q^{\prime \prime}}$ by Lemma 1.4.4. Therefore we can always find some $\alpha_{2} \in\{ \pm 1, \pm 2\}$ such that $f=g+\alpha_{2} f_{2}$ is an (α, β)-pseudoflow such that $\operatorname{supp}(f)=E\left(D_{0}^{+}\right)$for all possible $g\left(e_{1}\right)$ and $g\left(e_{2}\right)$, a contradiction to the assumption of D_{0}^{+}.

It remains to consider the case when D_{0}^{+}contains exactly one internal vertex, either e_{1}^{+}or e_{2}^{+}contains exactly one internal vertex, by some switching operation, we can further assume that e_{1}^{+}is the edge containing the single internal vertex, denoted by w. Suppose that the tadpole incident with w is denoted by $L_{Q}=L_{v} \cup\{w v\}$, where L_{v} is the head and $w v$ is the tail, with w as the internal vertex. According to Lemma 1.4.4, $D_{0} \cup L_{Q}$ admits a 3-flow f_{3} with $\operatorname{supp}\left(f_{3}\right)=E\left(D_{0}\right) \cup L_{Q}$. As a result, there exists an $\alpha_{3} \in\{ \pm 1, \pm 2\}$ such that $f_{3}=g+\alpha_{3} f_{3}$ is an

(α, β)	e_{2} (oriented into $\left.x, y\right)$	$\operatorname{arc}(x, w)$	$\operatorname{arc}(w, y)$	tail (w, v)	L_{v}
$(1,3)$	2	3	1	2	1
$(1,-3)$	-4	-3	1	-4	-2
$(2,4)$	2	4	2	2	1
$(2,-4)$	-1	1	-3	4	2

Table 4.1: An extension in D_{0}^{+}to a tadpole
(α, β)-pseudoflow such that $\operatorname{supp}\left(f_{3}\right)=E\left(D_{0}\right) \cup L_{Q}$. The various possible choices are examined in Table 4.1.

Lemma 4.2.6. Let $G=H_{1} \cup H_{2} \cup H_{3}$ be a flow-admissible parallel join of three generalized strings such that $H_{1} \cup H_{2}$ is a generalized necklace with $\gamma\left(H_{1} \cup H_{2}\right) \geq 1$ and H_{3} is a string containing an even number of unbalanced digons. If G contains no subdivided unbalanced digons that have at least one internal vertex, then G admits a $5-N Z F$.

Proof. Without loss of generality, we can assume that $\gamma\left(H_{1}\right) \geq 1$ since $\gamma\left(H_{1} \cup H_{2}\right) \geq 1$. Then $\gamma\left(H_{2}\right) \geq 0$. Therefore we need to consider the following three cases according to the parity of $\gamma^{\prime}\left(H_{1}\right)$ and $\gamma^{\prime}\left(H_{2}\right)$ since $H_{1} \cup H_{2}$ is a generalized necklace.

Case I. $\gamma^{\prime}\left(H_{1}\right)$ is even and $\gamma^{\prime}\left(H_{2}\right)$ is even.
Note that H_{1} admits a $(-3,1, \cdots,-3,1,-3)$-pseudoflow, H_{2} admits an $(1,3, \cdots, 1,3,1)$ pseudoflow (note that if $\gamma^{\prime}\left(H_{2}\right)=0$, then H_{2} admits a $(1,1)$-pseudoflow), and H_{3} admits a $(2,4, \cdots, 2)$-pseudoflow. Then the sum of the pseudoflows in all three generalized strings corresponds to a 5 -NZF of G.

Case II. $\gamma^{\prime}\left(H_{1}\right)$ is odd and $\gamma^{\prime}\left(H_{2}\right)$ is even.
Note that H_{1} contains at least one unbalanced digon, which admits a $(2,-4)$-pseudoflow. Depending on the place of the first unbalanced digon counted in $\gamma^{\prime}\left(H_{1}\right), H_{1}$ admits a $(2,4,2,4, \cdots$, $2,-4, \cdots,-2,-4)$-pseudoflow. Similarly, H_{2} admits a (1,1)-pseudoflow, and H_{3} admits a $(-3,1,3, \cdots, 1,3)$-flow. Then their sum corresponds to a 5 -NZF of G.

Case III. Both $\gamma^{\prime}\left(H_{1}\right)$ and $\gamma^{\prime}\left(H_{2}\right)$ are odd.
Note that H_{1} admits a $(-3,1, \cdots,-3,1)$-pseudoflow, H_{2} admits an $(1,-3, \cdots, 1,-3)$ - pseudoflow, and H_{3} admits a $(2,4, \cdots, 2)$-pseudoflow. Then their sum corresponds to a 5 -NZF of G.

Lemma 4.2.7. Let G be a flow-admissible generalized necklace with $\gamma(G) \geq 1$. If G contains no subdivided unbalanced digons that have at least one internal vertex, then there exists an (a, b)-pseudoflow in G such that $a, b \in\{ \pm 1, \pm 2, \pm 3, \pm 4\}$ such that $a \equiv b(\bmod 2)$ and $a \neq \pm b$.

