2,351 research outputs found

    Target Tracking in Confined Environments with Uncertain Sensor Positions

    Get PDF
    To ensure safety in confined environments such as mines or subway tunnels, a (wireless) sensor network can be deployed to monitor various environmental conditions. One of its most important applications is to track personnel, mobile equipment and vehicles. However, the state-of-the-art algorithms assume that the positions of the sensors are perfectly known, which is not necessarily true due to imprecise placement and/or dropping of sensors. Therefore, we propose an automatic approach for simultaneous refinement of sensors' positions and target tracking. We divide the considered area in a finite number of cells, define dynamic and measurement models, and apply a discrete variant of belief propagation which can efficiently solve this high-dimensional problem, and handle all non-Gaussian uncertainties expected in this kind of environments. Finally, we use ray-tracing simulation to generate an artificial mine-like environment and generate synthetic measurement data. According to our extensive simulation study, the proposed approach performs significantly better than standard Bayesian target tracking and localization algorithms, and provides robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201

    A localization-free interference and energy holes minimization routing for underwater wireless sensor networks

    Get PDF
    Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay

    A Study on Intrusion Detection System in Wireless Sensor Networks

    Get PDF
    The technology of Wireless Sensor Networks (WSNs) has become most significant in present day. WSNs are extensively used in applications like military, industry, health, smart homes and smart cities. All the applications of WSN require secure communication between the sensor nodes and the base station. Adversary compromises at the sensor nodes to introduce different attacks into WSN. Hence, suitable Intrusion Detection System (IDS) is essential in WSN to defend against the security attack. IDS approaches for WSN are classified based on the mechanism used to detect the attacks. In this paper, we present the taxonomy of security attacks, different IDS mechanisms for detecting attacks and performance metrics used to assess the IDS algorithm for WSNs. Future research directions on IDS in WSN are also discussed

    Cost-efficient deployment of multi-hop wireless networks over disaster areas using multi-objective meta-heuristics

    Get PDF
    Nowadays there is a global concern with the growing frequency and magnitude of natural disasters, many of them associated with climate change at a global scale. When tackled during a stringent economic era, the allocation of resources to efficiently deal with such disaster situations (e.g., brigades, vehicles and other support equipment for fire events) undergoes severe budgetary limitations which, in several proven cases, have lead to personal casualties due to a reduced support equipment. As such, the lack of enough communication resources to cover the disaster area at hand may cause a risky radio isolation of the deployed teams and ultimately fatal implications, as occurred in different recent episodes in Spain and USA during the last decade. This issue becomes even more dramatic when understood jointly with the strong budget cuts lately imposed by national authorities. In this context, this article postulates cost-efficient multi-hop communications as a technological solution to provide extended radio coverage to the deployed teams over disaster areas. Specifically, a Harmony Search (HS) based scheme is proposed to determine the optimal number, position and model of a set of wireless relays that must be deployed over a large-scale disaster area. The approach presented in this paper operates under a Pareto-optimal strategy, so a number of different deployments is then produced by balancing between redundant coverage and economical cost of the deployment. This information can assist authorities in their resource provisioning and/or operation duties. The performance of different heuristic operators to enhance the proposed HS algorithm are assessed and discussed by means of extensive simulations over synthetically generated scenarios, as well as over a more realistic, orography-aware setup constructed with LIDAR (Laser Imaging Detection and Ranging) data captured in the city center of Bilbao (Spain)

    Research on WSN Node Localization Algorithm Based on RSSI Iterative Centroid Estimation

    Get PDF
    For the traditional RSSI-based sensor nodes the positioning accuracy is low and sensitive to noise, which can not be applied to the rapid positioning of large-scale WSN wireless sensor nodes. Based on the traditional localization algorithm, this paper proposes a WSN node localization algorithm based on RSSI iterative centroid estimation. The algorithm determines the convergence condition by the positional relationship between the node to be located and the existing beacon node, and uses the RSSI value instead of the traditional distance centroid estimation. The experiment is carried out in a random node distribution simulation environment of 100 × 100 m. The effects of communication distance variation and beacon node ratio on the algorithm are verified, and the influence of distance calculation error on the algorithm is verified. Because the signal strength difference of the main beacon node is used in the localization algorithm, and the beacon node corresponding to the maximum signal strength value is selected as the main beacon node, the error caused by the conversion of the signal strength value into the distance is successfully suppressed. The influence of obstacle interference on the positioning of the node reduces the positioning error and achieves better positioning accuracy. The simulation results show that the proposed algorithm has better positioning accuracy and robustness to noise, and is suitable for large-scale WSN wireless sensor node location

    Exploring enclosed environments with floating sensors:mapping using ultrasound

    Get PDF

    Exploring enclosed environments with floating sensors:mapping using ultrasound

    Get PDF
    corecore