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Abstract

Nowadays there is a global concern with the growing frequency and magnitude of
natural disasters, many of them associated with climate change at a global scale.
When tackled during a stringent economic era, the allocation of resources to effi-
ciently deal with such disaster situations (e.g. brigades, vehicles and other support
equipment for fire events) undergoes severe budgetary limitations which, in several
proven cases, have lead to personal casualties due to a reduced support equipment.
As such, the lack of enough communication resources to cover the disaster area at
hand may cause a risky radio isolation of the deployed teams and ultimately fatal
implications, as occurred in different recent episodes in Spain and USA during the
last decade. This issue becomes even more dramatic when understood jointly with
the strong budget cuts lately imposed by national authorities. In this context, this
article postulates cost-efficient multi-hop communications as a technological solu-
tion to provide extended radio coverage to the deployed teams over disaster areas.
Specifically, a Harmony Search (HS) based scheme is proposed to determine the op-
timal number, position and model of a set of wireless relays that must be deployed
over a large-scale disaster area. The approach presented in this paper operates under
a Pareto-optimal strategy, so a number of different deployments is then produced by
balancing between redundant coverage and economical cost of the deployment. This
information can assist authorities in their resource provisioning and/or operation
duties. The performance of different heuristic operators to enhance the proposed
HS algorithm are assessed and discussed by means of extensive simulations over
synthetically generated scenarios, as well as over a more realistic, orography-aware
setup constructed with LIDAR (Laser Imaging Detection and Ranging) data cap-
tured in the city center of Bilbao (Spain).
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1 Introduction

In the last few years different studies based on observed evidences or data-
based experiments have shown that the number, frequency and severity of di-
saster events are sharply increasing around the world [1]. The main rationale
for this upsurge of earthquakes, hurricanes, tropical storms, large-area wild-
fires and other events alike mainly lies in the widely-debated global warming
phenomena, which has undoubtedly modified the natural environment of wide
geographic areas (e.g. soil dryness, vegetation, orography and other related
factors) and increased the risk exposure of the population [2]. Such abrupt
changes impact on analytical indicators and climate models, which mostly rely
on the relative stationarity of the climate in the short-medium term. Conse-
quently, the effect of global warming on the occurrence of natural disasters
has been so far assessed under a several-years-long perspective [3,4].

One of the large-area disasters undergoing a clear increase in its scales, mag-
nitudes and consequences are wildfires. In this context, the report presented
at the annual meeting of the American Geophysical Union in San Francisco
(USA) in late 2012 predicted that the burned area from wildfires in the USA
would double in size by 2050 due to warmer and drier conditions in forth-
coming decades [6]. This prediction was buttressed by the record of incidences
in that same year, with massive fires affecting Colorado and New Mexico [7].
In addition, when focusing on the spatio-temporal correlation of these events
fire events have recurrently happened in nearby locations and close in time
due to the propagative essence of the fire when held in isolated areas. A con-
clusion of utmost importance for the scope of this work is that all the above
observations lead to the certainty that commanders and decision makers will
encounter higher difficulties in the future when allocating resources against
disasters due to their simultaneity, co-locality and interconnection.

Decisions in this context are driven by well-specified procedures and proto-
cols based on the passive reaction triggered by circumstantial conditions (e.g.
a given number of resources for every hectare of terrain affected by the di-
saster). For instance, several international protocols related to disaster risk
reduction have been lately under development by different countries at a world-
wide scale, such as the Hyogo Framework for Action (HFA) 2005-2015 [8], the
SENDAI Framework for disaster risk reduction 2015-2030 [9,10], the ASEAN
Agreement on Disaster Management and Emergency Response (AADMER)
[11] and other similar national initiatives. However, cases such as the wild-
fire happened in a brush-choked canyon north of Phoenix (Arizona, USA) in
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June 2013 and studies reported in the literature [12,13] showed up the fact
that human decision making is subject to errors, partial information and as-
sumptions that may lead to fatalities: in the aforementioned wildfire 19 elite
firefighters perished while commanders thought the crew was in a safe place
[14]. No extreme had heard each other for 33 minutes until just before the fire
overwhelmed the brigade. In fact there is a plethora of examples where the
fatal consequences of team isolation and lack of coordination in wildfires, such
as the catastrophic wildfire happened in Guadalajara (Spain) in 2005 [15],
or the one occurred in Lüneburg Heath (Lower Saxony, Germany) in 1975
[16]. Certainly decision support tools would have been extremely useful to de-
ploy communication resources in a more effective, active, monitored fashion,
discarding any non-supported assumptions from the commanding forces.

When approached from a budgetary perspective, safety should be a reason
enough to allocate as much financial resources as available, so as to mini-
mize risk likelihood and consequences severity. Nonetheless, the worldwide
economical context of the last few years has restricted stringently national
budget items allocated to fire prevention strategies and disaster management
methodologies by institutions and governments [17]. For instance, the envi-
ronmental forum of Castilla La Mancha region (center of Spain) denounces, in
their report published in October 2013 [18], that there are only 5 light vehi-
cles in the region with the legally required equipment to combat wildfires (one
per province), which incur in delays and an increased risk when performing
their duty. Besides, also in that report it is claimed that regional firefighting
brigades have undergone significant reductions – reaching up to 50% – in
the number of effective hours dedicated to the prevention, surveillance and
extinction of wildfires. Even more exemplifying is the fact that the Spanish
firefighting campaign for 2013 has dedicated 267 aircrafts for the extinction
of wildfires during summertime, 8 units less than in 2012 as a consequence of
the funding reductions in the Ministry for Agriculture, Fisheries and Food.
Cost, therefore, is called to play an essential role when allocating resources
nowadays and in the present future. Current resource allocation procedures,
on the contrary, do not take into account any cost criteria in decision making.