Proof. By the assumption, G is a parallel join of two generalized strings, say H_{1} and H_{2}.

Note that $\gamma(G) \geq 1$, we can assume that $\gamma^{\prime}\left(H_{1}\right) \geq \gamma^{\prime}\left(H_{2}\right)$ and $\gamma\left(H_{1}\right) \geq 1$. Without loss of generality, we may assume that $|a| \leq|b|$ by switchings if necessary. For each possible combination of (a, b), it's possible to find suitable choices for $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ such that $a_{1}+a_{2}=a, b_{1}+b_{2}=b$ and $a_{1} \equiv b_{1}(\bmod 2), a_{2} \equiv b_{2}(\bmod 2)$, as shown in Table 4.2.

Note that H_{1} contains at least one unbalanced digon. In particular, suppose that H_{1} is a generalized odd string. According to the table 4.2, for the case when $(a, b)=(1,3)$ and $\left(a_{1}, b_{1}\right)=$ $(-2,4)$, we can assign a $(-2,4)$-pseudoflow to the first unbalanced digon counted in $\gamma^{\prime}\left(H_{1}\right)$, This allows H_{1} to admit a $(-2,-4, \cdots,-2,4,2,4, \cdots, 2,4)$-pseudoflow. For the case when $(a, b)=(2,-4)$ and and $\left(a_{1}, b_{1}\right)=(4,-2)$, we assign a $(4,-2)$-pseudoflow to the first unbalanced digon counted in $\gamma^{\prime}\left(H_{1}\right)$, then it enables H_{1} to admit a $(4,2, \cdots, 4,-2,-4,-2, \cdots,-4,-2)$ pseudoflow. Therefore for all possible choices listed in Table 4.2, we can assign an $\left(a_{1}, b_{1}\right)$ pseudoflow in H_{1} and an $\left(a_{2}, b_{2}\right)$-pseudoflow in H_{2}, and their sum corresponds to an (a, b) pseudoflow of G.

a	a_{1}	a_{2}	a_{1}	a_{2}	a_{1}	a_{2}
b	b_{1}	b_{2}	b_{1}	b_{2}	b_{1}	b_{2}
	odd string	odd string	odd string	0 or even	even	0 or even
2	-1	3	1	1	-1	3
4	3	1	3	1	1	3
2	-1	3	4	-2	3	-1
-4	-3	-1	-2	-2	-3	-1
1	-2	3	2	-1	-1	2
3	4	-1	4	-1	1	2
1	-2	3	3	-2	2	-1
-3	-4	1	-1	-2	-2	-1

Table 4.2: The choices of $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$

Lemma 4.2.8. Let $b \in\{ \pm 2, \pm 4\}$ and G is a flow-admissible generalized necklace with $\gamma(G) \geq 1$. Let $x \in V(G)$ be one end of an unbalanced digon. If G contains no subdivided unbalanced digons that have at least one internal vertex, then G can be extended to have a $(0, b)$-pseudoflow f, where $\partial f(x)=b$.

Proof. Since G is a generalized necklace, we may assume that G consists of two generalized strings, say H_{1} and H_{2}, with x as a terminal.

Since $\gamma(G) \geq 1$ and G contains no subdivided unbalanced digons that have at least one internal vertex, we may assume that H_{1} contains at least one unbalanced digon. Referring to Table 4.3, we can get a $(0, b)$-pseudoflow f in G such that $\operatorname{supp}(f)=E(G)$ and $\partial f(x)=b$,

a	a_{1}	a_{2}	a_{1}	a_{2}	a_{1}	a_{2}
b	b_{1}	b_{2}	b_{1}	b_{2}	b_{1}	b_{2}
	odd string	odd string	odd string	0 or even	even	0 or even
0	3	-3	1	-1	-1	1
2	1	1	3	-1	1	1
0	-4	4	-1	1	-2	2
4	2	2	3	1	2	2

Table 4.3: A $(0, b)$-pseudoflow in G
where H_{1} admits an $\left(a_{1}, b_{1}\right)$-pseudoflow and H_{2} admits an $\left(a_{2}, b_{2}\right)$-pseudoflow, $a_{1}+a_{2}=0$, and $b_{1}+b_{2}=b$.

Particularly, as described in Table 4.3, when H_{1}^{+}is a generalized odd string , for the case when $(a, b)=(0,4)$ and $\left(a_{1}, b_{1}\right)=(-4,2)$, we can assign a $(-4,2)$-pseudoflow to the first unbalanced digon counted in $\gamma^{\prime}\left(H_{1}\right)$, then H_{1} admits a $(-4,-2, \cdots,-4,2,4,2 \cdots, 4,2)$-pseudoflow.

