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Abstract 

 

Long Term Evolution is considered to be the fastest spreading communication standard in the 

world. To live up to the increasing demands of higher data rates day by day and higher multimedia 

services, the existing UMTS system was further upgraded to LTE. To meet their requirements 

novel technologies are employed in the downlink as well as uplink like Orthogonal Frequency 

Division Multiple Access (OFDMA) and Single Carrier- Frequency Division Multiple Access 

(SC-FDMA). 

For the receiver to perform properly it should be able to recover athe transmittedadata accurately 

and this is done through channel estimation. Channel Estimation in LTE engages Coherent 

Detection where a prior knowledge of the channel is required, often known as Channel State 

Information (CSI). This thesis aims at studying the channel estimation methods used in LTE and 

evaluate their performance in various multipath models specified by ITU like Pedestrian and 

Vehicular. The most commonly used channel estimation algorithms are Least Squarea(LS) and 

Minimum MeanaSquare error (MMSE) algorithms. 

 The performance of these estimators are evaluated in both uplink as well as Downlink in terms of 

the Bit Error Rate (BER).  It was evaluated for OFDMA and then for SC-FDMA, further the 

performance was assessed in SC-FDMA at first without subcarrier Mapping and after that with 

subcarrier mapping schemes like Interleaved SC-FDMA (IFDMA) and Localized  SC-FDMA 

(lFDMA). It was found from the results that the MMSE estimator performs better than the LS 

estimator in both the environments. And the IFDMA has a lower PAPR than LFDMA but LFDMA 

has a better BER performance. 

Keywords: LTE; Channel Estimation; IFDMA; LFDMA; Least Square (LS); MMSE; SC-

FDMA. 
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CHAPTER-1  

INTRODUCTION 

The previous two decades have seen a fast development in the quantity of subcarrier and mind-

boggling progression in the innovation of cell correspondence. From basic, all-circuitaswitched, 

simple first-eras frameworks with restricted voiceaservice capabilities, constrained mobility, and 

small capacityato the fourthageneration (4G) systemsawith fundamentally expanded capacity,aall-

IP executions that offer an assortment of media administrations. With the expanding interest in 

mixed media benefits, the radio access innovations keep on advancing with faster pace towards 

the up and coming generations of wireless networks. 

1.1 Evolutionaof Wireless Standards: 
 

    

 

 

 

 

 

 

 

 

 

First Generation (1G) – circuit switched system, supported voice 

transmission over air, engaged FDMA. Shortcoming was high sensitivity 

to dynamic vicinities. e.g. AMPS, TACS 

Second Generation (2G) – introduced in 1990’s, circuit-switched data 

communication system, employed TDMA. Supported data up to 9.5 kbps 

and voice transmission up to 14 kbps. E.g. GSM, IS-54 

Second Generation (2.5G) - GPRS evolved from GSM, employs two 

kinds of switching, packet-based for data transmission and circuit-

switched for voice transmission. GPRS further evolved into EDGE 

introducing higher modulation techniques and high data rate of 385 kbps. 
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Figure 0-1.1 Evolution of Wireless Standards 

Third Generation (3G)- CDMA used Direct Spread Spectrum Technology, 

supported bandwidth of 1.2284 MHz allowing 64 voice channels per cell 

and data rate 14 kbps for each channel. e.g. IS-95 

Third Generation (3.5G)- UMTS capable of achieving a maximum data 

rate of 1.96 Mbps. Further upgraded to HSDPA offering a data rate of 

nearly 14 Mbps using 16-QAM modulation technique and HSUPA with 

peak data rate of 5.6 Mbps. Together known as HSPA.  

Third Generation (3.9G) - HSPA+ capable of achieving data rate as high 

as 84 Mbps, used 64-QAM modulation technique and first to introduce 

2x2 MIMO technique. Included features like adaptive modulation and 

coding, HARQ etc. 

Fourth Generation (4G)- LTE offers a data rate of 100 Mbps in downlink 

and 50 Mbps in uplink. Uses QPSK, 16-QAM and 64-QAM. Scalable 

Bandwidth of 20 MHz, capable of working in high speed surroundings. 
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1.2 Introduction to 3GPP LTE: 
 

LongaTerm Evolution, usually known as 4G is the new standardafor next generation mobile 

communication system. LTE is nothing but a brand name given to the efforts of 3GPP towards 

development of 4G technology. It was initiated in the year 2004. The LTE ‘Release 8’[2] is 

commonly  considered to be the fourth generation but many hold the assertion that LTE ‘Release 

10’ i.e. LTE-Advanced is the true evolution step towards 4G, while LTE ‘Release 8’ is considered 

3.9G[1] 

Some of the requirements that serve as motivation for the development of LTE includes 

requirement of a simple network with open interface at a low cost, efficient use of existing and 

new frequency bands, decrease in cost per bit, better user experience and the decrease in terminal 

complexity allowing a fair amount of reduction in power consumption. After all these goals, 

further expectations were raised for LTE like, reduction in latency of packets, improved spectral 

efficiency more than the HSPA, about 3ato 4 times better in downlinkaand 2ato 3 times in the 

uplink. One ofathe most attractiveafeatures of aLTE is its scalable bandwidth which allows LTE 

to be deployed flexibly among other existing systems.  

Other than the scalable bandwidth, the most associated feature of LTE is its speed. Peak data rates 

for uplink and downlink of LTE are shown in Table 1.2 for a channel bandwidth of 20 MHz these 

high Peakadata rates in theaDownlink andaUplink are achieved using Technologies like OFDMA 

and SC-FDMA. Table shows the peak data rate for a scenario where single antenna is employed 

as well as when multiple antennas are used. 

Oneaof the main improvisations in LTE that the existing mobile communications don’t possess is 

the use of MIMO technology from the beginning. This leads to a cohesive methodology applied 

to the advanced antennaatechnology that adds MIMO to a legacyasystem like HSPA. Moreover, 

LTE aims at lowamobility applications ranging from 0 to 15 Km/h where the uppermost 

performance is observed. Theasystem also supports applications within the mobility range of 15 

to 120 Km/h and functional support in the range 120 to 350 Km/h. the support for speeds from 350 

to 500 Km/h is under consideration.  
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Table 1.1: PeakaData Rates in Downlink and Uplink of LTE 

 

1.3 Why OFDMA and SC-FDMA?? 
 

The main reasons why LTE employs OFDMA and its single- carrier equivalent SC-FDMA 

specified in [3] includes  

 Its robust nature against the multipath fading 

 Less complexity required for implementation  

 High spectral efficiency 

 Flexibility of transmission bandwidths  

 Support to cutting-edge features like MIMO [4], frequency selective scheduling etc. 

 

OFDMA is nothing but a multicarrier scheme, that divides the data being transmitted on a 

wideband in the frequency domain into a number of narrowband orthogonal sub-channels referred 

to as subcarriers. The frequency-selective fading channel can be embodied as an assembly flat-

fading narrowband subcarriers when the frequency spacing is very less. This enables the OFDMA 

to estimate the channel frequency response with ease by transmitting reference symbols. This in 

turn provides the ability to recover an accurate estimate using low-complexity frequency domain 

equalizer.  
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Despite being an efficient transmission scheme OFDMA suffers with large variations inathe 

instantaneous transmission power. This leads toathe reduction of efficiency in the power amplifiers 

and greater power consumption at the mobile terminal. In case of uplink transmission, designing 

a high performance complex power amplifiers is a challenging and difficult task. To overcome this 

difficulty, a variant of OFDMA known as Single-Carrier Frequency Division Multiple Access is 

used, where a DFT-based precoding is performed combined with OFDM resulting in substantially 

lower power as compared to OFDMA making it suitable for use in uplink.  

 

1.4 Literature Review: 
 

In order to fulfill the exponentially growing needs of the wireless network services, a high speed 

data access communication standard has been developed known as Long Term Evolution. To 

achieve its goal it employs technologies like OFDMA and SC-FDMA in the uplink and downlink 

respectively. The performance gain of LTE over other systems was its ability to estimate the 

Channel State Information (CSI) accurately and efficiently, which is necessary for 

everyacommunication system [5]. This is done through Channel estimation which is a crucial part 

of modern communication systems for the receiver to perform efficiently. The most commonly 

used among several channel estimation techniques are LS and MMSE as specified in [8] and 

implemented using basic channel estimation model [6]. There are various ways in which Channel 

estimation can be performed like Parametric Model, Blind or Pilot Based, adaptive or Non-

adaptive. But among them mostly pilot-based estimation is used where known reference signals 

are sent along with the data to estimate the channel at the receiver [7]. The LS estimator is easy to 

implement but it suffers with large MSE while MMSE is a more efficient estimator its 

implementation is a bit complex. These estimators can also be used in the uplink but same 

transmission technique is not used in uplink as downlink. SC-FDMA is used because of its lower 

PAPR along with its ability to provide higher throughput and lower BER than the OFDMA. It also 

uses different types of subcarrier mapping schemes like LFDMA and IFDMA which has lower 

PAPR [9]. These subcarrier mappings improve the PAPR performance of the system and also the 

performance of the estimators.  
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1.5 Thesis Objective: 
 

In this thesis, we investigate a critical part of the LTE-based receivers that contributes significantly 

in achieving the LTE requirements for an acceptable overall performance this part is the channel 

estimation. Accurate channel estimates at the receiver have a major impression on the whole 

system performance. Part of theasystem design requires identifying estimators that make their 

implementation at the receivers practical while maintaining a satisfactory Bit Error Rate (BER) 

performance. Realizing estimators in LTE-based receivers that can sustain high performance in 

high-mobility environments is a growing research field, where tradeoffs between complexity and 

BER have to be considered [4]. 

 

The main objective of this thesis is to investigate and assess channel estimation techniques such 

as Minimum Mean Square Error and Least Square in various multipath models specified by ITU 

[25] such as Pedestrian and Vehicular models in which the channel is varying and come forth 

with a channel estimation technique that is efficient and suitable in all the conditions. 