Several references from the related literature have addressed this lack of cost
effectiveness in the management of resources in disaster situations. For instan-
ce, the work in [19] analyzed bidding mechanisms for optimally procuring
goods in disaster relief logistics by using an integer programming formulation
of the underlying auction operation. The authors in [20] derived a dynamic
time-dependent nonlinear model to quantify the influence of a disaster on
supply, demand, and humanitarian logistics, and applied Genetic Algorithms
to infer the optimal logistic plan minimizing mismatches between the supplied
goods and the demand, as well as the time delay of their delivery. Other
references in disaster management include the allocation of critical emergency
resources in multi-hazard situations [21–23], transport and provisioning under
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uncertainty [24], supply chain logistics [25] and waste management [26], among
many others.

In this context this paper elaborates on a particular yet usual resource allo-
cation problem in disaster management: the deployment of wireless communi-
cation relays over a large-scale area wildfire. In practice, the heterogeneity of
relay equipment is specially acute in terms of their coverage and cost, ranging
from traditional RF front-ends installed on ground vehicles and portable masts
to last-generation devices operating from unmanned aerial fleets of drones, he-
licopters and airplanes. This diversity in the set of deployable relays has led
to a large amount of research, gravitating on the similarity of this paradigm
with the well-known disk covering problem [27] when exclusively driven by
coverage criteria (see e.g. [28–31] and references therein). However, it was not
until recently [33] when the authors proposed to include cost aspects in the
deployment of relays, as well as in predictive resource provisioning [32]. Fol-
lowing this discussion, this paper builds upon previous work by extending the
problem in [33] with the possibility to establish multi-hop links between out-
of-coverage brigade units and the relays themselves through other brigades
deployed in-between. To efficiently tackle the resulting bi-objective problem,
a meta-heuristic solver inspired from music composition is proposed. This
manuscript extends early work by the authors in [34] by including the follow-
ing novel ingredients:

• A thorough survey of the state of the art in what relates to meta-heuristic
solvers for communications in disaster scenarios.
• A variant of the problem formulated in [34] aimed at maximizing not only

the cost efficiency and coverage of the relay deployment, but also at provi-
ding redundancy in the communications of the deployed teams upon even-
tual cuts in the radio links.
• A modification of the meta-heuristic algorithm aimed at jointly estimating

the number of relays to be deployed in addition to their location and model.
• A comparison of the multi-objective performance of the proposed HS-based

algorithm with respect to Genetic Algorithms (GA) – which are among the
most utilized meta-heuristic solvers in the related literature, as will be later
argued – with the same solution encoding scheme.
• Additional simulations over a more realistic problem setup over the city of

Bilbao (Bizkaia, Spain) using open LIDAR (Laser Imaging Detection and
Ranging) data to estimate realistic line-of-sight coverage areas. As will be
shown in the article, the obtained results evince the good performance of the
proposed scheme under different values of the admissible number of hops,
and pave the way towards its application in real disaster situations.

The rest of the paper is structured as follows: Section 2 surveys the literature
related to the technical scope of this article, and Section 3 mathematically
formulates the considered problem. Next, Section 4 describes the proposed
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meta-heuristic solver, whereas Section 5 discusses the obtained simulation re-
sults. Finally, Section 6 ends the paper by drawing some concluding remarks.

2 Related Work

The growing use of mobile devices during the last decade has allowed for a bet-
ter and quicker crisis response against disaster events [35]. In such situations,
the need for an efficient deployment of wireless communication relays is an
extremely challenging real problem to be tackled. It requires interoperabi-
lity among highly heterogeneous relay equipment in terms of coverage, cost,
autonomy and other similar factors, ranging from traditional RF front-ends
installed on ground vehicles and portable masts to last-generation devices
operating from unmanned aerial fleets of drones, helicopters and airplanes.
The LTE (Long Term Evolution) cellular communications standard has been
widely referred to as the key to efficiently unleash future public safety com-
munications [36]. However, until this technology is completely deployed the
diversity in the set of deployable relays has produced a lot of research directly
related to disaster/emergency response communications deployment (recently
surveyed by [37]), or indirectly related in the form of akin mobile ad-hoc
networking, wireless mesh (WMNs) or wireless sensor networks (WSNs). Re-
lay/node deployment represents a very active research niche in WMNs as
pointed out in [38–42] and more recently in [43].

