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Summary

Exploring Enclosed Environments with Floating Sensors: Mapping using Ultrasound

This thesis is a contribution to a new field of study in which miniaturized sensor nodes are
used to explore and inspect enclosed or otherwise difficult to access environments. Examples
of such environments are pipelines, industrial mixing tanks and reactors, and underground
channels and formations like reservoirs and geothermal sources. These man-made or natural
environments have in common that they contain a (semi-)liquid medium and are enclosed
and difficult to access. That is, the interior can hardly or not at all be accessed by remote
probing using e.g. electromagnetic (EM) signals due to the shielding of metallic containment
or surrounding ground layer(s) and the salinity of the liquid medium.

Essentially no techniques are currently available that deliver in situ measurements of
structure and integrity in such environments. This thesis is concerned with a unique and
entirely new ‘go-with-the-flow’ approach to perform such measurements. In our approach,
sensor nodes are inserted into and later extracted from the environments. Access to the envi-
ronments is obtained by using the liquid medium as carrier medium and adapting the sensor
size to the characteristic dimensions of the environment.

The ‘go-with-the-flow’ approach requires that the nodes are small and lightweight. This
has drastic effects on the allowable payload (battery, processing, sensors, etc.) that a node
can carry. Furthermore, for a variety of reasons, communication in these environments is
only realistically possible using ultrasound. Localizing the nodes is of key importance but
hard to achieve. External position aids like the Global Navigation Satellite System (GNSS)
or a custom network of beacons, will not work in these enclosed environments.

In this thesis we explore a novel approach in which localization is performed coopera-
tively by using a swarm of sensor nodes, consisting of many (e.g. hundreds or thousands)
individual autonomous sensor nodes. Distances between node are measured by the nodes
themselves, and an aggregation of these measurements is then used to estimate the locations
of the node within the swarm. The use of ultrasound comes with its own set of challenges,
like a low data rate and highly time-variant communication channels, making it hard to per-
form these distance measurements with high accuracy. The thesis attempts to address these
challenges and to develop robust methods for cooperative localization.
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Sensor nodes are localized by reconstructing their positions relative to each other once the
nodes are extracted from the environment and their data read out. A novel reconstruction al-
gorithm is developed aimed at being robust against highly corrupted distance measurements,
using a Random Sampling Consensus method. Furthermore it has to deal with potentially am-
biguous identification. In order to measure the distances between nodes, a ranging protocol
is required to control the sequence of events needed for determining distances. A simulation
chain is set up to simulate the ranging protocol for a number of realistic scenarios where the
movement of the nodes is simulated in a variety of environments. The output of the simulated
ranging measurements is then used as input for the reconstruction algorithm that estimates
the positions of the majority of the nodes. In the considered scenarios, the protocol permits
reliable reconstruction of the nodes positions.

The results of this study can serve as a basis for defining specifications for real-world
functional nodes prototypes. The possible trade-offs among parameters of the ranging pro-
tocol are further studied for one particular environmental use case. The parameters that can
be adjusted are e.g. the signal strength (communication range) and the number of identifying
bits per message. Insight is gained on the effect that they have on e.g. the ranging latency, sig-
nal collisions, the fraction of distances that are successfully measured and the total number of
messages transmitted to achieve this. Combining this knowledge with the effects that these
parameters then have on the reconstruction of the nodes positions, allows one to properly
adjust parameters depending on the different environments and application scenarios.

To investigate what other pieces of positional information can be gathered to aid in lo-
calizing the nodes, sensor nodes with a diameter of 4 cm and equipped with an inertial mea-
surement unit (IMU) are constructed and used in a field test, floating through an underground
pressurized water pipeline. The nodes log the sensed acceleration, rotation and the local mag-
netic field. The IMU data is used – unlike dead-reckoning techniques – to reveal structural
information of the environment by studying the interaction between the nodes and the en-
vironment, and to obtain positional information based on the measured magnetic signature.
Pipe components like junctions and hydrants are discovered and types of material of which
the pipe is made are identified. Positional information is obtained by comparing the data with
an incomplete map of the pipeline that was given beforehand.



Contents

Summary v

Contents vii

Glossary xiii

1 Introduction 1
1.1 Introducing the problem field . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Enclosed environments . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Industrial exploration needs . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Existing exploration techniques . . . . . . . . . . . . . . . . . . . . 4

1.1.3.1 Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3.2 Underground reservoirs . . . . . . . . . . . . . . . . . . . 5
1.1.3.3 Industrial tanks and reactors . . . . . . . . . . . . . . . . . 6

1.2 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The go-with-the-flow approach . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Key constraints and choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Key characteristics of the go-with-the-flow approach . . . . . . . . . 8
1.4.1.1 No direct communication across the boundaries of the en-

vironment . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1.2 Size constraint on nodes . . . . . . . . . . . . . . . . . . . 9
1.4.1.3 Power limitation . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Options for localization . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2.1 Coordinate-based localization . . . . . . . . . . . . . . . . 9
1.4.2.2 Time-based localization . . . . . . . . . . . . . . . . . . . 11
1.4.2.3 Environment signature-based localization . . . . . . . . . . 11
1.4.2.4 Proximity-based localization . . . . . . . . . . . . . . . . 12

1.4.3 Localization approach adopted in this thesis . . . . . . . . . . . . . . 12
1.4.3.1 Severely limited communication within the environment . . 13
1.4.3.2 Protocols to obtain distance measurements . . . . . . . . . 14
1.4.3.3 Reconstruction of node positions . . . . . . . . . . . . . . 14



viii Contents

1.4.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Scientific contributions / Table of contents . . . . . . . . . . . . . . . . . . . 15

1.6.1 Other peer-reviewed publications . . . . . . . . . . . . . . . . . . . 16
1.6.2 Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Robust Reconstruction of Sensor Swarms Floating Through Enclosed Environ-
ments 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 The implications of application constraints . . . . . . . . . . . . . . . . . . . 26

2.2.1 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Beacons and landmarks . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Distance measurements . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Communication and identification . . . . . . . . . . . . . . . . . . . 28

2.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Distance measurement protocol . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Distance uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Identification uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Mutual connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Swarm reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Identity and consistency check . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Initial seed selection . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 RANSAC graph growing . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3.1 Guiding RANSAC . . . . . . . . . . . . . . . . . . . . . . 39
2.4.4 Robust non-linear refinement . . . . . . . . . . . . . . . . . . . . . . 40
2.4.5 Loop closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Environment model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Distance measurement generation . . . . . . . . . . . . . . . . . . . 43
2.5.3 Effective connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.4 Reconstruction performance analysis . . . . . . . . . . . . . . . . . 45

2.5.4.1 Absolute error . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.4.2 Relative error . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4.3 Global error . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4.4 Local error . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4.5 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.5 Parameter sweeps and breaking points . . . . . . . . . . . . . . . . . 48
2.5.6 Effective number of neighbours . . . . . . . . . . . . . . . . . . . . 50
2.5.7 Loop closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.9 APPENDIX: Algorithm: overview . . . . . . . . . . . . . . . . . . . . . . . 60
2.10 APPENDIX: Algorithm: RANSAC . . . . . . . . . . . . . . . . . . . . . . 60
2.11 APPENDIX: Algorithm: guiding RANSAC . . . . . . . . . . . . . . . . . . 61



Contents ix

3 Mapping Swarms of Resource-Limited Sensor nodes: Solely Using Distance Mea-
surements and Non-Unique Identifiers 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Constraints on sensing devices . . . . . . . . . . . . . . . . . . . . . 68
3.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Reconstructing node positions . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Identity and distance ambiguity . . . . . . . . . . . . . . . . . . . . 69

3.3 Swarm localization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Initial seed selection . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 RANSAC graph growing . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.3 Sorting candidate nodes . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.4 Robust non-linear refinement . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Measurement noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.2 Performance parameters . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.1 Non-Gaussian outlier and identification noise . . . . . . . . . . . . . 79

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Go-with-the-Flow Swarm Sensing in Inaccessible Viscous Media 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Application challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Size and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 Enclosed environment . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.3 Required communication range . . . . . . . . . . . . . . . . . . . . 90
4.2.4 Acoustic channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.5 Random Channel Access . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Ranging protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Design challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1.1 Reduction of transmitted messages . . . . . . . . . . . . . 91
4.3.1.2 Elimination of overhead . . . . . . . . . . . . . . . . . . . 92
4.3.1.3 Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1.4 Ranging latency . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1.5 Error model . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.2.1 Picking the master node . . . . . . . . . . . . . . . . . . . 96
4.3.2.2 Calling the slave nodes . . . . . . . . . . . . . . . . . . . 96
4.3.2.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2.4 Reducing the latency . . . . . . . . . . . . . . . . . . . . 98

4.4 Simulation chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.1 Trajectory of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Distance measurements . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.3 Reconstruction of node positions . . . . . . . . . . . . . . . . . . . . 101

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.1 Ranging protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.2 Reconstruction metrics . . . . . . . . . . . . . . . . . . . . . . . . . 104



x Contents

4.5.2.1 Absolute error . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2.2 Relative error . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2.3 Global error . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2.4 Local error . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2.5 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Asymmetric Multi-Way Ranging for Resource-Limited Nodes 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 Protocol design challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.0.1 Control of ranging sequence. . . . . . . . . . . . . . . . . 114
5.2.0.2 Ranging latency. . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.0.3 Signal overlap. . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.0.4 Scanning phase. . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.1 Asymmetric multi-way ranging . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Picking the master node . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.3 Scanning the slave nodes . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.4 Reducing the latency . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1 Latency versus signal overlap . . . . . . . . . . . . . . . . . . . . . 120
5.5.2 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5.3 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Sensor Motes for the Exploration and Monitoring of Operational Pipelines 127
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 XWM concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 Standard and modified XWM hardware . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Modified XWM with ultrasound emission . . . . . . . . . . . . . . . 131
6.4 Field-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.1 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5 Data analysis & results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.1 Ultrasound detection . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.5.2 Field-test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.5.3 XWM orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5.4 Magnetic data and pipe sections . . . . . . . . . . . . . . . . . . . . 137
6.5.5 Identifying mote location and pipe ‘anomalies’ . . . . . . . . . . . . 140
6.5.6 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Contents xi

6.6.1 Analysis approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6.2 Pipe sections and transitions . . . . . . . . . . . . . . . . . . . . . . 147
6.6.3 Collision dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6.4 Pipe conditions and integrity . . . . . . . . . . . . . . . . . . . . . . 148
6.6.5 Position estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6.6 Mote mass distribution . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Conclusion 153
7.1 Robust reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2 Ranging protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3 Go-with-the-flow pipe characterization using other localization techniques . . 156
7.4 Overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5 Recommendations for future research . . . . . . . . . . . . . . . . . . . . . 156

7.5.1 Reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5.2 Ranging protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5.3 Using other localization techniques . . . . . . . . . . . . . . . . . . 157
7.5.4 Overall recommendations . . . . . . . . . . . . . . . . . . . . . . . 157

Acknowledgement 159

Curriculum Vitae 161



xii Contents



Glossary

List of acronyms

3-D three dimensional
ACK acknowledgement (signal)
AOA angle of arrival
BPSK binary phase shift keying
CDMA code division multiple access
CHOPS cold heavy oil production with sand
CID communication identifier
CO2 carbon dioxide
EM electromagnetic
EU european unions
G2O ¡software package for non-linear optimization¿
GNSS global navigation satellite system
GPS global position systems
GRE glass-reinforced epoxy
IMU inertial measurement unit
LIDAR light detection and ranging
MWR multi-way ranging
NFC near-field communication
OMNeT++ network simulator software package
RANSAC random sampling consensus
REQ request (signal)
RSS received signal strength
SLAM simultaneous localization and mapping
TDOA time difference of arrival
TOA time of arrival
TOF time of flight
TWR two-way ranging
UID unique identifier
WGS84 world geodetic system 1984



xiv Glossary

XWM xploring wisemotes™

List of textual abbreviations

e.g. exempli gratia: for example
i.e. id est: that means, in other words



1
Introduction

This thesis focuses on a new approach for exploration of enclosed environments that contain
a (semi-)fluid medium. Examples of these are man-made environments such as pipelines,
industrial mixing tanks and reactors, and natural environments like underground channels,
reservoirs and geothermal sources. Structural and in-situ information of these environments is
requested by industry e.g. for guaranteeing operations, for safety purposes, or for optimizing
processes. Current state-of-the-art technology does not provide this information at all, or
not in a cost-effective manner. The main limiting factors are the remoteness and physical
isolation of the system. We propose to explore these environments by means of a “go-with-
the-flow” approach that uses small buoyant autonomous sensor nodes in large quantities.
While traversing the environment, the sensor nodes perform measurements for parameters of
interest, and to determine their relative positions. Measurements are stored in memory and
read out when the nodes are extracted from the environment. After extraction, the stored data
is analyzed in order to gain the desired knowledge.

1.1 Introducing the problem field

1.1.1 Enclosed environments

Our modern society depends in part on an extensive industrial infrastructure for extracting,
distributing and processing fluids such as oil and water. In many cases the environments in
which these fluids are contained are difficult to access. Examples of such environments are
pipeline distribution systems, underground formations like reservoirs, and industrial tanks
and reactors.

Pipeline distribution systems are a backbone technology for industries and society, rang-
ing from the transport of oil from deep reservoirs to chemical plants, to the continuous distri-
bution of fresh water from water purification plants to households in cities and villages.
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Table 1.1: Generalized overview of categories of enclosed fluidic environments. Each with
their own aspects and information needs.

category pipeline reservoir industrial tank

structure known internal structure un-
known

known

integrity unknown - known

dynamics unknown unknown unknown

dimensions 1000×1×1 m 1000×0.1×0.1 m 10×10×10 m

examples pipelines, sewage sys-
tem

oil reservoir, potash
mines, geothermal
sources

mixing tank, reactor

Underground formations like oil and gas reservoirs have been the source of most of our
energy production since the 19th century and both oil and gas serve as a basis for many
products on which we rely every day. Not only do these formations hold resources that we
use, they can also serve as (temporary) storage for liquids and gasses like hot and cold water
and CO2.

Industrial tanks and reactors are at the core of many chemical industries, and generally
process specific input resources to desired (semi-finished) products. Examples of processes
occurring inside these enclosed environments are boiling, sifting, mixing, etc.

1.1.2 Industrial exploration needs

The environments mentioned above are difficult to access either because they are designed to
keep what is inside in and what is outside out, or because they owe their importance to their
inaccessibility, like underground formations that trap valuable carbohydrates throughout the
ages, forming a reservoir.

The combination of being important and being enclosed leads to the situation in which
we seek more knowledge about them but are hard pressed to do so because they are not
easily accessible. Each of the above mentioned examples belongs to a different category of
enclosed environments with specific aspects, risks and exploration goals. These categories
are summarized in Table 1.1.
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Pipeline infrastructures transport large amounts of gaseous and (semi-)fluid media from
one place to another and failures can have large effects on human life, industrial processes and
environmental safety. Being able to estimate when pipelines are likely going to fail allows
for timely preventive repairs [1, 2]. The original structure and locations of the pipelines are
commonly known. The specific exploration goals for pipelines relate to measuring whether
the structure is still the same and still intact, i.e. to measuring locally the integrity and system
conditions. Key parameters of interest for assessing pipeline status are: leakages, remain-
ing wall-thickness, corrosion, and sludge accumulation. In some cases, not even the exact
location, the used materials or pipe-elements like flanges, bends, and junctions are known.
Obtaining this information aids in predicting failures, performing proper maintenance, and
preventing disasters. Regular inspection of the pipe conditions and integrity is essential to
ensure a long service life, reduce risk of failures, and help in prioritizing the replacement
order of pipe sections and components.

Extraction from and injection into underground reservoirs happens with little knowl-
edge of the enclosed environment. Knowledge of the environment is often limited to macro-
structural estimates like location, size and shape, obtained using radar probing, and possibly
the chemical composition of the material/liquid inside, obtained using e.g. spectroscopic
analysis. When the reservoirs are found and confirmed to be worthwhile to extract, boreholes
are drilled into the reservoirs and the resources are pumped out until it is no longer profitable
to do so. The lack of knowledge on the detailed internal structure makes it harder to effi-
ciently extract resources, or to optimize storage of injected fluids. This is for example clearly
seen in cold heavy oil production with sand (CHOPS) applications. In these CHOPS reser-
voirs the extraction rate of oil does not exceed 10% of the total amount; it is limited by the
formation of open-channels in the sand-stone layer between production and injection well,
causing a pressure drop [11]. The lack of detailed structural information here is preventing
further extraction of oil, potentially valued at billions of euros. Ideally, a sensor system is sent
down there, 600 meters deep, to measure in the harsh conditions the parameters of interest,
like pressure profile, passage diameters, etc.

Industrial processes like mixing in tanks and reactors are often monitored solely based
on measuring parameters in the input flow and in the output flow. The dynamics inside these
enclosed environments, like flow conditions and interactions, and the state of the (multi-
phase) fluids, like temperature distribution, can often only be inferred from the input, the
output and their differences. The lack of direct information on what exactly is happening
inside makes it harder for process engineers to optimize the intended processes, like increas-
ing the yield or uniformity, and reducing the required energy and time for the process to
complete [3].

The need to explore each of these enclosed environments is clear, whether it is to monitor
and inspect pipeline infrastructure, to assess the detailed internal structure of underground
reservoirs, or to study the inside of industrial tanks. However, their exploration is not trivial
as they are shielded by a (metallic) containment to separate the inside from the outside, and/or
are buried under several layers of soil. This makes it a hard challenge to inspect the integrity
and potential failure mechanisms and to study the dynamics or detailed internal structure.
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Figure 1.1: Categorizing pipeline inspection techniques.

1.1.3 Existing exploration techniques

The technology and tools available for the above exploration goals have advanced signifi-
cantly in the last decades. In the following paragraphs available techniques are discussed per
category of enclosed environment.

1.1.3.1 Pipelines

For pipelines, a large variety of techniques are available that can be separated into remote,
on-pipe, and in-pipe techniques [2, 4, 5]. These are schematically shown in Fig. 1.1.

With remote techniques attempts are made to inspect the pipeline from the outside. Ex-
amples of these are ground penetrating radar [6] and acoustical surveyance. The knowledge
gained from these techniques is often limited to macroscopic parameters like presence, loca-
tion and type of material or object.

On-pipe inspection techniques have sensor systems physically attached to the pipeline
or very close to the pipeline, often placed on the outside of it [2]. A distinction can be made
between local systems and ranged systems. Local systems are e.g. ultrasound imaging to
find defects in the containment with a very high resolution and on a very local scale, flow
measuring systems using e.g. Doppler-based or induction-based sensors. Ranged systems
include e.g. passively listening to the creation and development of leaks, (micro-)cracks and
corrosion using a technique called acoustical emission [7], or active emitting sound- or EM-
pulses and listening to the response to identify and locate defects along the pipeline. These
systems can have ranges up to one or several kilometers. On-pipe inspection techniques
require physical access to the pipelines, which prevents the use of these techniques for remote
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or deep underground pipelines.

With in-pipe inspection techniques, devices are inserted into the pipeline and move
through it for inspection along the [2, 4, 5]. Categorization of these techniques can be done
in many ways. In this work we separate techniques by how the device moves through the
pipeline. Externally driven or tethered devices require a direct line of access from an accessi-
ble location to the device itself. The range is limited to the length, weight and strength of the
tether or driver. Examples of self-driven devices are robotic devices that crawl through the
pipeline, or devices with rolling or fish-like actuators. The limiting factor for these devices is
often the power required to manoeuvre through environments containing high viscosity fluids
(relative to gaseous media) and with high flow-speeds.

Flow-driven devices use the flow of medium to propagate through the environment. A
large variety of pipe inspection gauges have been developed that have a diameter close to that
of the pipeline itself [2, 4, 5]. The devices remains relatively stable and the sensors can be
placed close to the surface of the pipe to inspect it with high resolution. These large devices
are generally limited to use in straight pipe sections with no pipe elements like valves and
junctions. Often they get stuck due to (unexpected) accumulation of sludge. For many other
pipeline systems the diameter is not fixed and the system can have (potentially unknown)
pipe-elements like junctions, valves and sharp bends that prevent physical passage.

Pipe inspection gauges are often used in the oil-industry. Distribution oil pipelines often
have long straight sections with a fixed diameter, non-sharp corners and barely blocking pipe-
elements. Downtime can be kept low due to efficient in- and outlets. For this industry, these
devices, although relatively expensive, are very adequate and cost efficient.

In other industries, however, this may be different. For example, a significant fraction of
water distribution networks had ad-hoc repairs in the past that are only partially documented
or not documented at all. Physical passage of any type of large in-pipe inspection devices
cannot be guaranteed due to the lack of knowledge on the location and the type of pipes
and pipe components, bends, flanges, and valves. The cost of failure of such pipelines is
also significantly lower than that in the oil-industry, making the available solutions not cost-
effective.

For environments of this type, smaller and cheaper solutions are required, such as small
flow-driven inspection devices. The SmartBall [8], designed specifically for larger pipelines,
is an example of a successful product that goes with the flow through pressurized pipelines
to detect leaks. While traversing the pipeline, it registers sound and listens to the acoustical
signature of hissing leaks or trapped air. The positions of the device from which these events
are measured is estimated based on interpolation of the timing of the registered event, relative
to the passage of the device by externally applied beacons that the device senses.

1.1.3.2 Underground reservoirs

For underground reservoirs the discovery and initial exploration is performed using tech-
niques like radar, acoustical surveyal, and remote sensing (e.g. gravity, spectroscopy) [9].
Resulting findings are limited to macroscopic parameters like size, location, volume and pos-
sibly the type of resource. Test-drilling then serves to identify chemical composition of the
resource and physical properties of surrounding ground layers. The depth and difficulty to
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get close prevents gaining knowledge on the detailed internal structure.

Existing inspection techniques for obtaining further details about the internal structure are
limited to devices placed inside the borehole, and not in the reservoir itself as the dimensions
are too small and the reservoir is located too deep underground. Typical borehole inspection
techniques can sense in the near vicinity around the borehole with a range of around one
meter.

Using cross-borehole tomography, cross-sections of the reservoir between two adjacent
boreholes can be measured [10]. However, the resolution of these measurements is limited to
not less than around one meter.

1.1.3.3 Industrial tanks and reactors

Inspection of industrial tanks and reactors from the inside is often very difficult due to chemi-
cals that are inside, the limited accessibility and the strict regulations for human entry in these
systems. Using a technique called acoustic emission it is possible to listen to processes like
e.g. corrosion and crack-forming in the enclosure of the environment.

Monitoring and studying the processes that happen inside industrial tanks and reactors
is partially possible by installing systems like Doppler flow profile, liquid level sensor and
temperature sensor. However, this does not provide information on e.g. the distribution of
parameters of interest, and interactions happening inside.

1.2 Thesis objective

The above survey shows that the technology for inspecting enclosed environments has pro-
gressed significantly over the past decades, but still has strong limitations in terms of appli-
cability and cost. Additionally, there is a clear need to obtain additional knowledge on the
dynamics and state of the interior of enclosed environments, and to assess/characterize the
detailed internal structure.

The aim of this thesis, therefore, is to contribute to the development of cost effective
and broadly applicable inspection tools for enclosed fluidic environments.

1.3 The go-with-the-flow approach

The closest technique that can potentially be used to tackle the exploration needs of the three
different enclosed fluidic environment uses devices that are small relative to the diameter of
the environment and that are driven by the flow of the medium. In enclosed environments
there seems to be only one existing example of this technique, the SmartBall, and this prod-
uct is only meant for detecting leaks in pressurized pipelines. We can strongly extend the
functionality so as to enhance flexibility and deliver inspection results in a wide variety of
applications in a cost-effective manner. Specifically, instead of a single device we use a large
quantity of devices, operating in a swarm. The individual devices are then called sensor
nodes, or in short nodes.
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Figure 1.2: Go-with-the-flow approach: a) insertion of large quantities of sensor nodes;
nodes go-with-the-flow of the medium and perform distance measurements using a ranging
protocol and store their measurements in memory; upon extraction the data of the nodes is
read out for further analysis; b) the measured distances between nodes is used to reconstruct
the positions of the nodes relative to each other. The resulting shape of the swarm reveals
structural information of the environment. The 3-D map can be to visualize additional sensor
information.

A typical operational approach of sensor nodes operating in a swarm is visualized in
Fig. 1.2 and involves the following steps:

1. insert sensor nodes into the environment;

2. nodes traverse the environment with the flow of the medium;

3. nodes perform and store measurements, not only of parameters of interest, but also for
being to able to determine positions of the nodes;

4. nodes are extracted from the environment;

5. data from the nodes is analyzed offline to obtain as much information as possible on
the enclosed environment.

The go-with-the-flow approach using swarms of small and autonomous sensor nodes has
the potential to provide information about the flow dynamics and the state and distribution of
the medium as long as the density of the nodes is matched with that of the medium and the
nodes are small enough not to interfere with the dynamics. The nodes effectively serve as
tracer particles; the movement and distribution of the nodes can be used to infer the dynamics
of the flow of the medium.

This approach also has the potential to go where no sensor has gone before, for example
in deep underground reservoirs where the sensor nodes can measure parameters of interest
that help in discovering the internal structure and conditions.

For pipelines, the technique has the potential to provide low to medium resolution infor-
mation and to do that for large sections of pipeline. It promises to allow for a quick and
cheap inspection method that can assess integrity for prioritizing pipe replacement and to
detect large faults like leakages and unwanted constrictions.

Using the flow of the medium to traverse the medium and to get the nodes out of the en-
closed environment implies that the approach cannot be used in systems with stagnant flow or
without a flow to a controllable exit point. For example, in fresh water distribution networks
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in urban areas, the pipeline system is highly ramified and has various places of stagnant water
and no easily accessible exit point; inserted nodes will get stuck here. However, in many in-
stances entry and exit points will or can be made available so that the approach is, in principle,
widely applicable.

Accordingly the specific research objective addressed in this thesis can be formulated as:

“Can we design an efficient and effective ‘go-with-the-flow’ system for character-
ization of enclosed fluidic environments?”

1.4 Key constraints and choices

1.4.1 Key characteristics of the go-with-the-flow approach

In the go-with-the-flow approach all sensor nodes are equipped with sensors that continuously
or intermittently assess the environmental conditions of interest. To be able to characterize
the environment as a whole, it is essential that the acquired sensor information can be related
to sensor position, so that after extraction of the sensors a parametric picture of the entire
environment can be composed.

Without information on the positions only macroscopic parameters can be deduced. Ex-
amples of findings without position information can be found in [11]: e.g. “the narrowest
passage is X since nodes with dimensions larger than it do not make it to the exit point”,
and “a minimum pump-rate of Y is needed for nodes to traverse the entire system, at lower
pumping-rates the nodes do not get out”.

Assessing the position of sensor nodes over time is far from trivial given the required
small size (and hence small power dissipation) of sensor nodes, and given that classical local-
ization techniques (e.g. beacons, GPS etc) are inapplicable due to the inaccessibility of the
environment and the strong attenuation of acoustic and electromagnetic waves that could be
used for localization.

Accordingly, localization is a key challenge and a major focus of this thesis. Note that
the use of the word ‘localization’ is used to indicate the process or method of determining
positions of nodes. The word ‘reconstruction’ is used to indicate the process of estimating the
position of nodes based on measurements that were performed, i.e. to answer the question
‘where was the node when the measurements were taken’.

We proceed to discuss the major constraints, design choices and research questions in
more detail.

1.4.1.1 No direct communication across the boundaries of the environment

Communicating to and from enclosed environments that contain fluid media and are enclosed
by (e.g. metal) containment or are located deeply underground is a hard challenge. Signals
with larger wavelengths experience less absorption but are less efficiently produced and de-
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tected by small nodes. In specific cases, communication might be possible, but to keep the
approach/solution as general as possible we assume that no communication is possible to and
from the environment. As a consequence, nodes need to operate autonomously as they cannot
be controlled from the outside, and nodes need to store measured data on-board. Data can
only be extracted from the nodes once they are extracted from the environment.

1.4.1.2 Size constraint on nodes

Nodes need to traverse the environment in order to make in-situ measurements. Since the
measured data also cannot be sent to the outside world, nodes need to be extracted after
traversing the environment in order to obtain this data. This means that they need to be
smaller than the narrowest parts of the environment in order to be extracted. Furthermore,
the weight of the node needs to be small enough to allow the nodes to move with the flow. In
some applications the nodes even need to be neutrally buoyant in the medium, lowering the
weight limit further.

1.4.1.3 Power limitation

Probably the most significant and overarching constraint of highly miniaturized sensor nodes
is their power limitation. Due to volume and weight constraints of the nodes, battery capacity
will be extremely limited and this influences all other design choices related to sensing, com-
putation, and communication. In fact, in millimeter-sized nodes batteries may only provide
enough energy to perform one set of measurements instead of continuously or intermittently
during the passage through the environment.

1.4.2 Options for localization

Fig. 1.3 provides a survey of possible approaches for localization in the go-with-the-flow
approach. Although position is commonly expressed in coordinates relative to an absolute
and shared frame of reference, this might not be feasible for the go-with-the-flow approach. In
the next subsections we discuss the options indicated in Fig. 1.3. Subsequently, in Sec. 1.4.3,
we explain our choices and approach.

1.4.2.1 Coordinate-based localization

The most common way to localize is to use a coordinate-based approach. Positions are de-
fined using coordinates relative to a frame of reference. Possible frames of reference include:

• the Earth frame of reference: It is a frame of reference that is fixed to the Earth and
uniquely defines positions within it. A commonly known example of this is the World
Geodetic System 1984 (WGS84), used in e.g. cartography and satellite navigation.

• the (static) environmental enclosure: Positions are defined relative to the enclosure
of the environment. The environment itself can be used as a continuum of reference
points.

• neighbouring nodes: positions can be defined relative to the positions of neighbouring
nodes, independent of whether they are static or not.
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Figure 1.3: Options for obtaining information related to position.

Direct localization using beacons located outside of the environment that define positions
in the Earth frame of reference is not feasible as no direct communication is possible from
and to the environment.

Indirectly localizing nodes relative to the Earth-frame is possible only through referencing
to the known entry and exit points of the enclosed environment. A variety of localization
methods using entry and/or exit point have been proposed, studied or used. Examples are:

• using the enclosed environment and/or medium as wave-guide for communication
channels for time-of-flight, or related, localization methods [12, 13];

• dead-reckoning: using inertial measurements to calculate incrementally the position of
the nodes, starting and ending with the known positions of the entry and exit points
[14];

• pervading the environment with nodes in which incrementally positions of nodes are
calculated, starting close to entry/exit point and incrementally localizing neighboring
nodes which can then be used as a reference point, thereby forming a chain through the
environment [15, 16].

Using the enclosure of the environment as frame of reference requires a method to
identify this enclosure. A commonly used approach is using cameras and/or LIDAR with a
technique called Simultaneous Localization and Mapping (SLAM). With SLAM gradually
a map of the enclosure is built and the positions of the nodes therein are estimated. This is
performed by stitching together detailed images of the enclosure and determining from which
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Figure 1.4: Obtaining geometric information in enclosed environments does not need to be
with coordinates. Tracking parameters over time can distinguish locations, paths and internal
structure. Examples: temperature gradient, pressure gradient, passage width, node density,
etc.

position the image is taken to make the measurements fit [17, 18].

Using neighbouring nodes to define positions relative to them is known as cooperative
localization. This can be done by SLAM-like approaches, but also by performing ranging
measurements, i.e. by measuring the distances between nodes to form a point-cloud that
represents the swarm of nodes and defines the positions of the nodes within the swarm [19].

1.4.2.2 Time-based localization

In time-based approaches, the travel time of the nodes through the environment is used as
estimator for node positions. Measurements are stored together with the time-stamp of the
measurements. After extraction, the recorded time can be used as a measure of position
between entry and exit point.