 

1.6 Thesis Outline: 
 

The thesis consists of five chapters:  

 Chapter 1 discusses the evolution of the wireless standards and introduction to LTE along 

with  why the respective schemes are used in LTE. And also the motivation of the thesis. 

 Chapter 2 gives an overview of the physical layer of Long Term Evolution. It discusses 

the network architecture of LTE and its requirements. 

 Chapter 3, describes the physical layer processing in uplink and downlink of LTE and 

gives description of the OFDMA and SC-FDMA technology along with the description of 

channel models used. 
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  Chapter 4 describes the approach to channel estimation and the channel estimation 

techniques like Least Square and Minimum Mean Square Error and evaluates their 

performance in various multipath models. 

  Chapter 5 concludes the thesis and proposes future work that can be done in order to 

continue the investigation. 
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CHAPTER -2  

AN OVERVIEW OF LTE 

 

2.1 Requirements of LTE: 
 

The evolved UMTS terrestrial radio access (E-UTRA) supports a number of other applications 

along with mobile internet like HTTP, FTP, and VoIP etc. LTE has been designed to fulfill the 

requirements of higher data rate and low air link access latency needs of the existing and emerging 

application. The bandwidth ofaLTE is much greaterathan the earlier existing technologies allowing 

it to provide higherathroughput and peakadata rates inauplink as well as downlink. This enables 

the service providers to adapt their services according to the available spectrum or it is capable of 

starting with a limitedaspectrum for loweracost services and then later escalating theaspectrum for 

additional capacity. 

A summaryaof LTE systemarequirements is shown in Table 2.1 [1]. Beyond theseametrics, LTE 

targets at diminishing intricacy and intake of power and cost-effectiveamigration fromaUMTS 

systems.  
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                                Table 2.1: Requirements of Long Term Evolution 

2.2 Overall Network Architecture  
 

LTE network architecture comprises of the following key components  

 The User Equipment (UE) 

 The Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) 

 The Evolved Packet Core (EPC) 

 

Figure 0-1.1: Basic Block Diagram of Network Architecture of LTE 

 

2.2.1 The User Equipment (UE): 
 

The User Equipment [21] is a deviceaused for the purpose of communication by the end-user. It 

transmits informationato the baseastation eNodeB or receive informationafrom the baseastation. It 

can be either a mobile equipment or a laptop equipped with mobile broadband. The functions of 
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UE includes mobility management, call control, session management and identity management. 

All the calls are initiated by the UE and it is considered to be the terminal device in a network.  

 

2.2.2 E-UTRAN (the Access Network): 
 

The E-UTRAN [12] in LTE is given the task of handling radio communication between user 

equipment and Evolved Packet Core. It consists of only one component which is a baseastation 

that controlsathe mobiles in oneaor moreacells, referred to as eNodeB or eNB. The baseastation 

that communicates with a user equipment isaknown as the Serving eNodeB of that equipment. In 

LTE only one mobile equipment and one base station communicates at a time. E-UTRAN has two 

main functions:  

 The eNodeB is responsible for sending and reception of radio signals to all the mobiles 

employing analog and digital signalaprocessing functionsaof LTE airainterface. 

 The eNodeB also controlsathe low level operations of user equipment such as sending them 

signaling messages like handover commands. 

The interface between eNodeB and EPC is the S1ainterface and eNodeB can also be allied to a 

nearbyastation through X2 interface mainly used for the signaling packets forwarded all through 

handover. An eNodeB employed to deliver cell coverage withinathe home is called Home eNodeB. 

The Home eNodeB is part of a Closed Subscriber Group (CSG) which can beaaccessed by only 

those mobile equipment having a USIM belonging to the CSG.                                                                                                                                 

 

Figure2.2 Internal Architecture of E-UTRAN 
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2.2.3 The Evolved Packet Core (EPC) [the core network]: 
 

The EPC is responsibleafor communicating with the data network in theaoutside world like, 

internet, private corporate networks or IP Multimedia system. 

The EPC comprises of the following components: 

 Home Subscriber Server (HSS): This behaves as the central data base containing 

informationaabout allathe networks’ operatorasubscribers. This component has 

beenacarried forwardafrom the existing GSM and UMTS networks.  

 The Packet Data Networks (PDN) Gateway (P-GW): this component is used to 

communicate with the outside world or we can say Packet data networks through SGi  

interface. Access Point Name (APN) is used to identify each Packet Data Network. The 

PDN-Gateway serves theasame purpose as the GPRS Support Node (GGSN) andathe 

serving GPRS Support Node (SGSN) within UMTSaand GSManetworks. 

 

 Serving Gateway (S-GW): this component is usedato transfer dataafrom the baseastation 

to the PDN gateway and behaves as router.   

 Mobility Management Entity (MME): HighaLevel operations of theamobile equipment 

is controlled by this component using signalingamessages and Home Subscriber Server.  

 Policy Control and Charging Rules Function: This component is accountable 

forapolicy-control and decision-control, itaalso controls the flow basedacharging 

functionalitiesain the policyacontrol enforcementafunction residing in P-GW. 

 

The interface through which theaserving andaPDN Gateway connect is known as S5/S8 

interface. S5 interfaceais used when both devices are in the sameanetwork while S8 interface 

isaused when the devices are in differentanetworks.  
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  Figure 2.3: Internal Architecture of EPC 

 

2.3 LTE Physical Layer: 
 

2.3.1 Duplex Modes  
 

One of the crucial factors in radio communication is the way in which the communication is carried 

out in both directions and maintained. The need to maintain data transmission in both the directions 

simultaneously places many limitations on the respective scheme that can be used to control this 

flow of transmission. The LTE supports two types of duplex modes  

 Frequency Division Duplex mode (FDD) 

 Time Division Duplex mode (TDD) 

 

Frequency Division Duplex (FDD) 

 

This duplexing scheme is employed when two alternative RF carriers are used for simultaneous 

transmission in the uplink and downlink or when the transmit or receive are frequency division 

multiplexed in frequency domain. The FDD duplex mode broadcasts information in both the 
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directions simultaneously using different frequencies. These two frequency have a large difference 

between them or we can say frequency offset.  

A large frequencyaoffset is needed in orderato prevent the interference of transmitted signal  at the 

receiver side  for the proper performance of FDD scheme. Another crucial concern with this 

scheme is Receiver Blocking that often requires using high selective filters. The base station as 

well as the user equipments must be equipped with these filter so as toaensure the sufficient 

isolationaof the transmitted signal withoutadesensitizing the receiver. Placing these filters in the 

user terminal is a challenging task and requires high implementation cost. In FDD the re-allocation 

of spectrum in order to change the capacity of uplink and downlink is not possible as there is a 

large difference between both the frequencies.                                     

        

                                                                   Frequency Division Duplex (FDD)  

                              F1 

 Frequency separation 

                              F2 

 

                               Figure 2.4: Frequency division Duplex Mode of transmission 

 

Time Division Duplex (TDD) 

 

In this duplexascheme the uplink andadownlink transmissions take place at different time instants 

butamay have a common frequency. In otherawords, we can say that both the transmissions are 

time multiplexed and does not occur concurrently. In TDD the transmission and reception must be 

separated by a time difference known as Guard Interval or Guard Time. This guard interval must 

be adequate in order toaallow theasignals coming from remoteatransmitter to reach before another 

transmissionais started and before theareceiver is shutadown. The guard interval will comprise of 

two key elements: 

                         DL                      DL 

                         DL                      DL 
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•    A timeaallowance for the propagationadelay for any transmission from a remoteatransmitter to 

arriveaat theareceiver. 

•    A timeaallowance for theatransceiver to switch from theareceive toatransmit mode. 

The advantage of using this scheme includes the relative ease with which the capacity can be 

changed by varying the number of time slots allocated in both courses. 

 

                                                  Time Division Duplex (TDD) 

        F1  

 

                            Switching gaps  

  Figure 2.5: Time Division Duplex Mode of Transmission 

2.3.2 Frame structure: 
 

 Downlinkaand Uplinkatransmissions in the LTE are organized in the formaof radio frames of 

duration 10ms. It supports two types of radio frame structures  

 Type-1 Frame Structure  

 Type-2 Frame Structure  

 

Type-1 Frame Structure:  
 

 Frequency Division Duplex (FDD) scheme engages this type of frameastructure, for both FDD 

modes i.e. half duplex and full duplex. Each radioaframe of 10ms duration is dividedainto 10 equal 

parts of 1ms duration each. This subdivided frame of 1ms further comprises of two slots of equal 

size of 0.5ms each. In FDD 10asubframes are accessible for downlinkatransmission as well as 

uplinkatransmission in each radioaframe. The uplink and the downlink transmissions are carried 

out at different frequencies i.e. there is a separation between them in frequency domain. The 

downlinkaand uplinkaTransmission Time Interval (TTI) is 1ms. 

 DL      UL             DL     UL 
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                                          Figure 2.6: Type-1 Frame Structure 

Type-2 Frame structure: 
 

Time Division Duplex Scheme (TDD) uses this typeaof frameastructure. Each radio frame of 10 

ms is dividedainto two half-frames ofa5ms each. There are a total of 8 slots in each half frame with 

the following threeaspecial fields: 

 downlink pilot time slot (DwPTS) 

  guard period (GP)  

  Uplink pilot time slot (UpPTS).  

 

The length of DwPTS and UpPTS is configurableasubject to the total lengthaof DwPTS, 

GP, and UpPTS beingaequal to 1ms. The first subframe and the sixthasubframe in 

configurationawith 5ms of switching-pointaperiodicity contains DwPTS, GP, and UpPTS. 