To proceed with the literature review about solvers for the optimum node de-
ployment problem in a technology-agnostic manner, we will extend our study
to WSNs under the assumption that their critically resource-constrained nodes
do not constitute but one of the vast heterogeneity of possible relay technolo-
gies for disaster situations. Up to twenty recent contributions are summarized
and analyzed in [44] focusing on the application of bio-inspired algorithms
– Particle Swarm (PSO), Ant Colony Optimization (ACO) and Genetic Al-
gorithms (GA) – to WSN resource allocation problems. In this study it is
concluded that the centralized nature of PSO makes it the best candidate to
minimize coverage holes when dealing with stationary node positioning. On
the contrary, the distributed nature of ACO is better to solve mobile node de-
ployment. Similarly, the work in [45] addresses the gateway placement problem
using a nature inspired meta-heuristic algorithm coupled with a clustering ap-
proach. In [46] PSO, ACO and GA are compared to each other when dealing
with the optimal placement of gateway nodes in WMNs. A multi-objective GA
was utilized in [47] to balance between installation cost and coverage proba-
bility, and more recently [48] resorted to a variety of GAs, trajectory-based al-
gorithms and two novel swarm intelligence solvers to address a three-objective
optimization problem for relay node deployment in WSNs. Simulated An-
nealing (SA) alone or hybridized with GA has also been successfully applied
to WMN deployment [49–51]. It is worth mentioning approaches related to
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multi-hop communication deployment in emergency/disaster scenarios such
as [52], which used a distributed bio-inspired algorithm to select the role of
each stem node in the network, or [53], which proposed a 802.11 system based
on self-aligning directional antennas.

Finally, from the algorithmic perspective several authors have tackled differ-
ent optimization problems related to wireless devices by means of other bio-
inspired solvers. In addition to those surveyed above in the context of WMNs
(resorting mainly to GA and Swarm Intelligence), several new meta-heuristic
algorithms are grasping the attention of the community working on the de-
sign of wireless communication networks. In this particular application field,
one of the most actively explored bio-inspired solvers in the last years is the
so-called Firefly algorithm [54], which hinges on the mutual attractiveness of
these insects based on their brightness and its combination with typical oper-
ators from Swarm Intelligence to yield a bio-inspired optimizer already used
for routing [55], node clustering [56] and localization [57]. Similarly, Cuckoo
Search [58] imitates the particular behavior of this family of birds to efficiently
cope with optimization problems with the additional advantage of being tun-
able by just one single parameter in its original formulation. This solver has
been utilized for problems stemming from wireless networks, e.g. data aggre-
gation [59], localization [60] or cluster formation [61]. Results have been also
reported using other nature-inspired techniques farther from the literature
mainstream, such as the so-called Social Emotional Optimization Algorithm
[62], Intelligent Water Drops [63], Bat Algorithm [64], Bacterial Foraging [65]
and Inmune Systems [66], among others.

Notwithstanding the flurry of research around nature-inspired optimization
(and in general, bio-inspired processing) for wireless network applications, it
is a common belief [69,70] that as many techniques as possible should be
explored towards overcoming the large gap from the simulation of this kind
of methods to their implementation in practical systems. This observation is
indeed where the contribution of our research work is framed: to the best of
our knowledge the deployment of multi-hop wireless networks under a multi-
objective cost-coverage criterion and redundancy constraints has not been
approached yet using HS-based heuristics nor tested in realistic simulation
setups, hence advancing over recent contributions using this algorithm that
focus instead on maximizing the energy efficiency of fixed networks [67,68].

3 System Model and Problem Statement

In reference to Figure 1, we assume N teams operating over an area A ⊂ R2

affected by a disaster event. We let {cn}Nn=1 , {(xn, yn)}Nn=1 and {rn}Nn=1 define
their respective locations and coverage radii. In this scenario, M relay devices
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are to be deployed at coordinates {cRm}Mm=1 , {(xRm, yRm)}Mm=1, each belonging to
a class within the set {Φt}τt=1 = {(Rt, βt)}τt=1, which represents the τ available
relay models with radii Rt and cost βt (in monetary units or m.u.). Intuitively
yet realistically the model imposes that the larger the coverage radius Rt is, the
higher βt will be. A general (not necessarily injective nor surjective) mapping
function φ : {1, . . . ,M} 7→ {Φ1, . . . ,Φτ} denotes the model of every deployed
relay, i.e. φ(m) ∈ {Φt}τt=1 ∀m ∈ {1, . . . ,M}. The model alphabet {Φt}τt=1 is
sorted in ascending order of radius and cost, i.e. Rt′ > Rt and βt′ > βt if t′ > t.
We hereafter define a relay deployment D as

D ,
{
M, {cRm}Mm=1, {φ(m)}Mm=1

}
, (1)

i.e. as a certain number of deployed relays, their location and model. With
these three variables being specified, a N × (N +M) binary coverage matrix
X can be computed with components xi,j given by

xi,j ,




I
(√

(xi − xj)2 + (yi − yj)2 ≤ min{ri, rj}
)

if 1 ≤ j ≤ N ,

I
(√

(xi − xRj-N)2 + (yi − yRj-N)2 ≤ Rφ(j-N)

)
if N < j ≤ N +M ,

(2)
where I(·) is an indicator function taking value 1 if its argument is true. This
matrix X can be computed straightforward from {(xi, yi)}Ni=1, {(xRm, yRm)}Mm=1

and the coverage radii implicitly expressed by {φ(m)}Mm=1. This connectivity
matrix can be manipulated to yield a more generalized form Xλ, which denotes
a family of N × N + M multi-hop coverage matrices such that xλi,j = 1 if
there is a connected path of at most λ hops from node i to j subject to the
connectivity constraint imposed by the minimum between the coverage radii
of nodes composing the intermediate links.