When the flow of the medium is fairly constant, it can act as a coarse (initial) estimate of
the position. When the environment is traversed multiple times, either with the same node
multiple times, or with multiple nodes at the same time, a statistical analysis can be performed
in an attempt to match the nodes individual recorded times and measurements with a coarse
estimation of the position in the environment. Using a larger amount of nodes might yield a
more accurate estimate of the position.

1.4.2.3 Environment signature-based localization

In Fig. 1.4 an enclosed environment is schematically visualized. It shows that environmental
parameters like temperature, pressure and dimension of internal structure can vary throughout
the environment. For example in geothermal-reservoirs and in CHOPS-reservoirs there is a
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clear temperature gradient. In principle, this position-dependency allows for a (statistical)
mapping of measured parameters to a position in the environment.

Combining knowledge of measured position-dependent parameters with time-based po-
sition estimates, as described in the previous section, has the potential of yielding useful
information on the position of nodes and simultaneously on the parameters of interest of the
enclosed environment.

1.4.2.4 Proximity-based localization

As also seen in Fig. 1.4, not only environmental parameters like temperature and pressure
can be used to study positions, also node proximity is a parameter that can be used for this.
Depending on the environment (size, diameter, branches, etc), the flow of the medium, and
the nodes itself, the nodes move through the environment in a specific time-dependent trajec-
tory. The quantity of nodes per section of the enclosed environment is variable through the
environment and changes depending on the insertion rate of the nodes into the environment
and the aforementioned aspects.

When the nodes are measuring the proximity of other nodes over time, a time-based
dispersion analysis can potentially be performed offline to study environmental aspects like
geometry, diameter and internal structure [20]. More specifically, when nodes also measure
which nodes where nearby and at what time, a more thorough analysis can then be performed:
branches and different paths through the environment can also be identified.

1.4.3 Localization approach adopted in this thesis

One of the largest challenges for developing sensor nodes capable of providing position in-
formation under the constraints outlined above is the limit in size the nodes can have. The
smaller we can make the sensor nodes, the larger the amount of applications and environ-
ments in which they can be used. Reaching those levels of miniaturization requires signif-
icant hardware development efforts and costs. We choose for the strategy ‘minimum effort
online, maximum effort offline’ in which we rigorously limit and simplify what nodes are
doing while traversing the environment, and after extraction we compensate for this by a
maximum of off-line effort where ample computation power is available.

To minimize online effort, we assume that nodes can only perform ranging measurements
to nodes that are sufficiently close by, i.e. we consider a constrained form of cooperative
localization.

Ranging can e.g. be done acoustically or with ultrasound. Since sound and ultrasound can
efficiently traverse fluidic environments, acoustic or ultrasound ranging can be done at low
power levels and (especially for ultrasound) in small nodes. Other measurement approaches
(e.g. cameras, LIDAR) are not applicable to opaque and turbid fluidic environments, and
moreover tend to be more bulky and power-hungry.

Our ranging-based cooperative localization approach is schematically depicted in Fig-
ure 1.5. The major part of this thesis is concerned with this approach (Chapters 2-5). In
Chapter 6 we additionally explore the possibilities of time-based position determination in
combination with using the environmental signature to simultaneously localize the nodes and
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Figure 1.5: A swarm of highly miniaturized sensor nodes is injected into an enclosed fluidic
environment and flows through it, along with the medium. Meanwhile, sensor nodes monitor
their environment, not only for parameters of interest but also to reconstruct their position
relative to other nodes without relying on external communication.

map the environment.

1.4.3.1 Severely limited communication within the environment

Communication within the enclosed environment is also limited by absorption by the medium
and by the boundaries of the enclosure.

Depending on the typical dimensions of the environment, the size of the nodes and their
spatial distribution, a required communication range of 1 meter appears reasonable for most
of our applications. Using electromagnetic (EM) communication between nodes is not at-
tractive, as (sub-)centimeter node dimensions prohibit large antennas. Moreover, at high
frequencies suitable to be used with small antenna’s, the liquid (and possible highly saline)
media have large attenuation. This effectively prevents EM communication for distances
larger than, say, a centimeter. Using inductive communication such as near-field communica-
tion (NFC) is limited to the centimeter range in saline environments [22]. The (liquid) media
is also not guaranteed to be clear enough for the use of (visible) light communication.

In our approach we will study the use of ultrasound signals as means of determining dis-
tance to neighbouring nodes. Even though this seems feasible, there are significant challenges
in using ultrasound as a communication medium within the environments.
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1.4.3.2 Protocols to obtain distance measurements

In order to determine distances between sensor nodes, a ranging protocol is required that
stipulates how signals need to be transmitted and exchanged between nodes in order to es-
timate their mutual distance. A variety of ranging protocols is available in other fields of
study [23, 24]. However, in our go-with-the-flow applications with the strict constraints out-
lined above, there is none readily applicable for us.

1.4.3.3 Reconstruction of node positions

Once distances are determined by the nodes while traversing the environment and the data
is extracted from the nodes, the positions of the nodes relative to each other need to be re-
constructed. Reconstruction algorithms from other application domains can be used for the
range-based measurements our nodes are performing. However, in our approach to mini-
mize online effort we are dealing with potentially severely corrupted or altogether missing
distance measurements. A maximum offline effort means that the reconstruction algorithm
needs to be robust against these corrupted measurements. The more robust we can make the
reconstruction algorithm, the more corrupted we can allow our online measurements to be.

1.4.4 Research questions

Based on the above considerations, we devote specific attention to the following 3 specific
research questions in this thesis.

1. Can we develop a robust algorithm for the reconstruction of node positions using
distance-based measurements that are obtained in the go-with-the-flow approach?

2. Can we develop a ranging protocol for nodes to determine distances while traversing
the environment, such that nodes need to perform as little effort as possible during the
go-with-the-flow phase?

3. Can we apply other methods to perform localization?

We proceed to elaborate how these research questions are addressed in the various chap-
ters of this thesis.

1.5 Structure of the thesis

Our main focus in this thesis is to obtain reliable position coordinates of the nodes relative
to each other while traversing the enclosed environment. Based on the design philosophy
‘minimum effort online, maximum effort offline’ we investigate what are the possibilities to
reconstruct positions in offline analysis in order to determine what is needed as minimum
requirements for hardware specification and measurement accuracy.

Therefore, in Chapter 2 we start off developing a robust reconstruction algorithm that has
to deal with severely corrupted ranging measurements. We use extensive simulations with
increasingly more limitations on the node’s capabilities to study their effect on the recon-
struction performance. We then see down to what specifications the reconstruction algorithm
still yields useful results. The limits and trade-offs can then be used to fix the minimum
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hardware design specifications. These simulations show, for example, that a large degree of
connectivity – i.e. a large number of nodes within communication range of each other – is
highly favoured over unique identifiability of the nodes.

In Chapter 3 we perform a more detailed analysis of trade-offs in node’s capabilities and
what effect they have on the final reconstruction result. Specifically, we explore the trade-off
between connectivity and identifiability. Our analysis demonstrates, for example, that there
is a minimum required degree of connectivity for each specific measurement noise level for
the reconstruction to be successful.

(Chapter 4) In order to measure the distances between nodes, a ranging protocol is re-
quired to control the sequence of events needed for determining distances. Accounting for
the limitations and constraints determined in the reconstruction process, a ranging protocol
is developed for swarms of highly resource-limited nodes in extremely time-variant com-
munication channels. A simulation chain is set up to simulate the ranging protocol for a
number of realistic scenarios where the movement of the nodes is simulated in a variety of
environments. The output of the simulated ranging measurements is then used as input for
the reconstruction algorithm that estimates the positions of the majority of the nodes. In the
considered scenarios, the protocol permits reliable reconstruction of the node positions. The
results of this study can serve as a basis for defining specifications for real-world functional
sensor node prototypes.

(Chapter 5) The possible trade-offs among parameters of the ranging protocol is further
studied for one particular use case. The parameters that can be adjusted are e.g. the signal
strength (communication range) and the number of identifying bits per message. Insight is
gained on the effect that these parameters have on e.g. the ranging latency, signal collisions,
the fraction of distances that are successfully measured and the total number of messages
transmitted to achieve this. Combining this knowledge with the effects that these parameters
then have on the reconstruction of the node positions, allows one to properly adjust parame-
ters depending on the different environments and application scenarios.

(Chapter 6) To investigate what other pieces of positional information can be gathered
to aid in localizing the nodes, sensor nodes with a diameter of 4 cm and equipped with an
inertial measurement unit (IMU) are constructed and used in a field test, floating through
an underground pressurized water pipeline. The nodes log the sensed acceleration, rotation
and the local magnetic field. The IMU data is used – unlike dead-reckoning techniques – to
reveal structural information of the environment by studying the interaction between the node
and the environment, and to obtain positional information based on the measured magnetic
signature. Pipe components like junctions and hydrants are discovered and types of material
of which the pipe is made are identified. Positional information is obtained by comparing the
data with an incomplete map of the pipeline that was given beforehand.

1.6 Scientific contributions / Table of contents

The peer-reviewed publications incorporated in this thesis are listed in Table 1.2.
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Ch. Short description Orginal title Publication

1 Introduction
2 Reconstruction of nodes

using highly corrupted
distance measurements;
stress-testing the limits

Robust Reconstruction of
Sensor Swarms Floating
through Enclosed Envi-
ronments

Wireless Sensor Net-
works (journal, SCIRP,
2018)

3 Reconstruction of nodes;
looking deeper into spe-
cific trade-offs

Mapping swarms of
resource-limited sensor
motes: solely using dis-
tance measurements and
non-unique identifiers

Symposium Series on
Computational Intelli-
gence (conference, IEEE,
2016)

4 Simulation chain of flow-
model, ranging protocol
and reconstruction algo-
rithm

Go-with-the-Flow
Swarm Sensing in Inac-
cessible Viscous Media

Accepted with minor re-
visions for Sensors (jour-
nal, IEEE, 2019)

5 Development of ranging
protocol to obtain dis-
tance measurements in
our application

Asymmetric multi-way
ranging for resource-
limited nodes

Ad Hoc Networks (con-
ference, Springer, 2016)

6 Experiment with IMU-
nodes in pipeline and an-
alyzing data for obtaining
pipeline characteristics

Sensor Motes for the Ex-
ploration and Monitoring
of Operational Pipelines

Transactions on In-
strumentation and
Measurement (journal,
IEEE, 2018)

7 Conclusion

Table 1.2: Chapters of thesis

1.6.1 Other peer-reviewed publications
• E. Duisterwinkel, L. Demi, G. Dubbelman, E. Talnishnikh, H. Wörtche, and J. Bergmans.

“Environment mapping and localization with an uncontrolled swarm of ultrasound sen-
sor motes”, Proceedings of Meetings on Acoustics, 20(1), 2014.

• Gijs Dubbelman, Erik Duisterwinkel, Libertario Demi, Elena Talnishnikh, Heinrich J.
Wörtche, Jan W.M Bergmans, “Robust sensor cloud localization from range measure-
ments”, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, USA, 14-18 Sept. 2014

1.6.2 Patents
• Patent (US 9397732, CA 2872086, NL 2011892), “Motes for environment mapping”.

Inventors: Elena Talnishnikh, Hendrik Albert Duisterwinkel, Heinrich Johannes Wörtche,
Johannes Hubertus Gerardus Van Pol



References

[1] Henk de Kater, et al., “Inspectietechnieken voor rationeel saneringsbeleid van leid-
ingnetten”, KWR Research Insititute, 2010.

[2] Z. Liu and Y. Kleiner, “State of the art review of inspection technologies for condition
assessment of water pipes,” Measurement, vol. 46, no. 1, pp. 1–15, Jan. 2013.
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Bergmans, “Environment mapping and localization with an uncontrolled swarm of ul-
trasound sensor motes”. Proceedings of Meetings on Acoustics, 20(1), 2014.

[17] J.-l. Blanco, J.-a. Fernández-Madrigal, and J. González. Efficient Probabilistic Range-
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A novel type of application for the exploration of enclosed or otherwise difficult to access
environments requires large quantities of miniaturized sensor nodes to perform measurements
while they traverse the environment in a ‘go-with-the-flow’ approach. Examples of these are
the exploration of underground cavities and the inspection of industrial pipelines or mix-
ing tanks, all of which have in common that the environments are difficult to access and do
not allow position determination using e.g. GPS or similar techniques. The sensor nodes
need to be scaled down towards the millimetre range in order to physically fit through the
narrowest of parts in the environments and should measure distances between each other in
order to enable the reconstruction of their positions relative to each other in offline analysis.
Reaching those level of miniaturization and enabling reconstruction functionality requires: 1)
novel reconstruction algorithms that can deal with the specific measurement limitations and
imperfections of millimetre-sized nodes, and 2) improved understanding of the relation be-
tween the highly constraint hardware design space of the sensor nodes and the reconstruction
algorithms. To this end, this work provides a novel and highly robust sensor swarm recon-
struction algorithm and studies the effect of hardware design trade-offs on its performance.
Our findings based on extensive simulations, which push the reconstruction algorithm to its
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breaking point, provide important guidelines for the future development of millimetre-sized
sensor nodes.
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2.1 Introduction

Automatic and detailed reconstruction of environments and objects from sensory data is one
of the success stories of modern signal processing. Still there are environments for which
detailed reconstruction is not possible with current remote or in situ sensing technologies. In
this work, we focus on such environments and examples are: the interior of deep underground
formations like (oil-)reservoirs, mines and geothermal sources, and industrial infrastructure
like pipelines, mixing tanks and reactors. These environments are filled with a (semi-)liquid
medium and typically are globally large but locally small (e.g. in diameter). Furthermore,
they are difficult-to-access for in situ measurements and unsuitable for remote sensing meth-
ods. In this paper we consider a ‘go-with-the-flow’ approach that follows a sensor swarm
paradigm, in which large quantities (e.g. hundreds or thousands) of highly miniaturized and
redundant sensor nodes are gradually inserted into the environment [1,2]. Carried by the flow
of the medium, the swarm fills the environment and by reconstructing the node positions, and
therewith the shape of the sensor swarm, the geometric structure and size of the environment
can be inferred. Reconstruction of the sensor swarm is performed after motes are extracted
from the environment and their data read-out. This process is illustrated in Fig. 2.1.

The individual sensor node positions relative to each other can be reconstructed from
sparse inter-node distance measurements [3, 4]. These distance measurements can be ob-
tained using a ranging protocol as in e.g. [5]. As illustrated in Fig. 2.2, reconstructing the
positions of the nodes can be seen as a specific kind of graph problem, G = (V, E), where
the vertices V are the sensor node positions and the edges E are the distances between them.
Typically such a problem can be solved using non-linear optimization algorithms [28], how-
ever, after obtaining the measured distances (i.e. the edges E in graph G), the challenge is to
obtain a robust initial estimate of the node positions in order for non-linear graph optimiza-
tion algorithms to succeed. In order to robustly obtain such an initial estimate, our offline1

reconstruction algorithm uses a Random Sampling Consensus (RANSAC) method applied
to general lateration techniques [6, 7]. To the best of our knowledge, the novel reconstruc-
tion algorithm presented in this work, is one of the most robust algorithms that is able to
perform 3-D reconstruction of large sensor swarms. Our applications require such a robust
reconstruction algorithm since the distance measurements are performed under very adverse
sensing conditions, as explained in Sec. 2.2. The details of our novel method are provided in
Sec. 2.3 and Sec. 2.4.

We use this reconstruction algorithm to study trade-offs in the hardware design space, as
many hardware challenges still need to be addressed before large swarms of millimetre-sized
functional sensor nodes can be developed and deployed effectively. Trade-offs must be made
in the hardware design with respect to sensing capabilities and size. Improved capabilities,
e.g. larger communication radius or better signal-to-noise ratios, will improve reconstruction
performance, but make cost-effective miniaturization of nodes more challenging. Therefore,
in Sec. 2.5, we use extensive simulations with increasingly more limitations on the hardware
capabilities to study their effect on the reconstruction performance. These limitations include
increased noise in the measurements and not being able to uniquely identify other nodes.

1In this paper we use the term online to indicate the period where motes are in the process of performing mea-
surements and while going through the environment, and the term offline for after the motes are retrieved and data is
extracted from the motes.
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Figure 2.1: A swarm of sensor nodes is inserted into the environment of interest; the sensor
nodes traverse the environment using the flow of the medium. Once the sensor nodes are
distributed in the environment, distance measurements between neighbouring sensor nodes
are performed and stored locally within the nodes. Finally, the sensor nodes and their data are
retrieved. All data is analysed offline to obtain the 3-D reconstruction of the sensor swarm
from the inter-node distance measurements.

The assessment of the performance of the reconstruction depends on which information is
favoured from the swarm and different performance metrics are introduced.

The simulations in this work do not guarantee that robust reconstruction will work in
reality, but as also discussed in Sec. 2.6, they do show that advances in offline reconstruction
algorithms, can, to a large extent, compensate for severely limited hardware capabilities.
Understanding the trade-offs between hardware design and the reconstruction performance
can guide the hardware design of yet-to-be-developed highly miniaturized sensor nodes of
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future applications [2].

Several applications and research studies already exist that use a sensor swarm approaches
where sensor nodes move with a flow through specific environments. In [8], 13cm-sized
sensor nodes were developed and deployed in the ocean to flow with the ocean currents and
allows to study e.g. plankton behaviour. These nodes can actively change their density to
adjust their depth while collecting a variety of sensor data. The nodes receive ultrasound
ping signals from nearby buoys (at kilometre distance) such that afterwards their positions
can be reconstructed using general lateration. The researchers in [9] developed millimetre-
sized sensor nodes that can be injected into living fish to study how e.g. dams and ocean
energy devices affect their behaviour. These sensor nodes measure temperature and emit
a unique identifier using ultrasound such that they can be remotely tracked by an array of
external hydrophones on the shoreline (within hundreds of metres distance). Both of the
mentioned studies are characterized by the fact that external localization hardware (buoys or
hydrophones with a known location) are used to reconstruct the node positions.

In our earlier work, targeting enclosed and difficult to access environments, we developed
4cm-sized sensor nodes that measure the node’s inertial data (i.e. linear acceleration and
rotation) and measure the local magnetic field. These nodes with variable density have been
used e.g. to explore and inspect an underground pipeline of 15 centimetre in diameter and
260 metre in length [10] and to study the dynamics of multi-phase fluids in a mixing tank
of several cubic metres [11]. Another of our attempts to work towards the mentioned future
applications is described in [1]. It describes a field test that uses dummy (non-functional)
sensor nodes to explore a deep underground sandstone oil-reservoir. This field test revealed
that in order for the sensor nodes to pass through the 300 metre sandstone oil-reservoir, the
size of sensor nodes cannot exceed 9 mm as the local dimensions are not larger than that.

The mentioned studies show that a ‘go-with-the-flow’ sensor approach can yield valuable
insights into yet undiscovered environments and dynamics. They also show that some appli-
cations have clear constraints on e.g. the allowed maximum size of the used sensor nodes in
order to pass through the environment. The objective of this paper is to see how far we can
limit the capabilities of sensor nodes and how far they can be scaled down while still getting
good reconstruction performance. In the following section (Sec. 2.2) we discuss the implica-
tions of scaling down sensor nodes to the millimetre size and operating them in enclosed and
difficult to access environments.

Even though the used constraints in this paper represent a very challenging application
scenario and might seem excessive in light of current applications, we believe they are valid
constraints for future miniaturized nodes [2]. We think that providing a solution to the swarm
reconstruction problem under these adverse sensing conditions can also be beneficial for cur-
rent applications and problems. To summarize our contributions: 1) a novel and robust recon-
struction algorithms is developed that deals with severe sensing conditions and imperfections,
even including non-unique identification of distance measurements; 2) sensor node system
design principles are derived from extensive simulations by sweeping input parameters until
the reconstruction algorithm fails to reconstruct the sensor swarm; 3) different methods on
how to assess the performance of the swarm reconstruction are provided, depending on which
information is favoured from the swarm.
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Figure 2.2: Reconstructing nodes within a swarm can be seen as a graph problem, G=(V, E),
with the node positions as vertices V (circles) and the distances between nodes the edges E
(lines). The initial four node positions {s1, s2, s3, s4} are chosen to define the coordinate sys-
tem to solve the global reflection and rotation ambiguity. Using general lateration techniques,
additional nodes, like the candidate node in the figure, can be added when distances to at least
four already reconstructed nodes are known. For clarity of the figure, not all (required) edges
are drawn.

2.2 The implications of application constraints

This section discusses existing work and shows that the applications which we target pose
specific challenges that have not been addressed earlier in a holistic manner. Reconstructing
the position of nodes in (wireless) sensor and robot networks has been subject of study for
an extensive period of time [3, 4]. Obtaining simultaneously the location of nodes as well
as obtaining the map of the yet-unknown environment, is often referred to as Simultaneous
Localization and Mapping (SLAM) [12]. Our research also falls under this denominator but
has to deal with several distinctive constraints relative to other work. These constraints will
be discussed in this section and can be summarized as:

1. no data is communicated between nodes (other than needed for distance measure-
ments), measurements are stored in memory for offline analysis;

2. sparse connectivity in a large swarm;

3. not depending on external communication to e.g. fixed beacons;

4. using solely distance measurements, i.e. no direction information or additional sensor
information, like bearing, odometry or inertia;

5. nodes are not identified uniquely.

Constraints 1, 3, and 4 are hard constraints and depending on the choice of applications,
these either exist or not and make the reconstruction problem harder. Constraint 2 and 5 are
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soft constraints and can vary in severity, depending on e.g. parameter choices that can be
tweaked. For example, considering constraint 2: the connectivity between nodes depends on
the transmission power, the distance between nodes and signal-to-noise ratio at the receiv-
ing side. Considering constraint 5: the identifiability of nodes depends on the number of
identifiers chosen relative to the number of nodes used. Increasing the severity of these soft
constraints makes the reconstruction problem gradually harder. Therefore, in our study, the
parameters influencing connectivity and identifiability are swept over a large enough range in
order to study the consequences of this on the reconstruction performance and therewith also
to find the limits of current reconstruction algorithms.

Although each separate constraint has been considered earlier; this work is, to the best
of our knowledge, the first to research reconstruction of sensor swarms when considering all
mentioned constraints together and under realistic conditions.

2.2.1 Power consumption

Probably the most significant and overarching constraint of highly miniaturized sensor nodes
is their power limitation. Due to volume and weight constraints in the small sensor nodes,
battery capacity will be extremely limited and this influences all other design choices related
to sensing, computation, and communication. In fact, we envision levels of miniaturization
in which nodes have just enough energy to perform only a single inter-node distance mea-
surement.

Furthermore, communication requires relatively large amounts of energy and is therefore
only used to realize the inter-node distance measurements, but for example not for online
distributed processing of the measurements (hence constraint 1). Instead of distributing the
measured data or sending it to a central sink node, we use an approach in which the measured
data is stored locally in the sensor nodes, and afterwards retrieved and processed centrally
when power consumption is no longer a limitation.

Communication transmission power and the signal to noise ratio of receiving electronics
are limited, reducing the communication range between nodes. Therefore, the inter-node
connectivity between sensor nodes, by means of inter-node distance measurements, will be
sparse (hence constraint 2) and dependent on the energy budget.

To the best of our knowledge, there is no other research that aims to perform swarm
reconstruction under such extreme low-power conditions.

2.2.2 Beacons and landmarks

A distinction that can be made in SLAM related research is whether or not beacons are being
used, that is, fixed points in space that serve as reference points where individual nodes can
relate to. In our applications, we can not rely on the presence of beacons, as opposed to
e.g. [13,14] and the earlier mentioned work in [8,9]. In our applications the environments are
generally difficult-to-access and block long-range communication signals (hence constraint
3).

In applications with a static environment, the environment could potentially be used as a
continuum of beacons, or in this case better described as landmarks. Opposed to the research
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mentioned in e.g. [15] where high-end cameras and/or laser range-finders are used, measuring
clear fixed landmarks is infeasible as such detection devices have a high power consumption
and need continuous measuring; it is something that doesn’t scale well to miniaturized nodes.
Furthermore, detection of the environment using such sensors as e.g. in [15,16] would require
clear line-of-sight in a transparent medium, which cannot be guaranteed in our applications.

Efforts to map node positions and the environments based on acoustic reflections can
be found e.g. in [17, 18]. This, however, requires constraints on e.g. the node positions
or the environment shape (e.g. straight walls), both of which cannot be guaranteed in our
applications.

Given the aforementioned, the nodes are forced to cooperate with each other in order to
obtain information on their positions, this also called cooperative localization [3].

2.2.3 Distance measurements

A common method for cooperative localization is to reconstruct node positions based on dis-
tance measurements between the nodes. Often such methods are amended with e.g. inertial,
bearing, or odometric information from the nodes, like in e.g. [19, 20]. In our research how-
ever, we explicitly rely only on inter-node distance measurements, as adding such devices or
sensors would add significantly to the size and energy budget (hence constraint 4). For ex-
ample, an inertial sensor would need to be active continuously to track the absolute position
and orientation. Furthermore, current miniaturized inertial sensors are not accurate enough
for absolute position determination for longer than e.g. one second. Alternatively, the abso-
lute orientation of the node could be estimated using e.g. small and low-budget sensors that
measure the Earth magnetic field and the Earth gravitational field. But unfortunately, in our
applications, no guarantees can be given on the external fields as the unknown environment
can block or distort these.

Although one can argue that, in the future, advances in sensors will lift some of the men-
tioned limitations, we show that with only inter-node distance measurements, the reconstruc-
tion of the sensor swarm is possible.

2.2.4 Communication and identification

Motes with (sub-)centimetre dimensions only fit antennas that effectively produce EM radi-
ation at frequencies that have a large absorption in the liquid media. The (liquid) media can
have a high salinity and are also not guaranteed to be clear enough for the use of (visible)
light communication. This effectively prevents EM communication for distances larger than
e.g. a centimetre.

Ultrasound transducers at these scales do provide larger communication ranges within the
boundaries of the environments, but yield other challenges for stable and fast communication
between dynamic nodes in enclosed environments [21]. The information that can be com-
municated in a unit of time is therefore very limited, typically in the order of kilobytes per
second or less.

Furthermore, the relatively slow speed of sound, in combination with the relatively small
bandwidth, reflective environments and the fact that nodes are non-static, leads to highly time-
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varying communication channels [5,22]. Distance measurements based on round-trip time of
flight need to be completed within just a tiny fraction of a second as otherwise the nodes may
have moved significantly relative to each other, invalidating the measured distance.

The low data rate and the need to perform distance measurements in a short period of
time creates the incentive to reduce the content of the messages used for distance measure-
ments (i.e. reducing the number of bits in the message). For example, in the ranging protocol
as studied in [5, 22], at a data rate of 40 kbit/sec, the transmission of every additional bit
for the identifiers to indicate the sender and receiver of the message adds 3 percent to the
measurement noise caused by the movement of the nodes. This effect becomes larger when
considering lower data rates. Furthermore, increasing the message length increases the prob-
ability of overlapping messages due to (time-varying) multi-path, thereby making it harder to
correctly decode the messages.

In applications where many sensor nodes are used, ideally each node has a unique iden-
tifier by which it can unambiguously communicate with other nodes. However, for the envi-
sioned application cases mentioned in this paper, it is worthwhile to explore the possibility
of reducing the number of identifying bits as they make up the majority of the ultrasound
messages (hence constraint 5). Reducing the number of identifying bits, and thus only hav-
ing non-unique identification makes communication ambiguous. The inter-node distance
measurements then also become ambiguous, but can be resolved using the robust reconstruc-
tion algorithm presented in this paper. Non-unique identification of distance measurements
makes most existing reconstruction efforts not applicable as they depend on well-defined,
non-ambiguous identifications [23–25]. Earlier efforts to first resolve these ambiguities be-
fore the reconstruction of node positions can be found in [26], but does not include actual
reconstruction results.

Our reconstruction algorithm is, to the best our knowledge, the first that can successfully
cope with identification ambiguities and with all the other mentioned hardware constraints.

2.3 Problem description

In this section we discuss the specific problem formulation and introduce our notation. All
symbols used in this paper are summarized in Table 2.1. In this paper, whenever we use the
bar-indicator, e.g. d̄, it is to stress the true value of the parameter, to differentiate it from an
estimated or measured value, e.g. d.

As mentioned in the introduction, the reconstruction of the node positions can be seen as
a graph-optimization problem where G=(V, E), in which the vertices V are the sensor node
positions and the edges E are the distances between them. This is also visualized in Fig. 2.2.
However, the edges of this graph can only be based on the measured distances that are noisy
representations of the actual distances. In order to estimate an accurate graph of the nodes’
positions we attempt to reduce the least squares error:

argminV∈R3

∑
E

(
‖Vi − Vj‖ − Ei,j

)2
(2.1)

Solving these kind of problems is often performed using non-linear optimization methods
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Table 2.1: Legend of symbols used throughout the paper.
symbol description

N Number of nodes in swarm
nCID Number of communication identifiers in use
ncomm Number of nodes within communication radius
rcomm Communication radius of nodes
G(V, E) Graph with reconstructed nodes indicating positions as vertex V

and distance between nodes as edges E
i, j Unique (hardware) identification number (UID) of nodes i and j,

other letters are also used to indicate other nodes. An additional
bar in the indication stresses these are the true values (opposed to
measured or hypothesised)

CID(i) Communication identification number (CID) used by node i
di,j Distance between node i and node j. Additional bars in the in-

dication stress that these are true values (opposed to measured of
hypothesised).

si Position of node i
C Consistency function used for associating measured distances from

two nodes into a mutual connection
εr Threshold value for maximum allowed distance deviation in con-

sistency condition C
hi,j Set of hypothesised distances between node i and j
AI Number of additional identity ambiguities
AD Number of additional distance ambiguities
a ∈ A, b ∈ B, c ∈ C Individual nodes (small letter) in a set of nodes (capital) selected

based on some criteria in reconstruction algorithm
Q, Q(b) Cliques in already reconstructed graph
X,Y,Z Recall percentages of nodes that have been reconstructed;Y andZ

have an additional condition on the accuracy of the reconstruction
Eabs, Eglob, Eloc Error metrics of a reconstruction indicating the mean absolute

squared error of the reconstructed positions
Erel Error metric of a reconstruction indicating the relative error of the

reconstructed distances
ν Different noise parameters of distance measurements, expressed in

percentages. Index indicates type of noise.
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like e.g. a Levenberg-Marquardt algorithm or a Gauss-Newton algorithm. As with most non-
linear optimization problems the key is to provide a proper initial estimate, in this case an
initial estimate of the node positions. This initial estimate is then further refined using non-
linear optimization. Obtaining the initial estimate for the node positions is performed by our
novel robust reconstruction algorithm that is discussed in Sec. 2.4.

This section will first discuss the method on how to measure distances between the nodes
(i.e. the edges E) and the difficulties herein. In Sec. 2.3.1 we discuss how the distance
measurements are performed. Sec. 2.3.2 discusses the different types of measurement noise
to be expected in these measurements and the issues related to identification are discussed
in Sec. 2.3.3. The consequences of these on the reconstruction algorithm are discussed in
Sec. 2.3.4.

2.3.1 Distance measurement protocol

Following the operational procedure as depicted in Fig. 2.1, once the nodes are well dis-
tributed within the environment of interest, the nodes perform a single distance measurement
to neighbouring nodes. This distribution can be achieved by e.g. gradually inserting new
nodes into the environment until a steady outflow of nodes is reached. How the actual mea-
surements are performed is defined by the ranging protocol that is used. Many of these pro-
tocols already exist and the one that is designed specifically for our applications is described
in [5, 22].

Omnidirectional emission and reception is considered (as opposed to directional), because
there is no a priori or online knowledge of the positions of neighbouring nodes. Whether or
not messages are received by neighbouring nodes is dependent on the transmitted power and,
among other factors, the received signal-to-noise ratio.

