569 research outputs found

    Dual-Polarization OFDM-OQAM Wireless Communication System

    Full text link
    In this paper we describe the overall idea and results of a recently proposed radio access technique based on filter bank multicarrier (FBMC) communication system using two orthogonal polarizations: dual-polarization FBMC (DP-FBMC). Using this system we can alleviate the intrinsic interference problem in FBMC systems. This enables use of all the multicarrier techniques used in cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) systems for channel equalization, multiple-input/multiple-output (MIMO) processing, etc., without using the extra processing required for conventional FBMC. DP-FBMC also provides other interesting advantages over CP-OFDM and FBMC such as more robustness in multipath fading channels, and more robustness to receiver carrier frequency offset (CFO) and timing offset (TO). For DP-FBMC we propose three different structures based on different multiplexing techniques in time, frequency, and polarization. We will show that one of these structures has exactly the same system complexity and equipment as conventional FBMC. In our simulation results DP-FBMC has better bit error ratio (BER) performance in dispersive channels. Based on these results, DP-FBMC has potential as a promising candidate for future wireless communication systems.Comment: 1.This paper is accepted to be published in IEEE Vehicular Technology Conference (VTC) FALL 2018. 2.In this new submitted version authors have revised the paper based on the VTC FALL reviewers comments. Therefore some typos have fixed and some results have change

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    Single- versus Multi-Carrier Terahertz-Band Communications: A Comparative Study

    Full text link
    The prospects of utilizing single-carrier (SC) and multi-carrier (MC) waveforms in future terahertz (THz)-band communication systems remain unresolved. On the one hand, the limited multi-path components at high frequencies result in frequency-flat channels that favor low-complexity wideband SC systems. On the other hand, frequency-dependent molecular absorption and transceiver characteristics and the existence of multi-path components in indoor sub-THz systems can still result in frequency-selective channels, favoring off-the-shelf MC schemes such as orthogonal frequency-division multiplexing (OFDM). Variations of SC/MC designs result in different THz spectrum utilization, but spectral efficiency is not the primary concern with substantial available bandwidths; baseband complexity, power efficiency, and hardware impairment constraints are predominant. This paper presents a comprehensive study of SC/MC modulations for THz communications, utilizing an accurate wideband THz channel model and highlighting the various performance and complexity trade-offs of the candidate schemes. Simulations demonstrate that discrete-Fourier-transform spread orthogonal time-frequency space (DFT-s-OTFS) achieves a lower peak-to-average power ratio (PAPR) than OFDM and OTFS and enhances immunity to THz impairments and Doppler spreads, but at an increased complexity cost. Moreover, DFT-s-OFDM is a promising candidate that increases robustness to THz impairments and phase noise (PHN) at a low PAPR and overall complexity.Comment: 18 pages, 12 figures, journa

    Adjustable dynamic range for paper reduction schemes in large-scale MIMO-OFDM systems

    Get PDF
    In a multi-input-multi-output (MIMO) communication system there is a necessity to limit the power that the output antenna amplifiers can deliver. Their signal is a combination of many independent channels, so the demanded amplitude can peak to many times the average value. The orthogonal frequency division multiplexing (OFDM) system causes high peak signals to occur because many subcarrier components are added by an inverse discrete Fourier transformation process at the base station. This causes out-of-band spectral regrowth. If simple clipping of the input signal is used, there will be in-band distortions in the transmitted signals and the bit error rate will increase substantially. This work presents a novel technique that reduces the peak-to-average power ratio (PAPR). It is a combination of two main stages, a variable clipping level and an Adaptive Optimizer that takes advantage of the channel state information sent from all users in the cell. Simulation results show that the proposed method achieves a better overall system performance than that of conventional peak reduction systems in terms of the symbol error rate. As a result, the linear output of the power amplifiers can be minimized with a great saving in cost

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Channel Estimation in Uplink of Long Term Evolution

    Get PDF
    Long Term Evolution is considered to be the fastest spreading communication standard in the world.To live up to the increasing demands of higher data rates day by day and higher multimedia services,the existing UMTS system was further upgraded to LTE.To meet their requirements novel technologies are employed in the downlink as well as uplink like Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier- Frequency Division Multiple Access (SC-FDMA).For the receiver to perform properly it should be able to recover athe transmittedadata accurately and this is done through channel estimation.Channel Estimation in LTE engages Coherent Detection where a prior knowledge of the channel is required,often known as Channel State Information (CSI).This thesis aims at studying the channel estimation methods used in LTE and evaluate their performance in various multipath models specified by ITU like Pedestrian and Vehicular.The most commonly used channel estimation algorithms are Least Squarea(LS) and Minimum MeanaSquare error (MMSE) algorithms.The performance of these estimators are evaluated in both uplink as well as Downlink in terms of the Bit Error Rate (BER).It was evaluated for OFDMA and then for SC-FDMA,further the performance was assessed in SC-FDMA at first without subcarrier Mapping and after that with subcarrier mapping schemes like Interleaved SC-FDMA (IFDMA) and Localized SC-FDMA (lFDMA).It was found from the results that the MMSE estimator performs better than the LS estimator in both the environments.And the IFDMA has a lower PAPR than LFDMA but LFDMA has a better BER performance

    Theoretical Analysis and Performance Comparison of multi-carrier Waveforms for 5G Wireless Applications

    Get PDF
    5G wireless technology is a new wireless communication system that must meet different complementary needs: high data rate for mobile services, low energy consumption and long-range for connected objects, low latency to ensure real-time communication for critical applications and high spectral efficiency to improve the overall system capacity. The waveforms and associated signals processing, present a real challenge in the implementation for each generation of wireless communication networks. This paper presents the diverse waveforms candidate for 5G systems, including: CE-OFDM (Constant Envelope OFDM), Filter-Bank Multi Carrier (FBMC), Universal Filtered Multi-Carrier (UFMC) and Filtered OFDM (F-OFDM). In this work, simulations are carried out in order to compare the performance of the OFDM, CE-OFDM, F-OFDM, UFMC and FBMC in terms of Power spectral density (PSD) and of Bit Error Rate (BER). It has been demonstrated that (CE-OFDM), constitutes a more efficient solution in terms of energy consumption than OFDM signal. Moreover, the (F-OFDM), (UFMC) and (FBMC) could constitute a more efficient solution in terms of power spectral density, spectral efficiency and bit error rates. In fact, CE-OFDM reduces the Peak to Average Power Ratio (PAPR) associated with OFDM system, FBMC is a method of improving out-of-band (OOB) characteristic by filtering each subcarrier and resisting the inter-carrier interference (ICI). While, UFMC offers a high spectral efficiency compared to OFDM
    corecore