As anticipated in the introduction, communications resilience against radio
isolation or interrupted radio links is crucial in a disaster situation. A quan-
titative measure of the resilience of every team deployed in the area can be
computed from the above connectivity matrix X as the normalized fraction
of the overall number of nodes through which any given relay is reachable at
most λ hops. By using the notation introduced in this section, such a measure
is given, for node i ∈ {1, . . . , N} and λ hops, by

Rλ(i) ,
1

N +M − 1

N+M∑

j=1
j 6=i

I(xi,j = 1)I




M∑

m=N+1

I(xλ+1
j,m > 0)


 (3)

where it has been assumed that xi,i = 1 ∀i. The value taken by Rλ(i) will
get closer to its maximum as the number of other points that are within λ-
hop coverage range of node i increases. Likewise, the lower the number of
λ-reachable teams from i is, the lower this metric will be. By averaging this
value over N a global estimation of the resilience Rλ

avg can be obtained.
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With this definition in mind, the problem considered aims at discovering the
family of Pareto-optimal deployments {D∗1, . . . ,D∗K} such that

{D∗1, ...,D∗K}=arg min
M

{cRm}Mm=1

{φ(m)}Mm=1





N∑

n=1

I




N+M∑

m=N+1

xλn,m = 0


 ,

M∑

m=1

β(φ(m)), 1-Rλ
avg



 , (4)

or equivalently by defining the λ-coverage ζλ(·) and total cost βT (·) functions,

{D∗1, . . . ,D∗K}
= arg

M
{cRm}Mm=1

{φ(m)}Mm=1

max ζλ
(
{cRm}Mm=1, {φ(m)}Mm=1

)
, min βT

(
{φ(m)}Mm=1

)
,maxRλ

avg,

i.e. a family of K network deployments are sought to Pareto-optimally balance
between the achievable coverage ζλ

(
{cRm}Mm=1, {φ(m)}Mm=1

)
, the total cost of

the relays βT
(
{φ(m)}Mm=1

)
and the radio resilience of the team.

(x2, y2)

Crew unit 4
(x4, y4)

Crew unit 6
(x6, y6)

Crew unit 8
(x8, y8)

Crew unit 9
(x9, y9)

Relay node 2

(xR2 , y
R
2 ), φ(2), C(2)

Crew unit 5
(x5, y5)

Crew unit 2

(x1, y1)
Crew unit 1

Relay node 1

(xR1 , y
R
1 )

φ(1), C(1)

Coverage radius R(1)

Crew unit 7
(x7, y7)

Crew unit 10
(x10, y10)

Crew unit 12
(x12, y12)

Crew unit 15
(x15, y15)

Crew unit 3
(x3, y3)

Coverage radius r3
Crew unit 14

(x14, y14) Crew unit 16
(x16, y16)

Crew unit 11
(x11, y11)

Coverage radius r8

Coverage radius r15

Coverage radius R(2)

: direct link

: redundant link

Fig. 1. Multi-hop relaying scenario with redundant links under consideration.

From the operational point of view the produced Pareto-optimal set of de-
ployments will embody an essential information for the decision making when
quantifying the maximum achievable coverage given a certain overall bud-
get allocated for the deployment. At this point it is important to note that
resilience and coverage can be intuitively thought of as non-conflicting objec-
tives; as the coverage ratio becomes higher, so does the number of achievable
redundant teams from a certain location. Based on this rationale, optimally
deploying relays under the above three-fold criteria will be reformulated as a
bi-objective optimization problem where coverage and resilience will be com-
bined into a single fitness function prioritizing the former over the latter,
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namely,

{D∗1, ...,D∗K} = arg
M

{cRm}Mm=1

{φ(m)}Mm=1

max ζλR
(
{cRm}Mm=1, {φ(m)}Mm=1

)
, min βT

(
{φ(m)}Mm=1

)
,

where ζλR , N−1∑N
n=1

[
I
(∑N+M

m=N+1 x
λ
n,m > 0

)
+Rλ(n)

]
, i.e. the averaged sum

of the resilience and binary coverage of each node. In words: ζλR will reflect
a higher priority to covering as many teams as possible with the available
budget, and will maximize the communication resilience metric when handling
optional deployments with equal coverage and cost values.

4 Proposed Algorithm

In order to efficiently tackle the bi-objective relay deployment problem in Ex-
pression (4), a novel heuristic scheme based on the Harmony Search (HS)
algorithm will be derived and used. First proposed in [71] and subsequently
applied to problems arising in diverse knowledge fields [72], HS mimics the pro-
gressive harmony enhancement through improvisation and memory attained
by jazz musicians in their attempt to arrange an aesthetically good harmony.
In a similar fashion to other Evolutionary Computation and Soft Computing
optimization techniques [73], HS maintains a population or memory of itera-
tively refined harmonies (i.e. solutions), on which intelligent permutation and
randomization operators resembling the improvisation of musicians are ap-
plied to their constituent notes (correspondingly, optimization variables) until
a stop criteria is met, e.g. a maximum number of iterations I is reached.

In regards to the considered scenario, the nominal Ψ-sized harmony memo-
ry is split into 2 different yet related sub-memories: one for the positions of
the relays, and another for their models or types. Since the number of de-
ployed relays may not be the same among the candidates compounding the
harmony memory, a maximum number Mmax is established as a priori pa-
rameter of the algorithm. In order to account for a variable number of de-
ployed relays for each candidate harmony, a new relay model Φ∅ = (0, 0)
(zero coverage and cost) is included in the family of available relay models
{Φt}τt=1 = {(Rt, βt)}τt=1. In this manner, the eventual assignment of Φ∅ to a re-
lay in a given solution will stand for its elimination in the deployment it repre-
sents. Therefore, the relay position submemory will be denoted as {cR(ψ)}Ψ

ψ=1

with CR(ψ) , {cR1 (ψ), . . . , cRMmax
(ψ)}; and {φ(ψ)}Ψ

ψ=1 standing for the re-

lay model assignment, with φ(ψ) , {φ(1, ψ), . . . , φ(Mmax, ψ)}. Therefore, for
each value ψ of the memory index the represented deployment will be given
by D(ψ) = {M(ψ),CR(ψ),φ(ψ)}, with M(ψ) =

∑Mmax
m=1 I(φ(m,ψ) = Φ∅).
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Fig. 2. Flow diagram of the proposed meta-heuristic solver.