For convenience, but without loss of generality, in this paper we assume that distances
can and are measured between all neighbouring nodes that are in line-of-sight and are within
a fixed and known communication radius, rcomm.

Details of these protocols, as e.g. discussed in [22], are outside the scope of this paper,
however, it is important to know that the messages that are transmitted and received between
the nodes for measuring the distance between them need to contain identifiers. The identifiers
are used to identify the sender of the message, and depending on the protocol also to verify
whether the message is actually addressed to the receiving nodes. These identifiers make up
the largest part (in bits) of the message.

The result of the ranging protocol is a set of measurements where every node i measures
the distance di,j to every neighbouring node j, and node j having measured the distance dj,i

to node i. This is visualized in Fig. 2.3-a. The measurements are individually stored in the
nodes’ memory.

2.3.2 Distance uncertainty

The measured distance between nodes will be affected by different imperfections in the sys-
tem. As the dynamics of the nodes and the environment they are in are unknown, a range
of possible imperfections should be accounted for as we do not know the effect on the re-
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(a) unique identification (b) non-unique identification

Figure 2.3: Mutual connections from distance measurements (indicated with arrows) with
unique and non-unique identification. Distance measurements di,j as measured by node i
and distance measurement dj,i as measured by node j using unique identification can unam-
biguously be associated with each other. Distance measurements di,CID(j) as measured by
node i and distance measurement dj,CID(i) as measured by node j using non-unique identi-
fication can not be unambiguously associated with each other as more nodes use the same
CID.

construction result. To simulate the measured distances, in this paper we consider a single
snapshot of the actual distances and introduce all types of measurement noise to account for
the existing imperfections. The types of noise in the distance measurements that we are mod-
elling can be divided in inlier-type noise and outlier-type noise. The inlier-type measurement
noise being:

• additive Gaussian noiseNa; to account for e.g. offset in ranging timer or variable delay
in electronics, and also to account for the errors due to movement of the nodes while
performing the ranging measurements,

• multiplicative Gaussian noise Nm; to account for e.g. different clock frequencies or
inhomogeneous medium,

And the outlier-type measurement noise being:

• identification noise; to account for erroneous detection of identifiers,

• outlier noise; to account for burst-like / spiky / intermittent measurement noise.

The environment also gives rise to additional outlier-types of ‘noise’ that can influence the
reconstruction:

• obstruction of signal paths,

• reflection of signals,

• loss of nodes or inability to retrieve them.

How exactly these are simulated is described later, in Sec. 2.5.2.
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2.3.3 Identification uncertainty

Due to the constraints described in Sec. 2.2, the identifiers used in the ranging messages are
reduced to non-unique identifiers, similar to the research in [5]. Each of the N nodes has a
unique (hardware) identification number, UID, and is assigned a non-unique communication
identifier, CID, that is used in the ranging message to identify the sender and addressee of
the message. The number of available CIDs is indicated with nCID and can be set as desired,
nCID ≤ N . The available CIDs are distributed uniformly among the nodes.

Now, instead of every node i measuring distance di,j to node j and vice versa, node i is
measuring distance di,CID(j) to a node that has a communication identifier CID(j). And vice
versa, node j measures distance dj,CID(i). This is illustrated in Fig. 2.3-b. The mapping from
UID to CID is known and well defined, however, the mapping from CID to UID is ambiguous
as more nodes share the same CID.

2.3.4 Mutual connections

When the nodes are retrieved after the experiment and their data read out, offline analysis
can be performed. Normally, with unique identification, mutual connections can be estab-
lished by associating measurements di,j and dj,i with each other (Fig. 2.3-a). These mutual
connections can be used as consistency check of the individual measurements and quantify
the uncertainty of the measured distance. When the two individual measurements differ less
than a specific threshold, the measurements can be considered inliers and a mutual agreed-
upon distance can be established, otherwise they are considered outliers and cannot be used
to establish a mutual connection.

However, in the case of non-unique identification, measurement di,CID(j) (Fig. 2.3-b) can
only be used correctly when the measured non-unique identifier CID(j) is associated with
node j. Obtaining the mutual connection where di,CID(j) and dj,CID(i) are associated with the
correct nodes j and i, respectively (similar to Fig. 2.3-a), is not trivial as the mapping from
CID to UID is ambiguous.

Mutual connections, where di,CID(j) is associated with dj,CID(i), are obtained by applying
a consistency check on each of the possible node pairs that have CIDs consistent with the
measurements. A mutual connection is hypothesised when two distance measurements agree
on two grounds: 1) the measured CIDs agree with the CID of the other, and; 2) the corre-
sponding measured distance is approximately similar to the other (i.e. inlier measurement).
The exact implementation is described in Sec. 2.4.1.

This consistency check is affected by the different types of measurement noise in the in-
dividual measurements, specifically the outlier-type of noise that prevent finding the correct
mutual connections. Fig. 2.4 illustrates how the different types of outlier-type noise affect
finding correct mutual connections. Fig. 2.4-a shows a fully connected reference graph in
which all mutual connections are present and correct. Outlier noise in the distance mea-
surements, as shown in Fig. 2.4-b, leads to a set of di,CID(j) and dj,CID(i) measurements that
cannot be associated with each other as the difference in measured distance is larger than
the inlier threshold. Identification noise can be seen in a similar way with the difference be-
ing that instead of erroneously measured distances the identifier CID is decoded erroneously.
Obstruction of signal paths (Fig. 2.4-c) and the inability to retrieve nodes (Fig. 2.4-d) also
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Figure 2.4: An example of (a) fully connected graph with five nodes; (b) outlier noise for two
measurements; (c) obstruction between two nodes; (d) loss of one nodes; and (e) reduction of
communication radius. Identification noise can be seen as outlier noise but on identification
instead of distance. Explanation: Nodes are indicated as dark circles; a line indicates a dis-
tance measurement between two nodes. A too long/short line indicates a measurement with
outlier noise. A dashed line indicates the distance measurement has never existed (obstruc-
tion) or this data is not retrieved (loss).
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prevents establishing mutual connections. From a reconstruction perspective, not being able
to establish mutual connections due to the presence of noise can to some extend be compared
to reducing the number of neighbouring nodes (reducing the communication radius), which
is visualized in Fig. 2.4-e.

2.4 Swarm reconstruction algorithm

In this section we will describe the novel reconstruction algorithm. It reconstructs node
positions based on inter-node distances with significant measurement imperfections and the
ambiguities introduced by using non-unique identifiers.

The reconstruction algorithm can be summarized as follows:

1. Hypothesise mutual connections based on the consistency (distance and identity) be-
tween all distance measurements, obtained from all retrieved nodes (Sec. 2.4.1);

2. Find initial four nodes to fix coordinate reference system (Sec. 2.4.2);

3. Robustly add additional nodes to the graph using a guided-RANSAC algorithm and
general lateration, exploiting the geometric consistency between true neighbouring
nodes (Sec. 2.4.3);

4. Perform non-linear optimization to reduce build-up of errors from previous step; go
back to step 3 (Sec. 2.4.4);

5. Loop closing, if needed (Sec. 2.4.5).

An overview of the algorithmic steps of the reconstruction method is provided in 2.9.

2.4.1 Identity and consistency check

Before the reconstruction process, mutual connections should be established between nodes.
The decoded non-unique communication identifier, CID, from every received ranging mes-
sage should be associated with a unique (hardware) identification number, UID. Initially, this
can be approached using a combinatoric method in which all possible nodes are considered
that use the respective CID. The range of options can be narrowed down, as the distance mea-
surement di,CID(j) of node i to node j, when performed correctly and without noise, should
be similar to the ‘reverse’ distance measurement dj,CID(i) of node j to node i. This means that
searching the measured data for the consistency where di,CID(j) is similar to dj,CID(i) should
give most of the times an unambiguous mutual correct connection, since it is unlikely that
another set of nodes with similar CID pair have the same matching distance.

However, the distance measurements are imperfect and noisy. Consequently, the distance
measurements and the ‘reverse’ distance measurement will not be equal. Therefore, poten-
tial mutual connections are hypothesised when the measured distances lie within a specific
threshold value εr of each other and the measured identifiers are consistent with each others
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CID. This condition, denoted with da,b'dc,d, then becomes:

da,b'dc,d when


|da,b − dc,d| ≤ εr and
CID(a) = CID(d) and
CID(b) = CID(c)

(2.2)

For all pairs that are considered consistent with each other, i.e. da,b ' dc,d, a mutual
connection is hypothesised and the average distance is taken as mutually agreed upon distance
between them. All other pairs are not considered a mutual connection. The final consistency
function C is expressed as:

C(da,b,dc,d) =

{
da,b+dc,d

2 when da,b'dc,d

∅ otherwise
(2.3)

where ∅ indicates that no mutual connection is considered, i.e. an empty entry.

Threshold value εr is the maximum allowed difference in distance measurement for which
two measurements are considered inliers. This threshold should be related to the noise. It can
e.g. be obtained using trial and error if the error model is unknown. Note that due to the
measurement noise, the threshold, and the non-unique identification not all pairs that are
considered consistent are correct, they are only hypothesised as being correct connections.

The obtained mutual connections between node ī and node j and their hypothesised dis-
tance is not unambiguous. As illustrated in Fig. 2.5, the hypothesised mutual connections
hi,j for measurement di,CID(j) can consist of three types of contributions:

hi,j =


C(dī,j̄ ,dj̄,̄i) (a)

C(dī,j ,dp,q) (b)

C(dī,k,dj,m) (c)

(2.4)

a) the measurement between the real nodes ī and j̄;

b) identity ambiguity: a mutual connection to a node p which is believed to be at similar
distance as node j̄ but not necessarily within communication radius of ī (see Fig. 2.5);

c) distance ambiguity: a mutual connection with the correct node j̄ but with a distance
belonging to the measured distance to another node k within its communication radius
(see Fig. 2.5).

The identity ambiguities are based on the statistical likelihood that somewhere in the
swarm, a node pair with similar CIDs and distance is present such that the measurement pair
obeys Eq. 2.2. Assuming a uniform spatial distribution of the nodes, the average number of
identity ambiguities in hi,j scales withAI ∝ εrncommN/n

2
CID. Equally, the distance ambigu-

ities are based on the statistical likelihood that neighbouring nodes give rise to confusion. The
average number of distance ambiguities per dī,CID(j) then scales withAD ∝ εrn2

comm/n
2
CID.

Both type of ambiguities,AI andAD, increase with an increasing number of neighbour-
ing nodes ncomm and a lower nCID, leading to a more challenging task deciding which are
correct mutual connections and which are false connections. These ambiguities are resolved
in our RANSAC graph-growing algorithm as detailed in Sec. 2.4.3.
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Figure 2.5: Nodes with UID ={i, j, k,m, p, q} using only two distinct CIDs (indicated by©
and �) cause ambiguities in the consistency check. Identity ambiguity arises due to similar
distance between pairs with similar CID in the swarm (Eq. 2.2). Distance ambiguities arise
due to a plurality of nodes with similar CIDs within communication radius.

2.4.2 Initial seed selection

In this work we solve the reconstruction problem by incrementally growing the graph using a
robust RANSAC-based method based on general lateration principles. Given an initial graph
G, new nodes can be added as illustrated in Fig. 2.2 and detailed in [6]. In an ideal case
(without noise), every candidate node, c, of which the distances to four non-coplanar nodes
with known positions s1, s2, s3, s4 are known, can be added to the graph with as position the
intersection of the spheres with radii d̄1,c, d̄2,c, d̄3,c, d̄4,c and centers at s1, s2, s3, s4. Here
d̄n,c denotes the true distance from node n = {1, 2, 3, 4} to node c.

Since the graph growing is performed in R3 and the distance measurements are performed
in R and without external beacons acting as fixed reference points in space, first a coordinate
reference system has to be defined. The initial four node positions are chosen such that they
define the coordinate system, therewith resolving the general reflection and rotation ambigu-
ity. Their positions, s1, s2, s3, s4, define the coordinate system as follows, and also illustrated
in Fig. 2.2: s1 ∈ {0, 0, 0}, s2 ∈ {R+, 0, 0}, s3 ∈ {R,R+, 0} and s4 ∈ {R,R,R+}. These
nodes are selected based on their connectivity and the stability of their geometric configura-
tion which is obtained by general lateration techniques.

Since hi,j contains ambiguities, the initial seed selection is conditional until the graph
growing has successfully added several nodes to the graph G. If this is not possible, a new
initial seed is selected and the process is repeated.
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Figure 2.6: RANSAC graph growing algorithm uses an inlier-outlier voting system to filter
out outlier distance measurements and proposes a position for candidate nodes to add to the
graph. Using cliques of nodes in the graph that are within twice the communication radius
helps in reducing the probability that nodes are positioned based on false connections.

2.4.3 RANSAC graph growing

After the initial seed is chosen, additional nodes can be added to the graph when the nodes
have at least four connections to already reconstructed nodes. The set of candidate nodes
that have at least four connections to already reconstructed nodes is denoted as C. Ideally,
C only consists of nodes that are true neighbouring nodes, but due to the ambiguities in
the hypothesised connections hi,j this is not the case. Figure 2.6 illustrates a simplified 2-D
situation in which a candidate node c ∈ C has connections to its true neighbouring nodes in V ,
but also false connections to nodes somewhere else in the graph due to identity ambiguities.
Whether the connections are true or false is not known at this point.

A Random Sampling Consensus (RANSAC) method is used to attempt to correctly posi-
tion the candidate nodes. RANSAC is a general robust estimation technique, for more details
we refer to [27]. RANSAC attempts to fit a model on data points that contain both inliers
(points that satisfy the model) and outliers (points that do not satisfy the model). It does this
by randomly selecting a small set of data points, estimating a model based on this small set,
and counting the number of other data points that agree with this model. This process is re-
peated until a model is found that has maximum or sufficient support in the whole set of data
points. We developed a specific RANSAC algorithm to solve the task of graph-growing under
severe outlier noise and identification ambiguity. An overview of the RANSAC algorithm is
provided in 2.10.

When a candidate node c is considered, all nodes that are already reconstructed in the
graph and that are connected with this c are selected. This set of nodes is denoted with
A = {a : a ∈ V, ha,c 6= ∅}. A subset of three of these nodes is selected, Ap = {ap ∈ A},
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to propose – using general lateration – a position for c up to a reflection ambiguity (three
node are always coplanar). However, no guarantees can be given whether the entries in hap,c

are correct connections and the proposed positions do not need to be viable or close to the
true position. Therefore, each of the other connected nodes Av = {av : (Av ∪ Ap) =
A, (av ∩ap) = ∅} are used to vote for the proposed position. Consensus is reached when the
majority of the voting nodes, including the three proposing nodes, have at least a 50% ma-
jority. The reflection ambiguity is resolved by choosing which of the two positions received
more supporting votes. When consensus is reached, the number of supporting votes is called
the RANSAC-score for the specific proposal.

This step in the RANSAC algorithm is repeated with each time a different set of three pro-
posers ap, until all possibilities are exhausted or until a proposal received a specific threshold
in RANSAC-score. In the latter case it is then considered ‘sufficiently supported’ and is
added to the graph. When no ‘sufficiently supported’ condition is reached, the RANSAC
procedure is repeated for a next candidate node until all candidates are considered or a ‘suffi-
ciently supported’ condition is found for a specific candidate. The candidate with the highest
RANSAC-score is added to the graph in V with edges (E) only to the supporting nodes and
corresponding ha,c entry.

The ‘sufficiently supported’ condition for the RANSAC can be based on the expected
percentage of outlier measurements or can be chosen heuristically by trial-and-error, as is
done in this work.

2.4.3.1 Guiding RANSAC

The number of false connections from the candidate nodes to the already reconstructed nodes,
grows on average linearly with the number of nodes already in the graph, due to AI , as ex-
plained in Sec. 2.4.1. Consequently, when a candidate node is considered that does not have
enough true neighbouring nodes in the graph yet but does have a large number of false con-
nections to nodes already in the graph, this candidate node might receive a large RANSAC-
score but based on only false connections. The true neighbouring nodes have in that case not
enough voting power over the number of false neighbouring nodes.

To reduce the probability of this to happen, the sampling procedure of the candidate nodes
is guided using a sorting order of candidate nodes before the RANSAC algorithm is per-
formed on them. The sorting is based on the likelihood that candidate nodes have enough
true neighbouring nodes already in the graph. As such, candidate nodes that are more prone
to be reconstructed based on false connections, are considered later. This gives the probabil-
ity that more of its true neighbouring nodes will be added to the graph first. The algorithm is
provided in 2.11 and described next.

For each candidate node {b : b ∈ C}, a list is made of connected nodes that have already
been reconstructed in the graph {a : a ∈ V, ha,b 6= ∅}. A new graph G′ = (V(a), E ′)
is made with nodes a as vertices. These vertices are connected with edges E ′ when their
positions are less than twice the communication radius, 2rcomm, apart. In this new graph,
maximal cliques are listed as Q(b), and indicate the groups of nodes that are potentially
within the communication radius of a proposed candidate node position. This means that on
geometrical reasons, all of these nodes can potentially agree on candidate node position. In
other words, nodes from outside this clique could never agree with all nodes within the clique
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on a candidate node position. The example in Fig. 2.6 shows these cliques in coloured oval
areas. The number of nodes in these cliques are registered and are used as sorting order in
which RANSAC is performed. Nodes with larger sized cliques in Q(b) are more likely to
have more connections with true neighbouring nodes in the graph.

This sorting has two effects on the reconstruction, it guides the RANSAC procedure and
has as a result that: 1) it increases the probability that a ‘sufficiently supported’ candidate
is found quickly, and 2) it increases the probabilitys that from all ‘sufficiently supported’
candidates, the best one is chosen for addition to the graph.

Guiding the RANSAC procedure with this sorting requires additional computational power
(calculating the cliques), relative to unguided RANSAC. This increase in required computa-
tional power is compensated for by the quicker finding of a ‘sufficiently supported’ candidate.
The reconstruction can take between 0.1-10 seconds per node, depending mainly on the con-
nectivity and ambiguities.

2.4.4 Robust non-linear refinement

The stepwise addition of new nodes to the graph introduces build-up of errors. These errors
in positions can prevent other nodes from being added. In order to reduce this error build-up,
a global non-linear optimizer algorithm is executed as described in [6] to minimize the cost
function Eq. 2.1.

For this we use the efficient general graph optimization software package g2o [28]. It
uses sparse methods to solve the normal equations at the core of the non-linear optimization
techniques like Levenberg-Marquardt or a Gauss-Newton. It can easily solve graph problems
consisting of thousands of nodes and edges.

In our algorithm, after every m newly added nodes, or failure to add a new node this non-
linear optimization is performed. There is a clear trade-off between m and the processing
time required for the reconstruction algorithm. In our work, m is chosen arbitrarily to 10. In
future work, this can e.g. be adjusted dynamically based on uncertainty of previously added
nodes.

2.4.5 Loop closing

The algorithm described above only considers edges between nodes in G when the specific
connections supported the winning proposal in the RANSAC voting. As can later be seen
in the results section, Sec. 2.5, this is effective against any type of outlier noise. But when
considering loops in the environment, these loops might not be closed due to the previously
mentioned error build-up, as schematically illustrated in Fig. 2.7.

Nodes that are supposed to connect both ends of the loop, will only be placed at one of
both ends, depending on which has the largest number of supporters. Placement on the other
end of the loop could also have yielded successful reconstruction, however, the node will not
automatically be added to both ends to close the loop. An additional step should be performed
in order to detect such loops and optimize the whole graph such that the loop is closed. This
section describes the method how these loops are detected and closed.

Conceptually, the detection of loops is performed by searching for a set of nodes that could
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Figure 2.7: A 2-D example of an environment with a loop (ground truth). Due to error
build-up in the RANSAC graph growing, loops are not closed (reconstruction withouth loop
closing). Loop closing candidates can be detected by comparing local geometric consistency
of excluded connections with reconstructed positions. After detection, the loop can be closed
(reconstruction with loop closing).

have been reconstructed in two different, distant, positions in the graph. This starts by looking
at all hypothesised connections between nodes that are not used in the reconstruction: i.e. all
connections hi,j that did not support a winning RANSAC proposal, we call these excluded
connections. The connections that did get included are called included connections.

Let node i have excluded connections to nodes kiex and included connections to recon-
structed neighbouring nodes jiin, as illustrated in Fig. 2.7. In order to successfully detect and
close a loop, sufficient connectivity should exist between nodes jiin and kiex.

After the reconstruction has stopped or halted, for every node i it is checked how many
connections are excluded from the reconstruction, and how many of the neighbouring nodes
jiin also have excluded connections to nodes kiex. When several neighbouring nodes agree that
nodes are excluded, the node is said to be commonly excluded. Nodes kiex that are commonly
excluded by nodes jiin are likely to be on an other end of a loop than nodes jiin.

Final determination of the loop closing can be performed by redoing the RANSAC graph-
growing on this set of connections by forcing the nodes to be added to the graph on the other
side of the loop. When this yields a successful reconstruction, and the local relative positions
of the considered nodes is equivalent to the local relative positions on the original side of the
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loop; then the loop can be closed. The loop closing itself can be performed by including the
specific loop-closing edges that were initially excluded to the original graph and running the
non-linear graph optimizer on the newly obtained graph.

2.5 Numerical simulations

In this section we will use numerical simulations to study the performance of the reconstruc-
tion algorithm, as well as how the different soft constraints (connectivity and identification
ambiguity) influence this performance. The simulations are performed using two vastly dif-
ferent environment geometries, nodes are given a position in a pipeline environment and in
a spherical environment (Sec. 2.5.1). The distance measurements are generated based on the
distances between these positions and a variety of noise types is added to account for dif-
ferent measurement imperfections (Sec.2.5.2). These different noise types can influence the
distance measurements such that the number of neighbouring nodes to which inlier measure-
ments are available is reduced (Sec. 2.5.3). Assessing the performance of the reconstruction
algorithm can be performed in different ways, depending on which qualities are favoured of
the reconstruction. Therefore, several performance metrics are introduced to address these
different qualities (Sec. 2.5.4). All parameters related to the soft constraints are swept over
a broad range until the reconstruction algorithm will fail to reconstruct the node positions
(Sec. 2.5.5). Knowing the failure point of our reconstruction algorithm and understanding
the trade-offs between the underlying constraints helps in guiding the hardware design for
the development of future miniaturized nodes. The findings are summed up by plotting the
performance against the calculated effective number of neighbouring nodes to see the most
important trade-off (Sec. 2.5.6). In the last part, examples are given to show the loop closing
detection and actual closing in environments that require this (Sec. 2.5.7).

2.5.1 Environment model
The envisioned node swarms can be deployed in a variety of environments. In this paper we
will work with two types of environments as schematically illustrated in Fig. 2.8. One resem-
bles in abstract terms a mixing tank as the environmental dimensions are approximately the
same in all directions. For convenience, the tank-like environment is chosen to be a bounded
spherical environment. The second environment is a long pipeline, where the diameter of the
pipeline is still large enough such that nodes can be positioned all around one another (as
opposed to in one line along the pipe axis). The smooth pipeline has a fixed diameter of 8 cm
and 400 nodes are placed in a section of 4 m pipe-length. The pipeline environment will be
considered in both a loop and a loop-less fashion.

In the spherical environment, 400 nodes are given a random position within the boundary
based on a uniform probability density function. The positions in the pipeline environment
are chosen such that the nodes are spread out uniformly over the axis of the pipeline and the
off-axis positions are chosen randomly based on a uniform probability density function over
the cross-section. A total of 50 different spherical and 50 different pipeline environments are
generated for the simulations. Examples can be seen in Fig. 2.9.

In both environments, the communication radius rcomm of the nodes is chosen such that
each node has on average ncomm neighbouring nodes. This parameter ncomm is one of the
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Figure 2.8: A 2-D interpretation of the 3-D spherical environment and 3-D pipeline environ-
ment. The lines between the nodes indicate connectivity for two different nodes.
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Figure 2.9: The ground truth positions of 400 nodes in several different experiments of ran-
domly generated environments that are used for the simulations. Five pipeline environments,
and one tank-like (spherical) environment.

parameters that will be swept. The nodes communication radius rcomm, in which ranging
measurements are possible, is for all nodes within the swarm the same and ranges throughout
the experiments from 10cm ≤ rcomm ≤ 15cm (corresponding to 16 ≤ ncomm ≤ 28).

2.5.2 Distance measurement generation
Distance measurements are generated based on the generated node positions. The distances
between all nodes i and j as measured by nodes i are indicated by dī,j and are modelled by
the true distances between the nodes d̄ī,j̄ (the bar indicating true values).

Additive and multiplicative Gaussian are added to d̄ī,j̄ according to:

dī,j̄ = d̄ī,j̄ + d̄ī,j̄Nm +Na (2.5)

where Nm and Na being perturbations from the zero-mean Gaussian distributions N (0, σ2
m)

and N (0, σ2
a) respectively.

Furthermore, a variety of operations are executed on the measurements to account for
different outlier noise types, each with their own statistical likelihood, ν, for this type of
noise to happen to the measurement.
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dī,j = Fidentification(Foutlier(Fobstruction(Floss(dī,j̄))) (2.6)

with

Fidentification(da,b) = da,k when identification noise (probability νidentification)
Foutlier(da,b) = U when outlier noise (probability νoutlier)

Fobstruction(da,b) = ∅ when obstruction (probability νobstruction)
Floss(da,b) = ∅ when node a is lost (probability νloss)

and all operations returnF(da,b) = da,b when the specific types of noise do not occur. Identi-
fication and outlier noise occur randomly to each measurement, independently of each other.
Obstruction and loss results in non-existing measurements, indicated with ∅. Obstruction
happens to both dī,j and dj̄,i simultaneously; and loss happens to individual nodes, indepen-
dently of each other.

Identification noise results in an erroneously decoded identifier, i.e. node j is measured
as being node k. Outlier noise U is chosen to be randomly drawn from a uniform distribution
in the range (0, rcomm].

Additionally, signal multipath can result in additional measurements of specific node
pairs: besides the distance based on the direct signal path, also distances based on reflected,
longer, signal paths. In order to account for this we add an additional distance measurement
d′
ī,j

to the measurement dataset:
d′ī,j = d̄ī,j̄ +W (2.7)

withW a perturbation drawn from a uniform distribution in the range (0, rcomm). The prob-
ability of this reflection happening is defined as νreflection. For this reflection to be measured
by node i, this distance should fall within the communication radius rcomm. A similar entry
d′
j̄,i

is added to account for the inverse measurement. Any reflection d′
ī,j

will also be subject
to other discussed noise types.

This elaborate process generates realistic distance measurements and is significantly more
extensive than that of previous research [6, 26, 29].

2.5.3 Effective connectivity
The discussed noise not only affects the accuracy of the distance measurements but also de-
termines whether correct mutual connections can be estimated (Sec. 2.3.4). Due to noise, the
effective number of neighbouring nodes to which correct distance measurements are made is
therefore lower than the number of neighbouring nodes ncomm that are within communication
radius.

The effective connectivity, EC, between nodes is defined by the number of neighbouring
nodes to which inlier measurements (and thus correct mutual connections) are available for
the reconstruction algorithm. An estimation of the effective number of neighbouring nodes
can be made based on the theoretical likelihood that inlier measurements can be established
in the presence of the mentioned outlier noise types:

EC = ncomm(1-νoutlier)
2(1-νid)2(1-νloss)(1-νobstruction) (2.8)
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Table 2.2: Performance metrics of reconstructions shown in Fig. 2.10.
X(%) Y(%) Z(%) Eabs(m

2) Erel Eglob(m
2)Eloc(m

2)

Fig. 2.10-a 97 97 97 5·10-5 3·10-5 3·10-5 5·10-5

Fig. 2.10-b 95 93 93 1·10-2 2·10-2 1·10-2 2·10-2

Fig. 2.10.c 88 64 0 9·10-1 6·10-2 5·10-1 7·10-2

Fig. 2.10-d 100 100 100 1·10-4 2·10-5 5·10-5 4·10-7

Fig. 2.10-e 99 99 99 2·10-2 1·10-4 5·10-4 4·10-7

Fig. 2.10-f 99 94 94 6·10-3 5·10-3 4·10-3 2·10-4

Fig. 2.10-g 99 59 0 2·10-2 1·10-2 2·10-2 6·10-4

Fig. 2.10-h 100 20 0 3·10-1 5·10-2 2·10-1 1·10-3

Fig. 2.10-i 99 0 0 1·10-0 3·10-1 2·10-1 5·10-3

with ν indicating the probability that the specific outlier-type of noise are present in the
individual measurements as defined in Sec. 2.5.2. The terms for outlier and identification
noise are squared as these are effects happening to di,j and dj,i independently from each
other but both influence the ability to establish a correct bidirectional measurement.

The reconstruction algorithm is developed to be able to robustly filter out different noise
types by relying on the geometric consistency between true neighbouring nodes and their
measured distances to each other. The more inlier measurements that are available, the more
robust the algorithm is. The effective connectivity EC is a predictor of the number of inlier
measurements and therefore can be used as predictor of reconstruction performance. The
usage of EC as such a predictor is verified in Sec. 2.5.6.

2.5.4 Reconstruction performance analysis

In our applications, or more in general for swarm operations like these, it is not established
what is the best method to assess the performance of the reconstruction algorithm, i.e. to
assess the quality of the reconstructed swarm. It is highly dependent on what information
is favoured from such a swarm. Conventional metrics might not be suitable as the goal of
the applications might be different. When exploring a yet unknown and difficult-to-access
environment, initially one might want to know the overall structure of the environment: e.g.
a rough estimation of the local geometry and the overall shape of the total environment. Later,
e.g. when also adding additional sensor information, one might be more interested in fine-
grained local geometry where the absolute error over the entire swarm is less relevant. We
therefore present different performance metrics that serve different goals.

2.5.4.1 Absolute error

The absolute error is the mean squared absolute error of all reconstructed node positions
relative to their ground truth positions. It is calculated as Eabs =

∑N
i ‖ŝi − s̄i‖2/N , the

sum over all N nodes where ŝ is the reconstructed position of the node and s̄ its ground truth
position. In order to compare the ground truth positions with the reconstructed positions,
a linear fit between the 3-D positions of the initial four seed nodes and their ground truth
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.10: Reconstructions of node swarms in a spherical environment (a-c) and in a
pipeline environment (d-i) with different parameter sets. Blue circles are the ground truth
positions of the nodes and red crosses the reconstructed positions. The recall metricsX,Y,Z
and the error metrics Eabs, Erel, Eglob, Eloc are assess the performance of the reconstruction
are listed in Table. 2.2.



2.5 Numerical simulations 47

positions is performed to resolve the general rotation and reflection ambiguity.

The mean squared absolute error is a commonly used performance metric in reconstruc-
tion studies. A disadvantage of this metric is that when a reconstructed swarm exhibits error
build-up, the absolute error between one side of the swarm and the other can be large, while
the local errors can actually be small. In swarm reconstruction studies like this, this metric
should therefore not be used as the only metric to assess reconstruction performance.

2.5.4.2 Relative error

The relative error is the mean squared relative error of the reconstructed distances between
nodes, relative to the ground truth distances. It is calculated asErel =

∑M
i,j‖d̂i,j−d̄i,j‖2/M ,

the sum over all M reconstructed distances, where d̂ is the reconstructed distance and d̄ the
ground truth distance.

Unlike Eabs, the metric Erel is not affected by build-up of errors. It assesses the recon-
struction performance only on a local and relative scale.

2.5.4.3 Global error

The global error Eglob is defined similar as Eabs, but includes the performing of a rigid
transform (transformation and rotation) of the entire reconstructed swarm such that Eabs is
minimized.

This metric illustrates the reconstruction performance of the swarm better than Eabs as it
is not based on a specific chosen seed from which everything is built on. However, it is still
sensitive to error build-up.

