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Abstract

Data management tasks and techniques can be observed in a variety of real world scenar-

ios, including web search, business analysis, traffic scheduling, and advertising, to name a

few. While data management as a research area has been studied for decades, recent break-

throughs in Machine Learning (ML) provide new perspectives to define and tackle problems

in the area, and at the same time, the wisdom integrated in data management techniques

also greatly helps to accelerate the advancement of Machine Learning. In this work, we

focus on the intersection area of data management and Machine Learning, and study several

important, interesting, and challenging problems. More specifically, our work mainly con-

centrates on the following three topics: (1) leveraging the ability of ML models in capturing

data distribution to design lightweight and data-adaptive indexes and search algorithms to

accelerate similarity search over large-scale data; (2) designing robust and trustworthy ap-

proaches to improve the reliability of both conventional query optimizer and learned query

optimizer, and boost the performance of DBMS; (3) developing data management techniques

with statistical guarantees to acquire the most useful training data for ML models with a

budget limitation, striving to maximize the accuracy of the model. We conduct detailed

theoretical and empirical study for each topic, establishing these fundamental problems as

well as developing efficient and effective approaches for the tasks.
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1 Introduction

1.1 Background and Motivation

Data management [149, 67] generally refers to the problems of processing, organizing, and

retrieving data to improve the efficiency of various types of tasks such as query answering

and similarity search, and is the heart of many modern applications such as databases and

search engine. Although researchers have studied data management-related problems for

decades, the unprecedented amount and speed of data being collected, processed, and utilized

nowadays bring new challenges to data management. The era of big data calls for more

efficient, scalable, and robust data management techniques in a wide variety of real-world

scenarios.

Machine Learning (ML) [75], especially Deep Learning (DL) [52], draws ever-rising aca-

demic and industrial attention in the past decade. Recent advances in Machine Learning

theories and frameworks have made it possible to use ML techniques to assist humans in

varying tasks such as driving and surgery. Development in Machine Learning-related hard-

ware such as GPU and TPU, and platforms such as Microsoft Azure and Amazon AWS have

also enabled the wide deployment of Machine Learning techniques.

Although the main breakthroughs of Machine Learning first take place in areas such as

Computer Vision (CV) [47] and Natural Language Processing (NLP) [102], the power of

Machine Learning has facilitated the progress of data management in the past several years

as well. Researchers have explored the possibility of using Machine Learning techniques

to solve conventional and fundamental data management problems such as indexing, and

observed promising and exciting results. Machine Learning enables researchers to model

and tackle data management problems from different angles and creates a potentially huge

1



opportunity for a revolution in the data management area.

On the other hand, data management methods also benefit the advancement of Machine

Learning [18, 161]. The ability of data management techniques in data cleaning, data aug-

mentation, and data acquisition makes it possible to apply ML models to scenarios with

insufficient training data or where training efficiency is a concern, and has significantly ac-

celerated the real-world deployment of Machine Learning techniques.

1.2 Our Research Objective

Despite the promising research opportunities and the efforts researchers have made in the

intersection area between data management and Machine Learning, there are certain chal-

lenges in applying ML techniques to data management tasks and vice versa. First, ML

techniques, especially deep learning-related techniques, are known to incur large training

and inference costs, while efficiency is one of the main concerns of data management tasks

[20]. Second, the behaviour of ML models is usually unpredictable and the errors are un-

bounded, while in practice many data management applications require certain guarantees

regarding the performance and accuracy [171]. Third, data management tasks usually in-

volve heterogeneous data with unknown correlations, and proper embedding of such data

which preserves necessary information is difficult [152].

In this work, we contribute to bridging data management and Machine Learn-

ing, propose solutions that can help to overcome the above-mentioned challenges,

and deeply investigate how data management and Machine Learning tasks can

benefit from each other. While the study in related areas is still in the preliminary

state and many important research problems remain unsolved, we choose three very fun-

damental and interesting directions to explore in detail in this work, namely,

index, query optimization, and data acquisition. More specifically, index and query

optimization are two (perhaps the most) important problems researchers have been working

on in the area of data management to reduce the latency of data retrieval and processing,

and data acquisition (e.g., acquiring useful data for training) is one of the bottleneck tasks in

training Machine Learning models. As will be shown later in this thesis, ML techniques help
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to reshape the perspective we view and solve index and query optimization tasks, providing

a completely new category of effective approaches; and data acquisition techniques that are

well-studied in the data management area benefit Machine Learning, greatly reducing the

time and monetary cost of building ML models.

1.3 Overview of Related Research Topics

In this section we present a high-level overview of the important research topics in the

intersection area of data management and Machine Learning, to provide the reader with

a clear picture of the academic interests and industrial demands in the area, and a more

detailed literature review can be located in Section 2. Below we mainly focus on the three

topics related to the questions we investigate in this work: (1) ML-based indexing and

searching, (2) ML-based query optimization, and (3) ML model-oriented data exchange.

1.3.1 ML-based Indexing and Searching

Data indexing and searching, one of the fundamental tasks in the data management area,

aim to efficiently locate and retrieve the data specified by a query predicate. While existing

algorithms need to sort and partition data to reduce search overhead, ML techniques provide

a new perspective to view and solve the problem. More specifically, researchers have proposed

to view index as a ML model, with the input being the query predicate and the output being

the location of the requested data, and thus the data finding process can be viewed as model

inference. It has been shown that ML models can effectively capture the mapping from

a query predicate to data locations. Compared with conventional techniques, ML-based

indexes are usually more lightweight and accurate.

1.3.2 ML-based Query Optimization

Query optimization is one of the most important and challenging tasks in Database Manage-

ment Systems (DBMS). The objective of query optimization is to identify the most efficient

one from a collection of candidate plans that can be executed to answer a particular query.

Previous query optimizers have various hand-crafted rules for plan selection, which usually
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fail to identify the optimal plan. The major sub-task of query optimization, the plan cost

estimation, is essentially a regression task, and thus we can leverage ML model to directly

learn the mapping from a query plan to its execution time, which would help to identify the

fastest plan.

1.3.3 ML Model-oriented Data Exchange

Machine Learning models are usually data-hungry and require sufficient high-quality data

for performance improvement. In practice, the model owner usually needs to acquire data

from other parties, such as e-commerce companies with customer shopping records, at some

(usually monetary) expense. The wisdom of data management in tasks such as data ex-

change would greatly help to design a healthy and flawless mechanism for data providing

and acquisition. Relevant techniques in data management can also help to maximize the data

owner’s revenue in providing the data, or minimize the model owner’s expense in acquiring

the data to reach a desired level of model accuracy.

1.4 Problems Studied in This Work

As mentioned in previous sections, researches in the intersection area of data management

and Machine Learning is at the early stage and many interesting questions remain to be

solved. In this work we select three of the most fundamental and important tasks in the area

and propose our solutions, including data indexing, query optimization, and data acquisi-

tion. The former two tasks are typical data management tasks, and we investigate how ML

techniques can be utilized to better solve the problems, and data acquisition or acquiring

useful training data is one of the bottleneck problems of ML, which we believe would greatly

benefit from data management techniques. In this section we give a brief overview of the

three problems studied in this work.

1.4.1 Learning-based Set Similarity Search

Set similarity search is a problem of central interest to a wide variety of applications such as

data cleaning and web search. Past approaches to set similarity search utilize either heavy
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indexing structures, incurring large search costs or indexes that produce large candidate sets.

We design a learning-based exact set similarity search approach, LES3. Our approach first

partitions sets into groups, and then utilizes a lightweight bitmap-like indexing structure,

called token-group matrix (TGM), to organize groups and prune out candidates given a

query set. In order to optimize pruning using the TGM, we analytically investigate the opti-

mal partitioning strategy under certain distributional assumptions. Using these results, we

then design a learning-based partitioning approach called L2P and an associated data rep-

resentation encoding, PTR, to identify the partitions. We conduct extensive experiments on

real and synthetic datasets to fully study LES3, establishing the effectiveness and superiority

over other applicable approaches. More details regarding the index structures, algorithms,

and experiment results are provided in Section 3.