In accordance with the diagram in Figure 2, three operators are applied to
the harmony memory along iterations:

• Harmony Memory Considering Rate, which denotes the probability that the
newly improvised value for a given note is drawn from the values of the same
note in the other Ψ− 1 harmonies in the memory. In the proposed scheme
this operator discloses two independently applied HMCR processes (one
per sub-memory), driven by probabilistic parameters HMCRC (coordinates)
and HMCRM (models), both defined in R[0, 1]. The former is always applied
disregarding the model to which the relays are assigned, whereas the later
refines not only the model of the relays, but also its effective number M(ψ).

At this point it is important to note that since no ordering of the harmony
memory is done, the HMCR operator may yield a too explorative search due
to the fact that relays located at a given position m in candidate harmonies
ψ′ and ψ′′ within the harmony memory could not correspond in practice
to the same relay. In this same line of reasoning, two positions m and m′

might represent the same relay, yet would not undergo together the same
HMCR procedure. To overcome this lack of alignment, the naive definition
of the HMCR operator is modified to operate as follows: when it is to be
applied to a component of either the coordinates or models – e.g. cRm(ψ) – a
distance-dependent dictionary of possible replacing relays is composed, one
per each of the rest of candidate harmonies. As such, the candidate har-
mony ψ′ 6= ψ will contribute to this dictionary by checking, first, whether
any of its compounding relays is closer to the one to be replaced by less
than min{R1, . . . , Rτ}. If so, the relay in question will be set as the candi-
date relay for replacement given by this harmony. Otherwise the operator
proceeds as usual and chooses cRm(ψ′) as a potential replacement of the re-
lay. This distance-dependent selection criterion is expected to accelerate the
convergence of the algorithm due to a better aligned HMCR operator.
• Pitch Adjusting Rate, which establishes the probability that the value of a
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given note is replaced with any of its neighboring values in its correspon-
ding alphabet. Due to the alphabets of the above two sub-memories being
continuous (coordinates) and discrete (models), it is necessary to particulari-
ze this operator for every sub-memory. When dealing with the coordinates
sub-memory, this process, driven by probability PARC , is given by

cR,�m (ψ),
(
xR,�m (ψ), yR,�m (ψ)

)
=





(
xRm(ψ), yRm(ψ)

)
+ zε w.prob. PARC ,

(
xRm(ψ), yRm(ψ)

)
w.prob. 1-PARC ,

(5)

where the superscript � denotes the new coordinate value, ε ∈ R+ is referred
to as the pitch adjustment bandwidth, and zβ is the realization of a two-
dimensional uniform random variable with continuous support in the range
[−ε, ε]× [−ε, ε]. As for the model sub-memory, the probabilistic parameter
PARM will set the probability that the new value φ�(m,ψ) for note φ(m,ψ)
is taken at random from its higher and lower neighboring values in the
alphabet {∅, 1, . . . , τ}, where τ represents the number of relay models.
• Random Selection Rate: the probabilistic parameters RSRC (coordinates)

and RSRM (models) set the probability that the new value for a given note
will be drawn uniformly at random (i.e. without any neighborhood conside-
ration) from its corresponding alphabet.

These operators are sequentially applied to each note of every harmony kept
in both sub-memories. Once applied over the entire set of notes, the fitness
functions ζλR

(
CR,�(ψ),φ�(ψ)

)
and βT (φ�(ψ)) of the newly improvised har-

monies D�(ψ)}Ψ
ψ=1 are evaluated, based on which both the new harmonies

and those remaining from the previous iteration are ordered and filtered fol-
lowing a dual selection hinging on Pareto-dominance ranking and crowding
distance. To be specific, each harmony is scored with a numerical rank equal
to its non-dominance level (namely, 1 for the best non-dominated level, 2 for
the next best level, etc). Once all fronts have been ranked, a measure represen-
ting the sum of distances to the closest harmony along each metric establishes
an ordering among the solutions belonging to a certain rank: harmonies with
large crowding distance are preferential with respect to solutions with small
distance. Finally only the best Ψ harmonies (considering first the ordering
among the fronts and then the one among the harmonies) are kept in the
harmony memory for the next iteration.

In order to improve the convergence of the search algorithm, a computationa-
lly lightweight local search procedure is inserted into the main algorithmic
thread of the proposed solver. The local search method aims at enhancing the
algorithm by providing topological information to the global search process in
its early running stages. To this end, every ILS � I iterations a crisp cluste-
ring scheme is applied to the space spanned by the coordinates of the deployed
teams {cn}Nn=1, using, as an input, its effective number of relays M(ψ). This
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produces a set of M(ψ) centroids {c5m}
M(ψ)
m=1 for candidate harmony ψ. These

centroids could guide the solution of the algorithm towards less sparsely popu-
lated regions of the disaster area, however they are not aware of the multi-hop
nature of the communications to be deployed, nor are they sensible to the
limited coverage radii of the relay models and the resilience fitness included
in ζλR(·). Consequently, each of the relay coordinates in harmony ψ is replaced
by the those of the mid point in the line that connects it to the closest relay
produced by the clustering algorithm. This ensures that the algorithm does
not get biased by the lack of awareness of the local search procedure with
respect to the particularities of the problem.