2.5.4.4 Local error

The local error Eloc is defined as mean squared absolute error, but only after performing a
rigid transform of all subsections of 20 connected nodes with their ground truth positions.

This heuristically chosen performance metric considers only the local errors, but other
than Erel, it does focus on the (absolute) reconstructed positions of the nodes rather than the
(relative) distances between them.

2.5.4.5 Recall

The recall, X, is the percentage of nodes reconstructed by the reconstruction algorithm. As
this does not take into account whether or not these nodes are reconstructed correctly, we
introduce the adjusted recall Y and Z. These are the percentages of nodes that are recon-
structed within a specified error condition that is heuristically chosen. For Y, this condition
is when at least 80% of the node’s reconstructed distances (or edges in G) have a relative error
<10%; or when more than 50% of the nodes reconstructed distances have a relative error of
<1%. The adjusted recall Z is similar to Y, but includes the condition that the neighbouring
nodes to which the relative error suffices this condition, should also fall in the category of
Y. Note that this categorization of recall into X, Y and Z is based on a heuristic, subjective
interpretation of the reconstruction result.
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Examples of reconstructions are shown in Fig. 2.10 and the corresponding performance
metrics are listed in Table 2.2. The distribution of the relative errors of the reconstructed
distances is indicated with a boxplot on the right of each reconstruction. Only Fig. 2.10-d and
Fig. 2.10-a show reconstructions with a very low Eabs ≤ 1.4e-4m2 and visually seem like a
‘perfect’ reconstruction. All others seem to exhibit their own erroneous characteristics, but
non of them are completely wrong. Fig. 2.10-e has a fairly high Eabs but Eglob = 4.7e-4m2

with the same order of magnitude as Eabs in Fig. 2.10-d. The reconstruction only seems to
suffer slight error build-up that leads to large absolute errors at the pipe end but for the rest
has an accurate reconstruction. For the majority of the swarm in Fig. 2.10-f, the positions are
accurately reconstructed. Only at the ends of the pipe the reconstruction algorithm seems to
have created large errors. In Fig. 2.10-h and Fig. 2.10-g the reconstructions also seems correct
on the local scale (e.g. seen in the relative low Eloc) but exhibits some local errors that cause
the reconstructed graph to deviate from the original axis of the pipeline. These differences
illustrate the importance of having different error metrics as the assessment should happen
based on which information is favoured from the swarm. As an extreme, even in Fig. 2.10-i
the diameter of the pipe can still be estimated from the reconstruction while the shape of the
swarm is very inaccurate.

Deciding whether a reconstruction gives satisfactory results or not is therefore not trivial
and depends on the application goals. The adjusted recall parameters are an attempt to quan-
tify these goals. In this paper, on the basis of subjectively interpreting how well the shape
of the swarms in Fig. 2.10 are reconstructed, recall parameter Y can be seen as a reason-
able metric to assess the performance of the reconstructions. We can define a satisfactory
reconstruction to be one with e.g. Y > 80%.

2.5.5 Parameter sweeps and breaking points
In this section we study the performance of the reconstruction algorithm while sweeping
the parameters related to the soft constraints. These parameters are the ones involved with
measurement noise as described in Sec. 2.3.2, the number nCID of non-unique identifiers CID,
and the number of neighbouring nodes within communication radius ncomm. In order to
change the number of neighbouring nodes we actually change the sensing radius rcomm such
that on average, nodes have ncomm neighbouring nodes.

For each set of parameters, 50 different experiments are performed, each with randomly
generated node positions (but following the environment geometry constraints as defined in
Sec. 2.5.1). All experiments are performed with a total number of N = 400 nodes. For
similar work with a smaller and larger number of nodes, the reader is referred to our earlier
work [7] and [6].

The Gaussian noise components in dī,j̄ are together summarized as νgaussian, as standard
deviation of (dī,j̄ − d̄ī,j̄). This value is expressed as percentage of a fixed communication
radius2:

νgaussian =

√∑M
i,j(dī,j̄ − d̄ī,j̄)

2

M − 1

1

rcomm[ncomm =20]
(2.9)

2the average communication radius when ncomm = 20
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(a) spherical environment (b) pipeline environment

Figure 2.11: Median of the recall result X,Y,Z on the left and error metrics Eabs,
Erel, Eglob, Eloc on the right. Indicated parameters on the x-axis are swept while
keeping other parameters on a fixed value (encircled). From top to bottom these are:
{nCID, νgaussian, νidentification, νloss, ncomm, νoutlier, νonstruction, νreflection}
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Fig. 2.11-a shows for a spherical environment the recall (X,Y,Z) and the different error
metrics Eabs, Erel, Eglob, Eloc while sweeping the input parameters. The median values of
these metrics of all 50 experiments is visualized. It can clearly be seen that when increas-
ing the measurement noise (Gaussian, outlier, identification, obstruction and loss), the recall
drops and the error metrics increase.

Fig. 2.11-b shows the performance metrics using similar input parameters, but in a pipeline
environment. It can be seen that the recall metrics in this case are much higher than in the
spherical environment. This is due to a different distribution of connectivity among the nodes,
as explained next in Sec. 2.5.6.

Furthermore, the error metrics in the pipeline environment show significantly more dif-
ferences among them than in the spherical case. The local error is orders of magnitude lower
than for example the absolute and global error. The environment stretches across larger dis-
tances and has smaller local dimensions compared to the spherical case; errors build up easier
and cause a larger absolute error, even in cases where the local geometry is reconstructed cor-
rectly. This can clearly be seen in e.g. Fig. 2.10-e/h.

The observed dip in recall in the spherical environment in Fig. 2.11-a when reducing the
number of identifiers to nCID = 10 is mainly due to a self-imposed time constraint in the
reconstruction algorithm (when average time per reconstructed node exceeds 10 seconds).
The ambiguities in this dataset are around Atotal = 200%. Reducing the number of identi-
fiers further can still yield successful reconstruction but drastically increases the number of
ambiguities and therewith the time required to calculate cliques as described in Sec. 2.4.

The lines in Fig. 2.11-a and Fig. 2.11-b only show the trend of the parameter sweep and
due to the nature of the reconstruction process show statistical quirks. The standard deviation
between all 50 experiments of the same input parameter sets are large and not shown to
preserve readability of graphs. For example, in cases where the majority of experiments yield
high recall (e.g. >90%), it is not uncommon that in one or more experiments of the same
parameter set the recall does not surpass 10%.

The general trend of these lines clearly show there is a dependency of the input param-
eters on the reconstruction performance. The reconstruction exhibits graceful degradation
when the soft constraints increase in severity up to the point where the recall drops and error
increases.

2.5.6 Effective number of neighbours

The recall result Y of our experiments is plotted against the meta-parameter EC in Fig. 2.12.
For both environments, a clear trend is visible that the recall is dependent on the effective
number of neighbouring nodes. A minimum number of inlier measurements is required that
can be used for the RANSAC voting to guarantee satisfactory reconstruction of the nodes’
positions. A minimum (effective) connectivity of around EC = 20-22 is required in order to
reconstruct the swarm with an adjusted recall Y > 80%.

Even though the average number of neighbouring nodes are chosen to be similar in both
the spherical and the pipeline by setting rconn for all nodes, the variability in the per-node
connectivity in the spherical environment is much larger than in the pipeline environment.
Fig. 2.13 shows the histogram of the per-node connectivity, averaged over all experiments.
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(a) spherical environment (b) pipeline environment

Figure 2.12: Adjusted recall result Y versus the meta-parameter EC, the effective number of
neighbours.
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Figure 2.13: Histogram of real neighbouring nodes within communication radius. The
average number of neighbours, ncomm, is indicated with a red line. From top to bottom
ncomm = {28, 24, 20, 16}; left the spherical environment right the pipeline environment.
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(a) single loop environment

(b) single loop environment

(c) multiple loop environment

Figure 2.14: Several steps of the loop closing phase using non-linear optimization. Blue is
ground truth positions and red is reconstructed positions.

The chosen ncomm for each of the experiments is indicated using a red line, this is the average
value of the histogram. The nodes with a lower connectivity are much less likely to be
reconstructed (correctly) and will influence the recall result of the entire swarm.

It should be noted that the results in Fig. 2.11 and 2.12 show the median values over
50 experiments, each time with a different swarm topology and node positions. The find-
ings presented here concern the reconstruction of the full swarm in a single reconstruction
experiment. Smaller sub-swarms can be reconstructed using lower connectivity.

2.5.7 Loop closing

Many environments will contain one or multiple loops; therefore it is important that the
reconstruction algorithm can deal with closing these loops. Our loop closing method as
described in Sec. 2.4.5 is evaluated in this section.

Examples of reconstructed swarms that require loop closing, and the iterative loop closing
in the non-linear optimization process are shown in Fig. 2.14. Build-up of error has caused
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Figure 2.15: This connection matrix shows reconstructed connections (·) and excluded con-
nections (×). It indicates excluded connections that are excluded by a plurality of neighbour-
ing nodes (◦) as well as those with a distance > 2rcomm (�). Loop closing candidates can
easily be observed using this categorization. The linear ordering of the nodes’ UID along the
pipe axis is solely used for illustrative purposes. It is not used in the reconstruction as only
CIDs are available from measurements.

the two ends of the loop(s) to not end up at the same position. Fig. 2.15 shows the result
of the loop closing detection algorithm (Sec. 2.4.5) of the dataset shown in Fig. 2.14-b. The
commonly excluded connections of which the reconstructed distance is larger than 2rcomm

are depicted with red squares and clearly indicate that the two ends of the reconstructed
swarm are supposed to be connected. The nodes that are reconstructed at the loop-ends do not
receive support from nodes on the other side of the loop in the RANSAC voting algorithm. To
close the loop, these detected connections that are originally excluded from the graph are now
included in the graph. Performing the non-linear optimization using these new connections,
now closes the loop as seen in the consecutive steps in Fig. 2.14.

As seen in Fig. 2.14-b, loop closing can distort the reconstructed swarm when the loop-
ends are too far from each other. Closing the loop using this non-linear graph optimization
then forces a different swarm geometry in such cases.

These experiments shows that our method can perform loop closing. Multiple loops can
be dealt with simultaneously or individually, as seen in Fig. 2.14-c.
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2.6 Discussion and future work

The results show that the reconstruction algorithm can robustly deal with a large set of dif-
ferent types of measurement noise. Each measurement imperfection has a different influence
on the established mutual connections and on the reconstruction. The inlier-type of measure-
ment noise are present in all measurements and only affect the accuracy of the reconstructed
positions. The outlier-type of noise prevents establishing correct mutual connections and on
top of that also create false and ambiguous connections due to the non-unique identification.
Using the geometric consistency of the positions of true neighbouring nodes, the reconstruc-
tion algorithm can robustly filter out the false connections and prevent them from negatively
influencing the reconstruction. Reducing the quantity of available CIDs significantly increases
the ambiguities in establishing mutual connections. However, it is found that due to the ro-
bust nature of the reconstruction algorithm, these ambiguities could be resolved when enough
inlier measurements are available.

The robustness of our novel algorithm allows us to see that the key parameter for suc-
cessful reconstruction is the number of inlier node connections that are available for recon-
struction. Initially, the total number of distance measurements is determined by the com-
munication range and the density of the nodes in the swarm. It is due to the outlier-type of
measurement noises that not all node connections will be inlier measurements and hence can
not be used for reconstruction. The effective connectivity can be predicted by our Eq. 2.8 and
is an important predictor for the reconstruction performance. We can therefore conclude that
in the sensor node hardware design for these applications, resources should be focussed on
increasing the communication radius to increase connectivity and to prevent outlier-types of
noise from reducing the effective connectivity. Achieving this can for example go at the cost
of (unique) identification.

Depending on which information is favoured from the swarm, the error metrics can be
used to study the performance of the reconstruction. There is no single error metric that can
summarize the reconstruction performance for all application goals. Using different error
metrics and the heuristically chosen adjusted recall metrics Y and Z we showed that the
subjective interpretation of the quality of the reconstruction can be partially quantified. When
the sensor nodes need to be designed for specific applications, a performance condition can
be set up, e.g. Y > 80%, to assess under which input conditions the reconstruction is most
likely to achieve the requested performance.

2.7 Conclusion

This work evaluated the feasibility of using sensor swarms, consisting of many highly minia-
turized and severely resource limited sensor nodes, to reconstruct difficult-to-access environ-
ments. For this, a novel Guided Random Sample Consensus algorithm together with non-
linear graph optimization is proposed. Its main contribution is that the algorithm can handle
severe and different types of measurement errors as well as the use of ambiguous non-unique
communication identifiers.

Extensive and realistic simulations show that sensor node connectivity is to be favoured
over unique identification of nodes. When the number of used communication identifiers is
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only 2.5% of the total number of nodes (nCID = 10, N = 400), the entire sensor swarm
can still be reconstructed successfully. Thereby allowing less identification information to
be used, i.e. shorter communication bursts, to trade-off for larger emission power per burst.
This, in turn, allows for improved sensor node connectivity, as more nodes can be reached
with a single burst. On the contrary, simulations show that when swarm connectivity drops
below 20 inter-node connections per node, reliable sensor swarm reconstruction is hampered
for this algorithm. Therefore, favouring connectivity over identification, is a pivotal finding
of our work, as it can and will guide future developments of highly miniaturized sensor nodes.
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2.9 APPENDIX: Algorithm: overview

Data: dī,CID(j), CID({1, ..., N})
Result: graph G = (V, E)
Consistency + hypothesise mutual connections hi,j using C (Sec. 2.4.1);
Create stable seed from 4 nodes (Sec. 2.4.2);
while unreconstructed nodes left do

select all c ∈ C that observe ≥4 nodes in V;
sort c according to most likelihood to succeed (Sec. 2.4.3.1);
perform RANSAC on c (Sec. 2.4.3 & Algo. 2);
if nodes c with sufficient RANSAC-score then

add nodes with highest RANSAC-score to G;
else if node added since last non-linear refinement then

run non-linear refinement (Sec. 2.4.4);
else

abort algorithm;
end
if m new nodes have been added to G then

run non-linear refinement (Sec. 2.4.4);
end
Loop closing (Sec. 2.4.5)

end
Algorithm 1: reconstruction

2.10 APPENDIX: Algorithm: RANSAC

Data: sorted c′, hi,j ,Q
Result: RANSAC-score and proposed positions of c′ in G
while no good enough RANSAC-score do

select (next) largest clique inQ with connected candidate b;
select all possible sets of 3 nodes {a : a ∈ Q(b)};
for all a do

for all ap = possible (3-)sets of distances in ha,b do
hypothesise position for b, based on lateration;
if hypothesised position /∈ R3 then

continue;
end
select all voters {av : (av ∪ ap) = a, (av ∩ ap) = ∅};
voters support hypothesis when connection hav,b

is consistent with hypothesised position;
voters oppose otherwise;
if # of supporters > # of opposers then

RANSAC-score hypothesis is # of supporters;
if RANSAC-score is good enough then

break while-loop;
end

end
end

end
end

Algorithm 2: RANSAC
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2.11 APPENDIX: Algorithm: guiding RANSAC

Data: c, hi,j , V
Result: sorted c′ and cliquesQ(c)
for every b in c do

select all nodes a ∈ V with existing ha,b;
create graph G′(b) = (V(a), E ′) in which all vertices V (a) are

connected with an edge E ′ if their positions are within 2rcomm

of each other;
find cliquesQ(b) in G′(b);

end
sort c according to clique size of largest cliques inQ(c);

Algorithm 3: Guiding RANSAC by sorting the candidate nodes
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This work is on 3-D localization of sensor nodes in massive swarms based solely on 1-D
relative distance measurements between neighbouring nodes. We target applications in ren-
ode and difficult-to-access environments such as the exploration and mapping of the interior
of oil reservoirs where hundreds or thousands of nodes are used. These applications bring
forward the need to use highly miniaturized sensor nodes of less than 1 centimeter, thereby
significantly limiting measurement and processing capabilities. These constraints, in combi-
nation with additional limitations posed by the environments, impede the communication of
unique hardware identifiers, as well as communication with external, fixed beacons.

We propose solving this challenging localization task by a novel RANSAC algorithm
that can cope with noisy 1-D relative distance measurements and non-unique communication
identifiers. It uses local geometric consistency, to resolve the ambiguity caused by non-unique
communication identifiers and outlier measurements, and thereby is able to robustly assign
unique hardware identifiers to be used for global non-linear graph optimization.
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Extensive simulations show that this novel localization method is able to fully reconstruct
the positions of the nodes, in cases when the number of communication identifiers is only
2% of the number of nodes. When the number of communication identifiers is lower, the
algorithm exhibits graceful degradation.
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3.1 Introduction

The exploration of remote, deep underground or difficult-to-access environments has been
subject of study for decades. Current challenges include the mapping and exploration of the
interior of narrow subterranean cavities like (oil) reservoirs and piping systems, which have
high economic value and societal importance [1], and the investigation of the dynamics in
industrial (multi-fluid) mixing tanks. The use of many (e.g. thousands), small and cheap
mass-produced micro-sensor systems – from now on referred to as sensor nodes which are
operated in a swarm–is a promising way to approach these challenges. The specific sensor
nodes for mapping have many more promising applications, but are currently not available
yet. The development for the larger sized sensor nodes (5 cm diameter) for e.g. the mapping
and exploration of a mixing tank is under way [2]. Many hardware challenges still need to
be addressed before large swarms of miniaturized sensor nodes (centimeter-sized or smaller)
can be developed and deployed effectively. Trade-offs must be made in the hardware design
with respect to node capabilities and node size. Improved node capabilities, e.g. larger
sensing radius or better signal-to-noise ratios, inevitably make cost-effective miniaturization
of nodes more challenging. Therefore, in our study, we set the challenge to perform reliable
node localization using severely limited node capabilities. Although, these limitations might
not be relevant to current nodes, we believe they are relevant for yet-to-be-developed highly
miniaturized nodes of the near future [3]. We show that advances in off-line localization
algorithms, can, to a large extent, compensate for severely limited node capabilities. This is
important as it implies that using large swarms of highly miniaturized nodes in the future, is a
realistic scenario. At the same time, our research provides lower bounds on node capabilities
that can guide the hardware design of yet-to-be-developed nodes.

Each type of environment that is to be explored brings forward a specific set of con-
straints; in the application cases we are considering, the environments prevent the use of
large, complex or existing sensing and localization systems, due to various issues, discussed
in Sec. 3.1.1. Exploration can in that case be performed by injecting swarms of sensor nodes
into the flooded environment, as e.g. illustrated in Fig. 3.1. The nodes traverse the envi-
ronment due to the internal dynamics (e.g. flow) and disperse over the volume of interest.
The nodes are extracted from the environment and the measured data that is stored in their
internal memory can be analysed offline. The shape, or map, of the sensor swarm can be used
to infer the geometric structure and size of the environment. The individual node positions
relative to each other – from which we can determine such a map– can be estimated from
inter-more distance measurements [4], [5]. As illustrated in Fig. 3.2, estimating the positions
of the nodes can be seen as a specific kind of graph problem, G = (V, E) , where the vertices
V are the node positions and the edges E the distances between them. The challenge is to
obtain a robust initial estimate of the node positions in order for non-linear graph optimiza-
tion algorithms to succeed [6]. In contrast to earlier work [7] where a similar problem has
been considered, in our work [8], an initial estimate is obtained using a novel robust Random
Sampling Consensus (RANSAC) algorithm [9], [10], applied to general lateration techniques.

In this work, we explore the limits of swarm-based 3-D localization of extremely resource
limited sensor nodes with the specific set of constraints posed by the application and the
environment. Our work differs from previous works [7], [9], [10], [12], [13], [14], [15], [16],
[17] by,
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Figure 3.1: Swarms of sensor nodes are inserted in the environment of interest; they traverse
the environment using its internal dynamics (e.g. flow ; and are extracted in order to retrieve
the data. Once the nodes are distributed in the environment, distance measurements between
neighbouring sensor nodes are taken. Offline, this data can be processed to determine the
nodes positions relative to each other.
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Figure 3.2: Localizing nodes within a swarm as a graph problem, G = (V, E) , with the
node positions as vertices V and the distances between nodes as edges E . The initial four
node positions {s1, s2, s3, s4} are chosen to define the coordinate system to solve the global
reflection and rotation ambiguity. Additional nodes can be added to the graph using general
lateration techniques. For clarity of the figure, not all (required) edges are drawn.

1. using solely distance measurements (also called range-only), i.e. no direction informa-
tion or additional sensor information, like bearing, odometry or inertia;

2. the distance measurements are performed using non-unique identifiers;

3. no additional data is exchanged, measurements are stored in memory for offline analy-
sis;

4. not depending on external communication to e.g. fixed beacons; and,

5. sparse connectivity in a large swarm.

Although each separate constraint has been considered earlier; this work is, to the best of
our knowledge, the first to show feasibility of reconstructing sensor swarms when considering
all mentioned constraints and under realistic conditions. The main difference with our pre-
vious work in [8], is using non-unique identifiers (constraint 2) which has far-reaching con-
sequences on the localization [11]. In [12], fully anonymous measurements are considered
for robot localization, but cannot be compared to our problem, as the localization algorithm
relies on the significantly larger sensing, online processing and communication capabilities
of the robots. A similar complete problem as ours is considered in [18], [19] where a differ-
ent solution is proposed to resolve the ambiguities. In both papers, only Gaussian noise is
considered and the effect of ambiguities and noise on the final localization is not shown.

This paper describes in Sec. 3.2 the exact problem that is considered. In Sec. 3.3 we elab-
orate on the localization algorithm. Sec. 3.4 describes the simulation model we use to test
the novel mapping method and localization algorithm in pipe-like environments. In Sec. 3.5,
we numerically evaluate the conditions/criteria for the localization algorithm to reliably esti-
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mate the node positions in the swarm, while reducing the number of available communication
identifiers. Our conclusions are provided in Sec. 3.6.

3.1.1 Constraints on sensing devices
In our application cases, we consider environments that are enclosed and/or deep underground
and might have a narrow passage. Examples of these are the sand-free channels in heavy oil
containing sandstone formations which are formed during oil extraction (Cold Heavy Oil
Production using Sand, CHOPS) [1]. These sand-free channels, also called wormholes, are
typically around one to several centimeters in diameter; extend over a few hundred meters;
and are located 200-400 meter underground. Placing beacons is infeasible since the structure
deep underground spans large distances and is not known beforehand. Communication using
radio is not feasible due to the extreme high salinity. Acoustic communication however, is
possible within the wormholes for communication between neighbouring sensor nodes.

Passage through a wormhole is only possible if the physical dimensions of the nodes are
smaller than that of the local structure. For this specific application case it limits the sensor
size to less than 1 centimeter in diameter, causing severe limitations on the instrumentation
which can be taken aboard of the node. At these scales, the major limitation is the energy
storage, which limits the communication range, data rate and packet sizes, and the amount
of processing that can be performed on-board. For these reasons we are looking into 1-D
relative distance-only measurements which can be performed using ultrasound time of arrival
or time of flight. This can for example be achieved using highly miniaturizable ultrasound
technology, e.g. [20].

Identifiers can be encoded into the ranging pulse using e.g. BPSK or CDMA. But as
ultrasound transducers are generally narrow-banded, data encoded in signal pulses causes
signal pulses to be long [21], [20]. As these environments are small and reflective and the
speed of sound is five orders of magnitude lower than that of radio waves, signal overlap
due to emission of signals by neighbouring nodes and their multi-paths is expected to be
significant [21]. Elaborate communication techniques to deal with this, require more complex
processing [22], which might not be feasible on the miniaturized nodes. In order to reduce
multi-path in these environments, we attempt to limit the length of the ranging pulse, and
therefore, have to limit the quantity of identification information encoded in it. The nodes
unique hardware identifier (uiD) can therefore not be encoded in the ranging-pulse, but only
highly abbreviated and non-unique communication identifiers (CiD) can be communicated.
Consequently, received ranging-pulses from neighbouring nodes can only be identified up to
a large ambiguity.

3.2 Problem description

Following the operational procedure shown in Fig. 3.1, once a ‘steady-state’ distribution of
the nodes in the volume of interest is achieved, the nodes perform simultaneously distance
measurements to neighbouring nodes. This can be achieved using e.g. a preset time after
insertion. The ranging measurements are performed using ultrasound time-of-flight (TOF) or
time-of-arrival (TOA). Omnidirectional ultrasound emission and reception is considered (as
opposed to directional), because there is no a priori or online knowledge of the positions of
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neighbouring node. Each node reaches all neighbouring nodes that are in line-of-sight, and
within a specific sensing radius rs.

We assume a homogeneous speed of sound, and that the movement of the nodes during the
distance measurements can be ignored, i.e. flow velocity of fluid is small compared to speed
of sound in fluid. For now, the nodes are also assumed to be synchronized such that obtaining
the distances using TOA or TOF is straightforward. However, achieving this synchronization
under the stringent communication constraints in the real application is not straightforward,
but believed to be possible [3], [4] ; it is a topic for future research.

3.2.1 Reconstructing node positions

A general method of reconstructing the positions of the sensor nodes based solely on distance
measurements relies on general lateration methods. The graph G can be grown as illustrated
in Fig. 3.2 and detailed in [8]. Every candidate node, c, with known distances to four non-
coplanar nodes (of which the positions s1, s2, s3, s4 are known) can be added to the graph.
The position of node c will be the intersection of the spheres with radii d1,c, d2,c, d3,c, d4,c

and centers at s1, s2, s3, s4. Here dn,c denotes the true distance from node n = {1, 2, 3, 4} to
node c. The initial four node positions are chosen such that they define the coordinate system,
therewith fixing the general reflection and rotation

ambiguity: s1 ∈ {0, 0, 0}, s2 ∈ {R, 0, 0}, s3 ∈ {R, R+, 0} and s4 ∈ {R, R, R+}.
The ranging measurements are performed in twofold, node i measuring distance to node

j, di,j , and vice versa, dj,i. In the data processing, this allows for the possibility to perform a
forward-backward consistency check in determining the distance between the nodes.

3.2.2 Identity and distance ambiguity

The nodes are assigned at random one of the nf available CIDs; all CIDs are distributed
uniformly among the nodes. The nodes only emit this non-unique CID in the ranging pulse,
rather than a unique UID. Consequently, the measured data per node i will consist of a set of
measured distances di,CID(j) for all neighbouring nodes j within its sensing radius rs. These
distance measurements are not uniquely associated with neighbouring nodes j, but rather
only to nodes with CID(j) . Therefore, the forward-backward consistency check, cannot
be used to uniquely define a hypothesised distance between node pairs, as in [8], but leaves
ambiguities.

In order to build the graph, the non-unique distance measurement, di,CID(j1, should be
associated with the uniquely identified nodes i and j. This can be attempted by first consid-
ering all possible arrangements that are consistent with current measurements; similar as in
[12].

With perfect distance measurements, the challenge to associate measurement di,CID(j)

with node j and dj,CID(i) with node i is straightforward. Searching for all possible arrange-
ments that are consistent with the observation, i.e., di,CID(j) = dj,CID(i) will give most of
the times an unambiguous correct result, since it is unlikely that another set of nodes with
similar CID pair have exactly the same distance. However, distance measurements are subject
to noise and result in an erroneous distance determination. The searching condition F for
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Figure 3.3: Platforms with UID = {i, j, k, m, p, q} using only two distinct CIDs (indi-
cated by O and �) cause ambiguities in associating UID with measured distances. Identity
ambiguity arises due to similar distance between pairs with similar CID within the swarm
(Eq. 3.2). Distance ambiguities arise due to a plurality of nodes with similar CIDs within a
sensing radius.

associating nodes with measurements should be extended to

F(da,b, dc,d) =

{
da,b+dc,d

2 when da,b ' dc,d

∅ otherwise
(3.1)

where da,b ' dc,d means da,b and dc,d are similar to each other. We can define this
similarity by the condition

da,b ' dc,d when

 |da,b − dc,d| ≤ εr and
CID(a) = CID(d) and
CID(b) = CID(c)

(3.2)

where εr is set as threshold value for maximum allowed difference in distance measure-
ment for which two measurements are considered inliers. This threshold should be related to
the noise. It can e.g. be obtained using trial and error if the error model is unknown.

The obtained hypothesised distance between node i and node j is not unambiguous. As
also illustrated in Fig. 3.3, the hypothesised distances and associations hi,j for measurement
di,CID(j) can consist of three types of contributions:

hi,j =


F(di,j , dj,i) (a)

F(di,j , dp,q) (b)

F(di,k, dj,m) (c)
(3.3)
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a) the measurement between the real nodes i and j;

b) identity ambiguity: an association to a node pwhich is believed to be at similar distance
as node j but not necessarily within sensing range of i (see Fig. 3.3);

c) distance ambiguity: an association with the correct node j but with a distance belong-
ing to the measured distance to another node k within its sensing radius (see Fig. 3.3).

The identity ambiguities are based on the statistical likelihood that somewhere in the
swarm, a node pair with similar CIDs and distance is present. Assuming uniform distribution
of the nodes, the average amount of identity ambiguities in hi,j scales with AI ∝ εrnsN/n2

f ,
in which ns is the average amount of neighbouring nodes within the sensing radius rs and N
the total amount of nodes in the swarm. Equally, the distance ambiguities are based on the
statistical likelihood that neighbouring nodes give rise to confusion. The average amount of
distance ambiguities per di,CID(j) then scales with AD ∝ εrn2

s/n
2
f .

Both type of ambiguities, AI and AD, increase with an increasing amount of neighbouring
platforms ns, leading to a more challenging task associating measurements with the correct
nodes. However, our RANSAC algorithm, which is described in the next section, exploits
the fact that measurements of true neighbouring nodes can be used to resolve ambiguities by
providing geometric consistency checks. An increase in ambiguities can be compensated for
by a larger amount of consistent measurements from neighbouring nodes.

3.3 Swarm localization algorithm

From the ambiguous set of hypothesised distances and associations hi,j in Equation 3.3, the
graph G should be robustly built. We use a similar approach as in [8] but made significant
modifications to prune false entries in hi,j .

The main steps in our localization method are described next in Algo. 4 and Sec. 3.3.1
through Sec. 3.3.4.

3.3.1 Initial seed selection

Four neighbouring nodes are selected as initial seed to start the graph growing. Their posi-
tions, s1, s2, s3, s4, define the coordinate system as described in Sec. 3.2.1. The nodes are
selected based on their connectivity and the stability of their geometric configuration which
is obtained by general lateration techniques. Since hi.j contains ambiguities, the initial seed
selection is conditional until the graph growing has successfully added several nodes to the
graph G. If this is not possible, a new initial seed is selected and the process is repeated.

3.3.2 RANSAC graph growing

Additional nodes can be added to the graph when the nodes have at least four connections to
already reconstructed nodes. This set of candidate nodes is denoted as C. Figure 4 illustrates
a simplified 2-D situation in which a candidate node c ∈ C has associations to its true neigh-
bouring nodes in V , but also false associations to nodes somewhere else in the graph due to
identity ambiguities.
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Figure 3.4: RANSAC graph growing algorithm uses an inlier-outlier voting system to filter
out outlier distance measurements and proposes a position for candidate nodes to add to the
graph. Using cliques of nodes in the graph that are within twice the sensing radius helps in
reducing the chance nodes are positioned wrongly.

A RANSAC approach can be used to attempt to correctly position the candidate node
based on true associations only. The inlier-outlier voting mechanism is similar as in [8] but
is adjusted to handle ambiguities. This is described in Algo. 5. When a candidate node c is
considered, all nodes that are already reconstructed in the graph and that are associated with
this c are selected, A = {a : a ∈ V, ha,c 6= ∅}. A set of three of these nodes is selected,
{ap ∈ A}, to propose –using general lateration– a position for c up to a reflection ambiguity.
But since no guarantees can be given whether the entries in hap,c are true distances or true
associations, the proposed positions do not need to be viable or close to the true position.
Therefore, each of the other associated nodes {av : (av ∪ ap) = A, (av ∩ ap) = ∅} are
used to vote for the proposed position. Consensus is reached when the majority of the voting
nodes, including the three proposing nodes, have at least a 50% majority. The reflection
ambiguity is chosen based on which of the two positions received more supporting votes.
When consensus is reached, the amount of supporting votes is called the RANSAC-score for
the specific proposal.