4.3 Proof of Theorem 1.5.11

Let's first recall Theorem 1.5.11.
Theorem 1.5.11. Let (G, σ) be a flow-admissible, K_{4}-minor free signed graph. Then (G, σ) admits a nowhere-zero 5 -flow if and only if (G, σ) does not belong to the family \mathcal{N}.

Proof. If (G, σ) is a flow-admissible, K_{4}-minor free signed graph which admits a 5 -NZF, then (G, σ) does not belong to \mathcal{M} by Lemma 1.5.10, so (G, σ) is also not in \mathcal{N}.

If (G, σ) is a flow-admissible, K_{4}-minor free signed graph and does not belong to \mathcal{M}, we shall show that G admits a 5 -NZF. Let (G, σ) be a counterexample with $|E(G)|$ minimum. Then (G, σ) is a flow-admissible, K_{4}-minor free signed graph that does not belong to \mathcal{N} and admits no 5 -NZF. By Lemma 1.5.9, (G, σ) can't be reduced via Operations (O1-O3). Thus we have the following claim. (G, σ) does not contain any edge-cut T with $|T| \leq 3$ such that one nontrivial component is balanced, and (G, σ) also contains no balanced leaf block, otherwise G either is not flow-admissible, or contains a contractible configuration, say H. Then G / H admits a 5 -NZF, which implies that G admits a 5 -NZF, a contradiction with our assumption.

Claim 4.3.0.1. $\delta(G) \geq 3$, G has not cut-vertex having an unbalanced component at it, and there is no $X \subseteq V(G)$ such that $\delta(X) \leq 3$ and $G[X]$ is nontrivial and balanced.

Claim 4.3.0.2. The number of negative loops and tadpoles incident with a vertex is at most one.

Proof. Suppose not, we can assume that there exists a vertex v in G that is incident with two tadpoles (similar proof for other cases), say $L_{Q_{1}}$ and $L_{Q_{2}}$. Let $G^{\prime}=G \backslash L_{Q_{2}}$. Then G^{\prime} is not in \mathcal{N}, and G^{\prime} is also K_{4}-minor free and flow admissible, otherwise (G, σ) contains 2-edge-cut T such that one nontrivial component is balanced since $\delta(G) \geq 3$, so G^{\prime} admits a 5 -NZF f_{1} such that $f_{1}\left(L_{v}\right) \in\{ \pm 1, \pm 2\}$ if $L_{v} \in L_{Q_{1}}$. By Lemma 1.4.4, there exists a 3-flow f_{2} such that $\operatorname{supp}\left(f_{2}\right)=L_{Q_{1}} \cup L_{Q_{2}}$, thus we can pick some $\alpha_{1}=1$ or -1 such that $g_{1}=f_{1}+\alpha_{1} f_{2}$ is a 5 -NZF in G. By Lemma 1.4.4, we can assume that v is incident with at most two negative loops. If v is incident with two negative loops, then there exists a 2-flow f_{3} such that $\operatorname{supp}\left(f_{3}\right)=L_{Q_{1}} \cup L_{Q_{2}}$ by Lemma 1.4.4, thus we can pick some $\alpha_{2}=1$ or -1 such that $g_{1}+\alpha_{2} f_{3}$ is a 5 -NZF in G.

Claim 4.3.0.3. Any internal vertex in every subdivided balanced digon of (G, σ) is not incident with any negative loops.

Proof. Suppose that there exists a subdivided balanced digon D^{+}that contains an internal vertex, say v, incident with a negative loop L_{v}. Denote by $E(D)=\left\{e_{1}, e_{2}\right\}$. Without loss of generality, we can assume that v is contained in e_{2}^{+}. By Claim 4.3.0.2, every internal vertex of D^{+}is incident with at most one negative loop or one tadpole. By Lemma 4.2.4, v is the only internal vertex in e_{2}^{+}, as depicted in Figure 4.1-(a).

We replace $e_{2} \cup L_{v}$ in G with one negative edge e_{2}^{\prime}, as in Figure 4.1-(b) to get a new graph, denoted by G^{\prime}. Then G^{\prime} is still K_{4}-minor free. If G^{\prime} is not flow-admissible, G^{\prime} does not contain an unbalanced circuit that is edge-disjoint from the circuit $C_{1}=\left\{e_{1}^{+}, e_{2}^{\prime}\right\}$. Since G is flowadmissible, there exists exactly one unbalanced circuit that is not edge-disjoint with e_{1}^{+}in C_{1}. By some switching operations, $G-L_{v}$ only contains one negative edge. Then G is switching equivalent to a signed graph containing two negative edges such that one of them is a negative loop. Then G admits a 4-NZF by Lemma 4.2.2, a contradiction. So G^{\prime} is flow-admissible.