1.4.2 Learning-assisted Query Plan Selection

Plan selection, as the core task of query optimization, is known to be difficult in practice

especially when the tables are co-related and the queries involve multiple tables/attributes.

Besides conventional cost estimators (such as cardinality estimator plus cost model) [180],

recently researchers show great interests in using ML-based technique to assist plan selection

and observe its superiority over conventional techniques [113, 116, 153]. However, as pointed

out in [171], the estimation of both conventional cost estimators and ML-based estimators

are not always trustworthy, and using a single estimated cost for plan selection sometimes

leads to arbitrarily bad query performance. Therefore, in this work, we complement ex-

isting plan selection techniques by constructing the execution time distribution for various

plans and leveraging the distribution for more controllable plan selection. To construct the

execution time distribution, we design a novel approach based on a robust statistical tool

named conformal prediction. Our design can be applied to different types of cost estima-

tors including conventional DBMS cost estimators and learned cost estimators, and can be

easily integrated into an existing DBMS. Based on the execution time distribution, we de-

sign several intuitive and fundamental objectives regarding the query performance such as

time limits. Details of building the utilizing the execution time distribution can be found in

Section 4.
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1.4.3 Data Acquisition for Improving Machine Learning Models

The vast advances in Machine Learning (ML) over the last ten years have been powered

by the availability of suitably prepared data for training purposes. The future of ML-

enabled enterprises hinges on data. As such, there is already a vibrant market offering data

annotation services to tailor sophisticated ML models.

Inspired by the recent vision of online data markets and associated market designs, we

present research on the practical problem of obtaining data in order to improve the accuracy

of ML models. We consider an environment in which consumers query for data to enhance

the accuracy of their models and data providers who possess data make them available for

training purposes. We first formalize this interaction process laying out the suitable frame-

work and associated parameters for data exchange. We then propose two data acquisition

strategies that consider a trade-off between exploration during which we obtain data to learn

about the distribution of a provider’s data and exploitation during which we optimize our

data inquiries utilizing the gained knowledge. In the first strategy, Estimation and Allocation

(EA), we utilize queries to estimate the utilities of various predicates while learning about

the distribution of the provider’s data; then we proceed to the allocation stage in which we

utilize those learned utility estimates to inform our data acquisition decisions. The second

algorithmic proposal, named Sequential Predicate Selection (SPS), utilizes a sampling strat-

egy to explore the distribution of the provider’s data, adaptively investing more resources

to parts of the data space that are statistically more promising to improve overall model

accuracy. Details regarding the problem and approaches are provided in Section 5.

1.5 Summary of Contributions

In this thesis we contribute to bridging data management with Machine Learning and in-

vestigate three fundamental problems in the intersection area. Our contributions can be

summarized as follows:

1. We present a thorough review of recent works related to the intersection of data man-

agement and Machine Learning, together with a detailed analysis of the advantages
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and limitations of each approach, and point out multiple promising research directions

that worth further investigation.

2. We study the problem of designing learned indexing and searching algorithms to

accelerate similarity search over large-scale set data. More specifically, we propose

LES3which follows a filter-and-verify methodology and first partition sets into disjoint

groups using a learned approach L2P, and then index each group with a lightweight

bitmap-like structure TGM. The main component of L2P is a ML model whose objec-

tive is to assign each set into a group so that the pruning power of the TGM can be

maximized. We conduct extensive experiments on real and synthetic datasets to show

the effectiveness of the proposed approach in improving search efficiency and reducing

storage overhead.

3. We devise a novel and robust approach for plan selection that leverages the execution

time distribution of query plans. We adapt a well-designed statistical tool named

conformal prediction to construct the execution time distribution for new plans, with

very limited assumptions regarding the data and workload distribution. The designed

execution time distribution construction method works for both conventional query

optimizers and modern learned query optimizers. We then develop several intuitive

and fundamental objectives that the DBMS may possess when asking a query, such as

the maximal query answering latency, and design plan selection strategies leveraging

the execution time distribution to fulfill each of the objectives. We also present a

detailed study about how to integrate the new design into DBMS with very minor

extra overhead. Extensive experiments with different DBMSs, query optimizers, and

benchmarks prove the effectiveness of our proposal.

4. We study the problem of obtaining the most useful data to improve the accuracy of ML

models given a fixed budget (limiting the amount of data that can be acquired). We

design a practical data market to allow the data consumer to acquire desired data from

the data provider by specifying the properties of the required data using queries. We

further propose two approaches for the data consumer to acquire the most useful data

with a limited budget, which effectively balance between exploration during which
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the data consumer acquires data to learn the data provider’s data distribution and

identify the queries that specify the most useful data, and exploitation, during which

the data consumer leverages the gained knowledge to acquire the most useful data.

The proposed methods are thoroughly testified with various datasets and ML models

and demonstrate stable and superior performance across different settings.

5. Besides the problems analyzed and studied in detail in this thesis, we also list multiple

research topics that we believe are both interesting and important to investigate as

future works. These topics and problems would help to accelerate the development of

this novel research area as well as benefit a variety of real applications and systems.

1.6 Published and Under-review Works

The dissertation is based on the following published or under-review works:

1. LES3: Learning-based Exact Set Similarity Search

Yifan Li, Xiaohui Yu, Nick Koudas. Proceedings of the VLDB Endowment, 2021

2. Data Acquisition for Improving Machine Learning Models

Yifan Li, Xiaohui Yu, Nick Koudas. Proceedings of the VLDB Endowment, 2021

3. dbET: Execution Time Distribution-based Plan Selection

Yifan Li, Xiaohui Yu, Nick Koudas, Shu Lin, Calvin Sun, Chong Chen. Under review

My other works during Ph.D. study are listed below:

1. Top-k queries over Digital Traces

Yifan Li, Xiaohui Yu, Nick Koudas. Proceedings of the 2019 International Conference

on Management of Data (SIGMOD’19)

2. FILM: A Fully Learned Index for Larger-than-memory Databases

Chaohong Ma, Xiaohui Yu, Yifan Li, Xiaofeng Meng, Aishan Maoliniyazi. Under

Review

8



3. Distributed Processing of k Shortest Path Queries over Dynamic Road Networks

Ziqiang Yu, Xiaohui Yu, Nick Koudas, Yang Liu, Yifan Li, Yueting Chen, Dingyu

Yang. Proceedings of the 2020 International Conference on Management of Data (SIG-

MOD’20)
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2 Literature Review

In this section, we present the literature in the intersection area of data management and

Machine Learning in a broad sense, to provide an overview of the research area. Detailed

related works regarding each research problem introduced in Section 1.4 can be located in

the corresponding sections.

2.1 Similarity Search

Similarity search in data management is usually accelerated by indexes, which are data struc-

tures and algorithms that organize data in a way to speed-up look-up operations. Famous ex-

amples of indexes include B-tree (for one-dimensional data) and R-tree (for high-dimensional

data). Indexes serve as one of the fundamental components of data management and are

always the focus of academic research as well as industrial application.

Over the past few years, researchers started to construct and optimize indexes with the

help of Machine Learning techniques. More specifically, researchers strive to replace the

underlying data structures and algorithms with ML models so that given a search query, the

model can directly output the query results. Breakthrough is observed for tree-based index

structures, hash-based structures, partitioning methods, etc. The major advantages of using

ML-based indexes to replace conventional indexes include:

1. By adapting to the data and uncovering patterns in a specific problem instance (e.g.,

a specific workload or data distribution) instead of solving a general problem for every

problem instance as conventional indexes do, ML-based indexes usually provide faster

query answering;

2. By using non-linear functions to model the relation between a query and the expected
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result, as opposed to using data structures such as nodes in B-tree, ML-based indexes

usually incur orders of magnitude less space overhead.

