research

Dual-Polarization OFDM-OQAM Wireless Communication System

Abstract

In this paper we describe the overall idea and results of a recently proposed radio access technique based on filter bank multicarrier (FBMC) communication system using two orthogonal polarizations: dual-polarization FBMC (DP-FBMC). Using this system we can alleviate the intrinsic interference problem in FBMC systems. This enables use of all the multicarrier techniques used in cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) systems for channel equalization, multiple-input/multiple-output (MIMO) processing, etc., without using the extra processing required for conventional FBMC. DP-FBMC also provides other interesting advantages over CP-OFDM and FBMC such as more robustness in multipath fading channels, and more robustness to receiver carrier frequency offset (CFO) and timing offset (TO). For DP-FBMC we propose three different structures based on different multiplexing techniques in time, frequency, and polarization. We will show that one of these structures has exactly the same system complexity and equipment as conventional FBMC. In our simulation results DP-FBMC has better bit error ratio (BER) performance in dispersive channels. Based on these results, DP-FBMC has potential as a promising candidate for future wireless communication systems.Comment: 1.This paper is accepted to be published in IEEE Vehicular Technology Conference (VTC) FALL 2018. 2.In this new submitted version authors have revised the paper based on the VTC FALL reviewers comments. Therefore some typos have fixed and some results have change

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021