Next we claim that $G^{\prime} \notin \mathcal{N}$. Otherwise, then $G^{\prime}=N_{4 k+2}^{\sigma}$ by the choice of G, Consider the graphs D^{+}and $G-E\left(D^{+}\right)$. Since $G-E\left(D^{+}\right)$is a string, we can assign a $(-1,1)$-pseudoflow g_{1} in D^{+}, and $G-E\left(D^{+}\right)$is a string that admits an $(1,-1)$-pseudoflow g_{2}. Then $g_{1}+g_{2}$ is a 4 -NZF in G, a contradiction with the choice of G. So G^{\prime} does not belong to \mathcal{N}. By the minimality of G, G^{\prime} admits a 5 -NZF f_{1}.

Then we insert two internal vertices in e_{2}^{\prime} and the signs of the edges in the subdivided path are shown in Figure 4.1-(c), denoting this graph by $G^{\prime \prime}$, so the flow values on $E\left(G^{\prime}\right)$ still preserve in $G^{\prime \prime}$ under a certain orientation. After identifying v_{1} and v_{2} as a single vertex, we can obtain a 5 -NZF f in G such that $f(x v)=f(y v)=f\left(L_{v}\right)=f_{1}\left(e_{2}^{\prime}\right)$, a contradiction again.

Let G_{0} be the graph obtained from deleting all tadpoles and negative loops and then suppressing all degree 2 vertices. In the following context, we use $\{x, y\}$ as the two-terminal of an balanced/unbalanced digon.

Figure 4.1: An operation in a subdivided digon

Claim 4.3.0.4. G_{0} contains no balanced digon D.
Proof. Suppose that G_{0} contains a balanced digon D, which implies that G contains a subdivided balanced digon D^{+}. By the choice of G and by Lemma 4.2.4, each subdivided edge in D^{+} contains at most one internal vertex. If D is a leaf block of G_{0} that share a common vertex x with $G_{0}-D$, by the choice of G and Claim 4.3.0.3, D^{+}contains exactly one tadpole L_{Q}, we can replace D^{+}in G by the tadpole L_{Q} to get a smaller flow-admissible, K_{4}-minor free signed graph that does not belong to \mathcal{N}, so G^{\prime} admits 5 -NZF f^{\prime} by the minimality of G. By Claim 4.3.0.1, the other terminal y of D is incident with the tadpole L_{Q}. Since D admits a positive 2-flow g such that $\operatorname{supp}(g)=E(D)$, then there exists $\alpha=1$ or -1 such that $f^{\prime}+\alpha g$ is a 5 -NZF of G, a contradiction with our assumption. therefore it remains to consider the following two cases.
Case I. If at least one edge of $E(D)$ is also an edge in $E(G)$.
Without loss of generality, suppose that e_{1} is the edge in $E(D) \cap E(G)$. Let e_{2}^{+}be the other subdivided edge in D^{+}. By Claim 4.3.0.3, if e_{2}^{+}contains one internal vertex, say v, then v is incident with exactly one tadpole, denoted by $L_{Q}=L_{w} \cup\{v w\}$, where L_{w} is the head of this tadpole. Let $G_{1}=G-e_{1}$. Then G_{1} is K_{4}-minor free. Also G_{1} is flow-admissible. This is because, even if one of the edges in $e_{2}^{+} \cup\{v w\}$ is a bridge of G_{1}, G_{1} remains flow-admissible since G does not contain balanced leaf blocks. Moreover, G_{1} does not belong to \mathcal{N}, hence G_{1} admits a $5-\mathrm{NZF} f_{1}$ by the minimality of G. If v and L_{Q} exist in e_{2}^{+}, then it is not possible for $|f(x v)|=|f(v y)|=4$. Since D^{+}admits a nonnegative 2-flow g such that $\operatorname{supp}(g)=\left\{e_{1} \cup e_{2}^{+}\right\}$, we can find some $\alpha \in\{ \pm 1, \pm 2\}$ such that $f_{1}+\alpha g$ is a 5 -NZF in G.
Case II. Both e_{1} and e_{2} contain exactly one internal vertex.
In this case, each internal vertex is incident with exactly one tadpole by Claim 4.3.0.3. Let L_{Q} be the tadpole that is incident with the internal vertex contained in e_{2}^{+}. Then $G-\left\{e_{2}^{+} \cup L_{Q}\right\}$ is a smaller K_{4}-minor free signed graph that is not part of \mathcal{N}. Since G contains no balanced component and no 2-edge-cut reducible configuration in which one component is balanced, $G-$ $\left\{e_{2}^{+} \cup L_{Q}\right\}$ is flow-admissible, and thus it admits a 5 -NZF g with an (a, b)-pseudoflow on e_{1}^{+}, and it can be extended to a 5 -NZF of G by reassigning an (a, b)-pseudoflow on $E\left(D^{+}\right)$, as outlined in Table 4.4.