This step in the RANSAC algorithm is repeated with each time a different set of three pro-
posers ap, until all possibilities are exhausted or until a proposal received a specific threshold
in RANSAC-score. In the latter case, it is then considered good enough for addition in the
graph. When no ‘good enough’ condition is reached, the RANSAC procedure is repeated for
a next candidate node until all possibilities are exhausted or the ‘good enough’ condition is
found. The candidate with the highest RANSAC-score is added to the graph in V with edges
only to the supporting nodes and corresponding ha,c entry in E . The ‘good enough’ condition
for the RANSAC is chosen heuristically.
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Data: di,CID(j),CID({1, . . . , N})
Result: graph G = (V, E)
Hypothesise distances and associations hi,j using F (Eq. 3.1& 3.3);
Create stable seed from 4 nodes (Sec. 3.3.1);
while unreconstructed nodes left do

select all c ∈ C that observe ≥ 4 nodes in V;
sort c according to most likelihood to succeed (Sec. 3.3.3);
perform RANSAC on c (Sec. 3.3.2 & Algo. 5);
if nodes c with sufficient RANSAC-score then

add nodes with highest RANSAC-score to G;
else if node added since last non-linear refinement then

run non-linear refinement (Sec. 3.3.4);
else

abort algorithm;
end
if m new nodes have been added to G then

run non-linear refinement (Sec. 3.3.4);
end

end
Algorithm 4: Localization

Data: sorted c∗, hi,j , Q
Result: RANSAC-score and proposed positions of c∗ in G
while no good enough RANSAC-score do

select (next) largest clique in Q with associated candidate b;
select all possible sets of 3 nodes {a : a ∈ Q(b)};
for all a do

for all ap =possible (3-)sets of distances in ha,b do
hypothesise position for b, based on lateration;
if hypothesises position /∈ R3 then

continue;
end
select all voters {av : (av ∪ ap) = a, (av ∩ ap) = ∅};
voters support hypothesis when observation hav,b is consistent with
hypothesised position;

voters oppose otherwise;
if # of supporters ¿ # of opposers then

RANSAC-score hypothesis is # of supporters;
if RANSAC-score is good enough then

break while-loop
end

end
end

end
end

Algorithm 5: RANSAC
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Data: c, hi,j , V
Result: sorted c∗ and cliques Q(c)
for every b in c do

select all nodes a ∈ V with existing ha,b;
create graph G∗(b) = (V(a), E∗) in which all vertices V(a) are connected with
an edge E∗ if their positions are within 2rs of each other;

find cliques Q(b) in G∗(b);
end
sort c according to clique size of largest cliques in Q(c);

Algorithm 6: Sorting of candidate nodes

3.3.3 Sorting candidate nodes

The amount of false associations from candidate nodes to the nodes in the already recon-
structed graph grows on average linearly with the amount of nodes in the graph as explained
in Sec. 3.2.2. As a consequence, candidate nodes might get voted to a wrong position in the
graph during the RANSAC process in cases where the true neighbouring nodes are outnum-
bered.

To reduce the chance of this to happen, a sorting order of candidate nodes is made before
the RANSAC algorithm is performed on them. The sorting is based on the likelihood that
candidate nodes have enough true neighbouring nodes already in the graph. As such, candi-
date nodes that are more prone to be positioned based on false connections, are considered
later. This gives the chance that more of its true neighbouring nodes will be added to the
graph first. The algorithm is stated in Algo. 6 and described next.

For each candidate node {b : b ∈ C}, a list is made of associated nodes that have
already been positioned in the graph A = {a : a ∈ V, ha,b 6= ∅}. A new graph
G∗ = (V(A), E∗) is made with these nodes as vertices. These vertices are connected with
edges E∗ when their positions are less than twice the sensing radius, 2rs, apart. In this new
graph, maximal cliques are listed as Q(b) . These cliques indicate the groups of nodes that
are within the sensing radius of a proposed candidate node that can potentially be agreed on
by all of these nodes. The example in Fig. 3.4 shows these cliques in coloured oval areas.
The amounts of nodes in these cliques are registered and are used as sorting order in which
RANSAC is performed. Platforms with larger sized cliques in Q(b) are more likely to have
more associations with true neighbouring nodes.

3.3.4 Robust non-linear refinement

The stepwise addition of new nodes to the graph introduces build-up of errors. These errors
in positions can prevent other nodes from being added. In order to reduce this error build-
up, a global non-linear optimizer algorithm is performed [6], [8], after every m newly added
nodes, or failure to add a new node.

There is a clear trade-off between the size of m and the processing time required for the
localization algorithm. In our work, m is chosen arbitrarily to 10. In future work, this can
e.g. be adjusted dynamically based on uncertainty of previously added nodes.
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3.4 Simulation setup

The swarm-based distance-only localization can be used in a variety of environments. In this
paper we will be using long, pipe-like structures as an example. The diameter of the

pipe is large enough such that nodes can be positioned all around one another instead of in
one line along the pipe axis. Simulations are performed 4-7 times, each time with a different
pipe-structure. The course path of the loop-less, non-overlapping pipe without branches is
randomly chosen with incremental steps of 1 meter over a single {x, y, z}−axis. The pipe
axis is smoothed out by drawing a spline through these points. The pipe diameter is chosen
to be fixed at 8 cm and there are 100 nodes in every meter of pipe-length. The positions of
the nodes are assumed to be uniformly distributed within the pipe; rs is chosen such that each
node has on average ns neighbouring nodes. Parameter ns is one of the parameters that will
be swept. The nodes sensing radius rs, in which ranging measurements are possible, is for
all nodes the same.

In reality, homogeneous distribution of node positions is difficult to achieve, but allows
for thorough study of all other parameters involved.

3.4.1 Measurement noise

The measured distance between nodes will be affected by different imperfections in the sys-
tem. The distance measurement errors are modelled similar to what we have described in
[8], which means we add additive Gaussian noise to account for inaccuracies in the timing
of TOF and multiplicative Gaussian noise to account for imperfect knowledge of the speed
of the (ultrasound) signal through the medium. Let d be the true distance between a set of
nodes, then the measured distance d is modelled by

di,j = di,j + di,jNm +Na +BU (3.4)

withNm andNa being perturbations from the zero-mean Gaussian distributionsN (0, σ2
m)

and N (0, σ2
a) respectively. Outlier noise is added to the measurement with the term BU in

which U is a perturbation drawn from a uniform distribution in the range [−rs, rs] and
B ∈ {0, 1}. The chance that a measurement has outlier noise, i.e. B = 1, is determined by
a Bernoulli distribution such that on average a percentage ω is an outlier. Any measurement
that lies outside of the sensing range (0, rs] is discarded from further processing.

Identification noise, that accounts for the possible errors in determining the senders CiD,
is included by assigning a CID that is drawn randomly from the available set of CIDs to a
measurement. The chance that a measurement has identification noise is determined by the
ratio φ.

Initially, in Sec. 3.5, we consider no outlier and identification noise, i.e. ω = 0% and
φ =0%, and we consider three Gaussian noise levels: σm = {0.30, 1.0, 3.0} · 10−3 and
σa = {0.36, 1.3, 3.6} · 10−3m. This yields an average standard deviation of the distance
measurement noise of ν ≈ {0.4%, 1.33%, 4%} expressed in percentage of the average sens-
ing radius when ns = 20.
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In Sec. 3.5.1 we investigate the robustness against additional outlier and identification
noise with noise levels ω and φ ranging between 0% and 20%.

3.4.2 Performance parameters

To analyse the performance of the localization algorithm, we investigate the parameter re-
call, X, which is the percentage of nodes reconstructed by the localization algorithm. The
recall parameter can only be interpreted correctly when also considering the accuracy. The
accuracy is described by both the relative error and the absolute error of the node positions.
The relative error gives the error of the distance between two neighbouring nodes, expressed
as d̂/d, where d̂ is the reconstructed distance between nodes and d the true distance between
them. The absolute error gives the error between the reconstructed position and the true po-
sition of the nodes: |̂s − s|. Since the reconstruction is performed based on relative position
only, i.e. relative to the initial four nodes that determine the coordinate system, the absolute
error is only useful when the reconstructed swarm is aligned with its ground truth. In order to
solve this ambiguity, a linear fit between the 3-D positions of the initial four nodes and their
true positions is performed.

These experiments are designed to evaluate conditions/criteria of the localization algo-
rithm for reliable reconstruction of the sensor swarm with non-unique identifiers. Besides the
pipe structure and the nodes positions, the parameters which play a role are the amount of
nodes in use (N) , the amount of CID (nf ), the average amount of neighbouring nodes within
the sensing radius (ns) and the distance measurement noise levels (ν, ω, φ) .

A parameter set yields successful reconstructions when: a) the amount of added nodes,
based mainly on false associations, is below 5% of X; and, b) the local pipe structure (its
diameter and its course axial direction) is reconstructed correctly. Build-up of small direc-
tional changes over the course of the pipe axis are allowed for a reconstruction to be defined
successful. In this work, this is assessed rather subjectively. As addition on b), successful
reconstruction is also achieved when there is at one point in the reconstructed swarm a large
deviation in the course path of the pipe axis relative to its true direction, but the positions of
the nodes after the this point are reconstructed correctly relative to the neighbouring nodes.
An example of such a line-break is shown in Fig. 3.7. a.

3.5 Numerical simulations

The recall X results of the experiments without outlier and identification noise are illustrated
in Figure 5. Indicated in green are the parameter sets which yield successful reconstructions,
grouped in: X = 100%, X ≥80% and X ≥20%. Unsuccessful reconstructions are indicated
in white, grouped in: X ≥50% (cross) and X <50% (plain). The green hatched areas indi-
cate that either a maximum of one iteration has a significant pipe axis line break or several
iterations have a minor pipe axis line break.

It can be seen that at each N and noise level ν, there exists a minimum ns and nf � N
for which successful reconstruction can be achieved with 100% recall. Increasing nf beyond
this point does not significantly improve the recall or accuracy parameters.

Figure 6, shows the relative and absolute accuracy of the reconstructions with the specific
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Figure 3.5: Reconstruction of sensor swarm from simulations with different parameter sets
N, ν, nf , ns. Recall X in five categories: sufficient reconstruction: X ≥ {100%, 80%, 20%}
(green ; unsuccessful reconstruction X ≥ 50% (white with cross) and X <50% (plain white).
Red rectangle marks dataset used in Fig. 3.6, red cirle marks parameterset used in Sec. 3.5.1.
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Figure 3.6: Recall (red ×) plotted together with relative error (top) and absolute error (bot-
tom) for all iterations with specified parameter sets (marked in Fig. 3.5 with red rectangle).
Reconstructions of four selected runs (arrows) are shown in Fig. 3.7.
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set of parameters highlighted in Figure 5 with a red line. The errors are shown in boxplots
for all reconstructed sensor nodes. Only the ten highest outliers are plotted (> 1.5× the
interquartile range); the lowest quartile and lower outliers are not plotted. As a reference, the
recall is also plotted.

The amount of neighbouring nodes ns has a crucial role in whether a successful recon-
struction can be achieved. In these experiments ns = {12, 20, 30} has been used and the
recall results show that in most cases it is not sufficient to choose ns = 12. In most cases,
there is a significant chance that somewhere in the graph growing process, there are too little
true neighbouring platforms already reconstructed for inlier votes in the RANSAC algorithm.
A minimum of ns = 20 is required for reliable reconstruction at larger N . This confirms our
findings in [8]. Increasing ns from 20 to 30, however, does not increase the recall signifi-
cantly at these noise levels. Figure 7 shows four reconstruction of different iterations with the
parameter set from Figure 6. Figure 7. a and 7. b show the reconstruction of pipe structure
with equal node placement, both with a recall X = 100%. Figure 7. a has been made with
nf = 100 and shows a significant line break in the reconstructed pipe axis. Figure 7. b with
nf = 500 has significantly better reconstruction at this critical point in the swarm.

Figure 7. c and Figure 7. d show reconstructions in an equal pipe structure and node
placement, but with a different nf . The lower amount of nf increase the amount of ambigui-
ties introduced in the dataset, and due to the coherent nature of these ambiguities, RANSAC
can in this particular case not distinguish between correct candidate nodes and false candidate
nodes to add to the graph. The reconstruction in Figure 7. c has an average total ambiguity
factor (both distance and identity) of A = 480% versus A = 210% in Figure 7. d.

The reconstructions with parameter set N = 400, ν = 4%, ns = 30, nf = 15 has a
dataset with the largest average ambiguity factor for which the reconstruction is still consid-
ered successful. With an average ambiguity factor of A = 1700% it still has a reliable recall
of X = 20%. The reconstruction of these iterations was terminated due to a self- imposed
time constraint. All of the partial reconstructions (with sufficient accuracy) with ns = 30 as
well as the highly ambiguous datasets with ns = 20 have been terminated due to this time-
constraint. Some other high ambiguous datasets with A > 2000% have been preventively
terminated due to the large amount of total entries in hi,j (larger than 2× 105).

3.5.1 Non-Gaussian outlier and identification noise

The results described above are based on measurement datasets without non-Gaussian outlier
and identification noise. But as these types of noise are inevitable in realistic scenarios, we
also study the localization algorithm on datasets including outlier and identification noise.
The unmodified algorithm is performed with ω and φ ranging from 0% to 20%. This is
performed on the parameter set N = 400, ns = 20, nf = 25, µ = 1.33% (marked in Fig 5).

with red circle). Recall results are shown in Table 3.1. Outlier and identification noise
of up to 10% still yields successful reconstruction with X ' 100% for the majority of the
iterations.
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Figure 3.7: (Parts of) reconstructions of four different runs (indicated with arrows in
Fig. 3.6). Blue are true positions, red are reconstructed positions.

Table 3.1: Recall X in percentage with outlier noise ω and identification noise φ of dataset
N = 400, ns = 20, nf = 25, µ = 1.33%. The median of 10 iterations is taken; the lowest
recall of the iterations is between brackets.

Outlier Identification noise, φ
noise, ω 0% 1% 5% 10% 20%
0% 99 (92) 100 (91) 99 (15) 96 (88) 65 (7)
1% 100 (89) 99 (91) 99 (87) 100 (72) 83 (1)
5% 100 (88) 100 (89) 98 (74) 100 (15) 27 (1)
10% 100 (75) 100 (87) 94 (12) 93 (9) 8 (1)
20% 83 (2) 70 (9) 64 (1) 21 (1) 1 (1)
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3.6 Conclusion

The localization algorithm proposed in this paper was found to provide robust reconstructions
of the nodes relative positions in the novel swarm-based mapping approach with the use of
non-unique communication identifiers. It uses a novel RANSAC method to obtain local
geometric consistency of neighbouring nodes for reconstruction. A realistic time-of-flight
noise model has been used, which includes imperfect knowledge of the speed and timing of
ranging pulses, as well as outlier noise in range measurements and communication identifiers.

Our work shows that depending on the noise levels and the geometric structure of the en-
vironment, there is a minimum amount of communication identifiers required for successful
reconstruction. This can in our case be as low as 2% of the amount of nodes in the swarm.
Under the specific constraints that we are investigating, increasing the amount of identifiers
above this minimum, or even using unique identification,

does not significantly improve localization. This relaxation aids the feasibility of sensor
swarm mapping using resource-limited sensor nodes.

This work currently only considers a static case in which nodes have enough energy to
perform a single distance measurement. When considering cases in which the nodes are
able to perform subsequent multiple measurement, additional analysis can be performed: e.g.
ambiguities can be filtered out better and the nodes distribution throughout the environment
can be less homogeneous; this is subject of future research.
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This paper extends the ‘go-with-the-flow’ method to explore enclosed environments, like
oil reservoirs, pipe lines that transport liquids, and industrial tanks for processing chemicals,
where sensing nodes cannot establish communication with the external world. Nonetheless,
large quantities of highly miniaturized, thus power-constrained sensor nodes are injected into
these environment and flow through them along with the medium, monitoring their environ-
ment but also reconstructing their time-varying position from mutual communication, but
without any communication to external base stations or beacons. The relative trajectories
of nodes yield essential insights of the fluid flow in the otherwise inaccessible environment.
We present a functional implementation of a ranging protocol accommodating size and en-
ergy constraints. Our simulation chain models node movement from different types of flow
dynamics. It comprehensively assesses not only the performance of the communication and
ranging protocols, but also of the reconstruction algorithm. Our assessments cover a wide
range of different environments and flow profiles, including highly dynamic ones.
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Figure 4.1: Prototype nodes from the Phoenix project that are developed for experimental
tests.

4.1 Introduction

Monitoring or exploring the state and conditions of enclosed environments is hard but of-
ten economically and environmentally important. The rising need for exploring enclosed
environments that are hardly accessible is seen in e.g. the optimization of transporting and
processing liquids and chemicals through pipelines and in industrial (mixing) tanks, and the
extraction and storage of valuable resources like oil and heat in underground channels and
formations like reservoirs and geothermal sources. These man-made or natural environments
have in common that they enclose a (semi-)liquid medium. Yet, due to the shielding of
metallic containment or surrounding ground layer(s) and the salinity of the liquid medium,
the interior can hardly or not at all be accessed by remote probing using e.g. electromagnetic
(EM) signals. So, communication to and from these environments is not feasible. Physi-
cal probing is only possible for a few of these environments but requires highly specialized
and expensive hardware [1–3]. Novel exploration methods for these environments that are
versatile and cheap enough are strongly desired.

In the search for new exploration methods we elaborate on the promising ‘go-with-the-
flow’ approach [4,5]. It is characterized by directly injecting large quantities of miniaturized
sensor nodes, i.e. a swarm of sensor nodes, into the flooded system, and let them go-with-the-
flow in order to penetrate the environment and to perform in situ measurements. Examples of
such nodes are shown in Fig. 4.1 and the operations schematically visualized in Fig. 4.2a.
The nodes store the measurements in their memory. Upon extraction of the nodes, their
stored measurements are read out using e.g. USB or NFC, and analyzed off-line where ample
computation power is available.

A crucial requirement is to obtain knowledge on the nodes’ positions during their tra-
jectory in the flow. Structural information about the environment can be extracted from this
and sensor measurements of relevant parameters (e.g. temperature, pressure, salinity) can be
visualized on a map as exemplified in Fig. 4.2b.

Obtaining positions from individual nodes in a swarm is not new. Recent studies also
show that this is feasible in a go-with-the-flow approach [6,7]. However, these previous stud-
ies relied on external localization hardware in the form of a distributed system of reference
points that has at least a one-directional communication channel available towards or from
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Figure 4.2: Overview of applications: a) insertion of large quantities of sensor nodes; nodes
go-with-the-flow of the medium and perform distance measurements using a ranging proto-
col and store their measurements in memory; upon extraction the data of the nodes is read
out for further analysis; b) the measured distances between nodes is used to reconstruct the
positions of the nodes relative to each other. The resulting shape of the swarm reveals struc-
tural information of the environment. The 3-D map can be used to visualize additional sensor
information.

Figure 4.3: Overview of the simulation chain: in a flow simulator, the environment and flow
profile determine the trajectory of the node positions after insertion; the new ranging proto-
col is then simulated on the dynamic swarm using a network simulator; the nodes distance
measurements are then used in a robust reconstruction algorithm to estimate their positions
relative to each other.
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nodes in the swarm. Cooperative localization, as e.g. described in [8], is an approach where
nodes only rely on neighboring nodes for reference. It is often used in robotics where one
can not rely on e.g. GPS or other beacon-based localization [6–10]. Even though these co-
operative localization methods become more energy and computation efficient, they are not
adapted to the stringent constraints and adverse conditions that characterize our go-with-the-
flow applications. The specific set of constraints in our applications is summarized below,
and elaborated further on in Sec. 4.2:

1. the size constraint posed by the environments results in limited hardware possibilities
(energy, processing, sensing);

2. the lack of external communication and reference points requires an autonomous and
cooperative approach for relative position determination;

3. the unknown and relatively fast movement of the nodes results in highly time-variant
acoustic communication channels between nodes.

This set of constraints necessitates a new ranging protocol and a robust reconstruction algo-
rithm. In this paper we present a functional example of such a ranging protocol and recon-
struction algorithm and explore the underlying design trade-offs. The distance measurements
between nodes are performed while going with the flow (on-line), the obtained data is ana-
lyzed after the nodes are retrieved (off-line) and node positions are reconstructed based on
the measured distances between them.

Our simulation chain that links all the different aspects together is shown in Fig. 4.3. It
consists of three parts:

• simulation of flow profiles and node trajectories through different environments;

• simulation of performing distance measurements in a network simulator, using the
ranging protocol;

• the algorithm that robustly reconstructs the relative node positions based on the dis-
tance measurements.

In this paper, we extend and incorporate our robust reconstruction algorithm that was
shown to be able to deal with highly corrupted distance measurements. In previous work
we tested the limits to how severely the distance measurements could be corrupted before
reconstruction fails [11–13]. The assumption was made that the nodes are static, i.e., the
distance measurements are instantaneous and modeled using a large set of different noise
types to account for a variety of imperfections in the measurements. To resolve this unrealistic
assumption we extend the simulation chain in [14] by including dynamic behavior of the
nodes. In this paper we distinguish and implement three classes of environments and flow
profiles to cover a wide range of possible realistic scenarios, as inspired by commonly used
models fluid dynamic modes [15].

It is an ongoing activity in the project (European Union’s Horizon 2020: Phoenix project)
to also confirm this by real-life tests, using nodes as in Fig. 4.1 [5, 16–18]. The goal of
this project is to develop sensor nodes to explore difficult-to-access environments, such as
the ones presented in this paper. The corner-stone of the approach in our project is the co-
evolution between experiments and simulations. Simulations like the one presented in this
paper provide insight in the trade-offs in hardware specifications and protocol implementa-
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tions on the final reconstruction performance. This guides the hardware development of the
nodes to perform the actual experiments.

This paper is structured as follows. In Sec. 4.2 we start off by describing the challenges in
our applications and why existing techniques cannot be used. These difficulties are translated
into specific design challenges for obtaining distance measurements through the ranging pro-
tocol in Sec. 4.3.1. Sec. 4.3.2 provides a functional example of the ranging protocol is our
attempt in tackling these challenges and allowing to make proper trade-offs between all pa-
rameters involved into getting the final measurement performance. In Sec. 4.4 the individual
aspects of the entire simulation chain are described. The result section, Sec. 4.5, shows the
metrics that we use to assess the performance of the ranging protocol and the final recon-
struction. The conclusion can be found in Sec. 4.6.

4.2 Application challenges

Measuring distances between autonomous sensor nodes and reconstructing their positions
(also called localization) based on these distances are well studied topics, e.g. [8–10]. The
work presented in this paper addresses the combination of stringent application challenges
that make existing work insufficient for our application.

4.2.1 Size and energy

While size and energy is a common theme in Internet of Things studies, our sensor nodes
need to be small enough to physically pass through the narrowest parts of the environment
(typically millimeters or centimeters). Similarly, the node weight needs to be small enough
to allow the nodes to move with the flow. In some applications the nodes even need to
be neutrally buoyant in the medium, reducing the weight limit further. While we do not
explicitly design nodes of a certain weight and size, in this paper we aim at restricting the
number of messages that are transmitted, received and analyzed, but also the number of bits
in these messages.

4.2.2 Enclosed environment

The environments targeted by this exploration approach are generally enclosed environments,
either due to a metal containment (e.g. a pipe) or due to being deep underground. Commu-
nication with the outside world is not feasible as the signals will be absorbed. Signals with
larger wavelengths experience less absorption but are less efficiently detected and produced
by the small nodes. Therefore, unlike in [6, 7], we cannot rely on techniques that use exter-
nal beacons or anchors (e.g. satellites or ultrasound beacons/receivers), to which the nodes
can relate to. The nodes can only see signals from neighboring nodes. Our solution solves
this by collecting ranging measurements between nodes during the travel and analyze these
afterwards, when the nodes are collected and data read-out.
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4.2.3 Required communication range

Depending on the typical dimensions of the environment, the size of the nodes and the spatial
distribution of the nodes, a required communication range of 1 meter appeared reasonable.

Using electromagnetic (EM) communication between nodes is not attractive, as (sub-
)centimeter node dimensions prohibit large antennas. Yet, at high frequencies suitable to be
used with small antenna’s, the liquid (and possible highly saline) media have huge attenua-
tion. This effectively prevents EM communication for distances larger than, say, a centimeter.
Using inductive communication such as near-field communication (NFC) is also limited to
the centimeter range in such environments [19]. The (liquid) media is also not guaranteed to
be clear enough for the use of (visible) light communication. Communication between the
nodes using ultrasound can be performed in these environments, and will be studied here.

4.2.4 Acoustic channel

The main challenge in underwater acoustic communication are the random and highly time-
variant channels [9]. This limits the quantity of data that can be send and the rate at which it
is transmitted to ensure packet reception. The ranging latency (defined as the time it takes to
finish a ranging transaction) should be small, to reduce the displacement of the nodes relative
to each other within this time. In some cases, nodes will move out of range before a ranging
transaction can be completed.

The goal of the localization is to obtain snapshots of the positions of the nodes relative
to each other. For an accurate representation of this snapshot, the ranging accuracy between
nodes need to be within 1-5% of the communication range, with a communication range of 1
meter, this is around 1-5 centimeter.. For the constellation of all relative positions of nodes to
be considered quasi-static, the nodes should not move more than this ranging accuracy before
all messages are exchanged. This limits the time frame, or the total latency, of the ranging
transactions to only 50-250 milliseconds, see Sec. 4.3.1.4.

The ultrasound frequencies that can be used in this application are limited to one or at
most a few hundreds of kHz. This is bounded on the lower side by the required ranging accu-
racy and on the upper side mainly by node size and (omni-) directionality requirement of the
transmission and reception. Since the nodes operate in a swarm and their positions relative
to each other is not known while measuring, their transmission and reception ability should
extend all directions. This limits the ultrasound wavelength to around the size of the trans-
ducer [20], which in turn is limited by the size of the node itself (millimeters to centimeters).
True omnidirectionallity cannot be achieved in practice, these non-ideal circumstances are
tested in our earlier work in [13].

In order for the localization method, presented in this paper and in [11,21], to reconstruct
an entire swarm of 100’s-1000’s of nodes, each node should have around 20 neighboring
nodes within their communication range. Finishing a complete ranging cycle of the swarm
within hundreds of milliseconds, considering the propagation time, processing time and the
limited ability to deal with signal collisions, limits the maximum message length to around
0.2 ms. Assuming a bandwidth of 50% leaves a maximum of around 10 bits per message.
This makes establishing stable and robust communication between the hundreds or thousands
of nodes a hard challenge.
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4.2.5 Random Channel Access

Every time that a message arrives, its phase/timing/synchronization needs to be established,
and compared to the most recent previous message of the same node. Typically, the channel
changes significantly between two messages. This requires a trade off between frequent
updates from the same node and messages being lost in packet time collision. Since no
elaborate signal separation algorithms can be run, colliding messages may result in the loss
of one or both messages.

4.3 Ranging protocol

This section describes the design challenges in Sec. 4.3.1, and describes our protocol to solve
these in Sec. 4.3.2.

4.3.1 Design challenges

Our protocol must efficiently use the communication channels, avoid overhead, identify
neighboring nodes, and reduce the ranging latency.

4.3.1.1 Reduction of transmitted messages

Since battery capacity and channel capacity are scarce resources in the miniaturized nodes,
the number of messages need to be restricted.

The concept of multi-way ranging (MWR), initially proposed in [22] as N-Way Time
Transfer, is adopted as the base of the protocol because of the significant reduction of mes-
sages needed to complete a full ranging cycle (i.e., to perform all possible distance mea-
surements). It exploits the fact that messages are also received by nodes other than the one
addressed in the packet. It utilizes the time-difference-of-arrival (TDOA) of messages to
help determine the distance between nodes within the communication radius. More common
methods such as two-way ranging (TWR) [23] only considers bi-directional communication
for determining the range and ignore messages received by nodes that are not the addressee.
Even though the quantity of messages received to estimate the distances is within the same
order of magnitude, the required number of messages sent in TWR scales quadratic with the
number of nodes, where in MWR this number only scales linearly with the number of nodes.

The MWR in existing literature, however, does not describe how to deal with sparse
connectivity in swarms as in our applications, and neither does it include a scanning phase
where the presence of neighbouring nodes can be checked. As the network topology is non-
static, it is also not known which neighboring nodes are within communication range. The
simple sequence of events in traditional MWR [22], where node i+1 transmits a ranging
signal after node i, cannot be easily controlled in these applications. To solve this issue, in
our protocol we use a master-slave system, as further described in Sec. 4.3.2.

Besides the energy required to transmit messages, signal overlap of the messages (colli-
sions) also requires a more elaborate signal processing to filter and distinguish signals, and
therefore also requires more energy. The system needs to trade off message quantity and
intervals with excessive collisions. The ranging protocol in Sec. 4.3.2 uses a time-divided
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communication/ranging scheme to reduce signal overlap without the use of an additional
component to check for channel occupancy.

4.3.1.2 Elimination of overhead

Due to our severely constrained system, we had to avoid explicit synchronization. Moreover
our packets do not carry information other than to allow the nodes to identify the sender and
addressee based on an identifier. This information is stored locally for off-line processing.

To gain efficiency we are not using a traditional mac-/network layer, as commonly used in
the OSI-model. We are not reattempting transmissions of messages lost in collisions or inhib-
ited because of a busy channel. Instead, any ‘retransmission’ carries new, fresh data for a new
ranging cycle. In fact, messages that are sent later than planned cannot be used to estimate
the distance using the T(D)OA information without further communication overhead.

The control of the entire ranging process should only depend on limited information that
is locally available to the nodes. Not (properly) receiving messages should not result in a
global failure of the measured distances, but be limited to local failures only.

4.3.1.3 Scanning

As it is not known which nodes are within communication range, most ranging protocols
initiate a separate scanning phase before the ranging phase. In this phase, nodes determine
which neighboring nodes are within communication range to determine which nodes to per-
form distance measurements to. Not only does such an additional scanning phase weigh in
the energy budget, it also faces all the similar challenges in data transfer as the ranging part.

In our protocol described in Sec. 4.3.2 we show that the scanning phase can be omitted and
the identification issue solved by addressing all possible nodes that are within communication
range by using a limited set of non-unique calling identifiers. In fact, this results in a trade-off
between ranging latency and channel occupancy, but we show that appropriate compromises
can be chosen that perform well in different scenarios.

4.3.1.4 Ranging latency

To make sure the movement of the nodes does not disturb the ranging measurement signifi-
cantly we are aiming for quasi-static snapshots of the positions of the nodes relative to each
other. This is only feasible when the ranging transactions are completed within a specific
time window. We call this time window the ranging latency and can quantify the maximum
allowed ranging latency based on the maximum allowed node displacement within a snap-
shot.

Table 4.1 shows the relationship between the ranging latency, the nodes relative velocity,
and the node displacement. These numbers are expressed in percentage of an average distance
of 0.67 meter1.

The maximum latency design goals can be set to e.g. 60 ms for node to node ranging
latency, and to e.g. 200 ms for the ranging latency of the entire swarm. When the relative

1This average is obtained for a communication radius of 1 meter and a uniform distribution of neighboring nodes
in the swarm.
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Table 4.1: Displacement of nodes relative to each other depending on their relative speed and
the duration of ranging transaction (latency). Expressed in percentage of average distance of
0.67 m.

latency
relative speed 10 ms 60 ms 200 ms

0.1 m/s 0.2% 0.9% 3%
0.2 m/s 0.3% 1.8% 6%
0.5 m/s 0.8% 4.5% 15%
1.0 m/s 1.5% 9% 30%

node velocities are ≤ 1 m/s, the average distance displacements due to latency are ≤ 9% and
≤ 30%, respectively.