5 Experimental Results and Discussion

Several experiments have been carried out towards assessing the performance
of the proposed scheme when applied over synthetically generated scenarios,
as well as over setups of increased realism and complexity. The first pool of
simulations can be conceived as a benchmark aimed at comparatively assessing
the performance of different schemes in scenarios of varying complexity:

(1) A naive scheme composed by a classical distance-based clustering tech-
nique with estimation of the number of clusters (X-Means [74]), followed
by an exhaustive evaluation of all model combinations. This approach
will be denoted as CEX.

(2) A genetic algorithm with Roulette Wheel selection, uniform crossover
(rates PC

m and PM
m ) and standard mutation (correspondingly, PC

c and
PM
c ) operators with no local search. The focus is placed on verifying

whether the HS operators provide any performance gain in terms of
Pareto optimality with respect to those of the GA approach. We will
label this scheme as GA.

(3) The HS based solver presented in this paper, with the standard HMCR
operator and no local search included (referred to as HS).

(4) The HS based solver with the HMCR operator modified to account for the
proximity of misaligned relays within the harmony memory (HS+HMCR).

(5) The HS based approach with the modified HMCR operator and incor-
porating the clustering-based local search procedure. Specifically the so-
called Mini Batch K-Means [75] will be utilized (HS+HMCR+LS).

Specifically, N ∈ {100, 300, 500} brigade units are uniformly spread at random
over a square area A of dimensions 1000× 1000, each having a personal radio
equipment with coverage rn = r = 100. Each of the proposed algorithms
selects the number of relays M ≤ Mmax = 30, their positions in A and mo-
dels from {Φt}6

t=1, with {Rt}6
t=1 = {50, 100, 150, 200, 250, 300} denoting their

radii and {βt}6
t=1 = {100, 300, 700, 1100, 1800, 3000} m.u. (monetary units)

12



their costs. The main purpose of the performed simulations is 1) to check out
that the set of produced deployments effectively balance between cost and
coverage; and 2) to verify that as the maximum number of hops λ is made
higher, multi-hop relaying enhances the coverage statistics of the produced
deployment for a given overall cost range. To this end, different cases with
λ ∈ {2, 3, 4} are discussed in this section. It is important to notice that λ = 1
stands for the scenario where only direct connections to the deployed relays
are allowed. Regarding the parameters controlling the underlying HS-based
search algorithm, a memory size of Ψ = 20 harmonies is utilized in all cases,
with values HMCRC = HMCRM = 0.5, PARC = PARM = 0.1, RSRC =
RSRM = 0.05 and ε = 50 optimized by exhaustive search over a value grid 1

(not included for the sake of space). A similar parameter tuning procedure has
been followed for the GA approach, fixing in all cases the population size equal
to 20 (for the sake of fairness in terms of fitness evaluations) and yielding
PC
m = 0.6, PM

m = 0.4, PC
c = 0.1 and PM

c = 0.05. A total of I = 200 iterations
have been set for each of the 20 experiments run for every λ. Comparisons
will be done in terms of Pareto optimality measured by the so-called hyper-
volume index Ihv [76]. The reference for the computation of this indicator will
be given by the absolute best Pareto front when aggregating the results for
all the compared algorithms. Statistics (mean, standard deviation) of Ihv over
the Monte Carlo experiments will be analyzed.

The discussion begins by analyzing Table 1, which shows the mean and stan-
dard deviation statistics of the hypervolume ratio (in % over the reference
point) achieved by each of the compared schemes: the higher this ratio is,
the wider the area covered by the Pareto front will be. First it is interesting
to observe that as the number of deployed teams in the ground increases,
gaps between the compared techniques become smaller as λ (i.e. the maxi-
mum number of admissible hops) increases. The reason being that as the area
under study becomes more populated, multi-hop networking allows a more
effective coverage even if the optimal locations for the relays are not accu-
rately estimated. Nevertheless, the obtained results evince that the proposed
HS-based algorithm incorporating the special distance-based HMCR operator
and the local search method outperform any other scheme in terms of Pareto
optimality. Figure 3.a depicts graphically the Pareto dominance of the pro-

1 In essence each point in this grid corresponds to a certain combination of
values for the parameters driving the algorithm at hand. For instance, in the
|HS| approach this search would be performed over a 6-dimensional grid with
points {HMCRC , HMCRM , PARC , PARM , RSRC , RSRM} forming a irregular
mesh with different spacing per dimension, the latter being given by the sampling
interval of the values for each parameter. The average performance of the algorithm
with its parameters set as dictated at every point and measured over three synthetic
scenarios with λ = {2, 3, 4} is what determines the optimal parameter setting: the
point scoring best among all points in the mesh.
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posed algorithm by plotting together the aggregated Pareto front produced by
each scheme for λ = 3 hops and N = 300 points to be covered. The analysis
follows in Figure 3.b, where the overall estimated Pareto-optimal deployments
produced by the algorithm in cases λ = 2 to λ = 4 are depicted. As seen in the
plot the higher the admissible number of hops λ is, the higher the achievable
coverage for a given cost results to be, which can be intuitively expected due
to the extended coverage granted by intermediate brigades lying less than λ
hops away from the relay node.