(a, b)	e_{1}^{+}	e_{2}^{+}
$(1,3)$	$(3,1)$	$(-2,2)$
$(1,-3)$	$(-2,-4)$	$(3,1)$
$(2,4)$	$(-1,3)$	$(3,1)$
$(1,-1)$	$(2,-2)$	$(-1,1)$
$(2,-2)$	$(1,-1)$	$(1,-1)$

Table 4.4: An (a, b)-pseudoflow in D^{+}

Claim 4.3.0.5. G_{0} does not contain a balanced leaf block.
Proof. If G_{0} has a balanced leaf block, say G_{1}, then G_{1} contains at most one cut vertex v in G_{0} such that $d_{G_{1}}(v)=2$, which is also a cut-vertex of G_{0}, so G_{1} contains a 2-circuit by Lemma 4.2.3, which is a balanced digon of G_{0}, a contradiction with Claim 4.3.0.4. So there is no balanced circuit in G_{1}, contradicts that G_{1} is balanced.

Claim 4.3.0.6. G_{0} does not contain any tadpoles or negative loops.
Proof. Suppose not, then we need to consider the following two cases.
The first case is that G_{0} is a negative loop, so G is a generalized unbalanced digon, denoted by D_{0}^{+}. Let $V\left(D_{0}\right)=\{x, y\}$. Then x and y are incident with a tadpole or a negative loop respectively by Claim 4.3.0.1, denoted by L_{1}, L_{2}. Moreover, $E(G)-\left\{L_{1}, L_{2}\right\}=E\left(D_{0}\right)$ by Lemma 4.2.4, so G admits a 5 -NZF.

The second case is that G_{0} contains a tadpole or a negative loop, so G contains a subdivided unbalanced digon D_{0}^{+}as a leaf block. Let $\{x, y\}$ be the terminals of D_{0}. Then we can use a tadpole $L_{Q}=L_{v} \cup\{v y\}$ to replace D_{0}^{+}, then the resulting graph is smaller by Claim 4.3.0.1, thus it admits a 5 -NZF f^{\prime} since it is K_{4}-minor free, flow-admissible and does not belong to \mathcal{N}. Assume that $f^{\prime}(v y)=b$, then $b \in\{ \pm 2, \pm 4\}$. Since $\delta(G) \geq 3, x$ is incident with a negative loop or tadpole in G, then we can extend the flow f^{\prime} on the edges of this unbalanced digon D_{0} such that $\partial f^{\prime}(x)=a$ and $a \neq \pm b, a \equiv b(\bmod 2)$. By Lemma 4.2.5, f^{\prime} can be extended to a 5 -NZF f in G such that $\operatorname{supp}(f)=E(G)$.

Claim 4.3.0.7. G contains a generalized necklace H. More specifically, every nontrivial leaf block contains a generalized necklace.

Proof. Let G_{01} be a nontrivial leaf block in G_{0} (Note that $G_{01}=G_{0}$ is possible). Then we can delete all parallel edges in G_{01} and suppressing all vertices of degree 2 to get a new graph G_{01}^{\prime}, then $\delta\left(G_{01}^{\prime}\right) \geq 3$, by Lemma 4.2.3, G_{01}^{\prime} contains a 2 -circuit, which corresponds to a necklace
of G_{0} by Claim 4.3.0.6, as the parallel edges are from the unbalanced digons of G_{0} by Claim 4.3.0.4, therefore G contains a generalized necklace.

Claim 4.3.0.8. G does not contain any subdivided unbalanced digons with at least one internal vertex.

Proof. Suppose that G contains a subdivided unbalanced digon, which is an unbalanced digon $D_{0}=\left\{e_{1}, e_{2}\right\}$ in G_{0}, that contains at least one internal vertex. Suppose that e_{1} is the negative edge in D_{0}, by Lemma 4.2.4, each subdivided edge in the subdivided digon D_{0}^{+}does not contain adjacent internal vertices. So $\gamma^{\prime}\left(D_{0}^{+}\right)=1$ or 2 and each internal vertex is incident with precisely one tadpole or one negative loop by Claim 4.3.0.2.

Suppose that e_{2}^{+}contains an internal vertex that is incident with one tadpole or negative loop, say L_{2}, then we can delete $e_{2}^{+} \cup L_{2}$ in G to obtain a smaller K_{4}-minor free signed graph, denoted by G^{\prime}.

If G^{\prime} belongs to \mathcal{N}, then we observe that $\gamma^{\prime}\left(D_{0}^{+}\right)=1, G-D_{0}^{+}$admits a ($-1,-3$)-pseudoflow, D_{0}^{+}admits an (1,3)-pseudoflow, so the sum of those flows forms a 5 -NZF on $E(G)$, a contradiction. Therefore, G^{\prime} does not belong to \mathcal{N}.

Suppose G^{\prime} is flow-admissible, then G^{\prime} admits a 5 -NZF f_{1}. According to Lemma 1.4.4, G admits a 3 -flow f_{2} such that $\operatorname{supp}\left(f_{2}\right)=e_{1}^{+} \cup e_{2}^{+} \cup L$. Then there exists an $\alpha \in\{ \pm 1, \pm 2\}$ such that $f_{1}+\alpha f_{2}$ is a 5 -NZF of G, leading to a contradiction. So G^{\prime} is not flow-admissible.