4.3.1.5 Error model

The off-line reconstruction algorithm is robust to deal with failed ranging transactions be-
tween node pairs as shown in [13], as long as sufficient other ranging transactions did suc-
ceed. The priority of the ranging protocol is therefore that individual failures of ranging
transactions should not have a significant effect on the rest of the swarm.

The reconstruction algorithm is tested against a wide variety of possible ranging errors
(Gaussian noise, outlier noise, bit errors, etc.). However, the mentioned earlier work did not
study whether it can deal with potential systematic errors arising from the use of the used
ranging protocol. This is to be tested in the simulation of the entire chain in this work.

4.3.2 Protocol

Traditional MWR, as introduced in [22], consists of nodes that sequentially transmit a single
message to all (neighboring) nodes. A node with identifier 1 starts the procedure by transmit-
ting a message that contains his identifier, node n+1 then responds by transmitting a message
with his identifier to all (neighboring) nodes. When all messages and their local transmission
and reception times are collected (or transmitted to all other nodes), there is enough infor-
mation collected by all nodes to calculate the distances between all nodes when all of this
information is gathered in a central place. This specific method requires that all nodes are
within communication range of each other, and no single node or transmission is allowed to
fail. In our application, connectivity is sparse (i.e. not all nodes are within communication
range of each other) and it is unknown which nodes are within range. Therefore, this simple
sequence of events cannot be used.

In our work, the ranging procedure is controlled by pre-assigned master nodes that trans-
mit request (REQ) messages to their neighboring nodes. The REQ consists of the sender’s
identifier, as well as the receiver’s identifier. Nodes having received any REQ (even if they
are not the addressee) become slave nodes. The slave nodes that are called upon in the REQ,
respond to the master node with an acknowledgement (ACK) message. This ACK message
also consists of the sender’s and receiver’s identifier. The master node will address all neigh-
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Figure 4.4: One ranging cycle of master node A and slave nodes B and C. The master node
emits request (REQ) signals and slave nodes respond with and acknowledgement (ACK) sig-
nal if it is addressed to them. Knowledge of the nodes internal timing information tAroundAB ,
tAroundAC , tCABA and tBACA and the fixed and known value of the processing time Tproc is
sufficient to determine the propagation times Tp,AB , Tp,AC and Tp,BC between the nodes.
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Figure 4.5: Master node A initiates the ranging process to node B and C. The nodes within
communication range become slave node and respond to REQ signals with an ACK signal.
All nodes within the respective communication range receive the signals and store them: in
off-line analysis they can be used to determine round-trip TOF between nodes. The nodes
outside the cluster will only receive ACK signals. In this figure, not all signals (arrows) are
drawn.

boring nodes one by one. The communication scheme that is used is illustrated in Fig. 4.4.
The cluster of nodes that is formed by this master node and the slave nodes is illustrated in
Fig. 4.5.

In a ranging transaction where master node A requests an answer from node B, the times-
tamps of transmission of the REQ and reception of the ACK at node A provides knowledge
about the round-trip TOF between nodes A and B. Time-parameter tAroundAB indicates this
round-trip TOF between node A and B as measured by node A, plus the processing time and
the message duration. The node’s internal processing time Tproc and signal message time
Tmsg are known beforehand and are fixed (and equal for all nodes), therefore, the round-trip
propagation time between A and B can be estimated.

Tp,AB + Tp,BA = tAroundAB − Tproc − Tmsg (4.1)

where Tp,AB is the propagation time of a message from node A to B and is Tp,BA in opposite
direction. After this ranging transactions, master node A performs a similar transaction to
node C and to the other nodes within the cluster.

Because nodes B and C are also within each other’s communication range, node C re-
ceives the ranging signals between nodes A and B; and node B receives the ranging signals
between nodes A and C. The time difference tCABA between the arrival of REQ(A,B) and
ACK(B,A) at node C and the time difference tBACA between the arrival of REQ(A,C) and
ACK(C,A) at node B, can be used to calculate the propagation time between nodes B and C
using:

Tp,BC + Tp,CB = tCABA + tBACA − 2(Tproc + Tmsg) (4.2)
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Note that not all nodes within the cluster are within each others communication range.

In the following sections, we will discuss how the master nodes are assigned; how the
neighboring nodes are called upon, even though there is a lack of knowledge on which nodes
are within communication range; how we attempt to reduce the latency; and how we deal
with de-synchronization between nodes. The reader is referred to our earlier work Ref. [14]
for more details on the protocol.

4.3.2.1 Picking the master node

The role of master node alternates among all nodes in the network. The advantage of this is
that the power consumption is distributed evenly over all nodes (master nodes transmit more
signals).

Within the time frame Tsample of one sample, in which a complete ranging cycle is com-
pleted for all nodes, the role of master node is chosen randomly. This is performed by letting
all nodes chose a random delay time TD at the beginning of a sample. Nodes become master
when their sample timer ts, that is set to zero at the beginning of a sample, exceeds ts > TD.
A node becomes slave node if it receives any REQ signal from a master node before their own
sample time reaches its TD. The master node initiates the ranging transactions as described
above, thereby forming a cluster of nodes as in Fig. 4.5.

Throughout the entire network, several of these clusters are formed in which ranging
transactions are performed. Every sample, these clusters change based on which nodes have
become master node. Overlap between these clusters is needed to reconstruct the entire
swarm instead of the individual clusters.

4.3.2.2 Calling the slave nodes

Within one ranging cycle, the master node sends a request to all slave nodes in the cluster, but
it is not known beforehand which nodes are within communication range. Regular scanning
techniques depend on the availability of sufficient bandwidth, processing power or time to
perform broadcasting.

In this work, we propose that the master node initiates the ranging transactions to all
possible hardware addresses. But as the total number of nodes in the network can be very
large and the connections are sparse, this will be very inefficient as most requests remain
unanswered. Instead of requesting to the hardware’s unique identifiers (UID) the master node
requests to highly abbreviated calling identifiers (CID). The master node only initiates nf
times a ranging transaction to CID = {0, 1, ..., nf -1}. Slave nodes will respond if and only if
their unique hardware identifier satisfies

mod(UID, nf ) = CID. (4.3)

As multiple nodes will have identical CIDs, the probability arises that multiple nodes
will respond to the same request. If the ACKs of the responding slave nodes do not overlap
such that the signals cannot be distinguished and decoded anymore at the receiving node, the
determination of the round-trip TOF of each of them can still be performed. Parameter nf
can be chosen both off-line as on-line to adjust for the amount of neighboring nodes and the
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Figure 4.6: Subdivision of sample in three parts: awaiting, active and silent. Each sample,
the start delay that determines when to become master is randomly chosen within the active
period (drawn from a uniform distribution)..

total signal overlap. In fact, since we do not actively resolve collisions via retransmissions,
an optimization for ‘first time right’ appears relevant .

After transmission of a REQ, the master node waits Twait = 2Tp,max + Tproc + Tmsg before
it proceeds with the request for the following CID. Here, Tp,max accounts for the propagation
time required to reach the end of the (expected) communication range. This is to allow the
reception of all possible ACKs within the (expected) communication radius.

After all ranging transactions have been performed, the nodes will go into a low-energy
sleep mode to await the start of the next sample. In this period until awakening, the node will
not be active. The node will wake up and start a new sample when the node’s internal sample
timer reaches ts > Tsample.

4.3.2.3 Synchronization

Absolute synchronization is not required as all distances are obtained using direct or indirect
round-trip TOF measurement. It is however beneficial to have nodes synchronized to a level
in which samples are aligned such that the avalanche effect introduced in Sec. 4.3.2.4 allows
nodes to sleep for the majority of the sample time instead of responding to nodes that are in
a previous or next sample.

In order for connected nodes to remain in the same sample, we proposed to subdivide a
sample on the node level into time-slots as illustrated in Fig. 4.6. The random delay time to
become master node is chosen from a uniform distribution within the range TD ∈ (Tstart, Tend)
or the active time period. The internal sample timer ts is reset to ts = Tstart when becoming
master; or, at reception of the first signal (any REQ or ACK) in the sample, as illustrated in
Fig. 4.7. This will assure that connected nodes remain synchronized to the sample level, as
long as (groups of) nodes have not been disconnected from each other. In the awaiting period
nodes do not become master and can only receive signals. In the silent period, nodes have
already received their first signal or already became master node. In our work, the three time
periods are chosen to be of equal length. It appeared effective to simply choose the three time
periods to be of equal length, i.e. Tstart = 1

3Tsample and Tend = 2
3Tsample. The total sample

time can be chosen based on the requested frequency of a complete ranging cycle and/or on
the available energy and storage available during their passages in the environment.
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Figure 4.7: Upon first reception of signal in the node’s sample, or, upon becoming master
node, the sample timer ts is reset to ts = Tstart.

4.3.2.4 Reducing the latency

As seen in Fig. 4.5, a node just outside the communication range of the master node does not
become slave node and would have to wait till either another a node within its communication
range becomes master or till it becomes a master node itself. To avoid excessive latency in
forming master slave combinations, we introduce a dynamic reduction of the delay time TD
for any node just outside existing clusters. In fact, we exploit the insight that if a node does
receive an ACK signals without having received the initiating REQ signals, it is very likely
to be just outside an already formed cluster. Their remaining delay time before they become
master node is reduced by a factor Mavalanche at the reception of any ACK signal. In order to
prevent multiple nodes just outside the cluster to become master node around the same time,
the reduction of TD is limited to CID ·Twait, that is, we intentionally let it depend on the node’s
CID, as this reduces the chances of having clusters with multiple master nodes.

4.4 Simulation chain

We simulate the system using the chain illustrated in Fig. 4.3. Three different environments
and flow patterns are constructed to represent a broad variety of environments and to ob-
tain typical node trajectories, as we elaborate in Sec. 4.4.1. While traversing the environ-
ment, nodes perform distance measurements between each other using a ranging protocol.
This is discussed in Sec. 4.4.2, presenting the network simulator. Node positions are then
reconstructed based on these distance measurements using the reconstruction algorithm of
Sec. 4.4.3.

4.4.1 Trajectory of nodes

After insertion of the nodes in the environment, the nodes will go-with-the-flow of the liquid
medium and traverse the environment. In order to obtain the nodes’ trajectory, the nodes’
movement throughout the environment is simulated. These simulations consider the nodes to
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Figure 4.8: Different environments and fluid speed profiles used for the simulations. Each
environment is scaled such that each node has on average 20 neighbouring nodes. Relative
speed is calculated between nodes within communication radius.
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be infinitely small and neutrally buoyant, in fact, they are numerical approximations of tracer
particles that move with the flow. Three entirely different scenarios are chosen to account for
the wide variety of dynamics that are present in different applications. These are illustrated
in Fig. 4.8:

1. an idealized laminar flow profile in a 3-D pipe.

2. ‘realistic’ turbulent flow in a 2.5-D tank-like environment.

3. random node movement in a 3-D spherical environment.

In order to still be able to compare the environments, they are scaled such that in all scenarios,
the instantaneous average node velocity is equal to 1 m/s and that if the communication radius
is set to 1 meter, the average number of neighboring nodes within communication range is 20
in all scenarios. Each scenario is generated with N = 200 nodes and all nodes are initially
uniformly distributed within the environment.

In scenario 1, representing a straight pipe-section, the flow of the medium is approximated
by a perfect laminar flow profile. The nodes experience a velocity similar to that of the flow.
Due to the above-mentioned uniform scaling between scenarios, the pipe has a diameter of
close to 2 meter. Even though in practice a pipe with this diameter will not yield a perfect
laminar flow with water-like liquids, the scenario of a laminar flow is still relevant, not only
as a limiting, extreme case but it also approximates commonly experienced situations.

The tank scenario 2 is generated using a 2-D computational fluid dynamics (CFD) sim-
ulator (Java-based) with predefined boundary conditions, similar to what we presented in
Ref. [14]. We modeled one inlet and one outlet for the flow. A third dimension is added by
uniformly assigning a (vertical) z-position but keeping the z-velocity zero. The tank dimen-
sions (without inlet) are 6× 5× 0.7 meter (x,y,z).

The sphere scenario 3 is generated entirely differently, to widen the variety of environ-
ments. Nodes move randomly in a sphere of 4 meters in diameter. To express a random walk,
the course direction and the node velocity is changed at random from a uniform distribution
every 60 ms. A smooth path is obtained by drawing a spline through the course points. These
dynamics are inspired by collision on a molecular level.

The different scenarios give rise to different velocity distributions, typical examples are
also shown in Fig. 4.8. The relative velocities are taken only from the nodes that are within
communication range of each other.

For scenario 1 and 3, a total of 10 different datasets are generated for different iterations
of the simulations, each with different randomly drawn values.

4.4.2 Distance measurements

The protocol of distance measurements between the dynamic nodes is simulated in network
simulator OMNeT++ [25, 26]. The ranging protocol is translated into a simple sequence of
events for each individual node such that they can operate autonomously, using only their
internal clock and acting upon input received from neighboring nodes.

The ranging protocol described in Sec. 4.3.2 was coded into the network simulator envi-
ronment. It takes as input the nodes positions over time that are simulated as described in
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Sec. 4.4.1. Furthermore, additional parameters that are used by the ranging protocol can be
adjusted like the communication distance, bit rate of transmission, and timing parameters.

For the simulations in this paper, the communication range is set to a fixed 1 meter, result-
ing in an average node density of 20 neighboring nodes within the communication range. The
maximum clock frequency deviation of the nodes is set to 100 ppm. The actual frequency
deviation is different for each node and is kept fixed throughout the simulation. At the start of
the simulation, the internal clock of the nodes have a random absolute offset from a uniform
distribution between 0 and 0.1 seconds.

The sample time is set to Tsample = 1 sec and we considered a number of calling identifier
codes (CIDs) of nf = 25 = 32 (5 bits).

The ultrasound transmission rate is set to 40 kbit/sec and nodes have a fixed 1 ms process-
ing time for receiving and decoding signals. The avalanche induction is set to Mavalanche = 4.
The parameters nf and Mavalanche are chosen for a reasonable trade-off in ranging latency and
signal overlap. The reader is referred to [14] for a more thorough analysis on these parame-
ters.

Additional noise other than the protocol specific ones are not included in this study as the
focus is on the ‘noise’ introduced using this protocol.

The network simulator creates for each node in the network a datafile in which the trans-
mitted and received signals are stored together with the corresponding timestamps. The sig-
nals consist of the identifier of the sender and the identifier of the addressee, as well as the
type of signal (REQ or ACK). This data output is similar to what each node would individu-
ally store in its own memory while performing the ranging protocol.

4.4.3 Reconstruction of node positions

Using the stored measurements from the nodes and Eqn. 4.1 and Eqn. 4.2, one can estimate
the distances between the nodes within a cluster, as explained in Sec. 4.3.2.

However, the obtained distances are sparse, as only the distances between nodes within a
cluster can be obtained. Furthermore, the sparse distances are potentially measured multiple
times as each node pair can be part of more than one cluster. The multiple measurements are
taken at different times, and therefore are based on a different actual distances. This adds a
significant challenge to the reconstruction algorithm as it is not defined which measurement
to use and which measured distance is most correct.

In [11–13], we developed a reconstruction algorithm for range-only distance measure-
ments and studied the effect on a large set of possible types of noise, including multiple
measured distances between the same node pair. The reconstruction algorithm is schemat-
ically visualized in Fig. 4.9. The algorithm uses a guided Random Sampling Consensus
(guided-RANSAC) approach to robustly filter out the outlier measurements and based on the
geometric consistency of the neighboring nodes, can choose the measurement that is most
likely to be the correct one. The nodes positions and the measured distances can be seen as a
graph, and can incrementally be constructed as shown in Fig. 4.10. An initial estimate for the
nodes positions is constructed which is then optimized using a non-linear graph-optimization
algorithm.
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Figure 4.9: Simplified diagram of reconstruction algorithm that takes as input the node mea-
surements and through an iterative RANSAC and non-linear optimization phases it estimates
the nodes positions [11–13].
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Figure 4.10: Reconstruction of the nodes in the swarm, seen as a graph growing problem.
For each node that knows the distances to at least four already reconstructed nodes, a position
is estimated using multi-lateration. The first four positions are chosen such that the frame of
reference ({x, y, z}-axes) is defined. A larger amount of distances to neighboring nodes
allows to filters out noisy measurements and outliers, therewith improving the estimation.

This reconstruction algorithm considers the distance dataset as a static snapshot of the
distances between nodes. From the dynamically generated data, the reconstruction algorithm
will attempt to make a static reconstruction of the nodes positions. The difference between
the actual (dynamic) distance and the effect the ranging protocol has on the measured distance
with respect to this static reconstruction will be considered as noise to the ‘ground truth’ static
snapshot of the nodes positions.

4.5 Performance Evaluation

Performance metrics are calculated for both the ranging between and the reconstruction of
the nodes as also used in [12] and [13].

4.5.1 Ranging protocol

The latency of the ranging protocol is a measure to study the time differences between dif-
ferent ranging transactions. The maximum latency indicates the time difference between fin-
ishing the first and the last ranging transaction in a sample. The average latency is calculated
between all individual node pairs that were within communication radius.

In the ranging protocol, the master-slave distance measurements can effectively be seen
as round-trip TOF measurements, the error introduced here due to the node movement is only
affecting the measurement for the total round-trip TOF time-interval between the master and
slave nodes, which in our case is Twait < 3ms. The majority of distances, however, are deter-
mined using indirect slave-slave transactions. These indirect round-trip TOF measurements
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Table 4.2: Performance metrics of reconstruction.
pipe tank sphere

recallX 89 % 78 % 86 %
recall Y 88 % 65 % 85 %
recall Z 88 % 55 % 85 %

MS absolute error (m2) 8.0e-2 1.5e-1 6.1e-3
MS relative error 1.2e-3 9.2e-3 3.0e-4

global error 6.1e-3 7.6e-2 6.8e-4
local error 2.6e-3 2.6e-2 5.4e-4

average latency (ms) 65±45 58±39 64±46
max latency (ms) 255 205 269

coverageprotocol 76 % 73 % 75 %
coveragereconstruction 63 % 65 % 65 %

within a cluster are performed over a much larger time interval, on average 2nfTwait/3, which
in these experiments is 46 ms. The effect of the slave-slave movement on the measured dis-
tance is therefore much larger than in the master-slave distance measurement. The ranging
latency of the entire ranging cycle is much larger. Resulting in an even larger displacement
of the nodes on different sides of the swarm.

The coverage is defined as the fraction of the node pairs that are within each others com-
munication range that have successfully established either a distance measurement (in the
protocol phase) or a reconstructed distance (in the reconstruction phase). Since only dis-
tances can be calculated between nodes that are within the same cluster, the coverage will be
lower than 100%. Also, the reconstructed coverage cannot exceed the ranging coverage.

4.5.2 Reconstruction metrics

To express and compare the performance of swarm operations like ours, there is not yet a
commonly used metric to assess the performance of reconstructing a swarm of nodes. It
highly depends on what information is desired from such a swarm. The more conventional
metrics like recall and absolute errors do not suffice for our applications. When exploring
a yet unknown and difficult-to-access environment, initially one might want to identify the
overall structure of the environment: this includes a rough estimation of the local geometry
and the overall shape of the total environment. Later, after adding additional sensor informa-
tion, the fine-grained local geometry typically becomes more relevant as the absolute error
over the entire swarm is less relevant. In fact, in the next sections, we address a variety of
performance metrics, introduced in [13], that quantify different objectives.
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Figure 4.11: Reconstruction of node positions (red crosses) and ground truth positions (blue
circles). Below, the relative (distance) errors involved in the simulation chain: the expected
error is based on the relative speed distribution and the average latency, the protocol error
is from the distance measurements after the ranging protocol, and the reconstructed error is
after the node positions are reconstructed.

4.5.2.1 Absolute error

The absolute error is the mean squared absolute distance error of the reconstructed nodes
positions relative to their ground truth positions. It is calculated as Eabs =

∑
|̂s− s̄|2/N , the

sum over allN nodes where ŝ is the reconstructed positions of the node and s̄ its ground truth
position. In order to compare ground truth positions with reconstructed positions, a linear fit
between the 3-D positions of the initial four nodes and their true positions is performed to
solve the general rotation and reflection ambiguity.

4.5.2.2 Relative error

The relative error is the mean squared relative error of the reconstructed distances between
nodes, relative to the ground truth distances. It is calculated as Erel =

∑
|d̂ − d̄|2/M ,

the sum over all M reconstructed distances, where d̂ is the reconstructed distance and d̄ the
ground truth distance.

4.5.2.3 Global error

The global error Eglob is calculated similar as Eabs, but after a rigid transformation of the
entire reconstructed swarm (rotation and displacement) such that Eabs is minimized.

4.5.2.4 Local error

The local error Eloc is calculated as mean squared absolute error of subsections of 20 con-
nected nodes after rigid transform of only those 20 nodes with their ground truth. This is
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performed over the entire swarm.

4.5.2.5 Recall

The recall,X, is the percentage of nodes reconstructed by the reconstruction algorithm. The
adjusted recallY and Z are the percentages of nodes that are reconstructed within a specified
error condition. For Y, this condition is met if at least 80% of the node’s reconstructed
distances have a relative error <10%; or when more than 50% of the nodes reconstructed
distances have a relative error of <1%. The adjusted recall Z is similar to Y, but includes
that the neighboring nodes to which the relative error suffices this condition, should also fall
in the category of Y.

4.5.3 Simulation Results

The reconstruction performance metrics, as well as some of the output metrics of the rang-
ing protocol are summarized in Table 4.2. All indicated metrics are median values of the
iterations performed in similar scenarios. From each of the three scenarios, one of the recon-
structions is shown in Fig. 4.11, together with the relative distance errors involved.

For all of the three scenarios, the majority of nodes are successfully reconstructed (recall
X between 78% and 89%). This indicates that reconstruction based on the distance measure-
ments from this ranging protocol is feasible.

The errors that are introduced are mainly due to the fact that the node measurements are
performed when the nodes are non-static and the ranging procedure is not instantaneous.

The boxplots in Fig. 4.11 indicate the relative distance errors that are introduced through-
out the entire process. The expected average distance error is calculated based on only the
nodes’ relative speed distribution as seen in Fig. 4.8 and the average latency within one clus-
ter of nodes (46 ms). The protocol distance errors are the errors in the distance measurements
of the ranging protocol compared to the ground truth. For the ground truth comparison, a
snapshot of the actual positions are taken at a time halfway the ranging procedure. The re-
constructed error indicate the relative distance errors between the reconstructed positions.
Only the distances between the specific node pairs that actually aided in the reconstruction
process (the RANSAC agreeing voters) are considered.

As seen in Table 4.2, throughout all simulations, the protocol coverage was between 73%-
76% meaning that this fraction of nodes could successfully determine a distance between each
other in the protocol phase. And the reconstructed coverage was between 63%-65%, meaning
that on average, the reconstructed nodes are reconstructed based on distance measurements
to 63%-65% of the neighbors within communication range, the other fraction is either not
measured due to the protocol or not agreeing in the RANSAC voting process.

4.6 Conclusion

We have proposed and evaluated a solution for reconstructing the relative and absolute po-
sitions of a large quantity of miniaturized nodes in a go-with-the-flow exploration approach
in enclosed environments. Our robust reconstruction solution relies only on communication
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between nodes in the neighborhood of each other. It appears feasible for a non-static node
swarm to estimate the positions and trajectory of the nodes. This is a step forward in creating
miniaturized nodes that are to be used in difficult-to-access environments for obtaining a map
of the nodes positions and sensing the interior of enclosed environments.

Our simulation chain illustrates that reconstruction algorithms can be used even if these
rely on the assumption that the nodes are (quasi) static. The motion of nodes during a mea-
surement cycle introduces an error, say, measurement noise, that with a proper system design
can be small compared to dominant other types of noise experienced during the ranging pro-
cedure.

Future work includes dealing with the issues related to signal processing and overlap,
as well as experiment with real hardware to test ranging accuracy. The verification of the
protocol performance in experiments is foreseen as a future step in the EU Phoenix project.
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Cooperative localization in wireless sensor networks (WSN) is used in applications where
individual sensor nodes cannot determine their location based on external contact, like e.g.
GPS. The applications we focus on are the exploration and mapping of flooded cavities that
are otherwise inaccessible or difficult-to-access, e.g. underground (oil-) reservoirs or indus-
trial tanks for e.g. mixing. High levels of miniaturization are required for the nodes to traverse
these cavities; nodes will have to be stripped down to a bare minimum. Ultrasound time-of-
flight is used as radio communication is infeasible. Network topology is highly unpredictable
and fast changing.

We present an asymmetric multi-way ranging protocol for these highly resource-limited,
miniaturized, autonomous nodes. The specific set of constraints imposed by these applica-
tions, like the use of ultrasound, high latency, low data-rates, and non-static network topology
is far-reaching and has not been studied before. Simulations of the protocol show trade-off’s
that can be made between ranging latency, signal overlap and overall energy budget.
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Figure 5.1: Swarm of exploring sensor nodes forming a network within an enclosed environ-
ment. Nodes perform ranging transactions to neighbouring nodes within their communication
range for localization and further analysis offline.

5.1 Introduction

Underground cavities like (oil-)reservoirs, mines and geothermal sources, and industrial in-
frastructure like, pipelines, mixing tanks and reactors are systems which have in common that
they are hard to access for in situ measurements of system structure, dynamics, conditions
and integrity. A straight forward approach which has been proposed and investigated in [1,2]
is based on directly injecting large quantities of miniaturized sensor systems (‘sensor motes’)
into the flooded system1, let them go-with-the-flow in order to penetrate and to explore the
system as visualized in Fig. 5.1.

For these sensor nodes to pass through the environment and explore it without disturb-
ing it or interfering with the dynamics, the nodes need to be scaled down to the centime-
ter or millimeter scale, depending on the application. This highly limits the resources, like
energy, processing and memory, that can be taken on board the nodes. Furthermore, anten-
nas with those dimensions will only efficiently produce radio signals with wavelengths that
have an extreme high attenuation in the liquids in these environments, effectively blocking
all radio communication. However, ultrasound transducers at these scales do provide larger
communication ranges in these environments, but yields other problems for stable and fast
communication between dynamic nodes in enclosed environments [3]. Instead of relying on
communication of data, measured data is stored in memory and made available for offline
analysis after retrieving the nodes from the environment.

A crucial requirement is to obtain knowledge of the positions of the nodes while travers-
ing the environment. Structural information can be extracted from this and sensor measure-
ment of relevant parameters (e.g. temperature, pressure, salinity) can be visualized on a map.
However, during operations, neither a distributed system of anchor points nor external bea-
cons will be available. The concept of cooperative localization [4] can be used; nodes perform
measurements like time-of-flight (TOF), angle-or-arrival (AOA) or received signal strength
(RSS), to gain knowledge about the position of nodes relative to neighbouring nodes within

1In this paper, mote and node will be used interchangeably, as well as system and environment
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communication range. This paper introduces a ranging protocol to determine distances be-
tween nodes using round-trip TOF that can be used for localization algorithms like in [5–7],
but under the specific constraints that are found in these applications.

Besides the limitation on the nodes resources, localization is further hindered by the fact
that network topology – the nodes’ positions and their (sparse) connectivity to neighbouring
nodes – is non-static and highly unpredictable. As it is not known where neighbouring nodes
are positioned, omni-directional ultrasound is used for ranging measurements. This can be
achieved using e.g. tube-shaped transducers as in [8].

Ultrasound is often used for ranging applications as the propagation speed is 105 times
lower than that of radio, therefore allowing for larger timing errors. However, the low prop-
agation speed in combination with the significantly lower data transmission rates (typically
2-40 kbits/sec or even lower in more challenging environments), introduces challenges that
are less often seen in radio communication [3]. Latency in the ranging transactions makes that
the movement of the nodes becomes significant in the distance determination. The low data-
rates, in combination with the enclosed environment and non-static topology makes signal
overlap a significant hinder.

In this paper we present a novel asymmetric multi-way ranging protocol, in which trade-
offs are made between the energy budget, the ranging latency and the signal overlap to op-
timally use the on board resources for obtaining nodes positions in offline analysis for the
above mentioned applications. Depending on the application or the state that nodes are in,
these trade-off’s can be adjusted to address the specific situation as good as possible.

The specific challenges in developing the ranging protocol for these applications are ad-
dressed in Sec. 5.2. In Sec. 5.3 the design of a ranging protocol is described that attempts
to balance between all the parameters involved. In order to assess the suitability of the pro-
tocol for these applications, the protocol is simulated in a network simulator as described
in Sec. 5.4. Important performance metrics that assess the specific goals are shown in the
results section Sec. 5.5. Discussion and future work can be found in Sec. 5.6, the conclusion
in Sec. 5.7.

5.2 Protocol design challenges

Traditional ranging protocols consist of three phases: a scanning phase, a ranging phase and
a reporting phase [9]. In this paper, an attempt is being made to maximally reduce energy
costs of ranging in the specific application cases described above.

Reporting of ranging measurements to neighbouring nodes is not performed as this would
require extra node resources and data communication is challenging in this applications.
Nodes only store measurements in their own memory.

The ranging-phase can be performed in a variety of methods. We chose for the concept
of multi-way ranging (MWR), initially proposed in [10] as N-Way Time Transfer. It exploits
the omnidirectional transmission and reception by using all received signals for determin-
ing distances between nodes, rather than only the signal between sender and one addressed
receiver in e.g. two-way ranging (TWR) methods [11]. Therefore, the total amount of mes-
sages needed to complete a full ranging cycle using MWR scales linearly with the number of
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nodes, instead of quadratically in TWR methods. It significantly reduces the energy required
for performing the ranging procedure.

5.2.0.1 Control of ranging sequence.

As the network topology is non-static and connectivity sparse and fast-changing, it is not
known which neighbouring nodes are within communication range. The simple sequence
of events in traditional MWR [10], where node i+1 transmits a ranging signal after node
i, cannot be easily controlled in these applications. An alternative method is proposed in
Sec. 5.3 using a master-slave system.

5.2.0.2 Ranging latency.

The ranging latency of a single ranging transaction takes up to 3 ms when nodes are 1 meter
apart (twice the propagation time, the message length and the processing time). A full ranging
cycle within a large swarm, with all its individual ranging transactions, can easily take 100
ms. Depending on the movement of the nodes, a large latency significantly challenges the
localization algorithm as the measured inter-node distances cannot be considered quasi-static.
The latency should therefore be kept as low as possible.

Furthermore, from an energy perspective it is beneficial to reduce latency such that nodes
are longer in a low-energy sleep state instead of an active listening/decoding state.

5.2.0.3 Signal overlap.

The low data-rates in combination with small inter-node distances in enclosed environments
cause a significant amount of potential signal overlap. Signal overlap should be prevented as
much as possible as it requires more energy and processing to filter and distinguish signals.
The ranging protocol in Sec. 5.3 uses a time-divided communication scheme for determina-
tion of the distances to allow for reduction of signal overlap. The amount of bits transmitted
should also be kept at a minimum to keep the message length as short as possible to reduce
signal overlap.

5.2.0.4 Scanning phase.

As it is not known which nodes are within communication range, often in ranging protocols, a
separate scanning phase is initiated before the ranging phase. In this phase, nodes determine
which neighbouring nodes are within communication range to determine which nodes to
perform ranging measurements to.

Such an additional scanning phase adds to the energy budget. In this paper, the scanning
phase is omitted and solved by addressing all nodes by a non-unique calling identifier. It
causes a trade-off between ranging latency and signal overlap.