In the following, we introduce some of the interesting explorations in applying ML tech-

niques for data indexing, showcase their advantages, and analyze their shortcomings[34, 45,

50, 90, 92, 99, 104, 114, 124, 135, 174, 189, 186].

2.1.1 Exact Search Approaches

The most important index for exact similarity search is tree structures, including B-tree,

R-tree, and their variants. Tree indexes are designed for fast key look-up. We illustrate

how tree indexes work with the example of a B-tree, which organizes data with a sorted

array. Given a search key K, the search starts at the root and is repeatedly routed to a child

node according to certain comparison operations until a leaf node is reached, where the data

corresponding to K is expected to be present.

Since the functionality of B-tree is to map a search key into a position in a sorted array,

one can replace the tree with a regression model with the search key being the input and

the position being the output.

RMI. The regression task of mapping a search key to a position can be tackled by

learning the cumulative density function (CDF) of the data. Kraska et al. [90] propose

a framework named Recursive Model Index (RMI), which consists of a collection of light-

weight linear models, to learn the CDF and replace the tree structure. A search key is first

fed into Model 1.1 and recursively routed to a child model rather than a child node, until a

model at the bottom level is reached and a position is computed.

However, by learning the CDF with models, RMI may cause errors when making pre-

dictions for a given search key. For example, the predicted position may be 10 while the

true position is 15. In order to guarantee correctness, RMI first makes predictions for all

values in the array, let D be the maximal distance between the predicted position and the

true position of any value. Given an arbitrary search key K, suppose the predicted position

is PK , then values between position PK −D and position PK +D are checked to match K.

The search strategy immediately reflects a shortcoming of RMI, which is, it can only handle
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static data and OLAP (online analytical processing) scenarios.

Flood. Nathan et al. [124] extends the work of RMI from one-dimensional data to

multi-dimensional data and propose Flood, an in-memory read-optimized index. While the

basis is also capturing the CDF of the underlying data, Flood is able to adaptively adjust

the layout of the data to project skewed data distribution into a more uniform space so as

to accelerate search.

Alex. Ding et al. [34] extend previous learned indexes that mainly focus on look-up

and search operations, and propose Alex, which supports write operations and provides fast

search for dynamic data. With Alex, keys are mapped into a data structure named “gapped

array” where spaces between keys are preserved so that newly inserted data can be mapped

into the correct position in the array without causing much data re-position cost.

2.1.2 Approximate Search Approaches

Approximate similarity search usually reles on space transformation and partitioning, which

discretize the entire space into sub-spaces and limit the search to certain sub-spaces. An

example is locality sensitive hashing (LSH), which maps similar data items to the same

bucket with higher probability, and for a given query item which is hashed into some bucket,

its similar items (e.g., k nearest neighbors) can be located in the same bucket. The two

requirements for space partitioning methods are:

1. Fast to compute. Since the technique is mainly used to provide approximate answers

for large datasets, search efficiency is one of the major concerns.

2. Accurate. Although the results are allowed to be approximate, high accuracy is always

a desired property. High accuracy refers to (1) the true nearest neighbors have a

high chance to be in the same sub-space as the query item, and (2) the similarity of

approximate results is not far lower than the true results.

Researchers have explored to use ML-based techniques for space partitioning and ob-

served that with these techniques both properties are likely to be better satisfied due to the

fast inference of ML models and its ability in adapting to a certain data distribution.
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Space transformation. Most indexing structures prefer uniformity of the data to pro-

vide faster search. Sablayrolles et al. [140] propose to map data points from the original

space into a latent space where points are uniformly distributed while preserving the neigh-

borhood relations between points to accelerate similarity search. In order to achieve the

two properties (uniformity and neighbor-preserving) in the latent space, the authors design

a loss function that integrates and naturally balances between an entropic regularizer to

spread out points uniformly and a triplet rank-preserving loss which preserves the relative

distance between points. Reshaping the data to uniform data would benefit a large family

of approximate similarity search algorithms.

Space partitioning. Dong et al. [36] model the problem of space partitioning as a

process of balanced graph partitioning followed by supervised classification. More specifically,

the authors first construct a kNN graph for a given set of data points, i.e., view each point as

a vertex and link each vertex with its k nearest neighbors, and then adopt a graph partitioner

to cut the kNN graph into sub-graphs, with the number of edges crossing different sub-graphs

minimized. A classifier is then trained with points as the input and the corresponding sub-

graph id as the labels. Given a new data point, the classifier maps it into a sub-graph, and its

(approximate) nearest neighbors are identified from the points contained in this sub-graph.

2.1.3 Techniques for Set Similarity Search

In this section, we introduce the techniques designed for set similarity search, including

conventional techniques and ML-based techniques, which are closely related to the problem

studied in Section 3.

2.1.3.1 Conventional Approaches

Set Similarity Search Indexes. The problem of processing set similarity queries, including

set similarity search [83, 193, 194], i.e., find items in a collection that are similar to a

query item, and set similarity joins [28, 30, 44, 111, 173], i.e., perform similarity search

simultaneously for multiple query items, has attracted remarkable research interest recently.

Zhang et al. [193, 194] propose to transform sets into scalars or vectors with the relative
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distance between sets preserved, and organize the transformed sets with B+-trees or R-trees,

which facilitate the use of tree-based branch-and-bound algorithms for similarity search. The

major drawback of their work is that, as shown in the experiments, the tree structure can

easily grow larger than the original data and thus using the index for filtering incurs a

significant cost, especially when the index and the data are stored externally. Most prior

research in the area of set similarity join focuses on threshold-join queries and follows the

filter-and-verify framework. In the filter step, existing methods mainly adopt (1) prefix-

based filters [14, 169, 182], based on the observation that if the similarity between two sets

exceeds δ, then they must share common token(s) in their prefixes of length m; and (2)

partition-based filters [6, 29, 28, 181], which partition a set into several subsets so that two

sets are similar only if they share a common subset.

2.1.3.2 Set Embedding

Embedding sets and other entities consisting of discrete elements to facilitate adapting ML

techniques for the task has been well-studied. The most natural way to represent such

data types is n-hot encoding, but the resulting vectors are often very long and sparse.

Dimensionality reduction techniques are used to compress the encoding vectors with different

focuses: maximizing variances [131], preserving distances [13], solving the crowding problem

[110], etc. Recent advances in document embedding, e.g., word2vec [119], BERT [32], also

provide new perspectives to construct representations of sets. In our work, we propose a

novel, lightweight, and effective set embedding approach PTR 3.5.3. Compared to these

methods, PTR utilizes a very efficient method to produce relatively short representations

and is optimized for the specific problem at hand.

2.1.4 Summary

Machine Learning for similarity search has received plenty of research interests over the past

few years and researchers have explored the possibility and performance of using ML-based

techniques to replace conventional hard-wired indexing structures and algorithms. Promising

results are reported in a variety of settings. However, the area is still at the preliminary stage
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and many questions remain open. For example, existing works are mainly index structure-

oriented, i.e., use ML models to mimic the functionality of a specific index structure, but

little work is task-oriented, i.e., design effective ML models for a given task such as string

similarity search under edit distance. We believe task-oriented design would greatly facilitate

the wide deployment of ML-based indexes in real world applications.

2.2 Query Optimization

Query optimization is the core to database management system (DBMS). A query optimizer

is responsible for estimating the cost of each candidate query plan and selecting the optimal

plan. In this section, we present works related to the major query optimization tasks, includ-

ing cardinality estimation, join order selection, and trustworthy optimizers, with particular

focus on the recent breakthroughs in ML-based query optimization.

2.2.1 Cardinality Estimation and Cost Estimation

The major challenge in estimating plan cost is to estimate the cardinality of sub-plans,

i.e., the number of tuples in the intermediate results of a plan. Traditional methods for

cardinality estimation utilize auxiliary structures such as histogram and generally assumes

that different attributes in the database are independent. In recent years researchers model

cardinality estimation as a regression problem which takes the input of an (encoded) query

and output its estimated cardinality without making any assumption regarding the data

distribution and achieve promising results [62, 64, 65, 72, 77, 85, 120, 152, 129, 163, 148,

167, 187, 188, 191].