The sixth subframe in configuration with 10ms of switching-point periodicity consistsaof 

only DwPTS. All otherasubframes have two slots of equal size. The GP is held in reserve 

for downlink to uplink transition in the TDD systems, Otherasubframes or fieldsaare 

allotted for eitheradownlink or uplinkatransmission as given in Table 2.2. 
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                                               Figure 2.7: Type-2 Frame Structure 

 

Table 2.2 : Permissibleauplink/downlink configurations in frame structure Type 2 

 

2.3.3 Time and Frequency Synchronization: 
 

In LTE there is need of time and frequencyasynchronization duringainitialization, to serve this 

purpose synchronizationasignals areatransmitted along with every radioaframe. The UE 

synchronizesato the OFDMasymbols, subframes, half-frames andaradio frames through the use of 

these synchronizationasignals. Two types of synchronizationasignals are used in LTE:  

  Primary Synchronization signal: this is used to obtain the boundaries of slots, subframes 

andahalf-frame. It also makes the cellaidentity available withinathe CIG. 
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 Secondary Synchronization signal: this is used toaobtain the boundaries of radioaframe. 

So, this makes the UE capable of identifying CIG which can lie within a range of 0 to 167.  

Each 0th anda5th subframe of every radio frame are used to transmit the synchronization signals.  

They are occupying the center frequency 1.08 MHz of the radio channelain the frequencyadomain. 

The 0th and 10th slot of every radio frame are used toatransmit the primary and the secondary 

synchronization signals.  The signals occupy the last two symbols within these slots. The primary 

synchronizationasignal is transmitted inathe last symbols of the 0th and 10th and secondary 

synchronization isatransmitted oneabefore the last symbols of 0thaand 10th slot. The center 

frequency of 1.08 MHz of the radioachannel is held reserve for the primary andasecondary 

synchronizationasignals. 

 

2.3.4 Physical Resource Blocks: 
 

The basicaLTE downlinkaphysical resourceacan be represented in time-frequencyagrid, as shown 

in Figure below: 

 

                      Figure 2.8: Illustration of OFDM in LTE using PhysicalaResource Blocks 
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The smallestatime-frequency unit used foratransmission in LTE is knowns as a Resource Element 

and it is defined asaone subcarrier over one OFDMasymbol. An assembly of 12asubcarriers 

together continuous in frequencyaover one time slot results in one Physical Resource Block (PRB). 

A PRB is a 2D region comprising of one slotain timeadomain and 180 KHzain frequencyadomain 

(12 x 15 KHz = 180 KHz). PRB’s are the units of transmission allocated in LTE. The size of a 

resource block is 0.5ms in timeadomain and 180aKHz in the frequencyadomain as discussed 

earlier and the OFDM symbols in LTE are grouped together into resource blocks. Each TTI 

consists of 2 time slots (T-slots) of 0.5ms each.  

 

For carrying out the transmission each user in LTE is allocated some resourceablocks in time-

frequencyagrid. The more number of resourceablocks allocated to a particular user and higher the 

modulation scheme used, the higher will be the Bit Rate obtained. How many and which of the 

resource blocks a user acquires at a given time depends upon the scheduling mechanisms used in 

Time and frequency domains. The number of resource block corresponding to each Bandwidth 

[15-16] is given in table 2.3  

                     

       Number of Resource blocks                     Bandwidth (MHz) 

                             6                               1.4 

                            15                                 3 

                            25                                 5 

                            50                                10 

                            75                                15 

                           100                                20 

 

            Table 2.3: Illustration of number of resource blocks of the corresponding Bandwidth  

 

2.3.5 Modulation and Coding: 

 

The downlink or uplink of LTE supports many baseband modulationaschemes like QPSK, a16-

QAM anda64-QAM. Similar to UTRA the channelacoding scheme is turbo coding for transport 
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blocks inaLTE. The coding scheme has a codingarate ofaR = 1/3 along with  two 8-

stateaconstituentaencoders and a contention-freeaquadratic permutationapolynomial (QPP) turbo 

code internalainterleaver [16].After encoding of all the information bits is done byataking theatail 

bits from shiftaregisterafeedback, the Trellis termination is performed. Succeeding theaencoding 

of all informationabits the tailabits are padded. 

Before performing turboacoding, the transportablocks are segmented intoaalignedasegments 

comprising of eight states with a maximumainformation blockasize ofa6144 bits. 24-Bit CRC is 

used for error detection. 

 

2.3.6 Reference signals: 
 

In an OFDM system to make the estimationaof multipathachannel simple and easier, Coherent 

detection is employed that usesaReference symbols (or pilot symbols). The pilot symbols makes 

anaestimate of theachannelafrequency response available at the pilotalocations over theatime-

frequency grid. Now, by using Interpolation techniques the estimate of the channel can be 

recovered at other time-frequency locations. There are numerousatypes of downlink and uplink 

referenceasignals specified in LTE. 

 

 Downlink Reference Signal: 

  

The channel estimationafunctionality required toaequalize andademodulate data or control 

information is fully supported by Downlink Reference Signals. They also play a very crucial role 

in CSI measurement required for channel quality feedback. There are five typesaof reference 

signals specified inaLTE  

 Cell-Specific Reference Signals (CSR) 

 Demodulation Reference Signal (aDM-RS, otherwise known as UE-specific reference 

signal) 

 Channel-State Information Reference Signal (CSI-RS), 

 MBSFN Reference signals, and 

 Positioning Reference signals. 
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Cell-Specific Reference Signals: 

 

In the frequencyadomain, the CSRs are located in everyadownlink subframe and resourceablock 

and thus covering the entire bandwidth. For performing the channelaestimation through coherent 

detectionaof downlinkaphysicalachannels, the cell-specific referenceasignals are usedaduring 

initial stage of cell selection. They may be usedaby the terminal to get theaChannel State 

Information (CSI). The receivedasignal strength from the CSRs sent from antennaaport 0 forms 

the basis for the measurements relating to the scheduling and handover functions. In the time-

frequency grid, in order to prevent the overlapping of CSR’s in the adjacent cells, a frequencyashift 

isaapplied to theamapping locations of CSR’s. when the CSR symbols are located in the antenna 

of the same cell they are time multiplexed.  

 

 UE-Specific Reference Signals: 

 

A UEamust perform a separateachannelaestimation for eachaantenna port for the purpose of 

determining the channel characteristics from an antenna port.  So, to estimate the respective 

channel another set of suitable referenceasignals areadefined forathe antenna port. These reference 

signals are known as UE-specific Reference Signals or DM-RSs . They areaused in those 

transmissionamodes of LTE where CSRs cannot be used. Within aapair of resourceablocks we 

have 12 reference symbols when only one DM-RS is used. There is a key difference between the 

CSR and UEaspecific referenceasignals. When the above twoasignals are used on 2 antenna ports, 

all the 12 reference symbols are transmitted on both the antenna ports . The solution to diminish 

the interference between them is by generating a mutuallyaorthogonal pattern for each set of 

reference symbols. 

  

 CSI Reference Signals: 

 These were first introduced in Release-10 of LTE for the newly proposed multi-user MIMO 

techniques. This new technique requires some prior knowledge of the channelastateainformation 

at the baseastation so that theasystem can adjust according to the radioachannel conditions 

dynamically to optimize the performance. For cases where the number of antennas is between 4 

and 8, CSI 
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Figure 2.9: Reference symbols position in the Resource grid for one antenna and two antenna 

port 

 

reference signals were designed to permit the channel stateameasurement andareporting by UE for 

upato 8 downlinkatransmit antennasato aid eNodeB pre-coding functions in transmissionamode 9. 

While theaDM-RS supports channelaestimationafunctionality, on the other hand a CSI-RS 

acquires Channel State Information. To decrease theaoverhead occurring from havingatwo types 

of referenceasignal within the resource grid, the temporalaresolution ofaCSI-RSs is made low. 

 

Uplink Reference Signal: 

 

 Demodulation Reference Signals and Sounding ReferenceaSignals are the twoatypes of reference 

signals specified by LTE for Uplink transmission. Both uplink referenceasignals are basedaon 

Zadoff–Chu sequences. From the differentacyclic shiftaparameters of theabasesequence with the 

purpose of generating different Reference Signals for different UEs. 
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 Demodulation Reference Signals: 

 

The UE transmits the Demodulation reference signals as a fragment of the uplinkaresource grid.  

The base station receiver uses these signals to demodulate and equalize data and control 

information. In case of PUSCH, the DSR signals are located on every fourth OFDMasymbol of 

each subframe in 0.5ms slot and spread over the entire resource block. In PUCCH, the location of 

the DRS depends upon the formataof the control channel. 

 

Sounding Reference Signals: 

 

The sounding reference signals are transmitted as a fragment of the uplinkaresource grid to 

facilitate theabase station in estimating the channelaresponse at various frequencies.. The channel 

state estimates obtained are utilized for channel-dependent scheduling. So, we can say that the 

scheduler is capable of allocating user data to those segments of uplinkabandwidth whereachannel 

responses areafavorable. Whenadownlink and uplinkachannels are reciprocal oraidentical, like in 

TDD the SRS transmissions can serve in other applicationsasuch as timing estimationaand control 

of downlinkachannel conditions. 
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CHAPTER-3  

PROCESSING IN LTE 

 

The LTE downlink is basedaon OFDM, a very appealing transmissionascheme due to its 

robustness against the multipath fading channel. Other motivations include high spectral 

efficiency, low –complexityaimplementation and provision for flexible transmissionabandwidths. 

Since, one of our objectives is to analyze the channel estimation techniques in LTE downlink it is 

necessary to have an understanding of the OFDM technique. In the following chapter, the 

characteristics of LTE more relevant to the channel estimation will be presented along with the 

system model of the LTE Downlink. 

 

 

3.1 Downlink Transmission in LTE:  

 

OFDM is a transmission scheme that transforms a wide band of frequencyaselective channelainto 

a set of non-selective narrow-band sub-carriers that are orthogonalato each other, making it robust 

against the large delay spread channels preserving itsaorthogonality in the frequencyadomain. And 

theaintroduction of cyclicaredundancy concept at theatransmitter furtherareduces theacomplexity 

to FFTaprocessing. The narrow-band sub-carriers are modulated by orthogonal waveforms thereby 

allowing the spectrum to be overlapped and thus resulting in high spectral efficiency. In practice, 

the best way of implementing these orthogonal subcarriers is Discrete Fourier Transform (DFT) 

and Inverse Discrete Fourier Transform (IDFT) processes which can beaimplemented proficiently 

usingaFast Fourier Transform and Inverse Fast Fourier Transform.  