5.3 Protocol

This section introduces a modified version of the regular multi-way ranging protocol to deal
with the specific limitations in the usage of ultrasound in a non-static network topology with
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Figure 5.2: One ranging cycle of master node A and slave nodes B and C. The master node
transmits request (REQ) signals and slave nodes respond with and acknowledgement (ACK)
signal if it is addressed to them. Knowledge of timing information tAroundAB , tAroundAC ,
tCABA and tBACA and the fixed value of the processing time Tproc is sufficient to determine the
propagation times Tp,AB , Tp,AC and Tp,BC between the nodes.

highly resource-limited nodes. It will also address the challenge of finding proper trade-off’s
between e.g. ranging latency and signal overlap. It is important to notice that these trade-off’s
can be adjusted based on the specific environments or the specific situation that nodes are in.

5.3.1 Asymmetric multi-way ranging

Instead of traditional, ‘symmetric’, MWR as introduced in [10], here the ranging procedure
is controlled by master nodes that send request (REQ) signals to its neighbouring nodes
that then become slave nodes and respond with an acknowledgement (ACK) signal. The
communication scheme that is used is illustrated in Fig. 5.2. The cluster of nodes that is
formed by this master node and the slave nodes is illustrated in Fig. 5.3.

In a ranging transaction between master node A and slave node B, the timestamps of
transmission and reception at node A provides knowledge about the round-trip TOF between
nodes A and B, denoted as tAroundAB . The node’s internal processing time Tproc and signal
message time Tmsg are known beforehand and are fixed, therefore, the round-trip propagation
time, Tp,AB + Tp,BA, between A and B can be estimated. After this ranging transactions,
master node A performs a similar transaction to node C and the other nodes within the cluster.

Since the nodes A, B and C are within each others communication range, also the nodes
that are not addressed in the ranging transactions receive the signals. The time difference
tCABA between the arrival of REQ(A,B) and ACK(B,A) at node C and the time difference
tBACA between the arrival of REQ(A,C) and ACK(C,A) at node B, can be used to calculate
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Figure 5.3: Master node A initiates the ranging process to node B and C. The nodes within
communication range become slave node and respond to REQ signals with an ACK signal.
All nodes within the respective communication range receive the signals and store them: in
offline analysis they can be used to determine round-trip TOF between nodes. The nodes
outside the cluster will only receive ACK signals. In this figure, not all signals (arrows) are
drawn.
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the propagation time between nodes B and C using:

Tp,BC + Tp,CB = tCABA + tBACA − 2(Tproc + Tmsg) (5.1)

5.3.2 Picking the master node
The role of master node is being alternated between all nodes in the network. The advan-
tage of this is that the power consumption is distributed evenly over all nodes (master nodes
transmit more signals) and clusters are more distributed over the swarm.

Within the time frame of one sample Tsample, in which a complete ranging cycle is com-
pleted for all nodes, the role of master node is chosen randomly. This is performed by having
all nodes at the beginning of a sample chose a random delay time TD. Nodes become mas-
ter when their sample timer ts, that is set to zero at the beginning of a sample, trespasses
ts > TD. Nodes become slave node when before ts reaches TD, it receives any REQ signal
from a master node. The master node initiates the ranging transactions as described above,
thereby forming a cluster of nodes as in Fig. 5.3.

As seen in Fig. 5.1, throughout the entire network, several of these clusters are formed
in which ranging transactions are performed. Every sample, these clusters change based on
which nodes have become master node.

5.3.3 Scanning the slave nodes
Within one ranging cycle, the master node should send a request to all slave nodes in the
cluster, but it is beforehand not known which nodes are within communication range. Regular
scanning techniques depend on the availability of sufficient bandwidth, processing power or
time to perform broadcasting.

In this work we propose for the master node to initiate the ranging transactions to all
possible hardware addresses. But as the total amount of nodes in the network can be very
large and the connections are sparse, this will be very inefficient as most requests remain
unanswered. Instead of requesting to the hardware’s unique identifiers (UID) the master node
requests to highly abbreviated calling identifiers (CID). The master node only initiates nf
times a ranging transaction to CID = {0, 1, ..., nf -1}. Slave nodes will respond if and only if
their unique hardware identifier suffices

mod(UID, nf ) = CID (5.2)

As multiple nodes will have an identical CID, the probability arises that multiple nodes
will respond to the same request. If the ACKs of the responding slave nodes do not overlap
such that the signals cannot be distinguished and decoded anymore at the receiving node, the
determination of the round-trip TOF of each of them can still be performed. Parameter nf
can be chosen both offline as online to adjust for the amount of neighbouring nodes and the
total signal overlap.

In order to receive all possible ACK’s, the master node will wait Twait = 2Tp,max +Tproc +
Tmsg after transmission of a REQ before it sends a request with a next CID. Here, Tp,max
accounts for the propagation time required to reach the end of the (expected) communication
range.
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After all ranging transactions have been performed, the nodes will go into a low-energy
sleep mode to await the start of the next sample. When ts > Tsample, nodes will internally
initiate a new sample. The sample is initiated in a sleep mode and nodes will wake up upon
reception of any signal (using e.g. a threshold detection). It then starts a listening mode in
which it can decode incoming signals. Before a master node starts with the first CID, it can
transmit a short signal to wake up the neighbouring nodes.

5.3.4 Reducing the latency

As seen in Fig. 5.3, the nodes just outside the communication range of the master node do
not become slave node and will have to wait for itself to become master node, or will have to
wait for a node within its communication range to become one.

In order to speed up this process and have the network-wide ranging cycle end sooner, an
avalanche effect is induced. Nodes that receive ACK signals without having received REQ
signals are likely to be just outside an already formed cluster. Their remaining delay time
before they become master node is reduced by a factor Mavalanche at the reception of any ACK
signal until they become master or slave.

This reduction of the delay time TD induces an avalanche effect throughout the network
such that all nodes become either master or slave within less time after each other, therewith,
reducing the ranging latency throughout the network.

5.3.5 Synchronization

Absolute synchronization is not required for determining distances as all distances are ob-
tained using a round-trip TOF measurement. It is however beneficial to have nodes synchro-
nized to a level in which samples are aligned such that the avalanche effect introduced in
Sec. 5.3.4 allows nodes to sleep for the majority of the sample time instead of responding to
nodes that are still in the previous or already in the next sample.

For this reason, in order for connected nodes to remain in the same sample, it is proposed
to subdivide a sample on the node level into timeslots as illustrated in Fig. 5.4.a. The random
delay time is chosen from a uniform distribution within the range TD ∈ (Tstart, Tend) or the
active time period. The internal sample timer ts is reset to ts = Tstart when becoming master;
or, at reception of the first signal (any REQ or ACK) in the sample, as illustrated in Fig. 5.4.b.
This will assure that connected nodes remain synchronized to the sample level, as long as
(groups of) nodes have not been disconnected from each other. In the awaiting period nodes
do not become master and can only receive signals, in the silent period, nodes have already
received their first signal or already became master node.

In our work, the three time periods are chosen to be of equal length, i.e. Tstart = 1
3Tsample

and Tend = 2
3Tsample. Note that these periods do not indicate when a node is asleep or in

which mode it is in.

5.4 Simulations

The protocol implementation is simulated in OMNeT++ network simulator [12, 13].
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(a) Subdivision of sample

(b) Sample timer reset, either at first reception of signal or at start as master

Figure 5.4: Subdivision of sample in three parts: awaiting, active and silent. Each sample, the
start delay that determines when to become master is randomly chosen within active period
(uniform distribution). Upon first reception of signal in the sample, or, upon becoming master
node, the sample timer ts is reset to ts = Tstart.

In order to simulate a dynamic swarm of nodes that passively flow through an enclosed
environment, we use a flow simulator to generate the nodes positions over time [14]. The
positions are generated based on tracer positions in a fluid flow in a 9 by 8 meter 2-D tank-
like environment with an inlet an outlet. The positions of theN = 200 nodes at the beginning
and end of the simulation time are illustrated in Fig. 5.5.

The average node speed throughout the simulation is 0.20±0.17 m/s with a maximum
of 0.80 m/s. The communication range is set to a fixed 1 meter and results in an average
node density of 9.8±3.7 neighbouring nodes within the communication range. The clock
frequency offset is set to 100 ppm and is fixed throughout the simulation.

The sample time is set to Tsample = 1 sec and the amount of CIDs is in this paper is
swept between: nf = {8, 16, 32}. The ultrasound transmission rate is set to 40 kbit/sec. The
avalanche induction is studied by sweeping Mavalanche = {1, 2, 4, 8} in which Mavalanche = 1
means no induced avalanche.

The output of the simulations consist of the data that are being stored on the nodes in-
ternal storage: the messages sent and received, the timestamp at transmission/reception, the
timestamp when new samples start and for research purposes also the internal states the nodes
are in and at what specific time.
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(a) t=0 sec (b) t=16 sec

Figure 5.5: Nodes positions throughout simulation in 2D tank-like environment with injec-
tion flow from left (indicated by arrow).

5.5 Results

The protocol is analysed based on several performance metrics that assess the design goals
for the ranging method. One is the ranging latency within a swarm versus the signal overlap,
second is the energy usage of an individual node. And as last, the fraction of the theoretical
amount of possible distances that are determined using this protocol: the coverage.

Fig. 5.6 shows for the simulated datasets with nf = 16 an overview of the amount of
nodes in a specific state over a single sample. Figure 5.7 shows the main performance metrics
of the protocol in a simulated network as described in Sec. 5.4 and discussed next.

5.5.1 Latency versus signal overlap

From Fig. 5.6 it can be seen that the induced avalanche effect assures that the network finished
a single ranging cycle sooner. In this sample, the maximum latency goes from 360ms for
Mavalanche = 1 (no avalanche) down to 150ms, 120ms and 110ms for Mavalanche = {2, 4, 8},
respectively. As a reference; within a single cluster, the ranging latency is nfTwait = 43ms.

Fig 5.7a shows the average latency between all ranging transactions in a ranging cycle.
Increasing the avalanche effect (Mavalanche) yields a smaller latency. The latency of the full
ranging cycle is approximately between 4 to 5 times larger as the average latency between
the transactions.

Fig 5.7a also shows the average fraction of signals that are received with overlap with
another signal. Increasing the avalanche effect and reducing the latency inevitably increases
the signal overlap.

At lower values of nf , the latency drops quicker, but signal overlap is higher; less CIDs
are scanned but more nodes will respond to the same REQ signal. There is a clear trade-off
between latency and signal overlap.
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Figure 5.6: Total number of nodes in specific states through first sample. From top to bottom
the avalanche parameter: Mavalanche = 1, 2, 4, 8. The top graph, Mavalanche = 1 means there is
no induced avalanche effect. In these simulations, the number of CIDs nf = 16.

5.5.2 Energy efficiency
The energy efficiency in this paper mainly focusses on the nodes’ awake time and the amount
of signals transmitted (and related to that the amount of signals received and stored). The
awake time is defined as the time not spend in the low-energy sleep state, but rather in an
active signal transmission or receiving/decoding state.

Fig. 5.7b shows the node’s average awake time per sample and the average amount of
signals transmitted per node per sample (master and slave nodes together). As the latency
decreases with increasing Mavalanche, so does the time that nodes need to be awake. With
increasing avalanche effect, the number of signals required for transmission increases slightly
as more nodes will become master node.

Both the awake time and the number of signals transmitted increase with increasing nf
as more CIDs will have to be transmitted and decoded.

5.5.3 Coverage
The coverage can be defined as the fraction of connections (node pairs that are within each
others communication range) for which the ranging procedure yields sufficient information
to determine a distance measure. Since only distances can be calculated within a cluster, the
coverage will be lower than 100% as not all connections can fall within a cluster. Throughout
all simulations, the coverage was between 86%-89%.

Even though for the other 11%-14% no distances can be determined using RT-TOF, the
basic connectivity information is available: the received ACK signals that did get received
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(a) Ranging latency and signal overlap (b) Awake time and signals transmitted

Figure 5.7: Average values of perfomance metrics of simulated ranging protocol using dif-
ferent input parameters nf and Mavalanche. Clear trade-offs are visible.

by the nodes outside the cluster, provides information on which nodes where within their
communication range. The localization algorithm can use this information to its advantage.

The coverage does not need to be 100% to localize the entire swarm. In fact, for example
in [6], studies are performed where localization is stress-tested on e.g. the loss of large
amounts of connections. Also note that each sample, different clusters are formed such that
this group of 11%-14% of the connections is different for each sample.

5.6 Discussion and future work

Although the current implementation of the ranging protocol has been simulated over a rel-
ative short measurement time. Simulations using extremely large clock deviations of up to
100 000 ppm have been tested and show good alignment of samples over the simulation time
of 16 seconds (not shown here). As long as the network is sufficiently connected and not dis-
joint, the avalanche effect can keep the nodes’ internal clock synchronized within a fraction
of the sample time Tsample.

The simulations in this paper have been performed in a 2-D environment. Although this
protocol can be directly used in 3-D, the induced avalanche effect will have quantitatively
a slightly different result as the ones presented here. No qualitative differences are to be
expected.

Instead of scanning all possible CIDs, all nodes can actively record which nodes it has seen
in the past. Upon becoming master node, instead of scanning all available CIDs, the master
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node can scan the UIDs of nodes that it has seen in the previous (several) sample periods. This
will reduce signal overlap and can reduce the amount of required signals for transmission.

The protocol can fairly easily be adjusted to also account for disjoint networks coming
together such that they can become synchronized up to the sample level. This is part of future
work.

5.7 Conclusion

This paper illustrates the challenges involved in performing round-trip TOF in a swarm of
autonomous nodes without external contact in an unpredictable and dynamic topology with
sparse connectivity. The applications require high levels of miniaturization of the nodes and
introduce a specific set of constraints and challenges that has not been researched before. A
novel asynchronous multi-way ranging protocol has been presented to allow round-trip TOF
measurements. Control of the ranging transactions can be performed by master nodes that
initiate them to their neighbouring slave nodes. Master nodes are assigned at random each
time a new sample starts.

The latency between ranging measurements in the entire swarm can be reduced by in-
ducing an avalanche effect of nodes that become master node. The avalanche effect also
reduces the required time for the nodes to be actively listening for signals and allows for
synchronization down to a fraction of the sample time.

The trade-off’s that are involved in this ranging protocol are a direct consequence of the
application: the need for resource-limited nodes, the use of ultrasound and the unpredictable
and fast-changing network topology with sparse connectivity. Getting insight in these trade-
off’s allow for adjusting the ranging protocol based on the specific circumstances that nodes
are in. In [2], this exploration method and the ability of nodes to adjust for specific circum-
stances, is further explored.
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We report on a first field-test in which miniaturized sensor motes were used to explore
and inspect an operational pipeline by performing in situ measurements. The spherical sensor
motes with a diameter of 39 mm were equipped with an Inertial Measurement Unit (IMU)
measuring 3D acceleration, rotation and magnetic field, as well as an ultrasound emitter. The
motes were injected into the pipeline and traversed a 260 m section of it with the flow of
water. After extraction of the motes from the pipeline, the recorded IMU data were read-out
for offline analysis.

Unlike dead-reckoning techniques, we analyse the IMU data to reveal structural informa-
tion about the pipeline and locate pipe components like hydrants and junctions. The recorded
data show different and distinct patterns that are a result of the fluid dynamics and the interac-
tion with the pipeline. Using the magnetic data, pipe sections made from different materials
and pipe components are identified and localized. A preliminary analysis on the motes’ in-
teraction with the pipeline shows differences in pipe wall roughness and locates structural
anomalies.

The results of this field-test show that sensor motes can be used as a versatile and cost-
effective tool for exploration and inspection of a wide variety of pipelines.
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Figure 6.1: Xploring WiseMote™ (XWM).

6.1 Introduction

Pipeline distribution systems are a backbone technology for operating industries and soci-
ety. Various industries are looking into optimization and smart maintenance of distribution
pipelines worldwide. Pipeline infrastructures represent major investments, e.g. the Dutch
freshwater distribution infrastructure comprises 116,000 km of pipelines, representing a value
of 20 billion EUR [1]. A majority of these pipelines were installed in the 1950s, 1960s and
1970s and their expected lifetime is 50-60 years. A tremendous effort will be required to
sustain a high-quality network in the next decades [1].

Regular inspection of the pipe conditions and integrity is essential to ensure a long service
life, reduce risk of failures and help in prioritizing the replacement order of pipe sections and
components. A variety of passive and active in-pipe inspection devices have been developed
over the past years [2–4]. However, most of the techniques are too expensive to be used
in pipelines transporting low-cost commodities like water, let alone in the highly ramified
smaller pipelines in domestic areas. Moreover, a significant part of the water distribution
network had ad hoc repairs in the past that are only partially documented or not documented
at all. Physical passage of such in-pipe inspection devices cannot be guaranteed due to the
lack of knowledge on the location and the type of pipes and pipe components, bends, flanges
and valves. Cost effective and readily applicable exploration tools capable of providing this
information are, therefore, in high demand.

In this paper we present results of a field-test in which a modified version of miniaturized
sensor motes, Xploring WiseMotes™ (XWMs), are used to explore and to inspect the con-
ditions and integrity of a pressurized water pipeline in operation. The motes were directly
injected into a fire-extinguishing water pipeline, where they float with the water through the
pipeline and recorded information on the dynamics of the mote using an Inertial Measurement
Unit (IMU).
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Unlike dead-reckoning techniques that attempt to track positions of an object based on
IMU-data [5], we analyse XWMs linear acceleration, rotation, and the sensed magnetic field
in order to reveal structural information of the pipeline and to study mote dynamics and their
interaction with the environment. The recorded data show a wealth of information, allowing
us to explore the pipeline – e.g. to identify and localize pipe-components and pipe materials
– and to inspect pipe conditions. We demonstrate this novel technique as cost effective and
readily applicable exploration tool to complement or replace existing inspection techniques.

In Sec. 6.2 we describe the conceptual approach underlying the XWM technology, in
Sec. 6.3 we present the mote hardware and its modification with the ultrasound extension
that has been developed for the field-test. The experimental details are described in Sec. 6.4.
Our findings from the data are stated in Sec. 6.5. A discussion provided in Sec. 6.6 and the
paper is concluded in Sec. 6.7.

6.2 XWM concept

The XWM technology is based on the concept of injecting miniaturized sensor motes into a
flooded environment and let them go-with-the-flow of the medium filling the environment,
while performing and storing measurements [6, 7]. XWMs have been designed for operating
in environments such as distribution pipelines and industrial mixing tanks. Standard XWMs
are equipped with an IMU measuring the 3D linear acceleration and rotation of the mote
(dynamics data) and the local magnetic field. The XWM density can be adjusted to the
specific density of the carrying medium.

Data stored on an XWM are read out and analysed after retrieval of the mote from the
environment. The dynamics data provide insight into processes taking place inside mostly
closed and difficult-to-access environments. The magnetic data serve as a reference either
to align the dynamics data in respect to the Earth’s magnetic field or to identify and locate
magnetic anomalies in the environments, such as metallic structures or magnetic beacons.

Experiments performed in an industrial mixing tank revealed the potential to get a bet-
ter understanding of the small-scale physics governing the mixing process by measuring the
mote dynamics [8]. Collisions of the motes with containment walls, mechanical instrumen-
tation or obstacles are indicated by sharp peaks in the accelerometer data. These peaks are
typically milliseconds wide with amplitudes exceeding several times g-force. Similar to par-
ticle induced scattering processes, the collision statistics and the related momentum transfer
reflect the structure of the environment, but also surface and material conditions. If the mote
density matches the medium density or the density of a specific phase for multi-phase media,
the dynamics data in-between the collisions provide a measure of the local medium (phase)
dynamics, reflecting e.g. laminar or turbulent flow patterns.

Correlation analysis of data measured by XWMs with different density and mass distri-
bution, provides the sensitivity to address specific system or process aspects. To gain the
required statistics, XWMs are either operated in swarms or a single XWM is operated in
repetitive cycles.

The XWMs are, thus, a passive inspection and exploration tool that is significantly differ-
ent than existing technologies. Additionally, they have a low application threshold. XWMs
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Table 6.1: Specifications of the modified XWMs.

IMU sensor ST LSM9DS0
Functionality triaxial gyroscope

triaxial accelerometer
triaxial magnetometer

Max. sample rate and range 760 Hz; 245-2000 deg/sec
1600 Hz; 2-16 g
100 Hz; 2-12 gauss (10-4 T)

Data resolution 16 bit
Memory size 2 Gbit

Shell material Poly-amide 12 (PA 12)
Battery 0.5 Wh rechargeable Lithium

Communication micro-USB
Measurement time 1 hour (at max. sample rate)

Time synchronisation error <1 second per hour
Diameter 39 mm

Density adjustable (0.62-2.2 kg/dm3)
US emitter 131 kHz

complement available techniques and provide the capabilities of a data collector tool for in
situ measurements performed during system operation.

6.3 Standard and modified XWM hardware

XWMs are spherical sensor motes with a diameter of 39 mm. The shell consists of two
halves that are bolted together with a rubber O-ring in between. The shell is made from 2.7
mm poly-amide 12 (PA 12).

Fig. 6.1 shows a standard XWM with an earlier design of the shell. Fig. 6.2 shows a
modified XWM equipped with an ultrasound transducer and a stronger shell, distinguished
by a rim framing the transparent half of the shell and providing increased strength to the O-
ring groove in the XWM equator plane. The technical specifications are listed in Table 6.1.

The shells have proven to be mechanically robust and chemically inert and tested to be
water-tight in excess of 30 bar of water pressure [9]. The gross volume of the XWM is 31 cm3

and its weight without ballast pieces 20 g, resulting in a minimum density of 0.65 kg/dm3.
The density can be adjusted up to 2.2 kg/dm3 by adding pre-fabricated brass ballast pieces.

In the centre of the PCB is the IMU chip (ST LSM9DS0) [10] that can be sampled at an
adjustable rate and range. Throughout the field-test, sampling rates were set to the maximum
values listed in Table 6.1. These settings provided the highest possible resolution to detect
short acceleration peaks and subsequent changes in rotation caused by collisions. The mag-
netic sampling rate allowed to achieve a spatial resolution of about 1 cm at flow speeds of
order 1 m/s.
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Figure 6.2: Modified XWM equipped with an ultrasound transducer embedded in hot melt
glue.

IMU data are stored on a flash memory chip that can be read-out using (micro-)USB
interface.

6.3.1 Modified XWM with ultrasound emission
Upon request by the operator of the pipeline, ultrasound emission was implemented to enable
mote detection inside of a hydrant in case a mote could not be retrieved by standard procedure.
Additionally, it allows to verify arrival of motes at specific locations in the pipeline.

In the modified XWM the ultrasound signal was generated by a 6.35×6.35 mm2 tube-
shaped piezo-electric transducer driven by a 6 Vp-p square wave signal at 131 kHz, its hoop-
mode (or ‘breathing’-mode) resonance frequency. As seen in Fig. 6.2, the transducer was
embedded in hot glue sticking to the interior of the shell to provide good acoustic coupling
with the water. To achieve maximum detectability the XWMs continuously emitted ultra-
sound. This ensured that the detected signal could be visualized in the frequency domain
without trigger or signal processing and could be easily observed using a hand-held scope.
For details of the ultrasound emitter design we refer to [11].

The modified XWMs used in the field-test had a density between 1.01-1.03 kg/dm3,
slightly exceeding neutral buoyancy in water (see also Table 6.2). Due to the ballast piece the
centre of mass (CoM) was shifted, creating a tendency for the mote to point the ultrasound
transducer upwards. For the field-test this was expected to ease the ultrasound detection of
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Figure 6.3: Schematic map of the field-test location. The left inlay photograph shows the
injection pipe (position H101) without hose, the right inlay shows hydrant H88 with a hose
to hydrant H87.

the XWM underneath a hydrant.

Operation of the XWMs IMU was limited by the on-board memory to 1 hour at high-
est sampling frequencies, operation of the embedded ultrasound transducer was limited to 4
hours by the 0.5 Wh Lithium-battery.

In order to detected the emitted ultrasound an identical transducer was used to build a
simple small hydrophone [11]. The transducer was connected to an instrumentation amplifier
with an amplification factor of 34 dB. The single-ended output was connected to a laptop
controlled hand-held scope (PicoScope 2260) via a coaxial cable of 3 metres, which allowed
to lower the hydrophone into a hydrant.

6.4 Field-test

The field-test was performed at Emmtec Industry and Business Park together with Emmtec
Services B.V in November 2016. The XWMs were injected in a fire-extinguishing water
pipeline, which is schematically shown in Fig. 6.3. The pipeline with an outer diameter of
168.3 mm (DN150) was originally installed underground at a depth of 1.20 m in 1960 (56
years old).

The typical water pressure in the pipeline is 9 bar (0.9 MPa) and no flow is present until
hydrants are opened. The pipeline has both visible and hidden structural components such
as hydrants (visible), flanges (buried) and t-joints (buried). Throughout the years, various
sections of the pipeline have been replaced. A complete documentation of maintenance and
repair logs is not available at present. Upon agreement with EmmTec specific objectives of
the field-test were established as follows:
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Table 6.2: XWM mass configurations with their respective specific densities used in the
field-test. The specific density is calculated relative to the density of water at 10◦C.

XWM config. specific density remarks

A 1.016±0.016 smaller, thinner shell
B 1.005±0.005 minimum density
C 1.013±0.005
D 1.028±0.009 different mass distribution

• develop and establish injection and retrieval procedures of motes in and from pipelines;

• detect XWMs in hydrants using ultrasound;

• identify and locate pipe sections and components;

• examine conditions and integrity of pipes and pipe junctions;

• detect flow conditions.

In order to inject and retrieve XWMs, hydrant H101 had been replaced by a DN80 vertical
injection pipe, as seen in Fig. 6.3. An ultrasonic on-the-line flow meter was installed on the
injection pipe. The XWMs were inserted in the injection pipe with no flow in the system.

Valves A051, A043 and A050 (see Fig. 6.3) were closed to isolate the test section from
the rest of the pipeline system. Hydrant H88 was kept open for releasing the water. In order
to provide a water flow, a fire hose was connected from hydrant H92 to the injection pipe
(dashed line in Fig. 6.3). Then, hydrant H92 was opened to provide a water flow, transporting
the XWMs from the injection pipe to hydrant H88. The water was released from hydrant
H88 into the environment, while the XWMs remained in the system as they could not pass
through the open valve of H88.

After a time period estimated to exceed the travel time of XWMs between location H101
and H88, the water flow was stopped by closing hydrant H92. The injection pipe with the
attached fire hose was disconnected from the hydrant H92. Hydrants H87 and H88 were
connected by a different fire hose (a second dashed line on right in Fig. 6.3). Then hydrant
H87 was opened providing the reverse flow. The reverse water flow was also freely released
from the fire hose attached to the injection pipe into the street. The water flow was cut off
once XWMs were retrieved by closing the hydrant H87. XWMs data were uploaded to a
computer and motes were configured for another run.

6.4.1 Execution

Four experimental runs were performed using different combinations of XWM configurations
and flow speeds resulting in 6 recorded datasets. In the initial two runs a single XWM was
injected, in the last two runs two XWMs were injected simultaneously. Mote configurations
and flow speeds as measured in the injection pipe are listed in Table 6.2 and Table 6.3. The
flow speed was adjusted by the opening of hydrant H92 for the forward flow and hydrant H87
for the reverse flow. The flow speed could only be controlled with limited accuracy within
the range of 1-5 m/s in the DN80 pipe. Due to the larger cross-section of the underground
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Table 6.3: Overview of experimental datasets including XWM configurations (taken from
Table 6.2), the nominal flow velocity representing the longest sustained velocity measured in
the injection pipe (DN80); the travel duration that indicates the period between flow start and
mote arrival at the last hydrant1. The colours refer to the colour coding in the figures, if not
indicated differently in the figure caption.

run dataset XWM configuration nominal flow duration1

1 1 (red) A 3-5 m/s 272 s
2 2 (green) B 2 m/s 419 s
3 3 (blue) C 1 m/s 1052 s
3 4 (cyan) B 1 m/s 970 s
4 5 (magenta) C 2 m/s 465 s
4 6 (black) D 2 m/s 432 s

1 For dataset 1, the duration indicates the time after which the flow was stopped.

pipe, the flow in the DN150 pipe was estimated to be 0.25-1.40 m/s, which yields Reynolds
numbers ranging from 0.3·105 to 1.6·105 , indicating turbulent flow in the DN150 pipe.

In all runs, the XWMs were successfully injected into the pipeline and transported with
the flow of the water through the DN150 pipeline and extracted with the reverse flow. Min-
imum damage was done to the XWMs and no noticeable damage was done to the pipeline
infrastructure or to the environment.

Measurements of all motes are extracted and stored in their respective datasets as given
in the Table 6.3. Datasets 2-5 represent data resulting from flawless operation and retrieval
of motes. We experienced irregularities in mote operation or recording of datasets 1 and 6.

Dataset 1 was recorded by the mote in configuration A with an older, less robust shell for
comparison reasons. In run 1, a noticeable sound of a mote colliding with the 90 degree bend
of the injection pipe was heard seconds before the mote extraction. The visual inspection of
the retrieved mote revealed cracks in the shell. Although the mote experienced leakage and
electric short circuit, all data until the collision were recovered.

Dataset 6 was recorded by the mote in configuration D, the heaviest one. Its center of
mass was shifted significantly by the ballast piece, which was found loose after recovery,
presumably, causing a short circuit seconds before extraction. All data until the short circuit
were recovered.

6.5 Data analysis & results

In the data analysis, two coordinate reference systems are used:

• The IMU internal frame of reference {xi, yi, zi}, with xi and zi in the equator plane.

• The Earth frame of reference {xe, ye, ze}, with ze aligned along the gravitational force.
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Figure 6.4: Detection of 131 kHz XWM ultrasound signal against background.

6.5.1 Ultrasound detection

Detection of mote arrival at the last hydrant H88 was verified for run 3, with two motes
injected (see Table 6.3). The hydrophone was lowered into hydrant H88 before reversing
the flow, i.e. during a phase the motes were expected to be located directly underneath or at
least nearby H88. The measured ultrasound spectrum is compared to the ultrasound spectrum
measured in the absence of motes, as seen in Fig. 6.4. A signal exceeding the noise level with
30 dB can be observed around 131 kHz in the frequency spectrum which clearly indicates the
presence of the motes. This signal was used to verify arrival of at least one mote at hydrant
H88 and served as a reference in the analysis. The detection of stuck motes was not tested
because the applied retrieval procedure worked flawlessly.

6.5.2 Field-test data

Fig. 6.5 shows the IMU data recorded during the full period of run 2. Six run phases can be
identified in the data based on the experimental procedure:

• XWM insertion and rest in injection pipe;

• start of forward water flow;

• arrival at hydrant H88;

• water flow stop;

• start of reverse water flow;

• extraction of XWM.

Before insertion into the injection pipe, the XWM was moving significantly while being
held in hands. After insertion, the XWM hit the water and sank to the bottom of the pipe
where it came to a complete standstill. The XWM started moving and rotating at the moment
the flow was gradually increased. Upon arrival at hydrant H88, the XWM remained stuck,
but kept rotating and moving underneath the hydrant until the mote finally sank to the bottom
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Figure 6.5: Complete dataset 2 (see Table 6.3), xi-components in blue, yi-components in
green and zi-components in red.

Table 6.4: Upper limits of the standard deviations σ of the IMU measurements in datasets 1-
6. The deviations are calculated for a 1 minute recording interval in the period after insertion
and before flow start, i.e. when the motes are at rest (see Fig. 6.5).

σ x y z

gyroscope <0.88 deg/s <1.1 deg/s <0.66 deg/s
accelerometer <0.053 g <0.027 g <0.10 g
magnetometer <0.0043 gauss <0.0041 gauss <0.027 gauss
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of the pipe after the flow was stopped.