ML models for cardinality estimation are mainly constructed in an off-line fashion, i.e.,

before query execution. Existing cardinality estimation models can be categorized into two

groups: supervised cardinality estimation, which is query-oriented and built on a large num-

ber of training queries together with their cardinality; and unsupervised cardinality esti-

mation, which is data-oriented and captures the distribution of the underlying database to

make cardinality predictions. In addition, there are also works for online query optimization,

which perform data sampling and plan cost evaluation to identify the optimal plan during
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query execution time.

2.2.1.1 Supervised Cardinality and Cost Estimation

Supervised cardinality and cost estimation refer to the methods which take the input of (a

large number of) ⟨Q,C⟩ pairs to train a model, where Q denotes a query and C denotes

the (exact or approximated) cardinality or cost of the query. Given a new query, the model

directly predicts its cardinality or cost.

Query encoding. Queries in the form of SQL-like language need to be encoded so that

the ML model can understand the semantics. A representative example of query encoding

is provided in [85] where a query is encoded with a tuple (T,J,P), denoting the tables, join

attributes, and predicate attributes and values involved in the query respectively. It is also

observed [38] that integrating information such as the estimated selectivity of each table on

a join query into the query encoding would benefit the overall cardinality estimation.

Models. Kipf et al. [85] use a multi-set convolutional model to map the query tuple into

the corresponding cardinality. More specifically, a Multi-layer Perceptron (MLP) is trained

for the table set, join attribute set, and predicate set respectively, and the output of the

three MLPs are then feed into another network to predict the cardinality.

Sun et al. [152] propose a framework which directly estimates the cost (rather than cardi-

nality) of a given query plan. The model designed in the paper consists of three components:

(1) embedding layer, which converts the one-hot representations of metadata, operators, etc.

into dense vectors to ease training; (2) representation layer, which is a tree-like network (just

like a query plan) and recursively utilizes the representation of an operator or a sub-plan to

output the representation of a more complete new plan, until the entire plan is embedded;

(3) estimation layer, which takes the plan representation and output the corresponding cost.

Dutt et al. [38] focus on the scenario when training efficiency is a concern and observe

that lightweight models such as XG-Boost achieve similar estimation accuracy as deep models

but greatly reduces the training time and space overhead.

Iterative refinement. Dutt et al. [38] approximate the cardinality of a given query

with uniformly selected tuples to generate the training data, avoiding the expensive cost

of executing the query and obtaining the true cardinality. The authors design a method
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which, given an error threshold, automatically computes the number of random tuples re-

quired to approximate the cardinality as well as the number of required training samples to

satisfy the accuracy requirement. In general, lower error thresholds require more tuples for

approximation and also incurs longer model training time.

Park et al. [129] propose methods to learn and refine the selectivity of a query on the

fly. More specifically, the authors initially train a model off-line, and then iteratively refine

the model when a query plan is executed and the true cardinality is observed.

2.2.1.2 Unsupervised Cardinality Estimation

Unsupervised cardinality estimation approaches are agnostic to the query and workload,

and learn the (joint or conditional) distribution of tuples in the database for cardinality

estimation.

Model. The model frequently used by unsupervised cardinality estimation is autoregres-

sive (AR) model, which has shown superior performance in density estimation for image and

text data. In order to cope with the task of cardinality estimation, AR model is used to learn

the conditional density distribution between attributes A1, A2, · · · , Am, e.g., the probability

of attribute A2 = a2 given A1 = a1. An AR model is trained for each attribute, and the

functionality of the i-th model is to to capture the conditional probability distribution of

attribute Ai, i.e., P (Ai|A1, A2, · · · , Ai−1). Given a query A1 = a1, A2 = a2, · · · , Am = am,

the cardinality is computed as follows:

m∏
i=1

P (Ai = ai|A1 = a1 · · · , Ai−1 = ai−1) (2.1)

where P (Ai = ai|A1 = a1 · · · , Ai−1 = ai−1) is the output of the i-th network.

Frameworks. Yang et al. [187] design a framework named Naru with AR model being

its core. As stated above, AR models are mainly used for point density estimation, and thus

can only handle equality queries. Naru thus utilizes a Monte Carlo integration technique

called progressive sampling to estimate the cardinality of range queries. More specifically,

the AR models steer the sampler to regions with high density to reduce sampling cost, and

importance sampling is then used to eliminate the induced bias.
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NeuroCard [188] extends Naru to cardinality estimation for multi-table join queries.

The authors train a model on the full outer join of all tables in the database which can thus

handle join on any subsets of tables. Since the full outer join results in a huge amount of

tuples, the authors propose an efficient sampling strategy which preserves the weights of all

tuples, i.e., if a join key is more frequent in the join results, it is more frequent in the samples

as well. The authors showcase that such sampling weights are fast to compute in practice,

making the method applicable to large databases and complex queries.

Hasan et al. [62] study both using AR model for unsupervised cardinality estimation,

and using ⟨Q,C⟩ pairs for supervised cardinality estimation. The authors also propose a

method in dealing with database updates: training on the newly-inserted data using the

original model configurations and weights for initialization, and adopting a dropout mecha-

nism to prevent forgetting. The authors showcase that the model can adapt itself to different

workloads by improving the weights of frequently queries attributes when training the model.

2.2.2 Integrating ML-based Query Optimizer into DBMSs

Researchers have also integrated ML-based optimizers into databases such as PostgreSQL

for end-to-end query optimization to replace traditional optimizers and observe promising

results.

A novel DBMS query processing engine based on Reinforcement Learning-based is pro-

posed in SkinnerDB [163], which maintains no information regarding the query or the

database. It partitions the execution of a query into time slices and tries different join

plans at different slices using Reinforcement Learning techniques to find and finally stick to

the optimal plan. A special query engine is designed to support slice-based query execution.

Other works also show promising results in utilizing RL for join order selection, each with a

special focus on different aspects in the selection process [91, 113, 190].

Neo [117] is an end-to-end query optimizer. It uses a value network for cost estimation,

and a best-first greedy strategy for sub-plan growth to find the optimal plan. The training

of Neo involves two phases: first, it uses ⟨Plan,Cost⟩ pairs generated by a second optimizer

(e.g., the default optimizer of PostgreSQL) to train the value network from scratch (note

here the Cost is approximated), and then use the true cost of different plans observed at
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query time to refine the value network for more accurate estimation.

Bao [115] is designed to assist traditional optimizers with hints for the optimal plan

selection. Hints, or hard-wired rules for plan selection, are widely used in many commercial

databases such as DB2 and SQL Server. Given a set of hints, Bao partitions the hints into

subsets, and learns which subset(s) of hints may finally result in better performance for a

given query. During plan selection time, Bao routes the underlying optimizer to the subsets

of hints which it believes benefits the selection of the optimal plan.

Ma et al. [109] focus on the setting where the data used to train the cardinality estimator

diverges from the real database and workload. The authors use Active Learning (AL) to

improve the performance of the model on the real workload. More specifically, among all un-

executed plans whose true costs are unknown, the authors select a subset of plans to execute

to acquire extra knowledge regarding the workload and execution environment, which brings

exploration cost but may potentially benefit the performance of the estimator.

2.2.3 Robust Query Optimizer

Instead of a single value, previous works [8] have shown that modelling the anticipated

performance of a plan as a probability distribution over possible cost values helps to improve

the predictability and robustness of the DBMS. More specifically, [8] proposes robust query

optimizer, which maintains pre-computed samples from the underlying database. The actual

cardinality of a given query Q is assumed to follow a beta distribution with parameters

obtained from the evaluation of Q on the pre-computed samples. The cardinality distribution

is then transformed into costs at a user-specified probability level. This approach proves the

superiority of utilizing distribution for plan selection over a single cost value in providing

more robust query performance. However, it suffers from the following limitations on its

applicability: (1) The given query needs to be evaluated on the saved samples, which incurs

extra overhead and delays the query answering process, and the delay becomes more severe

for databases with complex schemas as a larger sample set need to be maintained; (2)

The distribution is constructed for cardinality rather than execution time. As a result, the

technique is not applicable to cost estimators without a cardinality estimation module such

as modern Machine Learning-based estimators which directly map a plan to its execution
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time; (3) The distribution is constructed using pre-computed samples, and the wisdom of

the cost estimation module is not sufficiently utilized.