 

In OFDM, the transmitted data undergoes N-Point IFFT so as to generate the samples to be applied 

for the summation, resulting in the sum of N orthogonalasubcarrierasignals as shown inafigure 3.1. 
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At the receiver side, N-Point FFT of the received symbols is performed giving the noisy version 

of the transmitted signal. Because of the subcarriers being constrained to a finite length T, the 

spectrum of an OFDMasignal can be consideredaas the sum of frequency-shiftedasinc functions 

in the frequencyadomain where spacing between subsequent carriers is 1/T. Since, each subcarrier 

has a finite time duration foe each symbol, the OFDM signal can suffer from out-of-band radiation 

responsible for Adjacent Channel Interference (ACI). To mitigate this effect, a guardaband is 

placed at outerasubcarriers, generally known as Virtual Subcarriers (VCs) to reduce the around the 

frequency band. And to diminish the effect of Inter Symbol Interference (ISI), a guardainterval is 

introduced among the timeadomain called the Cyclic Prefix (CP).  

 

The function of the transmitter in OFDM is to map the data bits onto a sequenceaof PSK oraQAM 

symbols that are transformed into N parallel streams. Different subcarriers carry out the conversion 

of each of the N symbolsafrom serial toaparallel form.  

 

     

 

Figure 3.1: Outline of OFDM transmission Scheme 

 

Let 𝑋𝑘(𝑙) denote the 𝑘𝑡ℎ  transmitter symbol at the 𝑙𝑡ℎ subcarrier, where k = 0,1,2…..∞ and  

l= 0,1……. N-1. Because of theaconversion of symbolsafrom serial toaparallel the time taken to 

transmit Nasymbols is extendedato N𝑇𝑠  which forms only one OFDMasymbol with a duration of 

𝑡𝑠𝑦𝑚𝑏 (i.e. 𝑡𝑠𝑦𝑚𝑏 = N𝑇𝑠). 
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Figure 3.2: OFDM implementation using IFFT/FFT 

 

 

Let 𝜓𝑘,𝑙(𝑡) be the OFDM symbol at the 𝑙𝑡ℎ subcarrier, which is given as  

  

         𝜓𝑘,𝑙(𝑡) =  {
  𝑒𝑗2𝜋𝑓𝑙 (𝑡−𝑘𝑡𝑠𝑦𝑚𝑏)      0 < 𝑡 <  𝑡𝑠𝑦𝑚𝑏

0                                    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

 

In the continuous time domain the passband and baseband OFDM can be represented respectively 

as   

                         𝑥𝑘(𝑡) = Re    {
1

𝑡𝑠𝑦𝑚𝑏
 ∑ (∑ 𝑋𝑘(𝑙) 

𝑁−1
𝑘=0

∞
𝑘=0 𝜓𝑘,𝑙(𝑡)}     ……….            (3.2) 

And 

                                     𝑥𝑘(𝑡) =  ∑ ∑ 𝑋𝑘(𝑙) 𝑒
𝑗2𝜋𝑓𝑙(𝑡−𝑘𝑡𝑠𝑦𝑚𝑏)𝑁−1

𝑘=0
∞
𝑖=0      ….........        (3.3) 

  

The sampling of the baseband OFDM signal takes place at t = 𝑘𝑡𝑠𝑦𝑚𝑏 + 𝑛𝑇𝑠 with 𝑇𝑠 = 𝑡𝑠𝑦𝑚𝑏 𝑁⁄  

and 𝑓𝑙 = 𝑙 𝑡𝑠𝑦𝑚𝑏⁄  to yield theacorresponding discreteatime OFDMasymbol as  

 

                  𝑥𝑘[𝑛] =  ∑ 𝑋𝑘(𝑙) 
𝑁−1
𝑘=0 𝑒𝑗2𝜋𝑘𝑛/𝑁          for n = 0, 1, 2, ….. N-1………         (3.4) 

 

This equation represents the N-pointaIDFT of the PSK oraQAM symbols and can be calculated 

efficientlyaby usingaIFFT algorithm. 
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Now, at the receiver side the received OFDM symbol is taken into consideration  

 

  𝑌𝑘(𝑡) =  ∑ 𝑋𝑘(𝑙) 𝑒
𝑗2𝜋𝑓𝑙(𝑡− 𝑘𝑡𝑠𝑦𝑚𝑏)𝑁−1

𝑙=0            𝑘𝑡𝑠𝑦𝑚𝑏 < 𝑡 ≤ 𝑘𝑡𝑠𝑦𝑚𝑏 + 𝑛𝑇𝑠 

 

From which transmitted symbols can beareconstructed by orthogonalityaamong theasubcarriers as 

follows: 

                      𝑦𝑘[𝑙] =  
1

𝑡𝑠𝑦𝑚𝑏
 ∫   𝑌𝑘(𝑡) 𝑒

−𝑗2𝜋𝑙𝑓𝑙(𝑡−𝑘𝑡𝑠𝑦𝑚𝑏)  𝑑𝑡
∞

−∞
 

                             =    
1

𝑡𝑠𝑦𝑚𝑏
 ∫ ( ∑ 𝑋𝑙(𝑖) 𝑒

𝑗2𝜋𝑓𝑖(𝑡−𝑘𝑡𝑠𝑦𝑚𝑏)𝑁−1
𝑖=0

∞

−∞
 

                             =  ∑ 𝑋𝑙(𝑖) {
1

𝑡𝑠𝑦𝑚𝑏
  ∫ 𝑒𝑗2𝜋(𝑓𝑖− 𝑓𝑘)(𝑡−𝑘𝑡𝑠𝑦𝑚𝑏) 𝑑𝑡

𝑡𝑠𝑦𝑚𝑏

0
} 𝑁−1

𝑖=0  

                             =   𝑋𝑘(𝑙) 

The above equation is the N-PointaDFT of the received signal and canabe calculated proficiently 

by a DFT algorithm. Thereby, proving that the OFDM transmission scheme is one of the most 

efficient way of implementing multi-carrier transmission by using IFFT and FFT algorithms. The 

spectrum of the OFDM is as shown inafigure 3.3. 

 

 

            Figure 3.3: Orthogonal Subcarriers of OFDM in the time domain 
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Figure 3.3: Spectrum of an OFDM signal 

 

 

3.1.1 Cyclic Prefix (CP): 

Practically, the Inter Symbol Interference (ISI) between the OFDMasymbols is caused due to the 

linear distortions like multipath delays, resulting in the lossaof orthogonality in the subcarriers and 

anaeffect similarato Adjacent ChannelaInterference (ACI).Cyclic prefix (CP) concept was 

introduced to counter this problem [18]. When the delay spread is within the useful length of an 

OFDM symbol, the influence of the ISI is trivial, although itadepends on theaorder ofamodulation 

implementedaby the subcarriers. The most effective and simple way of eliminating the problem of 

ISIais toaincrease the duration of OFDM symbol in such a way that it is largerathan theadelay 

spread and howeverawhen the delay spreadais large thatarequires a largeano. of subcarriers. 
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                                                       Figure 3.4: Cyclic Prefix 

 

It is necessary that the duration of cyclic prefix is as long asathe significantapart of theachannel 

impulse responseaexperienced by theatransmitted signal. In thisaway there is a two-fold advantage 

of the CP  

 It acts as guard interval between the subsequent OFDM symbols hence, the ISI is 

eliminated. 

 And the linear convolution of the CP with CIR results in a cyclic convolution, the latter 

performed in the timeadomain corresponds to scalaramultiplication in theafrequency 

domain and therefore this preservesathe orthogonality of theasubcarriers andaprevents ISI. 

 

But the benefits of CP does not come without a cost. As the length of the CP increases the power 

required to transmit the signal also increases. Because of the insertion of CP thereais a loss inathe 

signal to noise ratio and this loss in SNR is given as 

 

                                          𝑆𝑁𝑅𝑙𝑜𝑠𝑠 = −10 log10 1 −
𝑇𝐶𝑃

𝑇
 

 

Where    𝑇𝐶𝑃           duration of the cyclic prefix 

               𝑇𝑠                duration of the symbol 

 

        T = 𝑇𝐶𝑃 + 𝑇𝑠 , is the duration of the transmitted symbol. 
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3.1.1 LTE System Downlink Model: 

 

 

 

 

 

 

 

 

 

                      

 

                     

 

 

 

 

                                          

 

 

 

 

 

 

 

                     

Figure 3.5:  Basic LTE Downlink Model 
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In practice, the OFDM symbols in an LTE Downlink system areagenerated by performing 

certain manipulationsaon the serial input information bits as shownain Figure 3.5. 

Firstly all the input information bits are converted into a number of paralleladata streams byausing 

a Serial toaParallel Converter, which are then mapped onto different subcarriers in the form of 

symbols by using various modulation techniques such asaQPSK, 16-QAM anda64-QAM defined 

in [18]. Mapping the symbols using different constellations is a way of allocating a sinusoid with 

a unique amplitudeaor phase to theainput information bits. These higher order modulation 

techniques are required to attain high data rates and bandwidth efficiency.  

Then according to the Frame Structure of LTE Downlink as defined in chapter 2, all the 

constellation symbols and pilot symbols areamapped on the OFDMaresource grid. The pilot 

symbols can be arranged in different manners on the resource grid for the purpose ofachannel 

estimation as documented in [19]. As the transmission bandwidth is much lesser than the sampling 

rate, the lengthaof the signalaspectrum is increased by adding a numberaof zeros at the end of the 

signal spectrum and this is known as Zero Padding. Now IFFT is performed on these zero padded 

signals to generate OFDM symbols. To sustain the orthogonality of corresponding time domain 

waveforms, a frequency gap must be maintained. In the frequency domain these signals overlap, 

therefore utilizing all the bandwidth available in an effective way. IFFT is an effectual means of 

generating the OFDM modulated symbols and reducing the complexity of transmitter. After this 

the CP is inserted to prevent ISI before the transmission. 