By Lemma 4.2.2, $\gamma^{\prime}\left(D_{0}^{+}\right)=2$. Thus e_{1}^{+}contains an internal vertex that is incident with one tadpole or negative loop, say L_{1}. Moreover, G^{\prime} does not contain a bridge such that there is a balanced component, as G does not contain balanced leaf blocks, so G^{\prime} has only one negative edge, which belongs to L_{1}. Also D_{0} is the only unbalanced digon in G_{0} and G contains no other negative loops and tadpoles, so we can use a positive directed subdivided path $x v y$ to replace e_{1}^{+}in G^{\prime}. The resulting graph, denoted by G_{1}, is a signed graph with all positive edges. So G_{1} admits a 3-NZF g. Define $g_{0}(x v)=g_{0}(v y)=1$ such that $\partial g_{0}(v)=0$. By Lemma 4.2.1, there exists a 3 -NZF g^{\prime} in G_{1} such that $\left.g^{\prime}\right|_{E_{G_{1}}}(v)=g_{0}$. Then we can easily extend it to a 5 -NZF on $E(G)$ such that D_{0}^{+}admits an (1,1)-pseudoflow.

The final step of the proof: We denote a series join of G_{1} and G_{2} by $\left[G_{1}, G_{2}\right]$.
By Claim 4.3.0.7, G_{0} contains a necklace H. Specifically, if G_{0} is not 2-connected, then we can select a necklace H in a leaf block G_{02} of G_{0}. Note that if the cut vertex that separates G_{02} and $G_{0}-G_{02}$ is contained in H as a nonterminal of H, denoted by x, we shall choose another necklace in G_{02}. Let $H=H_{1} \cup H_{2}$ be formed of two strings H_{1} and H_{2} and H_{1}^{+}and H_{2}^{+}be their generalized strings respectively.

Suppose that $x \in V\left(H_{1}^{+}\right)$. If G_{02}^{+}is a generalized necklace, we can use a tadpole L_{Q} to replace G_{02}^{+}, then the resulting graph, denoted by G^{\prime}, admits a 5 -NZF f since it is K_{4}-minor
free, flow-admissible and is not in \mathcal{N}. Therefore, $\partial f_{G-G_{02}^{+}}(x) \in\{ \pm 2, \pm 4\}$, hence G admits a 5-NZF by Lemma 4.2.8, a contradiction. Therefore G_{02}^{+}is not a generalized necklace.

Since G_{02} is 2-connected, by Lemma 4.1.1, G is equivalent to a series-parallel graph, and G_{02} is a parallel join of at least two parts. So either H is a proper subgraph of one part of G_{02}, or H is composed of two parts of G_{02}. In either case, $G_{02}-H_{1}$ is also a nontrivial block, otherwise $G_{02}-H_{1}$ would be an unbalanced digon by Claim 4.3.0.4, contradicts that G_{02} is not a necklace. By Claim 4.3.0.7, another necklace H^{\prime} can be found in the nontrivial block $G_{02}-H_{1}$, which is vertex disjoint from x in G.

Therefore we can always find a generalized necklace H^{+}in G such that x is either one terminal of H or not contained in $V\left(H^{+}\right)$. Subject to this condition, we choose H such that $\gamma(H)$ is as small as possible.

Since $\gamma(H) \geq 1$, we can replace the generalized necklace H^{+}in G with the graph $\left[e_{0}, D_{0}, e_{1}\right]$, where e_{0}, e_{1} are positive edges. The resulting graph, denoted by G^{\prime}, is a K_{4}-minor free signed graph.

If $G^{\prime} \in \mathcal{N}$, then G_{0} is 2-connected and $G^{\prime}=N_{4 k+2}^{\sigma}$, thus G admits a 5 -NZF by Lemma 4.2.6, a contradiction. Therefore G^{\prime} is not part of the family \mathcal{N}.

If G^{\prime} is not flow-admissible, then D_{0} contains the only one negative edge and G^{\prime} does not contain any negative loops or tadpoles. Therefore G^{\prime} contains a 2 -edge-cut reducible configuration which is also a 2-edge-cut reducible configuration in G such that one component is balanced, a contradiction with the choice of G. Hence G^{\prime} is flow-admissible.