2.2.4 Conformal Technique

Instead of the techniques designed in robust query optimizer, we seek for different approaches

to construct the distribution of plan’s execution time, based on conformal techniques. Con-

formal techniques are a family of statistical tools that aim to quantify the uncertainty of

regression predictors by outputting prediction intervals [87, 97, 137, 151, 157]. Although

there are various types of conformal techniques that have different interval designs, they

share a similar strategy by calibrating the regression predictor using given triplets of a sam-

ple, estimation, and ground truth. At a high level, given a regression predictor µ̂, conformal

techniques take input of a collection of samples in the format of (X, y, µ̂(X)) (i.e., a feature

vector, the response variable, and the estimated response variable), and fit a mapping func-

tion from X to an interval [l(X), u(X)] such that y ∈ [l(X), u(X)] is true at a pre-defined

probability level 1 − α. Representative conformal technique include (1) Split Conformal

Technique [97], which computes the absolute estimation errors (residuals) | ˆµ(X) − y| for

given samples and use these residuals to construct the intervals for new samples; and (2)

Neural-network-based Prediction Intervals [86] which are designed especially for deep learn-

ing regression models and supplement the last layer of the network with two extra neurons

estimating the α
2
-th and 1− α

2
-th quantile of the response variable respectively. The outputs

of the two neurons form an interval which is expected to cover the response variable with

probability 1−α. Conformal techniques make no assumption regarding the data distribution

and thus are practical and robust.

2.2.5 Summary

The database community has seen promising results in applying ML techniques, including

supervised learning, unsupervised learning, and Reinforcement Learning, for query optimiza-

tion. Several practical problems in integrating ML techniques to database have also been

considered. Many research chances to further improve the performance of ML-based query
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optimizers still exist. For example, it is known that off-line model training cannot handle

drifts in data and workload well, while online model retraining or refinement incurs extra

time cost, and therefore a hybrid approach which can integrate the power of both methods,

i.e., train an optimizer off-line and perform online on-demand model refinement, is expected

to further benefit query optimization. Furthermore, current applications of ML-based query

optimizers are mainly within laboratory databases for research exploration, and applying

such techniques to real world databases designed for various scenarios (e.g., cloud-native

database) is an interesting and important problem to tackle.

2.3 Data Market and Data Exchange

Data management methods and experiences have also accelerated the development of Ma-

chine Learning. Online data markets facilitate the access of training data with high quality

[1, 10, 17, 20, 43, 103, 118, 132, 146]. And data cleaning, acquisition, augmentation tech-

niques and the experience in dealing with relation data and large scale data broaden the

application scenarios of ML models [2, 21, 22, 31, 42, 63, 88, 96, 133, 128, 142, 145, 192].

2.3.1 Data Market and Data Pricing

Data market. The industry has seen the rapid development of many online data markets

such as Dawex [25], WorldQuant [175], and Xignite [183], which aim to make access to data

a commodity, for modelling or learning purposes. In the academic area, Fernandez et al.

[43] present their vision in the design of a data market for the trade of Machine Learning

training data. The paper introduces the framework of a data market which involves data

providers who own training data and are willing to trade the data for profits, data consumers

who purchase data for various types of tasks such as training Machine Learning models, and

arbiters who coordinate the trade between the provider and the consumer. The authors also

provide a research agenda centering around the proper design of a data market and the rules

of a healthy market such as arbitrage-free.

Query-based pricing. Chawla [17] study the problem of a consumer asking a query

and paying a price for the query results. The authors design a pricing function which set a
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price to a query according to the amount of revealed information with two considerations:

(1) arbitrage-freeness, i.e., if the results of query Qi can be obtained from the results of

query Qj, then the price of answering Qj should be higher than answering Qi; (2) revenue

maximization, the data provider’s revenue in selling the query results is maximized.

Model-based pricing. Chen et al. [20] study the problem of directly selling trained

Machine Learning models on a data market. The authors adopt a method which first trains

an optimal model on all available data, and for a given price offered by the data consumer,

random Gaussian noise is injected to the model to prevent potential arbitrage opportunities.

The authors demonstrate that the noise injection process incurs very small overhead and

thus the technique can thus be applied on real-time online markets.

2.3.2 Data Acquisition and Data Augmentation

Data acquisition and augmentation techniques have also been adopted to acquire data (via

combining old data) on demand to improve the performance of certain models. Data acqui-

sition refers to the process to collect data (with a price) to finish a task, which is evaluated

by a given metric, from a source such as a data seller. Data augmentation techniques find

new features or feature combinations relevant to the user’s tasks via operations such as table

join.

Data acquisition. Chen et al. [21] consider the problem of obtaining data from multiple

data providers in order to improve the accuracy of linear statistical estimators. The authors

provide certain types of guarantees on the best strategies to adopt when providers decide

to abstain from making their data available and thus data costs vary dynamically. In a

related thread Kong et al. [88] study the problem of estimating Gaussian parameters and

other estimators with Gaussian noise. Zhang et al. [192] study incentive mechanisms for

participants in data markets to refresh their data.

Data augmentation. Data augmentation and feature selection for machine learning

have also attracted research interests recently [22, 96, 145]. Kumar et al. [96] solve the

problem of training a ML model on relational data and propose methods to decide whether

joining certain attributes would improve the model’s accuracy. Chepurko et al. [22] design an

end-to-end Automatic Machine Learning (AML) system that automatically performs feature
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selections and joins to generate new features that are expected to improve the performance

of a given model.

2.3.3 Exploration vs. Exploitation

In Section 5 we consider a setting where a data consumer repetitively acquires data (with

expense) from a data provider with a known objective. To maximize the gain (w.r.t the

objective), the data consumer needs to solve the exploration and exploitation problem, and

in this section we briefly introduce the related literature. Exploration refers to the process

of obtaining new information regarding the task at some expense, and exploitation is to

leverage the knowledge gained so far to select the optimal action. The trade-off between

exploration and exploitation exists in many scenarios where a decision has to be made with

incomplete knowledge.

Thompson Sampling. Methods balancing this trade-off have been proposed in various

contexts, such as reinforcement learning [155] and online decision making [69], among which

Thompson Sampling (TS) [139] is the most related work to the problem we study in Section

5. Given a set of actions A with each action a ∈ A bringing a reward r drawn from a

distribution Pa(r), the objective of Thompson Sampling is to find a sequence of actions

a1, a2, · · · , an such that the cumulative reward r1 + r2 + · · · + rn is maximized. TS first

makes assumptions regarding the reward distribution, i.e., Pa(r), and updates Pa(r) as more

rewards of action a are observed. Note that Pa(r) may evolve over time and thus TS needs

to continuously update its knowledge regarding Pa(r). TS selects the next action according

to its probability in maximizing the expected reward, balancing between exploration and

exploitation. We give more detailed description of Thompson Sampling in Secton 5.4.1.

Active Learning. Active learning (AL) is another category of technique concerned with

interactively acquiring labels for new data points to improve the performance of machine

learning models [147]. It has been applied to solve various problems in data management

[108]. In a typical setting for active learning, we have access to the features of new data

and have to decide the set of records for which we would like to acquire the label for a cost.

The most related work in this area to the problem studied in Section 5 is [105], which aims

to control the class of data to acquire for improving the ML models. However, they focus
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on the task of selecting class proportions for generating new training data. They do not

explicitly optimize the use of a fixed budget, do not tackle regression problems, and require

frequent re-training of the model.