On the receiver side, operations opposite to that of the transmitter is performed to obtain estimates 

of multipath channel to recover information as accurately as possible. At first, Cyclic prefixes are 

removed and then FFT is performed in order to obtain the OFDM modulated symbols and thereby 

transforming the signal into frequency domain. To obtain the transmitted data, channel estimation 

(described in chapter 4) is done in the detection stage where, pilot symbols are extracted from each 

subframe and the recovered constellationasymbols are de-mapped into binary input bits and then 

converted from parallel to serial form giving the recovered information bits. 
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3.2 Uplink Transmission in LTE: 
 

The 3GPP has espoused the Single-Carrier Frequency Division Multiple Access (SC-FDMA) 

scheme for the uplink transmission in LTE [29]. It is nothing but an improved form of OFDMA 

that has some advantages over the OFDMA technology like low PAPR, hence reducing the energy 

required for transmission and the ability to eliminate ISI. With all of the above advantages it also 

accede to the property of robustnessaagainst the multipathasignal propagation. This makes it a 

suitable technique for uplink transmission. 

SC-FDMA is also known as Discrete Fourier Transform (DFT) pre-coded OFDMA, as before 

going through the modulation process all the time domain input data bits undergo a DFT thus 

converting them to frequency domain. However, the use of word ‘single-carrier’ in this technique 

is not evident always. It is named in this way, as unlike standard OFDM where a subcarrier carries 

information about only one symbol, SC-FDMA assigns the data symbol to be carried to a group 

ofasubcarriers transmittedasimultaneously. In other words, the group ofasubcarriers that 

carryaeach data symbol can beaviewed as oneafrequency band carryingadata sequentiallyain a 

standardaFDMA. 

   

                     Figure 3.6: Subcarrier Mapping in OFDMA and SC-FDMA 
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One ofathe mainadrawbacks of OFDMA that holds it back is its high Peak-to-Average Power Ratio 

(PAPR). Since, all the modulated subcarriers sum up to give the transmit signal, high peaks are 

unavoidable because many subcarriers have the same phase for some inputs. As a result a heavy 

affliction is imposed on the power amplifier of the transmitter which makes it unsuitable for uplink 

transmission and also its vulnerability to frequency offset, which are both shown below.  

 

Figure 3.7: CCDF of PAPR for OFDMA Vs SC-FDMA using QPSK

 

                          Figure 3.8: CCDF of PAPR for OFDMA Vs SC-FDMA using 16-QAM 
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3.2.1 LTE Uplink System Model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

                                              Figure 3.9: UPLINK MODEL OF LTE 
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The above block diagram depicts the Uplink system model used in LTE. Its structure is nearly 

similar to the OFDM transmission scheme except for one block i.e. DFT which is introduced 

before the sub-carrier mapping.  A set of modulated symbols generated with the help of 

modulation techniques like QPSK, 16-QAM or a64-QAM is applied to the M-Point DFT block. 

This DFT producesaM frequencyadomain symbols that are responsible for modulating M sub-

carriers from N available orthogonal sub-carriers which are spreading over a bandwidth 

                                                       𝐵𝑐ℎ𝑎𝑛𝑛 = 𝑁 𝑓𝑠𝑢𝑏  𝐻𝑧 

 Where 𝑓𝑠𝑢𝑏 is sub-carrier spacing. The Channelatransmission rate is  

                                                      𝑅𝑐ℎ𝑎𝑛𝑛 = 
𝑁

𝑀
 𝑅𝑠𝑜𝑢𝑟𝑐𝑒    [Symbols/second] 

And the spreadingafactor is given as  

                                                                Q = 
𝑅𝑐ℎ𝑎𝑛𝑛

𝑅𝑠𝑜𝑢𝑟𝑐𝑒
 = 

𝑁

𝑀
  

The DFT process is then followed by Sub-carrier Mapping, also known as scheduling where each 

of the sub-carriers is assigned the complex output value as its amplitude which is further explained 

in section 3.4 below. After this the IFFT operation converts the frequencyadomain symbols into 

timeadomain. To prevent the ISI cyclic prefix (as described in section 3.1.1) is added to the endaof 

each signal .The parallel to serial converter transforms the parallel time domain signals into an 

organized sequence for transmission. 

At the receiver first and foremost task is to remove the CP and then perform DFT to convert the 

time domain signals into frequency domain that may be equalized byadividing it point-by-point 

byaan estimate of channelafrequency response. Then the equalization is performed in order to 

compensate for the linear distortions caused by multipathapropagation. ISI caused between two 

symbols is removed by frequency domain equalization. Then a IDFT is performed on the equalized 

symbols to transform them to timeadomain and constellation de-mapping is done to recover the 

input data. The SC-FDMA is an optimum transmission scheme from the point of view of 

performance as well as throughput because of the lower sensitivityato carrier frequencyaoffset and 

loweracomplexity at theatransmitter that benefitsthe mobile terminal in cellular uplink 

communications. 
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3.3 Subcarrier Mapping: 
 

Subcarrier mapping is defined as the process of assigning frequency domain modulated symbols 

upon the available subcarriers. Two modes of sub-carrier mapping is defined  

 Distributed Subcarrier Mapping  

 Localized Subcarrier Mapping 

In the distributed mode, each symbol is assigned to sub-carriers placed equidistant from each other 

spreading across the whole bandwidth. In the localized mode, the modulated symbols are assigned 

to adjacent sub-carriers. M out of N sub-carriers are assigned the complex modulated value and 

the rest 𝑁 − 𝑀 subcarriers are assigned zero as its amplitude. The Localized mode of subcarrier 

mapping in SC-FDMA is referred to as Localized FDMA (LFDMA) and Distributed mode as 

Distributed FDMA (DFDMA). There is a special case of DFDMA in which there is equal distance 

between the occupied sub-carriers and is commonly known as Interleaved FDMA (IFDMA). This 

is a very efficient way of subcarrier mapping that does not require use of DFT and IDFT for 

modulating the signal in time domain at the transmitter. The only difference between DFDMA and 

IFDMA is that the in IFDMA the outputs are mapped to sub-carriers spread across the whole 

bandwidth and on DFDMA it is assigned to every several sub-carriers.  

             

                               Distributed                                                                 Local 
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Figure 3.10: demonstration of different subcarrier mapping schemes 

 

The above figure depicts the examples of frequency domain subcarrier mapping of the transmitted 

symbols foraM= 4 symbolsaper block, N= 12asubcarriers and 𝑄 = 𝑁 𝑀⁄  = 3 terminals. In 

LFDMA, the modulated symbolsaoccupy the subcarriersa0, 1, 2, 3:𝑌0 = 𝐴0, 𝑌1 = 𝐴1, 𝑌2 = 𝐴2, 

𝑌3 = 𝐴3 and 𝑌𝑖 =  0 for i ≠0,1,2,3. In DFDMA all the modulated symbols are placed over 

equidistant subcarriers, 𝑌0 = 𝐴0, 𝑌2 = 𝐴1, 𝑌4 = 𝐴2 , 𝑌6 = 𝐴3 and in IFDMA 𝑌0 = 𝐴0, 𝑌3 =

 𝐴1, 𝑌6 = 𝐴2, 𝑌9 = 𝐴3. 

The time domain representation of Interleaved SC-FDMA output symbols is depicted below. Let 

𝑚 = 𝑁. 𝑞 + 𝑛 and M = Q.N where 0 ≤ 𝑞 ≤ 𝑄 − 1 and 0 ≤ 𝑛 ≤ 𝑁 − 1. Then, 

 

                                     𝑎̃𝑚 (=  𝑎̃𝑁𝑞 + 𝑛) =  
1

𝑚
 ∑ 𝐴𝑙  ̃𝑒

𝑗2𝜋
𝑚

𝑀
𝑙𝑀−1

𝑙=0                  (3.4) 
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                                                                   = 
1

𝑄
.
1

𝑁
 ∑ 𝐴𝑘 𝑒

𝑗2𝜋
𝑚

𝑀
𝑘𝑁−1

𝑘=0  

                                                                   = 
1

𝑄
.
1

𝑁
 ∑ 𝐴𝑘 𝑒

𝑗2𝜋
𝑛𝑞+𝑁

𝑁
𝑘𝑁−1

𝑘=0  

                                                                    
1

𝑄
. (

1

𝑁
 ∑ 𝐴𝑘  𝑒𝑗2𝜋

𝑛

𝑁
𝑘𝑁−1

𝑘=0 ) = 
1

𝑄
 . 𝑥𝑛 

Now the time domain representation of Localized SC-FDMA is given as follows.  