For graphically illustrating the set of produced relay deployments, in Figure
3.b two points (marked with ©) have been chosen: 1) λ = 3 hops, βT = 500
m.u. and 45.43 % coverage; and 2) λ = 4 hops, βT = 7800 m.u. and 100 %
coverage. The relay deployments corresponding to these points are depicted
in Figures 3.c and 3.d. Coverage radii corresponding to covered brigade units
(•) and deployed relays (�) are depicted with light and bold dashed circles,
respectively. As can be seen in these plots, the proposed scheme is able to
deploy relays under different – yet Pareto optimal – balances between the
coverage and cost of the deployment.

Table 1
Performance statistics (mean ± standard deviation) for the hypervolume Ihv (in %
with respect to the reference point) for synthetic scenarios with varying N .

N Hops CEX GA HS HS+HMCR HS+HMCR+LS

10
0

λ = 2 53.1 ± 4.4 78.3 ± 3.9 80.4 ± 1.7 82.5 ± 2.2 84.9 ± 3.2

λ = 3 58.5 ± 5.6 82.2 ± 2.8 84.1 ± 2.1 86.6 ± 1.9 88.7 ± 3.6

λ = 4 62.7 ± 5.1 86.4 ± 2.2 89.0 ± 2.4 91.3 ± 1.8 94.1 ± 2.8

30
0

λ = 2 60.2 ± 4.3 80.1 ± 3.5 82.7 ± 2.2 85.1 ± 2.1 86.6 ± 2.7

λ = 3 64.5 ± 4.1 82.2 ± 2.7 83.8 ± 2.0 87.7 ± 1.9 90.8 ± 2.2

λ = 4 70.1 ± 3.7 85.9 ± 2.6 89.2 ± 1.8 92.9 ± 2.1 95.6 ± 1.1

50
0

λ = 2 67.4 ± 4.2 85.4 ± 1.9 87.1 ± 2.4 89.5 ± 1.4 90.8 ± 1.6

λ = 3 71.9 ± 3.3 90.3 ± 2.1 92.3 ± 2.0 94.6 ± 1.3 95.1 ± 1.5

λ = 4 78.6 ± 2.6 92.2 ± 1.8 94.8 ± 1.5 97.6 ± 1.1 98.2 ± 2.1

Once the HS+HMCR+LS approach has been shown to outperform the rest of
algorithms, a second simulation will evince the applicability of this proposed
solver to more realistic scenarios with non-necessarily circular coverage areas.
To this end, we have processed open LIDAR data made available by the Open
Data Euskadi initiative [77]. The capturing campaign was held between July
and August 2012, and covered the entire region of the Basque Country with a
resolution of 0.5 points per square meter. A fraction of the entire dataset was
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trimmed to focus on an hypothesized relay deployment in the center of the
city of Bilbao, Spain (see Figures 4.a and 4.b). The considered grid spans a
square area of 4 square kilometers, with irregular orography and high density
of buildings that make the circular coverage model utilized far from realistic.
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Fig. 3. (a) Aggregated Pareto fronts inferred by each scheme under comparison for
λ = 3 and N = 300; (b) Comparison of different Pareto fronts for the HS+HMCR+LS

approach, N = 100 and different values of λ; (c) Relay deployment corresponding
to a 45.43 % coverage rate and 500 m.u. for a maximum of λ = 3 allowed hops; (d)
Relay deployment corresponding to a 100 % coverage rate and 7800 m.u. for λ = 4.

Figures 5.a and 5.b depict the deployments corresponding to the extreme
points of the Pareto point obtained for λ = 3 hops and 100 points uniformly
spread over the parts classified as “terrain” in the dataset. Maximum (i.e.
free line of sight assuming antennas at 2.5 meters above ground) covera-
ge radii have been set to rn = r = 150 meters (brigades) and {Rt}6

t=1 =
{150, 200, 400, 600, 800, 1000} meters (relays). Red lines delimit the line-of-
sight coverage area of the deployed relays. As shown in these plots and evinced
by their corresponding metric values, the proposed HS+HMCR+LS approach is
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able to trade one objective for the other by properly setting the relay number,
locations and models.
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Fig. 4. (a) Location of the city of Bilbao where the realistic set of experiments is
performed; (b) an overview of the LIDAR grid after trimming the area of interest.
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Fig. 5. Contour plot showing (a) the relay deployment for λ = 3 hops
corresponding to the extreme Pareto point (ζλR, β

T ) = (54.02 %, 6000 m.u.)
(M = 22 relays); (b) relay deployment corresponding to the other extreme point
(ζλR, β

T ) = (90.05 %, 31300 m.u.) (M = 26 relays). Black points correspond to the
brigades on ground, whereas red markers denote the deployed relays.
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6 Conclusions and Future Work

This paper has elaborated on the deployment of wireless communication relays
over disaster areas, a resource allocation task of inherent difficulty when it is
undertaken in a economically constrained context. When nodes are allowed to
communicate with the relays via multi-hop wireless networking, the problem
gets even harder due to the need for simultaneously considering cost, coverage
and resilience against link failures. This work has formulated a bi-objective
optimization problem, jointly addressing this three-fold criteria. To efficiently
deal with this problem, a bi-objective meta-heuristic algorithm based on the
Harmony Search paradigm has been proposed, to yield the Pareto-optimal set
of heterogeneous relay deployments that differently balance a joint coverage-
resilience metric and the economical cost of the deployment. The proposed
Harmony Search approach iteratively refine the position and models of the
deployed relays to obtain an optimal solution. The number of required relays
is obtained by an additional relay model that allows for deleting and adding
relays during the search procedure. Simulations performed on scenarios with
increasing values of the admissible number of communication hops λ have shed
light on the benefits and capabilities of the proposed tool, which provides the
operations commander with crucial information on the maximum achievable
coverage given the available budget for the deployment. The enhanced Pareto
optimality attained by the proposed HS-based approach in comparison to the
other schemes in this benchmark is deemed crucial in the current globally con-
strained economical situation, where strong financial cuts require authorities
to allocate their resources as cost-effectively as possible.