2.3.4 Summary

Researchers in the data management community have developed frameworks such as online

data market the corresponding data trade algorithms and principles to make ML model

training data with high quality available and accelerate the wide deployment of ML tech-

niques, and also proposed techniques regarding data cleaning and augmentation to further

boost the performance of ML models. Current application of data management experience

to ML area is still at the very early stage and many open questions need to be addressed.

For example, current online data markets mainly tackle the data trade problem from the

data provider’s perspective, i.e., maximizing the provider’s revenue in selling the data asset,

while it is also very important to view the problem from the data consumer’s perspective,

such as maximizing the accuracy improvement of the consumer’s model given a fixed budget.
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3 LES3: Learning-based Exact Set Similarity Search

3.1 Introduction

3.1.1 Background

Given a database D of sets each comprised of tokens (a token can be an arbitrary string

from a given alphabet Σ, a unique identifier from a known domain, etc.), a single query

set Q (consisting of tokens from the same domain), and a similarity measure Sim(∗), the

problem of set similarity search is to identify from D those sets that are within a user

defined similarity threshold to the query Q (range query) or k sets that are the most similar

to Q (kNN query). This operation is essential to a wide spectrum of applications, such as

data cleaning [57, 170], data integration [35, 51], query refinement [141], and digital trace

analysis [101]. For example, a common task in data cleaning is to perform approximate string

matching to identify near duplicates of a given query string. When strings are tokenized,

the task of approximate string matching becomes a set similarity search problem. Given

its prevalent use, efficient set similarity search is of paramount importance. A brute-force

approach to supporting set similarity search is to scan all the sets in D and evaluate Sim(∗)

between Q and each set in D to obtain the results. When D is large or such operations are

carried out repeatedly, however, its efficiency becomes a major concern.

Existing proposals to improve the search performance adopt a filter-and-verify framework:

in the filter step, candidate sets are generated based on indexes on D, and the candidate

sets are further examined, computing the similarity between Q and each candidate set in

the verify step. Depending on the indexes used in the filter step, existing methods can

be categorized into two groups: inverted index-based and tree-based. Inverted index-based

methods build inverted index on tokens and only fetch those sets containing (a subset of)
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tokens present in the query set as candidates. Tree-based methods [193, 194] transform sets

to scalars [193] or vectors [194] and insert them into B+-trees or R-trees, which are then used

at query processing time to quickly identify the candidate sets. As verification of a candidate

set can be done very efficiently under almost all well-known set similarity measures (e.g.,

Jaccard, Dice, Cosine similarity) incurring a cost linear in the size of the set, optimization of

the filter step is critical. Unfortunately, existing methods either utilize heavy-weight indexes

that incur expensive storage consumption and excessive scanning cost during filtering [194],

or employ indexes that are light-weight but with very limited pruning efficiency leading to

an overly large candidate set [193]. Therefore, existing approaches mostly do not solve the

set similarity search problem effectively. In fact for realistically low similarity thresholds

or large result sizes, as we demonstrate in our experiments, the brute-force approach may

perform much better.

3.1.2 Our Proposal

In this work, we study the problem of set similarity search, and propose a new approach

named LES3 (short for Learning-based Exact Set Similarity Search) that strives to reduce

the time needed for filtering and increase the pruning efficiency of the index structure at the

same time. At a high level, our approach also adopts a filter-and-verify framework; however

we advocate the partitioning of the sets in D into non-overlapping groups for filtering. What

differentiates our approach from existing methods is that instead of building complex index

structures that could become too expensive to utilize at run-time, we introduce a light-weight

index structure called token-group matrix (TGM); this structure is essentially a collection of

bit-maps, to organize all groups, yielding comparable or higher pruning efficiency with only a

fraction of storage cost and thus highly scalable. The TGM captures the association between

tokens and groups, and allows us to quickly compute an upper bound on the similarity

between the query set Q and any set in a given group. Such upper bounds can then be used

for pruning unrelated groups and directing search to the most promising groups.

As the search efficiency relies on the pruning efficiency of the TGM which in turn de-

pends on how well the sets are partitioned, we formulate the construction of TGM as an

optimization problem, that aims to identify the partitioning of sets that yields the highest
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pruning efficiency. We first analytically model the base case in which every token has the

same probability of appearing in any set. Our developments reveal that the optimal par-

titioning has two properties: balance and intra-group coherence. We then design a general

partitioning objective (GPO) that strives to maximize the pruning efficiency, taking both

properties into consideration.

We showcase that the optimal partitioning is NP-Hard and explore the use of algorithmic

and machine learning-based methods to solve the optimization problem. Recent works [90,

49] have demonstrated that machine learning techniques have solid performance in learning

the cumulative distribution function (CDF) of real data sets and this property can be used

in important data management tasks such as indexing [99] and sorting [93]. We establish

that machine learning techniques can also be utilized to produce superior solutions to hard

optimization problems, central to other important indexing tasks such as those in support

of set similarity search.

Complementary to existing works [49, 99] that utilize models such as piece-wise linear

regression to learn a CDF, we explore models that are much better a fit, proposing a unique

ensemble learning method suitable for progressive partitioning in our setting. The main

difficulty in solving the optimization problem is that depending on D, the number of groups

needed for effective pruning can be large, so it is highly challenging to train a single network

that would place any given set into one of these groups. As such, we propose a new learning

framework named L2P (short for Learning to Partition) to address this challenge. L2P trains

a cascade of Siamese networks to hierarchically partition the database D into increasingly

finer groups until the desired number of groups is reached, resulting in 2i groups at level i.

The loss function for the Siamese network is specifically designed to minimize the distances

between sets in the same group. As the input of a Siamese network has to be a vector,

we devise a novel and efficient set representation method, path-table representation (PTR),

that specifically caters to the needs of our optimization problem and proves to be a better

fit than applicable embedding techniques. Although training ML models is known to be

time-consuming, as will be shown in Section 5.5, L2P yields better partitioning results with

much shorter processing time and only a small fraction of memory usage compared with

other widely-adopted partitioning methods.
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We fully develop the query processing algorithms for both range search and kNN search

based on the TGM, and conduct extensive experiments on synthetic and real data sets to

study the properties of our proposal and compare it against other applicable approaches.

Our results demonstrate that both the proposed set representation method and the learning

framework lead to much stronger pruning efficiency than competing methods. Overall, the

proposed LES3 method significantly outperforms the baseline methods in both memory-based

and disk-based settings.

In summary, we make the following main contributions.

• We propose a learning-based approach, LES3, for exact set similarity search, which

partitions the database into groups to facilitate filtering. Central to LES3 is TGM, a

light-weight yet highly effective index that provides stronger pruning efficiency with

less cost than state-of-the-art indexes.

• We formally analyze the partitioning of the database into groups, casting it as an opti-

mization problem and discussing its distinction from well-studied clustering problems.

• We devise a novel learning framework, L2P, to solve the partitioning optimization prob-

lem, which yields significantly better partitioning results while incurring a small frac-

tion of processing time and space cost compared with traditional algorithmic methods.

L2P consists of a cascade of Siamese networks, an architecture that is able to effec-

tively learn a partition of the dataset at different granularities, with up to thousands

of groups at the finest level.

• We develop a carefully designed method for set representation, PTR, taking group

separation into consideration. PTR theoretically and experimentally facilitates the

training of L2P. Compared with other embedding techniques, PTR is orders of mag-

nitude faster in computing set representations, and thus is more suitable for the target

application where millions or billions of sets are involved (see Section 5.5).

• We experimentally study the performance of LES3, L2P, and PTR, varying parameters

of interest, including the network structure, number of groups and result size. We

also examine the scalability of LES3 utilizing real world large datasets in addition
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to previously used set similarity benchmarks. The proposed methods significantly and

consistently outperform competing methods across a large variety of settings, providing

up to 5 times faster query processing and requiring up to 90% less space in typical

scenarios.