Let 𝑚 = 𝑄. 𝑛 + 𝑞 and M = Q.N where 0 ≤ 𝑞 ≤ 𝑄 − 1 and 0 ≤ 𝑛 ≤ 𝑁 − 1. Then 

                                            𝑎̃𝑚 =  𝑎̃𝑄.𝑛+𝑞 =  
1

𝑚
 ∑ 𝐴𝑙  ̃𝑒

𝑗2𝜋
𝑚

𝑀
𝑙𝑀−1

𝑙=0  

                                                             = 
1

𝑄
.
1

𝑁
 ∑ 𝐴𝑙  𝑒

𝑗2𝜋
𝑄.𝑛+𝑞

𝑄𝑁
𝑙𝑁−1

𝑙=0                    (3.5) 

If q=0 , then  

                                    𝑎̃𝑚 =    𝑎̃𝑄.𝑛 = 
1

𝑄
.
1

𝑁
 ∑ 𝐴𝑙  𝑒

𝑗2𝜋
𝑄.𝑛

𝑄𝑁
𝑙𝑁−1

𝑙=0  

                                                         =    
1

𝑄
.
1

𝑁
 ∑ 𝐴𝑙  𝑒

𝑗2𝜋
𝑛

𝑁
𝑙𝑁−1

𝑙=0   = 
1

𝑄
 . 𝑥𝑛             (3.6) 

If q ≠ 0, then  

                                      𝐴𝑙 = ∑ 𝑎𝑝 𝑒−𝑗2𝜋𝑓𝑟𝑎𝑐 𝑝𝑁𝑙𝑁−1
𝑝=0  

                                     𝑎̃𝑚 =  𝑎̃𝑄.𝑛+𝑞 

                                            = 
1

𝑄
 (1 − 𝑒

𝑗2𝜋
𝑞

𝑄) .
1

𝑁
 ∑

𝑎𝑝

1−𝑒
𝑗2𝜋{

𝑛−𝑝
𝑁

+
𝑞

𝑄.𝑛
}

𝑁−1
𝑝=0                 (3.7) 

From the above equations we can see that the most desired choice for subcarrier mapping is 

IFDMA (from ) as every output symbol is a repeated version of the inputasymbol in timeadomain 

while LFDMA output symbols has exact version of input symbols at N-multiple sampleapositions. 

So, the IFDMA has same PAPR as conventional single carrier signal. 
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Figure3.11: Comparison of PAPR of IFDMA and LFDMA with OFDMA 

 

Figure 3.12: Bit Error Rate performance of IFDMA and LFDMA 

 

1 2 3 4 5 6 7 8 9 10 11
10

-4

10
-3

10
-2

10
-1

10
0

PAPR

C
C

D
F

CCDF of SC-FDMA mapping techniques compared with OFDMA

 

 

IFDMA

LFDMA

OFDMA

0 5 10 15
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

BER Performance of IFDMA and LFDMA

 

 

IFDMA

LFDMA



Chapter 3  Processing in LTE 
 

39 
 

                               

                             Table 3.1: LTE Interface OFDMA/SC-FDMA Parameters                                 

 

3.4 CHANNEL MODELS 
 

An underlying approximate model of the Radio Propagation Channel [21] forms the basis for 

calculation of the effects of channel on the transmitted data. The receiver is able to recoverathe 

transmitted data accurately as longaas it can keep trackaof the time-varying channelamodels. The 

channel models are described below in section 4.3 of this chapter. 
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3.4.1 Wireless Channel Characteristics: 
 

The Mobile Fading Channels are a crucial part of the wireless communication system because for 

proper transmission of data, an efficient channel model is required for analysis, design and 

deployment of the communication system. The performance and complexity of signal processing 

algorithms and designing transmitter and receivers all greatly depend on the methods employed to 

model mobileafading channels. True knowledgeaof the mobileafading channels is the central 

requirement for designing a wireless communication system. 

Designing of wireless system suffers from the multifaceted propagation processes. The transmitted 

data signal go through different propagation mechanism before arriving at the receiver which 

means the signal travels overamultiple paths. This is known as Multipath Propagationawhere 

different paths have different attenuations. The basic Multipath Propagation mechanisms include  

 Free space or Line of Sight propagation 

 Reflection, caused due to the interaction of electromagnetic waves with large objects 

having dimensions much greater than the wavelength of interacting electromagnetic waves. 

 Diffusion or Scattering, caused due to objects having irregular size or shape and a 

wavelength comparable to the interacting electromagnetic waves. 

 Diffraction, due to bending of electromagneticawaves around corners of buildings. 

 Refraction, because of the objects that absorb energy partially. 

The signal propagation over multipath models results in attenuation of the signal because of Mean 

Path Loss along with Macroscopic or large-scale fading and Microscopic or small-scale fading. 

Large buildings or objects having large sizes causes obstruction in the path of the signal, also 

referred to as macroscopic fading. This is modelled by the localamean of a fastafading signal. This 

is a function ofadistance 𝑑 between the transmitteraand receiver proportional to the 𝑛𝑡ℎ power of  

𝑑 relative to the reference distance 𝑑0. 

                                        𝐿𝑝(𝑑) = 𝐿𝑠(𝑑0) + 10𝑛 log (𝑑 𝑑0
⁄ )   ………… (3.8) 
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The path lossais a random variableawith log normal distribution about mean path loss                                                 

𝐿𝑝(𝑑) and is given as  

                                     𝐿𝑝(𝑑) =  𝐿𝑠(𝑑0) + 10𝑛 log (𝑑 𝑑0
⁄ ) + 𝑋    ………….. (3.9) 

Where 𝑋~ 𝑁(0, 𝜎2) denote a zero mean Gaussian Random Variable with Standard deviation 𝑛. 

The value of 𝑛 depends onafrequency, antenna heights and propagationaenvironment.  

 

 

Figure 3.13: An example of Multipath Propagation Model 

Microscopic fading occurs because of scattering or small scale objects and is defined as the rapid 

variations of the signal in time and frequency. When the received signal is a summation of the line 

ofasight (LOS) component along with the scattered components results in an envelop 𝑟(𝑡) has a 

Rician Probability Distribution Function (PDF) and is known as Rician Fading. In the absence of 

LOS, Rician PDF approaches to Rayleigh PDF   

                      𝑓(𝑟) =  
𝑟(𝐾+1)

𝜎2  𝑒𝑥𝑝 [−𝐾 −
(𝐾+1)𝑟2

2𝜎2 ] 𝐼0 (
2𝑟

𝜎
 √𝐾(𝐾 + 1) 2⁄ )………….. (3.10) 

Where   𝐾 is the RicianaFactor and 𝐼0 is a zero-orderamodified Bessel Function ofaFirst Kind. 

When the transmitter/receiver is mobile (or moving) or the fading occurring from scattering result 

in Time varying Fading. The frequency variation of the channel is characterized as Doppler Spread 
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and in time domain it is referred to as Coherence Time. There are two types of degradation effects 

caused by the relationship between the excess time delay 𝜏𝑚and symbol time 𝜏𝑠: Frequency 

Selective Fading and Flat Fading. 

Whenever theamultipath components ofaa symbol reaches beyond theasymbol duration i.e.  𝜏𝑚  >

𝜏𝑠 Causing the Frequency Selective Fading. But ISI occurs as a consequence of this condition 

which can be mitigated as several multipath components are separable. When the symbol’s 

multipath components reach with a delay within the symbol duration i.e. 𝜏𝑚  < 𝜏𝑠 Results in a 

condition known as Flat Fading where the multipath components are Unresolvable. Here, ISI 

doesn’t follow as there is no overlap between adjacent received symbols.  

 

3.4.2 Propagation Aspects and Parameters: 
 

As we know, characterization of the behavioraof a Multipathachannel is required to model a 

channel. In order to do this, the concepts of Doppler spread, Coherence time, Delay spread and 

coherence Bandwidth are used. 

 Delay spread  
 

One of the most convenient ways to assess the performanceaof a wireless channel is to calculate 

the timeadispersion or multipath delay spread. In its simplest form the delay spread, can be 

calculated as the overall extent of the path delays. But this can’t be considered as a competent 

indicator of the system performance because the channelsawith same excessadelay may have 

differentapower profile. So, an efficient way to calculate it is Root Mean Square (RMS) delay 

spread and it is calculated about the mean value of channel power delay profile making it statistical. 

Mathematically, it is given as  

                                             𝜏𝑟𝑚𝑠 = √
∑ 𝑝𝑛(𝜏𝑛−𝜏𝑚)

2𝑁−1
𝑛=0

∑ 𝑝𝑛
𝑁−1
𝑛=0

        ………….. (3.11)       

Where                           

                                                  𝜏𝑚 =
∑ 𝑝𝑛

𝑁−1
𝑛=0 𝜏𝑛

∑ 𝑝𝑛
𝑁−1
𝑛=0

     is the mean delay excess 
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 Coherence Bandwidth 
 

In the frequency domain, the band of frequencies over which theaamplitudes of frequency 

components are correlated is known as Coherence bandwidth. The behavior of the channel over 

coherence bandwidth does not change, and it is inversely proportional to the delay spread. This 

concept also can be used to distinguish between the flat fading channel and frequency selective 

channel as follows: 

 When the coherence bandwidth is much greater than the signal bandwidth i.e. 𝐵𝑐 ≫ 𝐵𝑠 , it 

is a Frequency Flat fading where equal fading is experienced by all the components. 

 When the coherence bandwidthais less thanathe signalabandwidth i.e. 𝐵𝑐 ≪ 𝐵𝑠 , it is 

Frequency Selective Fading [22]where each component experiences different quantity of 

fading. Since, coherence bandwidth is less than signal bandwidth it behaves as a filter. 

 Doppler Spread 
 

Whenever the receiver is moving the concept of Doppler spread comes into consideration. Due to 

the motion of the receiver, all attributes of the transmitted signal (like amplitude and phase) vary 

as a function of timeaaccording to theaspeed [23]. For an unmodulatedacarrier, the outputais 

varying with time and has a non-zeroaspectral width that is Doppler spread. When only one path 

exists betweenathe transmitter and receiver, there is no Doppler spread along with a simple shifting 

of the carrierafrequency (Doppler Frequency shift) at the transmitter.  

 

Coherence Time 
 

It is defined as the duration over which the characteristics of a channel are invariant. It is inversely 

proportionalato the Dopplerashift of theachannel. Mathematically it is given as 

                                                𝑇𝑐 =
1

2𝜋.𝜗𝑟𝑚𝑠
       …………. (3.12) 

Where 𝜗𝑟𝑚𝑠 is the root mean square value of Doppler spread. It is critical for chores like designing 

channel estimation techniques, power control and error correction.  
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3.4.3 Multipath Channel Models: 
 

In wireless communication, the channel models are developed to aid the designers in designing 

the system and verifying the system performance. During the design of LTE different performance 

requirements were taken into consideration like User Equipment(UE) and Base Station (BS) 

requirements , Radio Resource Management (RRM) requirements ensuring the competent use of 

available resources to provide high qualityaof service and RFaperformance requirements making 

it possible for LTE to exist with other systems. ITU hasaproposed a set ofatest environments in 

[24] which includes almost all the possibleaoperating environments and user mobility. Here we 

will discuss about standard ITU Pedestrian and Vehicular environments. 