Table 6.3 shows the duration of the travel between start of the flow and arrival at hydrant
H88. From run 3 and 4, with datasets {3, 4} and datasets {5, 6}, respectively, it can be
seen that the different motes traverse the same path in a different time. Depending on the
weight and the mass distribution, the motes experience a different flow profile. This will be
elaborated on in the discussion section.

Table 6.4 provides the upper limits of the standard deviations (σ) of the IMU measure-
ments when the motes were at rest. The deviations are calculated for a 1 minute recording
interval in the period after insertion and before the start of the flow (see Fig. 6.5), when the
motes approximately were at rest and the local magnetic field was static. The σ values reflect
the combined effect of noise of the IMU sensor channels and minor oscillations relative to the
position of rest. The σ values indicate the sensitivity limits for detecting changes in the mote
dynamics and the local magnetic field. These values provide a benchmark to compare the
data recorded in periods when the flow was on, as shown for dataset 2 in Fig. 6.5, revealing
the richness and complexity of the data caused by the interaction of the mote with the flow
and the pipeline.

6.5.3 XWM orientation

The XWM dynamics are governed by the density and the mass distribution. In the field-
test, due to the added ballast pieces, the XWM centre of mass was shifted in the direction
slightly off the zi-axes, causing, similar to a tumbler toy, an alignment of the zi-axes along
the ze-axes due to gravity, as illustrated in Fig. 6.6.

Distortions in the flow and collisions with the pipe wall, cause a change in the mote
orientation, followed by a precession rotation in respect to the ze-axis. This can be observed
in the data, e.g. in Fig. 6.7 where a small part of the data is visualized in detail. The gyroscope
data show high frequency rotations around the xi- and yi-axis and smoothly varying rotations
around the zi-axis. This dynamics data suggests that the XWMs do not roll against the
pipe wall; rather they float almost freely and align with the gravitational field as observed in
Fig. 6.7 by the almost constant value of the accelerometer zi-component of -1 g.

6.5.4 Magnetic data and pipe sections

The zi-component of the measured magnetic field between flow start and arrival at final hy-
drant is plotted for all datasets in Fig. 6.8. In all datasets, a specific magnetic pattern is clearly
visible throughout the pipeline. In order to perform a better comparison of datasets, a first-
order position estimate is made, indicated using symbol d̂∗, by multiplying the timestamps
with an average mote velocity. The average mote velocity for each of the datasets is cal-
culated as the pipeline length, 262 m, divided by the travel duration between flow start and
arrival at the last hydrant as given in Table 6.3.

Even though the different runs are performed at different flow velocities and velocity
gradients, this pattern is present in all six datasets. This pattern can be seen as a structural
signature of the pipeline and is used in the analysis to distinguish pipe sections and to syn-
chronize the different datasets.



138 Chapter 6. Sensor Motes for the Exploration and Monitoring of Operational Pipelines

Figure 6.6: Sketch showing the orientation of the XWM in the Earth magnetic and gravita-
tional field. The shift of the centre of mass in negative direction along the zi-axis causes a
stable orientation in the unperturbed case. Distortions will cause precession-nutations about
the zi-axis.

It should be noted that the actual mote velocity varies over time and the position inside
of the pipeline. Thus, the calculated position estimate d̂∗ is not a representation of the actual
position d, but rather a first-order estimate.

Part of the raw data from dataset 3 is visualized in detail in Fig. 6.7. It shows a pattern that
is representative for the entire dataset. For the section before d̂∗ = 72.5 m, the magnetic zi-
component exhibits a ‘low’ value which in a step-like transition changes into a ‘high’ value
for positions beyond. In sections with ‘low’ magnetic values the gyroscope data show that
the mote rotated according to precession and nutation behaviour about the zi-axis similar to
the tumbler toy principle. A clear correlation between the strong oscillations in the xi- and
yi-component of the gyroscope and the magnetic field is visible. This suggests the presence
of a fixed and static magnetic field throughout this section of the pipe, similar to e.g. the
Earth magnetic field.

In areas with ‘high’ magnetic values the above described correlation between rotation
and measured magnetic field is far less visible and the measured field is weaker. It indicates
that the sensed magnetic field is governed by a weaker field that is dependent on the radial
position of the XWM within the pipe. The ‘high’ values of the measured magnetic field are
the result of strong shielding due to a non-zero magnetic susceptibility of the pipe material.
The dependency of the position of the mote on the measured magnetic field suggests the pipe
is made of a magnetized material, as explained in [12].

The Earth’s magnetic field at the experimental site points downwards at an angle of 68
degrees from the surface1 [13]. In this experiment an absolute comparison with the Earth’s
magnetic field cannot be made because of magnetic distortions introduced by steel ballast
pieces and the Lithium battery inside of the XWM. However, we can estimate the step size in
measured ‘low’ and ‘high’ values of the magnetic zi-component. In datasets 1-5 the observed
step size for all transitions is 0.41±0.01 gauss, which is 15 times the σ sensitivity limit. In
dataset 6 the step size is 0.34 gauss and is significantly smaller due to the fact that the IMU

1M = {18654, 538.6, 45661.6} nT (xe, ye, ze) in ‘Earth’ frame.
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Figure 6.7: A fraction of dataset 3 (see Table 6.3) with gyroscope data (top), accelerometer
data (middle), and magnetic data (bottom). The x, y, z-components refer to the IMU internal
reference frame.
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Figure 6.8: The magnetometer zi-component of dataset 1 (red, bottom) through 6 (black,
top), for run parameters see Table 6.3. The position is based on a linear conversion as de-
scribed in the text. For the sake of better visualization, the amplitude values are shifted by a
constant (vertical) offset value. .

zi-axis of this particular mote was less aligned with the ze-axis of the Earth frame.

We, therefore, conclude that two different materials are used for the pipe: a (ferro-
)magnetic material and a material with a magnetic susceptibility that is close to zero. In
one of the provided maps, it is suggested that the pipe is made of glass-reinforced epoxy
(GRE), hereafter referred to as ‘plastic pipe’, and has a magnetic susceptibility close to zero.
The material in the other pipe sections is likely to be cast-iron, hereafter referred to as ‘metal
pipe’, as it is the only (ferro-)magnetic material commonly used in piping systems in the
1960s when the pipe system was constructed [1].

6.5.5 Identifying mote location and pipe ‘anomalies’

Besides the observed step-like pattern in the magnetic data as discussed in the previous sec-
tion, the magnetic data exhibit anomalies that are caused by e.g. pipeline components like
junctions and hydrants. Identifying pipeline components from the data that have a known
position will aid in improving the position estimate of the motes.

A clear anomaly is visible in the magnetic zi-axis at d̂∗ = 62.5 m in dataset 3, as seen
in Fig. 6.9. This anomaly is also observed around the same position in all other datasets as
seen in Fig. 6.8 and is located inside a plastic pipe section. The magnetic signature indicates
the presence of a metal object or pipe in the positive zi-axis direction above the main pipe.
The object compresses the magnetic field lines, increasing the magnetic field and resulting
in a stronger (negative) measured magnetic field. The first-order position estimate of this
anomaly in datasets 2-6 is in the range 60 m ≤ d̂∗ ≤ 69 m as can be seen in Fig. 6.8. Actual
positions of pipeline components can be estimated on the map in Fig. 6.3 and are indicated
by the symbol d. In particular, the hydrant H100 is expected around d = 62 m. Therefore,
we associate the anomaly with the hydrant H100.

A similar magnetic signature is measured at d̂∗ = 114 m but now in the xiyi-plane, as
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Figure 6.9: Magnetic data of dataset 3 (see Table 6.3), the x, y, z-components refer to the
IMU internal reference frame, the position is analogue to that in Fig. 6.8. The magnetic
signature fits with hydrant H100 expected at this position.
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Figure 6.10: Magnetic data of dataset 3 (see Table 6.3), the x, y, z-components refer to the
IMU internal reference frame, the position is analogue to that in Fig. 6.8. The magnetic
signature fits with the drencher expected at this location.
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Figure 6.11: Magnetic data of dataset 3 (see Table 6.3), the x, y, z-components refer to the
IMU internal reference frame, the position is analogue to that in Fig. 6.8. The position is
approximately matching the expected position of hydrant H89.

shown in Fig. 6.10. This indicates a metallic object parallel to the (Earth) surface. This
anomaly is seen in the range 109 m ≤ d̂∗ ≤ 118 m in the different datasets as can be
seen in Fig. 6.8. On the map, the drencher is expected at d = 120 m and is drawn as pipe
perpendicular to the main pipe and parallel to the surface. It is therefore hypothesized that
this anomaly is due to the metal of the drencher pipe.

A third magnetic anomaly can be identified as hydrant H89 and can be seen in Fig. 6.11.
A sharp peak in the magnetic field measurements can be detected just after a transition from
plastic pipe section to metallic pipe section just before d̂∗ = 178 m. In all other datasets this
peak appeared between 171 m ≤ d̂∗ ≤ 178 m, as seen in Fig. 6.8. As this happens inside
a magnetized pipe, the peak in magnetic field is less obvious in indicating the direction of a
possible pipe. The estimated position of the observed anomaly is close to the position where
hydrant H89 is expected (on the map at d = 180 m). Therefore, this third point is identified
as the position of hydrant H89.

In order to obtain a better position estimate, we can now use the pipe transitions observed
in Sec. 6.5.4 as synchronization points between the datasets, and the three identified anoma-
lies in this section as landmarks with known actual positions. These points, together with
the known location of injection pipe and the hydrant H88 are used in a spline interpolation
of the estimated position. This adjusted position estimate is indicated with the symbol d̂. In
Fig. 6.12 the magnetic signature is then plotted against d̂. The pipe sections and other anno-
tated anomalies are visualized on the embedded schematic of the pipe system. In this figure,
the pipe transitions and the landmarks as observed in the data are synchronized between the
different datasets, and aligned with the three identified pipe-components on the schematic of
the pipe system.
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Figure 6.12: Dataset identical to the one shown in Fig. 6.8. The position has been adjusted
based on the synchronization points between the datasets and the identified landmarks. For
details we refer to section 6.5.5. For comparison, a schematic map of the Emmtec loca-
tion with the identified landmarks indicated and a scheme of the pipeline sections has been
included. The position (in unit m) of pipe section transitions are indicated as well.

Figure 6.13: During a collision a mote receives an impulse that is estimated by the accelera-
tion it experiences. The impulse direction is estimated relative to the gravitational force. On
the left a collision with the pipe wall, on the right a collision with an obstruction that is ahead
of the mote.
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Figure 6.14: Magnitude of the collision versus impulse angle for collisions exceeding a
magnitude of 1g detected in dataset 5 (left) and dataset 6 (right). The distribution of dataset
5 is representative also for datasets 1-4.

6.5.6 Collisions

The measured data show that the motes experienced a large number of collisions (see Fig. 6.5
and Fig. 6.7). Collisions are marked as sharp peaks in the accelerometer data with a duration
ranging from 0.5-4.0 ms. The majority of these collisions are accompanied by a sudden
change in mote rotation as can be seen in Fig. 6.7.

During a collision, for a short period of time, a mote experiences a strong acceleration
due to the sudden change in direction. The total impulse given to the mote is proportional to
the integral of the acceleration during this collision. In this work, we estimate the impulse
magnitude and direction based on the acceleration measured in the collision peak.

The measured acceleration has two contributions: the gravitational acceleration and the
acceleration due to the collision, as depicted in Fig. 6.13. During the short period of the
collision, the acceleration due to the dynamics of the flow and also the rotation of the mote
can be neglected.

Just before and right after a collision the only measured acceleration of a free floating
mote is due to gravity represented in the IMU system by a vector {xig, yig, zig}which is aligned
with the gravitational force and equal to 1 g. The measured impulse vector in the IMU-frame
{xii, yii , zii}, can be transformed into the Earth-frame {xei , yei , zei } by applying a rotational-
operation. This rotational operation is equivalent to that of rotating the gravity vector as
measured in the IMU frame {xig, yig, zig} towards the gravity vector defined in the Earth-
frame {xeg, yeg, zeg} = {0, 0, -1}. We can then calculate the direction of the impulse vector in
the Earth-frame as an angle relative to the gravitational field, as shown in Fig 6.13. We take
an angle of 0 degrees to be parallel to the surface of the Earth, -90 degrees points downwards,
and +90 degrees points upwards.
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Figure 6.15: Collision count per second of greater than one g collisions plotted as a function
of the adjusted position similar to Fig. 6.12. Average taken from all datasets.

Fig 6.14 shows the detected collisions from datasets 5 and 6. The collision magnitude is
indicated on the y-axis of the graph and the impulse angle in the Earth-frame on the x-axis
of the graph. It is observed that in dataset 5, the vast majority of the collisions are pointed
upwards, similarly to datasets 1-4. This indicates that the collisions mainly happen on the
bottom of the pipe. In dataset 6, however, the amount of collisions is significantly less and
the impulse directions are almost uniformly distributed.

Our analysis shows that the motes from datasets 1-5 collide on average between 1-10
times per metre while the heaviest mote in dataset 6 collides only 0.1-1 times per metre. This
difference can be explained by an offset in their center of mass. The motes used for datasets
1-5 have their center of mass offset in the zi direction in the IMU-frame. It is located in the
same plane in which the rim of the shell is oriented: the xizi-plane. The mote used for dataset
6 is the same as the one from dataset 2 and 4, but with an extra added ballast piece in the yi

direction. As a consequence, the center of mass shifted to outside the xizi-plane, breaking
the symmetry of the mote between the gravitational alignment and the rim. This seems to
have a stabilizing effect on the motes’ rotation and its trajectory in the pipe, as the mote is
floating more freely through the pipe, colliding on all sides almost evenly.

In Fig. 6.15, the collision densities (in collisions per second) are plotted as a function
of the adjusted position estimate similar to Fig. 6.12. The density is taken as average over
all datasets. The density significantly varies as a function of position and clusters around
specific positions. For example, at d̂ = 75 m and d̂ = 130 m, clusters of sharp density peaks
are observed that coincide with positions of transitions from a plastic pipe to a metal pipe. It
is also observed that the collision density of entire sections differ from each other, e.g. the
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Figure 6.16: Average collision magnitude of greater than one g collisions plotted as a func-
tion of the adjusted position similar to Fig. 6.12. Average taken from all datasets.
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the adjusted position similar to Fig. 6.12. Average taken from all datasets.
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collision density in the metal pipe between 75 m≤ d̂ ≤ 117 m is significantly lower than that
of the plastic pipes before and after.

In a similar fashion, the average collision magnitude and impulse angle are plotted in
Fig. 6.16 and Fig. 6.17, respectively. The impulse angle plot shows a clear differentiation
between pipe sections. A tendency is visible that high magnitude collisions correspond to
lower absolute impulse angles, i.e. impulse vectors almost parallel to the surface of the
Earth. This suggests that these collisions happen on larger obstacles, causing larger losses in
forward velocity, e.g. head-on collisions on the drencher pipe at around d̂ = 120 m.

6.6 Discussion

6.6.1 Analysis approach
It should be noted that the data-driven analysis presented in this paper is just a first pragmatic
approach for analysing the data. Our objective was to investigate and eventually establish
the feasibility to extract information on the structure and the condition of the pipeline during
operation. If in forthcoming laboratory- and field-tests the required database on dynamic
and magnetic patterns can be accumulated, a much more profound data analysis will become
available.

The authors also foresee a model-driven approach based on modelling the flow and the
mote dynamics depending on a specific pipeline structure. Mote measurements can be simu-
lated using this model and compared with the actual measured data to identify what type of
structure the motes have encountered. However, the required simulations with high granular-
ity including e.g. mote-obstacle collisions inside fluids are challenging.

6.6.2 Pipe sections and transitions
Pipe sections have been identified and localized. The findings are based on a magnetic step-
like pattern which can persistently be detected in all datasets. The ‘high’ to ‘low’ step size for
datasets 1-5 is 0.41±0.01 gauss, demonstrating that this structural feature is measured by all
motes in different runs with high consistency and repeatability. The difference in correlation
between the motes’ rotations and the measured magnetic field suggests that the pipe sections
are made of two different materials, one with high magnetic susceptibility and one with low
magnetic susceptibility. These observations are also partially confirmed by the statistics of the
mote collisions with the pipe wall (Fig. 6.15 through Fig. 6.17). The latter findings suggest a
correlation between motes dynamics and magnetic measurements in different pipe sections,
and which is consistent throughout the various datasets.

6.6.3 Collision dynamics
The statistical analysis of the collision dynamics shows that, except for dataset 6, the motes
are mainly hovering slightly above the bottom of the pipeline and are colliding with it at a
rate between 1 to 10 times per metre.

Localized peaks in the collision statistics (higher collision rate, larger magnitude, lower
impulse angle) suggest the presence of ‘obstacles’, pipe-components or other anomalies that
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are different from unobstructed straight pipe sections. The locations of some anomalies in
the mote dynamics coincide with identified pipe-transitions, hydrants and the drencher. Other
peaks have not been identified yet and need a better look into the dynamics to relate to e.g.
junctions or obstructions.

6.6.4 Pipe conditions and integrity

We did not yet achieve a quantitative assessment of the integrity of the pipe and the junctions.
Aside from the dynamics anomalies, the motes interact differently with pipe walls in different
sections. The distinction between ‘metal’ and ‘plastic’ sections alone is not sufficient to
uniquely categorize the observed collision dynamics. This might suggest a difference in wall
structure, reflecting the ageing, wear or roughness of the pipe sections.

Since no additional information on the used pipe-components was available, a more thor-
ough study into the mote dynamics for known pipe structures and conditions under laboratory
conditions needs to be performed to provide the required information for an advanced data
analysis.

6.6.5 Position estimate

The actual positions of the motes are not known except for the start, the end and arguably
the three identified landmarks. The actual motes’ velocities are not only dependent on the
overall average flow velocity, but also on the local flow characteristics and the interaction
with the pipe and obstacles in it. Head-on collisions, for example, are accompanied by a loss
in forward velocity.

The deviations between the observed range d̂∗ in the first order estimated positions of
anomalies and the actual positions of the landmarks vary significantly as shown in Sec. 6.5.5.
While H100 (d=62 m) is still inside the corresponding d̂∗ range, the positions of the drencher
(d=120 m) and H89 (d=180 m) are clearly outside the estimated range. An explanation for
these deviations might be found in collision statistics. In Figs. 6.15 and 6.16 the frequency
and the magnitude of mote collisions are shown as a function of the adjusted positions d̂.
Upstream the drencher, motes were passing the pipe section 75 m≤ d̂ ≤ 117 m with reduced
collision frequency and intensity. In consequence, the actual mote velocity had the tendency
to exceed the average velocity and the motes passed the drencher early, which translates into
smaller position values compared to positions calculated using the average velocity. Between
the drencher and H89, the motes passed section 117 m ≤ d̂ ≤ 130 m with increased collision
frequency and sections 130 m≤ d̂ ≤ 166 m and 166 m≤ d̂ ≤ 180, respectively, with reduced
collision frequency, where the first sections partly reduced the velocity excess, which fits the
observed deviation pattern.

Overall, the estimation of the position seems to be reasonable. Besides the identified
landmarks, the schematic map contains more details that can be used in further verification of
positions. For example, two flanges are drawn between hydrant H89 and the 90 degree corner
in the schematic. This could coincide with the pipe transitions that have been measured.
These might be repairs that are documented in this map. Also, just before arriving at the final
hydrant H88, three 90 degree corners are drawn in the schematic. These could coincide with
the dynamic anomalies found in the last pipe section.
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Spline fitting was used for an improved conversion between travel time and mote position,
synchronizing motes positions on a variety of points and adjusting the positions to the known
locations of five landmarks.

6.6.6 Mote mass distribution
The field-test demonstrated the impact and the importance of the motes’ mass distribution.
The center of mass offset caused the motes to align with the gravitational field, which pro-
vided the base for transforming data measured in the IMU frame of reference to the Earth
frame of reference. Additionally, we suppose that the offset in the centre of mass relative to
the plane of the rim causes motes to follow a more stable trajectory and reduces the number
of collisions with the pipe wall as seen in dataset 6. We can use this fact to probe different
aspects of the pipeline by using motes with different mass distributions.

6.7 Conclusion

We demonstrated for the first time that a water pipeline can be explored using small centime-
tre sized sensor motes with an inertial measurement unit and ultrasound emitter.

The measured data are extremely rich and complex, exhibiting different and distinct pat-
terns. Additional information about the pipeline, i.e. the presence and position of different
pipe sections and pipe components and the used materials, was deduced using the data-driven
approach presented in this paper. Furthermore, an initial statistical analysis of the interactions
of the motes with the pipe wall revealed structural differences between the pipe sections.
These findings show that XWMs can be used to monitor the condition of pipelines as such
statistical information can be an indicator for wear or ageing of the pipeline at different posi-
tions and can be measured at different times.

In this paper we showed the importance of understanding the influence of different mote
weights and mass distributions on the mote interaction with the pipeline. It can be used to
probe different aspects of the pipeline. Future works includes performing measurements with
a larger number of motes to increase the statistics and to reveal structural information on a
smaller scale (i.e. larger sensitivity). Furthermore, data-driven analysis can be complemented
with a model-driven approach to combine results and reveal more structural information of
the pipeline from the data.
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7
Conclusion

This thesis focused on a new approach for exploration of enclosed environments that contain
a (semi-)fluid medium. Examples of these are man-made environments such as pipelines,
industrial mixing tanks and reactors, and natural environments like underground channels,
reservoirs and geothermal sources. Structural and in-situ information of these environments
is requested by industry for e.g. guaranteeing operations, for safety purposes, or for optimiz-
ing processes. Current state-of-the-art technology does not provide this information at all,
or not in a cost-effective manner. We proposed to explore these environments by means of a
“go-with-the-flow” approach that uses small buoyant autonomous sensor nodes in large quan-
tities. While traversing the enclosed environment, the sensor nodes perform measurements
for parameters of interest, and perform ranging, i.e. they measure their positions relative to
neighboring nodes. Measurements are stored in memory and read out when the nodes are
extracted from the environment. After extraction, the stored data is analyzed in order to gain
the desired knowledge.

The overarching research question addressed in this thesis was: “Can we design an ef-
ficient and effective ‘go-with-the-flow’ system for characterization of enclosed fluidic envi-
ronments?”

Position determination of the nodes is of pivotal importance in order to design an effec-
tive go-with-the-flow approach. To minimize power consumption and size of the nodes, in
this thesis we focused on the approach to obtain positions in a cooperative manner. Nodes
perform ranging measurements using ultrasound and robust reconstruction of the positions of
all nodes happens offline. We also explored alternative localization approaches. Specifically,
in Chapter 6 chapter we demonstrated the possibilities of simultaneously localizing node po-
sitions and mapping a pipe surface and its features by studying nodes’ movement and the
local magnetic field. Accordingly we narrowed our overarching research question down to
the following three specific research questions:

1. Can we develop a robust algorithm for the reconstruction of node positions using rang-
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ing measurements that are obtained in the go-with-the-flow approach?

2. Can we develop a ranging protocol for nodes to determine distances while traversing
the environment, such that nodes need to perform as little effort as possible during the
go-with-the-flow phase?

3. Can we apply other methods to perform localization?

7.1 Robust reconstruction

Our first research focus was on developing a robust reconstruction algorithm to explore the
maximum abilities of the offline analysis. With robustness we mean the ability to deal with
severely corrupted distance measurements. For the reconstruction we used a RANSAC-based
approach as this is designed to be robust for both inlier and outlier measurements. Our ap-
proach resolves ambiguities due to errors in the distance measurement by enforcing geometric
consistency of the node positions. We stress-tested the algorithm with increasingly corrupted
distance measurements in order to find the minimum required specifications of the nodes’
distance measurements.

The quality of the reconstruction algorithm was assessed based on specific performance
metrics. Common performance metrics, like recall (the number of nodes reconstructed) and
absolute position error alone were not sufficient to assess the performance in our applica-
tions. We therefore introduced performance metrics to more adequately characterize the per-
formance that is required in go-with-the-flow applications.

For example, due to the incremental nature of reconstructing an initial estimate, error
build-up occurs. Especially in elongated environments this results in larger absolute errors
while the local shape can still be properly reconstructed. In go-with-the-flow applications it
is expected that nodes will disperse throughout the environment and that not all nodes will
stay within the same connected swarm; different partial swarms can exist. Similarly, in the
reconstruction phase, reconstruction of the nodes may halt when the algorithm cannot deal
well enough with the weakest link in the swarm in terms of measurement quality, lowering
the recall metric. Up to the moment the reconstruction would halt because it encountered a
weak link in the swarm, successful reconstruction for a smaller subset of nodes in the swarm
was achieved. In developing the reconstruction algorithm we kept our focus on attempting
to reconstruct all nodes in the swarm as this put a further demand on the robustness of the
algorithm to deal with measurements that are significantly more corrupted than assumed in
idealized cases.

We further challenged the offline reconstruction by treating each measurement cycle as a
one-shot measurement, meaning that the measurements of only one measurement cycle were
available for reconstruction. This fits in the design philosophy that minimum effort should be
performed online.

We accounted for the difficulties when actually developing and deploying actual sensor
nodes in experiments by introducing large amounts of different types of inlier and outlier
measurement noise. This is to account for different imperfections in the system and develop
robustness against them.
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Besides revealing how robust the algorithm is, the simulations showed interesting node
design trade-offs. For example, success of the reconstruction is mainly driven by the number
of inlier distance measurements available for reconstruction, i.e. distance measurements that
are close enough to the actual distance. Connectivity is therefore favoured over identifiabil-
ity of the nodes. Furthermore, there seems to be a minimum number of unique identifiers
needed, depending on the amount of measurement noise. Increasing this number (making the
identification more unique), does not improve the reconstruction result, it only reduces the
required time to complete the computations. This shows again that more effort offline can
reduce effort online.

Many related research papers focus on optimizing the reconstruction algorithm such that
positions are estimated more accurately and with less computational effort. However, often
these highly optimized algorithms only function as intended when an initial estimate is given
that is already close to the ground truth. In go-with-the-flow applications, and especially
the ones without a priori information on the environment structure, there is no knowledge
that can yield this initial estimate without building it from the ground up. Our focus was on
the reconstruction of this initial estimate, yielding a robust basis for future go-with-the-flow
experiments.

7.2 Ranging protocol

In order to address the challenges related to size and communication constraints, in Chapters
4 and 5 we successfully developed a novel ranging protocol with the philosophy that nodes
should do as little as possible. The multi-way ranging approach is chosen as a basis because
the total number of messages needed for sending scales linearly with the number of nodes,
whereas in more traditional methods like two-way ranging it scales quadratically. In order
to estimate the distances between all node pairs every node stores all received signals, even
if the signal is not addressed to this node. In offline processing, this information is used to
estimate distances between nodes indirectly. This reduces the required communication, and
hence energy, to estimate distances. However, no existing multi-way ranging protocol was
directly suitable for the go-with-the-flow approach as existing protocols are all meant for a
situation where all nodes are connected to each other rather than for a highly sparse swarm
that can emerge in go-with-the-flow applications in elongated environments, like pipelines.

In Chapter 4 we designed a simulation chain in which the ranging protocol was coupled
with the reconstruction algorithm. A variety of node trajectories through different environ-
ments was simulated. The ranging protocol was simulated for the nodes in these trajectories
and the resulting range measurements served as input for the reconstruction algorithm. This
integrated simulation chain showed that movement of nodes can be seen as another type of
measurement noise when using a reconstruction algorithm that assumes a quasi-static sce-
nario, like ours.
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7.3 Go-with-the-flow pipe characterization using other lo-
calization techniques

We also studied localization using different methods than the cooperative localization method.
In Chapter 6 we performed a go-with-the-flow experiment in underground pipelines using
newly developed sensor nodes with inertial and magnetic measurement sensors and ultra-
sound emitter. Nodes were inserted into the pipeline, and with the flow of the medium they
traversed the 300 meter pipeline. Upon extraction, the sensor data was retrieved and used to
simultaneously estimate the position of the nodes as well as to reveal structural information
of the pipeline. The method validated the time-based approach for position determination
and to simultaneously localize the nodes and map the environment using the environment
signature. The experiment also validated the go-with-the-flow approach in general as the
centimeter-sized sensor nodes successfully managed to traverse the full pipeline length and
useful new insights where obtained for the exploration goal.

The inertial and magnetic measurements from the nodes were analyzed in a data-driven
manner. Knowledge on the node positions and pipeline characteristics was generated in in-
cremental steps. The initial position estimate was made using time-based position estimation.
Specific characteristics of the pipeline were identified in the measured magnetic signature of
the environment and used as landmarks to align the position estimates of different nodes. This
allowed for further analysis of other pipeline characteristics like obstacles and pipe rough-
ness. Besides these new findings, this also suggests that the go-with-the-flow approach is a
promising technique to identify changes over time, like aging, wear, anomalies, when used
in a regular monitoring program.

7.4 Overall conclusion

Overall, these findings suggest that the go-with-the-flow approach seems promising and po-
tentially useful for a wide variety of applications.

7.5 Recommendations for future research

7.5.1 Reconstruction algorithm

We have shown that in the offline reconstruction algorithm, one can compensate significantly
for highly corrupted range measurements. However, this is only the case when sufficient
distance measurements can be considered inlier measurements. And as with many wire-
less networks, often the network either functions properly and most messages are transacted
correctly, or it does not function well and most messages are not transacted correctly. It is
therefore recommended to focus most of the future research on making sure that enough in-
lier measurements are performed, instead of working on making the reconstruction algorithm
more robust against different kinds of noise.

Exploitation of the temporal dependency of consecutive measurements could alleviate
some of the required robustness by benefiting from the temporal geometric consistency of the
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environment and the node locations. By exploiting this consistency, measurement ambiguities
can be filtered out.

7.5.2 Ranging protocol
Key factors remaining for the go-with-the-flow approach to work with the proposed ultra-
sound distance measurements and the reconstruction algorithm are how the signal encoding,
signal propagation, signal reflections and reverberation, and signal overlap influence the abil-
ity to perform proper distance measurements. These factors have the potential to significantly
influence the feasibility of performing distance estimation in enclosed environments under the
strict hardware constraints. Addressing them should be a primary step in further development
of this method of localization. This step can involve simulations, but more importantly also
actual experiments.

7.5.3 Using other localization techniques
The work in this thesis shows feasibility of localizing and simultaneously mapping the envi-
ronment using methods other than the established localization methods.

In our work we focused on the techniques for which we recently developed the hardware
(inertial measurements and magnetic field). Other methods that are not directly related to
‘localization’ in existing literature might also yield effective localization methods for the
difficult-to-access environments considered in this thesis. Examples of these are temperature
or pressure gradients and for example proximity sensing as described in Chapter 1. The
author challenges researchers to also get creative with other methods to estimate location
rather than directly choosing for established methods.

7.5.4 Overall recommendations
Much of the work in this thesis (except for Chapter 6) has been based on theory and sim-
ulations. We started from the assumption that performing ranging measurements in these
applications is possible. In this thesis we pushed the boundaries of this ideal assumption
by introducing many types of noise and e.g. stress-testing the reconstruction algorithm un-
til it would fail. However, this research did not include experimental validation of the go-
with-the-flow localization method using ultrasound distance measurements. It is therefore
recommended to validate and refine the approaches in real-world experiments.

In Chapter 6 we studied possibilities to perform measurements in a go-with-the-flow ap-
proach that are already feasible in practice and by doing significant offline effort to localize
nodes and explore the environment. Simultaneously localizing the nodes and exploring the
environment proved to be possible in real experiments using basic principles of time-based
localization and by measuring physical parameters related to the environment signature. The
combined approach in this thesis laid the foundations for interesting future research that can
include both the more complex cooperative localization using distance measurements be-
tween nodes, as well as focusing on more basic measurement principles for detecting e.g.
environment signatures and proximity of nodes.



158 Chapter 7. Conclusion



Acknowledgement

First and foremost I would like to thank my promotors Jan Bergmans and Heinrich Wörtche.
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