3.2 Preliminaries

A set is an unordered collection of elements called tokens (we also consider multiset which

may contain duplicate tokens). We use S to denote an arbitrary set and t an arbitrary token.

The database D is a collection of sets, and all tokens form the token universe T . Two sets

are considered similar if the overlap in their tokens exceeds a user-defined threshold. Usually,

such overlap is normalized to account for the size difference between sets. Examples of such

similarity measures include Jaccard, Dice, and Cosine similarity. To make our discussion

more concrete, we focus on Jaccard similarity, and discuss how our approach can be applied

to other similarity measures in Section 3.3.2. Next we give the formal problem definitions.

Definition 1. kNN Search. Given the database of sets D, a set similarity measure Sim(∗),

a query set1 Q, and a result size k, find a collection Rk
Q ⊆ D s.t. |Rk

Q| = k and ∀S ∈ Rk
Q,

∀S ′ ∈ D −Rk
Q, Sim(Q,S) ≥ Sim(Q,S ′).

Definition 2. Range Search. Given the database of sets D, a set similarity measure

Sim(∗), a query set Q, and a threshold δ, find a collection Rδ
Q ⊆ D s.t. ∀S ∈ Rδ

Q,

Sim(Q,S) ≥ δ, and ∀S ′ ∈ D −Rδ
Q, Sim(Q,S ′) < δ.

Our goal is to accelerate the process of identifying the result collection Rk
Q or Rδ

Q for the

given k or δ. In general, the query answering process consists of a filtering step (choosing

candidate sets) and a verification step (comparing candidate sets with the query set). The

cost of the verification step depends directly on the pruning efficiency of the search process,

which measures the proportion of sets in D being pruned in the filtering step.

Definition 3. Pruning Efficiency (PE). Let SQ be the collection of candidate sets for

which the similarities to Q must be computed in the process of identifying Rk
Q or Rδ

Q. Then

1Without loss of generality, we assume that a query set consists of tokens existing in T only. The case of
query sets containing tokens not in T can be handled similarly and is discussed in Section 3.3.1.
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the pruning efficiency of query processing, denoted as PE, is
|D|−(|SQ|−k)

|D| for kNN query, or
|D|−(|SQ|−|Rδ

Q|)
|D| for range query.

Clearly PE falls in the range [0, 1]. All other things being equal, a higher PE leads to a

lower verification cost. Our focus is therefore to design an approach for set similarity search

that enjoys high PE and low filtering and verification cost.

3.3 Token-Group Matrix

The basic idea of our approach is to partition the sets in D into non-overlapping groups and

index them properly, so that the search space can be pruned (i.e., certain groups can be

quickly eliminated from further consideration) to speed up query processing. At the heart

of our proposal is the token-group matrix (TGM), the index that records the relationship

between tokens and the groups resulting from partitioning. In this section, we present the

index structure and discuss its applicability across different similarity measures.

3.3.1 Index Structure

Assume for now, that D is already partitioned into n non-overlapping groups, G1, · · · Gn;

we defer the discussion of the strategies for partitioning to the next section. The goals of

the index are simplicity (so that it incurs little computational and storage overhead) and

effectiveness (providing high pruning efficiency). To this end, the TGM, M , with size n∗|T |,

is constructed in the following way:

M [g, t] =

1, if ∃S ∈ Gg s.t. t ∈ S

0, otherwise

(3.1)

where t ∈ [1, |T |] and g ∈ [1, n].

An example of TGM is given in Figure 3.1, where T = {A,B,C,D} and six sets are

partitioned into two groups G0 and G1.

The design of the TGM is based on the observation that when deciding whether a group

of sets is a candidate for a query set or not, the only information needed is the number

of common tokens they share. Such information can be easily obtained by visiting some
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Figure 3.1: An example of TGM

elements in M , and thus we can compute a similarity upper bound between a query set Q

and a group of sets Gg, which are useful in pruning the search space, as follows:

UB(Q,Gg) =
∑

t∈Q M [g, t]

|Q|
(3.2)

Continuing the example above, we assume that the query set is {A} and G0 and G1
in Figure 3.1 are candidates. Then the similarity bound between the query set and G0 is

M [G0,A]
|{A}| = 1, and the upper bound for G1 is M [G1,A]

|{A}| = 0.

Although we assume Q contains tokens in T only, the case where this does not hold can

be handled by letting M [∗, t′] = 0 for t′ /∈ T in Equation (3.2). No further changes are

required.

In the query processing step, if the upper bound of group Gg exceeds a threshold (can

be δ in range query, or the minimal kNN similarity found so far), we compare all sets in Gg
with the query set. The time complexity of computing the similarity bounds between the

query set and all groups of sets is O(n|Q|). It in general costs much less than computing

the similarity between the query set and each set in D, as the number of groups is usually

orders of magnitude smaller than |D|.

In terms of space consumption, each element in TGM is represented by a bit, and TGM

is essentially a bitmap index. It is evident that M is usually a very sparse matrix as each

set usually contains a very small portion of the tokens from the universe. When necessary,

many existing compression techniques [143, 144] can be employed to reduce the size of M .

3.3.2 Applicability

Although Equation (3.2) is computed assuming Jaccard index as the similarity metric, TGM

works with many other set similarity measures as well, including measures that do not follow

the triangle inequality, such as cosine similarity.
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Theorem 1. For ∀Q,S ⊆ T , let R = Q ∩ S. TGM is applicable to set similarity search

tasks with measure Sim(∗) if

1. Sim(Q,R) ≥ Sim(Q,S), and

2. ∀R′ ⊂ R, Sim(Q,R) ≥ Sim(Q,R′)

Proof. We prove that for an arbitrary query set Q and an arbitrary group Gg, we can compute

a similarity upper bound UB(Q,Gg) with TGM using Equation (3.2) such that ∀S ∈ Gg,

UB(Q,Gg) ≥ Sim(Q,S). Let R = {t|t ∈ Q ∧ ∃S ∈ Gg, t ∈ S}, then we know ∀S ∈ Gg,

Q ∩ S ⊆ R. If Q ∩ S = R, then clearly Sim(Q,R) ≥ Sim(Q,S); if Q ∩ S = R′ ⊂ R, then

Sim(Q,R) ≥ Sim(Q,R′) ≥ Sim(Q,S). In either case, Sim(Q,R) upper bounds Sim(Q,S),

and thus we can use Sim(Q,R) as UB(Q,Gg). Since it is possible that R = S, in which case

Sim(Q,R) = Sim(Q,S), the bound UB(Q,Gg) is tight, even in multiset settings.

For example, let Q = {t1, t2, t3} and Q ∩ S = {t1, t2}. Then with Jaccard similarity,

the set with the maximal similarity to Q is {t1, t2} and the upper bound is 2
3
; with cosine

similarity, the set with the maximal similarity to Q is also {t1, t2}, but the upper bound is

2√
3∗2 ≈ 0.82. Note that although most similarity measures satisfy the TGM Applicability

Property, some exceptions do exist. One such example is the learned metric [84] which takes

two samples (e.g., images) as the input and predicts their similarity.

In what follows, we call the two properties listed in Theorem 1 the TGM Applicability

Property. Note that the token universe T does not need to be static. We will discuss how

to adapt TGM to deal with cases where T is dynamically changing in Section 3.6.

3.4 Optimizing Partitioning

We analyze how to optimize partitioning to provide higher pruning efficiency. We discuss

desired properties of the partitioning, and develop the objective function for the partitioning

optimization problem that will guide the development of effective partitioning strategies. To

make our formal analysis tractable, we make assumptions regarding the token distribution;

nonetheless, as will be demonstrated by our experimental results in Section 5.5, the opti-
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mization objectives and strategies thus developed are also expected to perform well when

the assumptions do not hold.

3.4.1 The Case of Uniform Token Distribution

We formally analyze the effect of partitioning on pruning efficiency when the following as-

sumption on token distribution holds.