 ITU Pedestrian Channel Model 
 

There are two kinds of pedestrian models specified by ITU, Pedestrian-A (Ped-A) and Pedestrian-

B (Ped-B). For both the models pedestrians are located inside buildings or an open ground and the 

base stations are situated outside with lower antenna heights. It can follow either Rician or 

Rayleigh fading depending upon the user location. The mobile speeds taken under this model are 

less than or equal to 3 Km/h. Ped-A consists of 3 while Ped-B has 6 taps. The averageapower and 

relative delay of the channel models specified by ITU [24] is given below in table 3.2 

 

 

               Table 3.2: The average Power and Relative Delays of ITU Pedestrian Model 
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Figure 3.14: ITU Ped-A channel model Impulse Response     

 

                          Figure 3.15: ITU Ped-B channel model Impulse Response 
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ITU Vehicular Channel Model 
 

The vehicular model is distinguished from the pedestrian model in terms of larger size and high 

capacity of the cells, high transmission, and limited spectrum. As the signal power decreases with 

the increase in distance, for which the path loss exponent varies from 3 to 5 in the case of urban 

and suburban areas, while it has a much lower value in the rural area. Here we will be discussing 

Vehicular-A (Veh-A) channel model whose average power and relative delays are specified in 

Table 4.2. The mobile speeds taken into consideration are 30 Km/h, 120 Km/h and 350 Km/h. 

 

              Table 3.3: The average Power and Relative Delays of ITU Vehicular Model 

 

Figure3.16: ITU Veh-A channel model Impulse Response 
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3.4.4 Extended ITU Models: 
 

The evolution of the future generation networks required a large number of changes to be made to 

the technology while the increase in quality of service required higher transmission bandwidth. 

So, larger bandwidth is required by the LTE channel models [25] to justify the fact that channel 

impulses are related to delay resolution of the receiver. The LTE channel models are based on ITU 

models and are nothing but Extended ITU channel models which are named as Extended 

Pedestrian-A (EPA), Extended Vehicular-A (EVA) and Extended TU (ETU). They are classified 

on the basis of low, medium and high delay spreads. The channel models used to model outdoor 

environments of the urban and suburban areas are EVA and ETU while the EPA is used to model 

indoor environments. The average power and relative delays of the EPA, EVA and ETU Channel 

models is shown in Table 4.3, 4.4 and 4.5 respectively. 

 

                         Table 3.4: The average power and delays of EPA channel model 

                                                                Tap No. 

   Average                   0        -1.5       -1.4       -3.6       -0.6        -9.1        -7.0       -12      -16.9 

   Power (dB)      

 

    Relative                  0         30          150       310        370        710       1090      1730     2510 

    Delay (ns) 

  

Table 3.5: Average Power and Delays of EVA channel model 

                                                                Tap No. 

   Average                   0         -1.0           -2.0         -3.0          -8.0           -17.2          -20.8 

   Power (dB)      

 

    Relative                   0          30             70              80          110            190            410 

    Delay (ns) 
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Table 3.6: Average Power and Delays of ETU channel model 

 

The above LTE channel models have low, medium and high Doppler frequencies of 5 Hz, 70 Hz 

and 900 Hz. The delay spread and the Doppler frequencies can be combined as specified in [26] 

in the following way; EPA 5 Hz, EVA 5Hz, EVA 70 Hz and ETU 70 Hz.

                                                                Tap No. 

   Average                -1.0       -1.0       -1.0       0.0         0.0        0.0        -3.0       -5.0       -7.0 

   Power (dB)      

 

    Relative                  0         50          120      200        230       500       1600      2300     5000 

    Delay (ns) 
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CHAPTER-4 

CHANNEL ESTIMATION TECHNIQUES 

In this chapter, we will discuss the techniques used for channel estimation in LTE[28]. Channel 

estimation is considered as a very crucial part of designing a receiver in mobile communication. 

Without channel estimation, the data transmitted through a time-varying channel cannot be 

decoded properly at the receiver.  As we know, to recover the transmitted data accurately the 

effects of the channel on the data must be estimated correctly. For this LTE employs coherent 

detection where the response of the channel is already known at the receiver.   

There are various ways in which Channel estimation can be performed like Parametric Model, 

Blind or Pilot Based, adaptive or Non-adaptive. The parametric method runs on the assumption of 

a particular channel model and calculates the parameters of that model while the Non-Parametric 

method does not rely on a certain channel model and estimates the frequency response. The most 

commonly applied method is the Pilot based Channel Estimation and is employed in a system 

where the data transmitted by the sender is known. On the other hand, practically Blind estimation 

is not commonly used because it relies on some of the properties of the signal. And the time-

varying channels employ Adaptive Channel Estimation. 

In this chapter we will discuss Pilot-Based Channel Estimation Method and evaluate its 

performance in both uplink and downlink LTE. Two types of channel estimation techniques Least 

squares (LS) and Minimum Mean Squared Error (MMSE) are described in section 5.2. The 

performance of these estimators in the Uplink and Downlink LTE is analyzed in section 5.3.  

 

4.1 Pilot-Based Channel Estimation:  
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In OFDM Channel estimation is taken to be a 2-D process i.e. the channel impulse response is a 

function of both time and frequency. So, estimation is to be performed in frequency as well as time 

domain. Due to practical difficulty of implementing estimation in 2-D, one dimensional estimation 

methods are used. They are applied in such a way that it gives an idea of 2-D estimator, at first the 

channel is estimated in one dimension (like, time) followed by estimation in another domain 

(frequency).  

 The approach to the Pilot-Based channel estimation consists of three steps, firstly the pilots are 

extracted from the known positions. Secondly, the channel estimation is performed on those 

reference signals followed by the last step which is Interpolation where the channel is estimated at 

the rest of the positions. Interpolation uses the estimates of the two nearest pilots to estimate the 

channel at the places between those pilots.  

 

 

 

 

 

 

                                                                           Known  Pilots 

Figure 4.1: Approach to Pilot Based channel estimation 

4.2 Channel Estimation Techniques: 
 

Assuming the orthogonality of all the subcarriers i.e. no ICI, the following diagonal matrix 

represents the pilot symbols for N subcarriers  

 

                                           A = [[
𝐴(0) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐴(𝑁 − 1)

]] 

        Pilot  

Extraction 
Interpolation 

         Pilot  

Estimation 

Received 

signal 

after FFT 

Estimated 

channel 

response 
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   Where, A[k] is the representation of training symbol tone at the kth subcarrier with zero mean 

and variance σ2 for k = 0, 1, 2….. N-1.And assuming that h[k] is the gain of the channel at each  

kth subcarrier, the received signal can be given as  

 

   𝑦 ≜  [

𝑦(0)

𝑦(1)
⋮

𝑦(𝑁 − 1)

] =  

[
 
 
 
 

 

𝐴(0)       0        …        0
    0         𝐴(1) …         0
   ⋮     ⋱                        0

             0            …           𝐴(𝑁 − 1)     
 ]

 
 
 
 

 [

ℎ(0)

ℎ(1)
⋮

ℎ(𝑁 − 1)

] + [

𝑛(0)

𝑛(1)
⋮

𝑛(𝑁 − 1)

] 

𝑦 = 𝐴ℎ + 𝑛     …… (4.1) 

4.2.1 Least Square Estimation  
 

Using the knowledge we have of the pilots at subcarrier of the transmitted data Apk and received 

signal ypk, the transfer function of the channel can be expressed as  

                                               ℎ̂𝑝𝑘  = 
𝑦𝑝𝑘

𝐴𝑝𝑘
+ 

𝑛𝑝𝑘

𝐴𝑝𝑘
= ℎ𝑝𝑘 + 𝑧𝑝𝑘 …….. (4.2) 

As we know, the estimation of channel in LTE is a two dimensional concept, therefore transfer 

function is modelled as linear weighted sum of 2-D basis functions evaluated at kth subcarrier 

and mth OFDM symbol and represented as h(m,k) 

                                                     ℎ(𝑚, 𝑘) =  ∑ ∝𝑙  ∅𝑙
𝑁−1
𝑙=0 (𝑚, 𝑘) ……  (4.3) 

where ∝𝑙 is the lth basis function coefficient, 𝑁 is the number of Basis function and  ∅𝑙(𝑚, 𝑘) is 

the lth basis function sampled at kth subcarrier and mth OFDM symbol. 

By keeping one of the indices constant i.e. time or frequency the above equation becomes  

                                             ℎ𝑘 = ∑ ∝𝑙  ∅𝑙
𝑁−1
𝑙=0 (𝑘)  ………….  (4.4) 

So, at the pilot tone subcarriers the channel transfer function is given as  

                                              ℎ̂𝑝𝑘 = ∑ ∝𝑙  ∅𝑙
𝑁−1
𝑙=0 (𝑝𝑘) +  𝑧𝑝𝑘  …… (4.5) 

The above function can be expressed in matrix form as follows  
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[
 
 
 
 
 

  ℎ̂0

ℎ̂𝑝

ℎ̂2𝑝

⋮
ℎ̂𝑁𝑝−1]

 
 
 
 
 

=  

[
 
 
 
 
 

∅0(0)     ∅1(0) … …                 ∅𝑁−1(0) 

∅0(𝑝)  ∅1(𝑝) …   …                    ∅𝑁−1(𝑝)
⋮                   ⋮                                     ⋮
⋮                  ⋮                                      ⋮

∅0(𝑁 − 1)                                     ∅𝑁−1(𝑝)        
 ]

 
 
 
 
 

    

[
 
 
 
 

  ∝0

   ∝1

   ∝2

⋮
      ∝𝑁−1]

 
 
 
 

+

[
 
 
 
 

  𝑧0

   𝑧1

   𝑧2

⋮
      𝑧𝑁−1]

 
 
 
 

 

                                                                                                         ………..   (4.6) 

The LS estimation method calculates the transfer function in such a way that the distance 

between the actual channel vector ℎ and estimates channel vector  ℎ̂ is minimum. 