If G^{\prime} contains smaller number of edges than G, by the choice of G, G^{\prime} admits a 5 -NZF f^{\prime} such that $\operatorname{supp}\left(f^{\prime}\right)=E\left(G^{\prime}\right)$. Under the restriction of f^{\prime}, D_{0} has an (α, β)-pseudoflow such that $\alpha \equiv \beta(\bmod 2)$ and $\alpha \neq \pm \beta$, where $\alpha, \beta \in\{ \pm 1, \pm 2, \pm 3, \pm 4\}$. Since H^{+}is a generalized necklace in G, by Lemma 4.2.7, H^{+}can be extended to have an (α, β)-pseudoflow, so it is a 5 -NZF in G, a contradiction with our assumption. It implies that G^{\prime} has the same number of edges with G, then the necklace H in G is a parallel join of e_{0} and $\left[e_{1}, D_{0}\right]$, where e_{0}, e_{1} are positive edges by some switching operations. and we can use the graph $\left[e_{1}, D_{0}\right]$ to replace H to get a smaller K_{4}-minor free flow-admissible signed graph, denoted by $G^{\prime \prime}$. Then $G^{\prime \prime}$ is not in \mathcal{N}, otherwise $G-H$ admits a $(1,-1)$-pseudoflow, and H admits a $(-1,1)$-pseudoflow, their sum is a 4 -NZF in G, a contradiction. So $G^{\prime \prime}$ admits a $5-$ NZF $f^{\prime \prime}$ such that D_{0} has an (α, β) pseudoflow, where $\alpha \equiv \beta(\bmod 2)$ and $\alpha \neq \pm \beta$, where $\alpha, \beta \in\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7\}$. Let $E\left(D_{0}\right)=\left\{e_{2}, e_{3}\right\}$ with e_{3} negative. Then $\left|f^{\prime \prime}\left(e_{1}\right)\right| \neq\left|f^{\prime \prime}\left(e_{2}\right)\right|$, by Lemma 1.4.4, there exits a 2 -flow g_{1} such that $\operatorname{supp}\left(g_{1}\right)=\left\{e_{0}, e_{2}, e_{1}\right\}$, and there exists $\alpha \in\{ \pm 1, \pm 2\}$ such that $f^{\prime \prime}+\alpha g_{1}$ is a 5 -NZF of G.

Chapter 5

Final Remarks

5.1 Flows of 3-edge colorable cubic signed graph

Bouchet's conjecture [2] is equivalent to the restriction to cubic signed graphs: every flowadmissible, cubic signed graph admits a nowhere-zero 6-flow. So we want to consider the following problem to improve our previous result.

Problem 1. Let (G, σ) be a connected 3-edge colorable cubic signed graph. If (G, σ) is flow admissible, then (G, σ) has a nowhere-zero 6 -flow.

The following problem is a weaker problem.
Problem 2. Let (G, σ) be a connected 3-edge colorable cubic signed graph. If (G, σ) is flow admissible and hamiltonian, then (G, σ) has a nowhere-zero 6 -flow.

5.2 Flows of signed Kotzig graphs

A cubic graph is a Kotzig graph if there is a 3-edge coloring such that every two color classes induce a hamiltonian circuit.

Schubert and Steffen [25] proved the following lemma.
Lemma 5.2.1. Let (G, σ) be a flow admissible signed graph. If G is a Kotzig graph, then (G, σ) admits a nowhere-zero 6-flow.

So we want to consider if we can further reduce to 4 -flow.
Problem 3. Let (G, σ) be a flow admissible signed graph. If G is a Kotzig graph, then (G, σ) admits a nowhere-zero 4-flow.

We also want to consider a flow for a $(2 k+1)$-regular Kotzig graph. Since a $(2 k+1)$-regular Kotzig graph is 4-edge-connected and Raspaud and Zhu [23] proved that every flow-admissible 4 -edge-connected graph has a nowhere-zero 4 -flow. So we want to consider the following problem.

Problem 4. Let (G, σ) be a flow admissible signed graph and $k \geq 2$. If G is a $(2 k+1)$-regular Kotzig graph, then (G, σ) admits a nowhere-zero 3-flow.

5.3 Converting a modulo flow to an integer flow

We have some results on modulo k-flows and integer flows where k is odd. However we don't have any one related to \mathbb{Z}_{4}-flow and integer flows, so we want to consider the following theorem.

Problem 5. Let (G, σ) be a flow admissible signed graph. If (G, σ) admits a nowhere-zero \mathbb{Z}_{4}-flow, then it has a nowhere-zero 8-flow.

5.4 Modulo orientations

Proposition 5.4.1. (Goddyn et al. [8], Jaeger [12]) Let G be an ordinary graph. If G has a modulo $(2 p+1)$-orientation for some $p \geq 1$, then it has a modulo $\left(2 p^{\prime}+1\right)$-orientation for each integer p^{\prime} with $1 \leq p^{\prime} \leq p$.

It is unknown whether Proposition 5.4.1 remains true for signed graphs, so we want to consider the following problem.

Problem 6. Let $p \geq 2$ be an integer. Is it true that for any integer p^{\prime} with $1 \leq p^{\prime}<p$, if (G, σ) is modulo- $(2 p+1)$-orientable, then it is also modulo- $\left(2 p^{\prime}+1\right)$-orientable?

