378 research outputs found

    Low jitter design techniques for monolithic CMOS phase-locked and delay-locked systems

    Get PDF
    Timing jitter is a major concern in almost every type of communication system. Yet the desire for high levels of integration works against minimization of this error, especially for systems employing a phase-locked loop (PLL) or delay-locked loop (DLL) for timing generation or timing recovery. There has been an increasing demand for fully-monolithic CMOS PLL and DLL designs with good jitter performance. In this thesis, the system level as well as the transistor level low jitter design techniques for integrated PLLs and DLLs have been explored.;On the system level, a rigorous jitter analysis method based on a z-domain model is developed, in which the jitter is treated as a random event. Combined with statistical methods, the rms value of the accumulated jitter can be expressed with a closed form solution that successfully ties the jitter performance with loop parameters. Based on this analysis, a cascaded PLL/DLL structure is proposed which combines the advantage of both loops. The resulting system is able to perform frequency synthesis with the jitter as low as that of a DLL.;As an efficient tool to predict the jitter performance of a PLL or DLL system, a new nonlinear behavioral simulator is developed based on a novel behavioral modeling of the VCO and delay-line. Compared with prior art, this simulator not only simplifies the computation but also enables the noise simulation. Both jitter performance during tracking and lock condition can be predicted. This is also the first reported top-level simulation tool for DLL noise simulation.;On the transistor level, three prototype chips for different applications were implemented and tested. The first two chips are the application of PLL in Gigabit fibre channel transceivers. High speed circuit blocks that have good noise immunity are the major design concern. Testing results show that both designs have met the specifications with low power dissipation. For the third chip, an adaptive on-chip dynamic skew calibration technique is proposed to realize a precise delay multi-phase clock generator, which is a topic that has not been addressed in previous work thus far. Experimental results strongly support the effectiveness of the calibration scheme. At the same time, this design achieves by far the best reported jitter performance

    Built-in self test of high speed analog-to-digital converters

    Get PDF
    Signals found in nature need to be converted to the digital domain through analog-to-digital converters (ADCs) to be processed by digital means [1]. For applications in communication and measurement [2], [3], high conversion rates are required. With advances of the complementary metal oxide semiconductor (CMOS) technology, the conversion rates of CMOS ADCs are now well beyond the gigasamples per second (GS/s) range, but only moderate resolutions are required [4]. These ADCs need to be tested after fabrication and, if possible, during field operation. The test costs are a very significant fraction of their production cost [5]. This is mainly due to lengthy use of very expensive automated test equipment (ATE) to apply specific test stimuli to the devices under test (DUT) and to collect and analyze their responses.publishe

    A high speed serializer/deserializer design

    Get PDF
    A Serializer/Deserializer (SerDes) is a circuit that converts parallel data into a serial stream and vice versa. It helps solve clock/data skew problems, simplifies data transmission, lowers the power consumption and reduces the chip cost. The goal of this project was to solve the challenges in high speed SerDes design, which included the low jitter design, wide bandwidth design and low power design. A quarter-rate multiplexer/demultiplexer (MUX/DEMUX) was implemented. This quarter-rate structure decreases the required clock frequency from one half to one quarter of the data rate. It is shown that this significantly relaxes the design of the VCO at high speed and achieves lower power consumption. A novel multi-phase LC-ring oscillator was developed to supply a low noise clock to the SerDes. This proposed VCO combined an LC-tank with a ring structure to achieve both wide tuning range (11%) and low phase noise (-110dBc/Hz at 1MHz offset). With this structure, a data rate of 36 Gb/s was realized with a measured peak-to-peak jitter of 10ps using 0.18microm SiGe BiCMOS technology. The power consumption is 3.6W with 3.4V power supply voltage. At a 60 Gb/s data rate the simulated peak-to-peak jitter was 4.8ps using 65nm CMOS technology. The power consumption is 92mW with 2V power supply voltage. A time-to-digital (TDC) calibration circuit was designed to compensate for the phase mismatches among the multiple phases of the PLL clock using a three dimensional fully depleted silicon on insulator (3D FDSOI) CMOS process. The 3D process separated the analog PLL portion from the digital calibration portion into different tiers. This eliminated the noise coupling through the common substrate in the 2D process. Mismatches caused by the vertical tier-to-tier interconnections and the temperature influence in the 3D process were attenuated by the proposed calibration circuit. The design strategy and circuits developed from this dissertation provide significant benefit to both wired and wireless applications

    Adaptive clock with useful jitter

    Get PDF
    Report - Departament Ciències de la ComputacióThe growing variability in nanoelectronic devices due to uncertainties from the manufacturing process and environmental conditions (power supply, temperature, aging) requires increasing design guardbands, forcing circuits to work with conservative clock frequencies. Various schemes for clock generation based on ring oscillators have been proposed with the goal to mitigate the power and performance losses attributable to variability. However, there has been no systematic analysis to quantify the benefits of such schemes.This paper presents and analyzes an Adaptive Clocking scheme with Useful Jitter (ACUJ) that uses variability as an opportunity to reduce power by adapting the clock frequency to the varying environmental conditions and, thus, reducing guardband margins significantly. Power can be reduced between 20% and 40% at iso-performance and performance can be boosted by similar amounts at iso-power. Additionally, energy savings can be translated to substantial advantages in terms of reliability and thermal management. More importantly, the technology can be adopted with minimal modifications to conventional EDA flows.Postprint (published version

    A Simple PLL-Based True Random Number Generator for Embedded Digital Systems

    Get PDF
    The paper presents a simple True Random Number Generator (TRNG) which can be embedded in digital Application Specific Integrated Circuits (ASICs) and Field Programmable Logic Devices (FPLDs). As a source of randomness, it uses on-chip noise generated in the internal analog Phase-Locked Loop (PLL) circuitry. In contrast to traditionally used free-running oscillators, it uses a novel method of randomness extraction based on two rationally related synthesized clock signals. The generator has been developed for embedded cryptographic applications, where it significantly increases the system security, but it can be used in a wide range of other applications. The functionality of the proposed solution is demonstrated for the Altera Apex FPLD family, but the same principle can be used for all recent ASICs or FPLDs that include an on-chip reconfigurable analog PLL. The quality of the TRNG output is confirmed by applying special DIEHARD and NIST statistical tests, which pass even for high output bit-rates of several hundreds of Kbits/s

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    A built-in self-test technique for high speed analog-to-digital converters

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT) - PhD grant (SFRH/BD/62568/2009

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201
    corecore