44 research outputs found

    Evaluating holistic aggregators efficiently for very large datasets

    Get PDF
    In data warehousing applications, numerous OLAP queries involve the processing of holistic aggregators such as computing the “top n,” median, quantiles, etc. In this paper, we present a novel approach called dynamic bucketing to efficiently evaluate these aggregators. We partition data into equiwidth buckets and further partition dense buckets into sub-buckets as needed by allocating and reclaiming memory space. The bucketing process dynamically adapts to the input order and distribution of input datasets. The histograms of the buckets and subbuckets are stored in our new data structure called structure trees. A recent selection algorithm based on regular sampling is generalized and its analysis extended. We have also compared our new algorithms with this generalized algorithm and several other recent algorithms. Experimental results show that our new algorithms significantly outperform prior ones not only in the runtime but also in accuracy

    Detecting exploit patterns from network packet streams

    Get PDF
    Network-based Intrusion Detection Systems (NIDS), e.g., Snort, Bro or NSM, try to detect malicious network activity such as Denial of Service (DoS) attacks and port scans by monitoring network traffic. Research from network traffic measurement has identified various patterns that exploits on today\u27s Internet typically exhibit. However, there has not been any significant attempt, so far, to design algorithms with provable guarantees for detecting exploit patterns from network traffic packets. In this work, we develop and apply data streaming algorithms to detect exploit patterns from network packet streams. In network intrusion detection, it is necessary to analyze large volumes of data in an online fashion. Our work addresses scalable analysis of data under the following situations. (1) Attack traffic can be stealthy in nature, which means detecting a few covert attackers might call for checking traffic logs of days or even months, (2) Traffic is multidimensional and correlations between multiple dimensions maybe important, and (3) Sometimes traffic from multiple sources may need to be analyzed in a combined manner. Our algorithms offer provable bounds on resource consumption and approximation error. Our theoretical results are supported by experiments over real network traces and synthetic datasets

    Identifying correlated heavy-hitters in a two-dimensional data stream

    Get PDF
    We consider online mining of correlated heavy-hitters (CHH) from a data stream. Given a stream of two-dimensional data, a correlated aggregate query first extracts a substream by applying a predicate along a primary dimension, and then computes an aggregate along a secondary dimension. Prior work on identifying heavy-hitters in streams has almost exclusively focused on identifying heavy-hitters on a single dimensional stream, and these yield little insight into the properties of heavy-hitters along other dimensions. In typical applications however, an analyst is interested not only in identifying heavy-hitters, but also in understanding further properties such as: what other items appear frequently along with a heavy-hitter, or what is the frequency distribution of items that appear along with the heavy-hitters. We consider queries of the following form: “In a stream S of (x, y) tuples, on the substream H of all x values that are heavy-hitters, maintain those y values that occur frequently with the x values in H”. We call this problem as CHH. We formulate an approximate formulation of CHH identification, and present an algorithm for tracking CHHs on a data stream. The algorithm is easy to implement and uses workspace much smaller than the stream itself. We present provable guarantees on the maximum error, as well as detailed experimental results that demonstrate the space-accuracy trade-off

    Monitoring Network Data Streams

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Improving Hoeffding Trees

    Get PDF
    Modern information technology allows information to be collected at a far greater rate than ever before. So fast, in fact, that the main problem is making sense of it all. Machine learning offers promise of a solution, but the field mainly focusses on achieving high accuracy when data supply is limited. While this has created sophisticated classification algorithms, many do not cope with increasing data set sizes. When the data set sizes get to a point where they could be considered to represent a continuous supply, or data stream, then incremental classification algorithms are required. In this setting, the effectiveness of an algorithm cannot simply be assessed by accuracy alone. Consideration needs to be given to the memory available to the algorithm and the speed at which data is processed in terms of both the time taken to predict the class of a new data sample and the time taken to include this sample in an incrementally updated classification model. The Hoeffding tree algorithm is a state-of-the-art method for inducing decision trees from data streams. The aim of this thesis is to improve this algorithm. To measure improvement, a comprehensive framework for evaluating the performance of data stream algorithms is developed. Within the framework memory size is fixed in order to simulate realistic application scenarios. In order to simulate continuous operation, classes of synthetic data are generated providing an evaluation on a large scale. Improvements to many aspects of the Hoeffding tree algorithm are demonstrated. First, a number of methods for handling continuous numeric features are compared. Second, tree prediction strategy is investigated to evaluate the utility of various methods. Finally, the possibility of improving accuracy using ensemble methods is explored. The experimental results provide meaningful comparisons of accuracy and processing speeds between different modifications of the Hoeffding tree algorithm under various memory limits. The study on numeric attributes demonstrates that sacrificing accuracy for space at the local level often results in improved global accuracy. The prediction strategy shown to perform best adaptively chooses between standard majority class and Naive Bayes prediction in the leaves. The ensemble method investigation shows that combining trees can be worthwhile, but only when sufficient memory is available, and improvement is less likely than in traditional machine learning. In particular, issues are encountered when applying the popular boosting method to streams

    IDEAS-1997-2021-Final-Programs

    Get PDF
    This document records the final program for each of the 26 meetings of the International Database and Engineering Application Symposium from 1997 through 2021. These meetings were organized in various locations on three continents. Most of the papers published during these years are in the digital libraries of IEEE(1997-2007) or ACM(2008-2021)

    Bridging Data Management and Machine Learning: Case Studies on Index, Query Optimization, and Data Acquisition

    Get PDF
    Data management tasks and techniques can be observed in a variety of real world scenarios, including web search, business analysis, traffic scheduling, and advertising, to name a few. While data management as a research area has been studied for decades, recent breakthroughs in Machine Learning (ML) provide new perspectives to define and tackle problems in the area, and at the same time, the wisdom integrated in data management techniques also greatly helps to accelerate the advancement of Machine Learning. In this work, we focus on the intersection area of data management and Machine Learning, and study several important, interesting, and challenging problems. More specifically, our work mainly concentrates on the following three topics: (1) leveraging the ability of ML models in capturing data distribution to design lightweight and data-adaptive indexes and search algorithms to accelerate similarity search over large-scale data; (2) designing robust and trustworthy approaches to improve the reliability of both conventional query optimizer and learned query optimizer, and boost the performance of DBMS; (3) developing data management techniques with statistical guarantees to acquire the most useful training data for ML models with a budget limitation, striving to maximize the accuracy of the model. We conduct detailed theoretical and empirical study for each topic, establishing these fundamental problems as well as developing efficient and effective approaches for the tasks
    corecore