Future research will consider the mobility of the teams on the ground and their
predicted routes / operations area in the coverage metric. Energy efficiency
and autonomy of the relays will be also analyzed, specially in what regards to
the user equipment of teams that perform relaying at intermediate hops for
high values of λ.
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Nature & Biologically Inspired Computing, pp. 210-214, 2009.

[59] M. Dhivya, M. Sundarambal, “Cuckoo Search for Data Gathering in Wireless
Sensor Networks”, International Journal of Mobile Communications, Vol. 9(6),
pp. 642–656, 2011.

[60] S. Goyal, M. S. Patterh, “Wireless sensor network localization based on cuckoo
search algorithm”, Wireless Personal Communications, Vol. 79(1), pp. 223-234,
2014.

[61] M. Dhivya, M. Sundarambal, J. O. Vincent, “Energy Efficient Cluster
Formation in Wireless Sensor Networks using Cuckoo Search”, Swarm,
Evolutionary and Memetic Computing, pp. 140–147, 2011.

[62] Z. Cui, X. Cai, “Optimal Coverage Configuration with Social Emotional
Optimisation Algorithm in Wireless Sensor Networks”, International Journal
of Wireless and Mobile Computing, Vol. 5(1), pp. 43–47, 2011.

[63] D. C. Hoang, R. Kumar, S. K. Panda, “Optimal Data Aggregation Tree in
Wireless Sensor Networks based on Intelligent Water Drops Algorithm”, IET
Wireless Sensor Systems, Vol. 2(3), pp. 282-292, 2012.

[64] X. Cai, L. Wang, Q. Kang, Q. Wu, “Adaptive Bat Algorithm for Coverage
of Wireless Sensor Network”, International Journal of Wireless and Mobile
Computing, Vol. 8(3), pp. 271-276, 2015.

[65] A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna, “Soft Computing
Based Cluster Head Selection in Wireless Sensor Network Using Bacterial
Foraging Optimization Algorithm”, International Journal of Electrical,
Computer, Energetic, Electronic and Communication Engineering, Vol. 9(3),
pp. 379-384, 2015.

[66] Y. Ding, R. Chen, K. Hao, “A Rule-driven Multi-path Routing algorithm
with Dynamic Immune Clustering for Event-Driven Wireless Sensor Networks”,
Neurocomputing, Vol. 203, pp. 139–149, 2016.

[67] B. Zeng, Y. Dong, “An Improved Harmony Search based Energy-Efficient
Routing Algorithm for Wireless Sensor Networks”, Applied Soft Computing,
Vol. 41, pp. 135–147, 2016.

[68] A. S. Alsaadi, T. C. Wan, A. Munther, “Application of Harmony Search
Optimization Algorithm to Improve Connectivity in Wireless Sensor Network
with Non-uniform Density”, Journal of Information Science and Engineering,
Vol. 31(4), pp. 1475-1489, 2015.

22



[69] M. Breza, J. A. McCann, “Lessons in Implementing Bio-inspired Algorithms
on Wireless Sensor Networks”, NASA/ESA Conference on Adaptive Hardware
and Systems, pp. 271–276, 2008.

[70] X. S. Yang, S. F. Chien, T. O. Ting, “Bio-inspired Computation in
Telecommunications”, Morgan Kaufmann, 2015.

[71] Z. W. Geem, J. H. Kim, G. V. Loganathan, “A New Heuristic Optimization
Algorithm: Harmony Search”, Simulation, Vol. 76, N. 2, pp. 60-68, 2001.

[72] D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, M. N. Bilbao, S.
Salcedo-Sanz, Z. W. Geem, “A Survey on Applications of the Harmony Search
Algorithm”, Engineering Applications of Artificial Intelligence, Vol. 26, N. 8,
pp. 1818-1831, 2013.

[73] A. G. B. Tettamanzi, M. Tomassini, “Soft Computing: Integrating Evolutionary,
Neural, and Fuzzy Systems”, Springer, 2001.

[74] D. Pelleg, A. W. Moore, “X-means: Extending K-means with Efficient
Estimation of the Number of Clusters”, International Conference on Machine
Learning, Vol. 1, 2000.

[75] D. Sculley, “Web-Scale K-Means Clustering”, International Conference on
World Wide Web, pp. 1177-1178, 2010.

[76] J. Knowles, L. Thiele, E. Zitzler, “A Tutorial on the Performance Assessment
of Stochastic Multiobjective Optimizers”, Technical Report 214, Computer
Engineering and Networks Laboratory (TIK), ETH Zurich, 2006.

[77] Open Data Euskadi initiative, http://opendata.euskadi.eus, retrieved on
October 2015.

23