Bibliography

[1] J. A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[2] A. Bouchet, Nowhere-zero integral flows on bidirected graph, J. Combin. Theory Ser. B 34 (1983) 279-292.
[3] J. Cheng, Y. Lu, R. Luo and C.-Q. Zhang, Signed graphs: from modulo flows to integervalued flows, SIAM J. Discrete Math. 32 (2018) 956-965.
[4] M. DeVos, J. Li, Y. Lu, R. Luo, C.-Q. Zhang, Z. Zhang, Flows on flow-admissible signed graphs, J. Combin. Theory Ser. B 149(6) (2021) 198-221.
[5] R. Diestel, Graph Theory, Fourth edn. Springer-Verlag (2010).
[6] G. A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math Nachr 22 (1960) 61-85.
[7] G. Fan, H.-J. Lai, R. Xu, C.-Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. Combin. Theory Ser. B 98 (2008) 1325-1336.
[8] L. A. Goddyn, M. Tarsi and C.-Q. Zhang, On (k, d)-colorings and fractional nowhere zero flows, J. Graph Theory 28 (1998) 155-161.
[9] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953-1954) 143-146.
[10] L. Hu, X. Li, Nowhere-zero flows on signed wheels and signed fans, Bull. Mayays. Sci. Soc. 41 (2018) 1697-1709.
[11] W. Imrich, I. Peterin, S. Špacapan and C.-Q. Zhang, NZ-flows in strong products of graphs, J. Graph Theory 64 (2010) 267-276.
[12] F. Jaeger, Nowhere-zero flow problems, in Selected Topics in Graph Theory 3, (L. W. Beineke and R. J. Wilson eds.), Academic Press, London (1988) 71-95.
[13] T. Kaiser and E. Rollová, Nowhere-zero flows in signed series-parallel graphs, SIAM J. Discrete Math. 30 (2016) 1248-1258.
[14] A. Kompis̆ová, E. Rollová, Flow number and circular flow number of signed cubic graphs, Discrete Math. 345 (2022) 112917.
[15] H.J. Lai, Nowhere-zero 3-flows in locally connected graphs, J. Graph Theory 42 (2003) 211-219.
[16] Y. Lu, R. Luo, M. Schubert, E. Steffen, and C.-Q Zhang, Flows on signed graphs without long barbells, SIAM J. Discrete Math. 34 (2020) 2166-2182.
[17] Y. Lu, R. Luo, C.-Q. Zhang, Multiple weak 2-linkage and its applications on integer flows of signed graphs, European J. Combin. 69 (2018) 36-48.
[18] Y. Lu, R. Luo, C.-Q. Zhang, Z. Zhang, Signed graphs, nonorientable surfaces, and integer flows, preprint.
[19] E. Máčajová and E. Rollová, Nowhere-zero flows on signed complete and complete bipartite graphs, J. Graph Theory 78 (2015) 809-815.
[20] E. Mačajova and M. Škoviera, Remarks on nowhere-zero flows in signed cubic graphs, Discrete Math. 338 (2015) 809-815.
[21] E. Máčajová and M Škoviera, Nowhere-zero flows on signed eulerian graphs, SIAM J. Discrete Math. 31 (2017) 1937-1952.
[22] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, 2001.
[23] A. Raspaud and X. Zhu, Circular flow on signed graphs, J. Combin. Theory Ser. B 101 (2011) 464-479.
[24] P. D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981) 130-135.
[25] M. Schubert and E. Steffen, Nowhere-zero flows on signed regular graphs, European J. Combin. 48 (2015) 34-47.
[26] W.T.Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947) 107-111.
[27] W. T. Tutte, On the imbedding of linear graphs in surfaces, Proc. London Math. Soc. Ser. 2 (51) (1949) 474-483.
[28] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80-91.
[29] X. Wang, Y. Lu C.-Q Zhang, S. Zhang, Six-flows on almost balanced signed graphs, J. Graph Theory 92 (4) (2019) 394-404.
[30] E. Wei, W. Tang, D. Ye, Nowhere-zero 15-flow in 3-edge-connected bidirected graphs. Acta Math. Sinica 30 (2014) 649-660.
[31] D. B. West, Introduction to Graph Theory, Upper Saddle River, NJ: Prentice Hall, (1996).
[32] Y.Z. Wu, D. Y, W.A. Zang and C.-Q. Zhang, Nowhere-zero 3-flows in signed graphs, SIAM J. Discrete Math. 28 (3) (2014) 1628-1637.
[33] R. Xu, C.-Q. Zhang, On flows in bidirected graphs, Discrete Math. 299 (2005) 335-343.
[34] D. H. Younger, Integer flows, J. Graph Theory 7 (1983) 349-357.
[35] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47-74.
[36] C.-Q. Zhang, Circular flows of nearly eulerian graphs and vertex-splitting, J. Graph Theory 40 (2002) 147-161.
[37] C.-Q. Zhang, Integer flows and cycle covers of graphs, Marcel Dekker, Inc. (1997).
[38] O. Zýka, Nowhere-zero 30-flow on bidirected graphs, Thesis, Charles University, Praha, KAM-DIMATIA Series 87-26, 1987.