                                         𝐽( ℎ̂) =  ‖𝑦 − ∅ ℎ  ‖2 = (𝑦 − ∅  ℎ  )𝐻(𝑦 − ∅ ℎ ) 

                                                   =  𝑦𝐻𝑦 − 𝑦𝐻∅ ℎ − ∅𝐻𝑦ℎ𝐻 + ∅𝐻∅ℎℎ𝐻  

 Now, taking the derivative and equating it to zero we have  

                                                     
𝜕  𝐽( ℎ̂) 

𝜕ℎ
= 0 

We get the Least Square estimate as  

                                                          ℎ𝐿𝑆 = ∅−1ℎ̂      …….. (4.7) 

 

Figure 4.2: Mean Square Error of a least square Estimator 
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4.2.2 Minimum Mean squared Error (MMSE) Estimation  
 

The Least Square estimation discussed above is attractive because of its simplicity in computation 

but it is susceptible to noise and does not have a good performance. Another approach to estimate 

the channel in LTE is using the MMSE estimator which exploits the second order statistics of the 

transfer function in such a way that the mean square error is minimized. The channel estimate 

through MMSE at the pilot tones can be calculated as given below: 

ℎ𝑀𝑀𝑆𝐸 =  𝑅𝑝𝑝 𝑅𝑝𝑝̂
−1 𝑦𝑝                

                                                   =    𝑅𝑝𝑝 ∅𝑝
𝐻   [∅𝑝𝑅𝑝𝑝∅𝑝

𝐻 + 𝜎2 (∅ ∅𝐻)−1]
−1 

ℎ𝐿𝑆 

                =  𝑅𝑝𝑝 [𝑅𝑝𝑝 + 𝜎2  𝐼]
−1 

ℎ𝐿𝑆 

                                              =   𝑅𝑝𝑝 [𝑅𝑝𝑝 + 
1

𝑆𝑁𝑅
  𝐼]

−1 

ℎ𝐿𝑆      ……… (4.8) 

 

𝑅𝑝𝑝 = 𝐸 {ℎ𝑝𝑘 𝑦𝑝
𝐻} 

                       = 𝐸 {ℎ𝑝𝑘 (ℎ𝑝𝑘 + 𝑧𝑝𝑘)
𝐻} 

  = 𝑅𝑝𝑝∅𝑝
𝐻

 

 

𝑅𝑝𝑝 = 𝐸 {𝑦𝑝 𝑦𝑝
𝐻} 

                                       = 𝐸  {(ℎ𝑝𝑘 + 𝑧𝑝𝑘) (ℎ𝑝𝑘 + 𝑧𝑝𝑘)
𝐻} 

                     = ∅𝑝 𝑅𝑝𝑝 ∅𝑝
𝐻 + 𝜎2  𝐼 

Where 𝑅𝑝𝑝 is the Auto correlation Matrix and 𝑅𝑝𝑝 is the Cross-Correlation Matrix. 
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Figure 4.3: Mean Square Error of an MMSE Estimator 

The MMSE estimator performs much better than the LS estimator especially under low SNR which 

is shown in figure 5.6 where MSE of both the estimators is compared.                

           

Figure 4.4: Comparison of the MSE of MMSE and LS estimators. 
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4.3 Performance Analysis in LTE Downlink system: 
 

                                    

                                     Table 4.1: Parameters assumed in the Simulation 

 

In this section we are going to analyze the performance of the estimators in a Single-Input Single-

Output LTE downlink system using MATLAB as a simulation platform. The parameters used in 

the simulation are specified in Table 8.1 below. The Multipath channel models used are ITU 

Pedestrian-A and Vehicular-A already discussed in chapter 4. The Delay and Power profile of both 

the channels is given in chapter 4. The Pedestrian channel model has a shorter delay as compared 

the Vehicular model resulting in a severe frequency selectivity in vehicular model. 

Figure 5.5 shows the BER performance of the Least Square Estimator in LTE Downlink where 

OFDMA is used as the transmission scheme. The LS estimator provides adequate estimate of the 

channel in pedestrian model but its performance deteriorates severely in vehicular environment.   

Figure 5.6 shows the BER Performance of the Minimum Mean Square Error Estimator (MMSE) 

in the pedestrian and vehicular environment and compared with performance in AWGN channel. 

Its is shown that the performance of MMSE estimator degrades in the Vehicular environment like 

LS estimator but it is able to give a better estimate than the LS estimator. 
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Figure 4.5: Bit Error Rate Performance of LS Estimator in LTE Downlink for Different 

Multipath Channel Models 

 

Figure 4.6: Bit Error Rate Performance of MMSE Estimator in LTE Downlink for Different 

Multipath Channel Models 
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4.4 Performance Analysis in LTE Uplink system: 
 

Here, we will discuss the Uplink transmission technique SC-FDMA and the performance of the 

estimators will be evaluated with the same parameters and multipath channel models as discussed 

above. The two types of subcarrier mapping schemes used in SC-FDMA i.e. Localized FDMA and 

Interleaved FDMA will be evaluated here to find out which performs better. The performance is 

evaluated in terms of Bit Error Rate (BER). 

 

Figure4.7: BER Performance of an LS estimator in ITU Pedestrian and Vehicular along with    

AWGN Channel 

 

From Figure 5.7 shows the Bit Error Rate performance of the LS Estimator in different multipath 

channels specified by ITU. It is seen from the figure that the LS estimator performs best in AWGN 

and in Pedestrian environment its performance is very similar to AWGN. But in the Vehicular 

environment where the channel is time-varying, its performance is degraded.  
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   Figure 4.8: BER Performance of an MMSE estimator in ITU Pedestrian and Vehicular along 

with AWGN Channel  

 

From Figure 5.8 shows the Bit Error Rate performance of the MMSE Estimator in different 

multipath channels specified by ITU and compared with AWGN channel using QPSK modulation 

technique. From the above figure it is evident that the MMSE estimator definitely performs better 

than the LS estimator. In the time-varying environment MMSE estimator is more efficient than 

the LS estimator making it reliable to use in a vehicular environment. But its performance too 

degrades in a high mobile speed environment. 

Now, the performance of the LS and MMSE estimators will be evaluated in the different subcarrier 

schemes of SC-FDMA and we will observe the effects of the mapping schemes on the performance 

of the LS estimator. At first the performance of estimators will be observed in the Pedestrian and 

then in the Vehicular environment.   
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Figure 4.9: Comparison of BER performance of Subcarrier mapping schemes using LS        

Estimation Technique in Pedestrian-A Channel Model 

 

Figure 4.10: Comparison of BER performance of Subcarrier mapping schemes using LS        

Estimation Technique in Vehicular-A Channel Model 
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Figure 4.11: Comparison of BER performance of Subcarrier mapping schemes using MMSE       

Estimation Technique in Pedestrian-A Channel Model 

 

 

 

 

 

 

Figure 4.12: Comparison of BER performance of Subcarrier mapping schemes using MMSE      

Estimation Technique in Vehicular-A Channel Model 
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Figure 5.9, 5.10, 5.11.and 5.12 shows the performance of the LS and MMSE estimation 

Techniques in multipath models of SC-FDMA for different subcarrier mapping schemes. It is 

evident from the above figures that the LFDMA mapping performs better than the IFDMA in the 

pedestrian as well as vehicular environment. The subcarrier mapping schemes also enhances the 

performances of the estimators. We can see that the performance of the LS estimator has improved 

tremendously by using LFDMA mapping.  
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CHAPTER-5 

 CONCLUSION 

This thesis analyzes some of the aspects of Channel Estimation of Long Term Evolution in  uplink 

as well as downlink. The thesis mainly focuses on analyzing the performance of Least Square and 

Minimum Mean Square Error Estimators in the uplink and downlink in various multipath models. 

Performance. Along with this we also analyzed the subcarrier mapping schemes used in SC-

FDMA like Localized FDMA and Interleaved FDMA. The performances are evaluated in terms 

of Bit Error Rate. In the downlink both the estimators perform well in the pedestrian environment 

giving a performance almost similar to AWGN channel. So, either of the estimators can be used 

in Pedestrian environment. But in the Vehicular environment with high mobile speed the 

performance of LS estimator degrades exponentially but the MMSE estimator performs better than 

the LS estimator despite the degradation of its performance.  

In the Uplink at first we observed the LS and MMSE Estimation Techniques without the subcarrier 

mapping. The resultsashow that theaperformance of theaestimators deteriorates with the increase 

in mobile speed but its better as compared to OFDM. The MMSE estimator outperforms the LS 

estimator again. Further, subcarrier mapping schemes are applied and the effects were observed. 

It was seen that theaperformance of both theaestimators greatly improves in Pedestrian and 

Vehicular channel models for both the subcarrier schemes. Among them the LFDMA mapping 

scheme has a lesser BER than IFDMA. The MMSE estimator performs better using these mapping 

schemes also, making it a suitable estimator in both the environments. Now, we can see that  

IFDMA has a much lesser PAPR than LFDMA or we can say that IFDMA is an efficient way of 

reducing PAPR but at the cost of high BER. In other words, there could be a trade-off between the 

schemes used according to the requirement of the system. And because of its lesser error LFDMA 

is considered to perform better. 
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FUTURE SCOPE 
 

Here, only LS and MMSE estimators were used, in the future work can be done towards improving 

the performance of the estimators by using the time-varying channel estimation algorithms and 

other such techniques. Also certain work can be done to reduce the bit error rate of IFDMA 

retaining its low PAPR performance. 
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