Definition 4. Uniform Token Distribution Assumption. The probabilities that dif-

ferent tokens belong to an arbitrary set are identical and independent. More specifically,

∀ti, tj ∈ T , ∀S ∈ D, P (ti ∈ s) = P (tj ∈ S), and P (ti ∈ S|tj ∈ s) = P (ti ∈ S|tj /∈ S).

For an arbitrary query Q, the expected pruning efficiency can be computed as follows:

E[PE] =

n∑
g=1

|Gg|(1− UB(Q,Gg)) (3.3)

Given the way the TGM is constructed, we rewrite Equation (3.2) in the following way

to ease subsequent discussion:

UB(Q,Gg) =
∑

t∈Q M [t, g]

|Q|
=
|GSg ∩Q|
|Q|

, GSg =
⋃

S∈Gg

S (3.4)

Accordingly, we rewrite Equation (3.3) as follows:

E[PE] =

n∑
g=1

|Gg|(1−
|GSg ∩Q|
|Q|

) (3.5)

As we assume Q follows the same distribution as D, E[PE] over all possible Q can be

estimated by the following equation:

∑
Q∈D

∑n
g=1 |Gg|(1−

|GSg∩Q|
|Q| )

|D|
(3.6)

Since |D| is a constant, we keep the nominator of Equation (3.6) only, and adjust the

order as follows:
n∑

g=1

|Gg|
∑
Q∈D

(1− |GSg ∩Q|
|Q|

) (3.7)

To ease following analysis, we define term F in Equation (3.8), and claim that maximizing
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Equation (3.7) (and thus maximizing the pruning efficiency) is equivalent to minimizing F :

F =

n∑
g=1

|Gg|
∑
Q∈D

|GSg ∩Q|
|Q|

(3.8)

We derive several properties regarding the partitioning from Equation (3.8) so as to

design practical partitioning algorithms.

Theorem 2. In a database that satisfies the uniform token distribution assumption, the

partitioning that minimizes Equation (3.8) produces groups with equal size (or differ by at

most 1).

Proof. We consider the special case where D is partitioned into two groups G1 and G2, and
|G1| ≤ |G2|. The F value of such a partitioning is:

F = F1 + F2 = |G1|
∑
Q∈D

|GS1 ∩Q|
|Q|

+ |G2|
∑
Q∈D

|GS2 ∩Q|
|Q|

(3.9)

Next we move a set S from G1 to G2 and prove that such movement increases the F value.

We know that if S is moved from G1 to G2, F1 would decrease and F2 would increase. And

since |G1| ≤ |G2|, equivalently we can prove that |Gi|
∑

Q∈D
|GSi∩Q|

|Q| grows super-linearly with

respect to |Gi|, or
∑

Q∈D
|GSi∩Q|

|Q| grows with |Gi|. Given the construction of GSi in Equation

(3.4), this is evidently true. Therefore, the F value increases after the movement of S.

The above discussion can be naturally extended to multi-groups by moving one set from

a small group to a large group each time, with the F value increasing and the pruning

efficiency decreasing during the process. In conclusion, balanced partitioning results yield

the highest pruning efficiency.

Even though the optimal partitioning is expected to produce groups with almost equal

sizes, evidently balance is not the only desired property, according to Equation (3.8). We

temporarily omit the |Gg| in Equation (3.8) and discuss other properties the partitioning

must satisfy in order to provide higher pruning efficiency.

Theorem 3. In a database that satisfies the uniform token distribution assumption, the

partitioning that minimizes the following objective provides the highest pruning efficiency:

n∑
g=1

|
⋃

S∈Gg

S| (3.10)
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Proof. Given the assumption that all groups are balanced, minimizing Equation (3.8) is

equivalent to minimizing

n∑
g=1

∑
Q∈D

|GSg ∩Q|
|Q|

(3.11)

Since Q follows the uniform token distribution as well, which means that all tokens appear

in Q with the same probability, Equation (3.11) is proportional to the following equation:

n∑
g=1

|GSg ∩ T | =
n∑

g=1

|GSg| =
n∑

g=1

|
⋃

S∈Gg

S|, (3.12)

where T denotes the token universe.

Thus, we can maximize PE by minimizing Equation (3.10).

In summary, we have the following two desired properties regarding the partitioning of

database D.

• Property 1: Groups are balanced;

• Property 2: U =
∑n

g=1 |
⋃

S∈Gg
S| is minimized.

3.4.2 The General Case

The analysis in the preceding section depends on the uniform token distribution assumption.

In real-life datasets, this assumption does not hold. However, following the same methodol-

ogy to derive a formal treatment of an arbitrary set/token distribution would be challenging

as a realistic mathematical model of arbitrary set/token distributions would be hard to jus-

tify. Although the two properties identified above may not be true for optimal partitioning in

the general case, we draw inspirations from them and propose a heuristic objective function

that strives to maximize PE.

In essence Property 2 directs that the more similar (in terms of token composition) the

sets are within a group, the better. We thus design a general partitioning objective (GPO)

we wish to minimize reflecting this property:

GPO =

n∑
g=1

∑
Sx∈Gg

∑
Sy∈Gg

(1− Sim(Sx, Sy)), (3.13)
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(a) Groups produced by GPO

(b) Groups produced by k-medians

Figure 3.2: Comparison of different partitioning results

where Sim(∗) can be any measures discussed in Section 3.3.2.

Intuitively, GPO aims to minimize the sum of the intra-group pair-wise distances, where

distance is defined as 1 − Sim(∗). This is similar to Property 2. As an example, consider

two groups Gi and Gj with |Gi| = |Gj|. Assume that Sim(∗) is Jaccard similarity, and we

are to place a new set S into one of the two groups. Then, if
∑

Si∈Gi
(1 − Sim(S, Si)) <∑

Sj∈Gj
(1− Sim(S, Sj)), that would mean S shares more common tokens with sets in group

Gi, and thus inserting S into group Gi helps to minimize U .

However, considering only Property 2 results in highly skewed partitioning results, as

placing all sets in the same group provides the minimal U (which equals to |T |). Evi-

dently, Property 1 is used to prevent such skewed partitioning in the uniform case. Luckily,

GPO enjoys a similar functionality: placing all sets in the same group provides GPO =∑
Sx,Sy∈D(1− Sim(Sx, Sy)), which is the maximal possible GPO, and thus such a partition-

ing is never the optimal in terms of GPO. Thus, the design of GPO implicitly incorporates

both Property 1 and Property 2.

In order to better appreciate the distinctive value of the proposed partitioning objective,

we compare GPO with k-medians, perhaps the most popular clustering technique, and show

by an example how optimizing GPO leads to better results. We use a database of 21 sets,

and the partitioning results based on different clustering objectives are given in Figure 3.2.

Each set is represented by a point in the plot, and to better visualize the results we replace

(1− Sim(∗)) with Euclidean distance.

Assume that the query is to identify the nearest neighbors of all 21 points. According to

the search strategy of LES3 given in Section 3.3.1, all points in the same group are candidates
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of each other. Therefore, with the clustering results given in Figure 3.2(b), the total number

of distance calculations is 20 ∗ 20+ 1 ∗ 1 = 401, while with the partitioning results in Figure

3.2(a) the number is 13∗13+8∗8 = 233. Clearly, the results based on Equation (3.13) have

better pruning efficiency.

Theorem 4. Given a database of sets D minimizing GPO on D is NP-complete.

Proof. We give a brief proof by showing that minimizing GPO is essentially a 0-1 integer lin-

ear programming problem, which has been shown to be NP-complete [23]. More specifically,

minimizing GPO is equivalent to solving the following optimization problem:

maximize e|D| · [A ·A⊺ ⊙D] · e|D|

subject to en ·A⊺ = e|D|

(3.14)

where A is a |D| × n matrix and A[x, g] = 1 if set Sx belongs to group Gg and A[x, g] =

0 otherwise, and D of size |D| × |D| denotes the distance matrix where D[x, y] = 1 −

Sim(Sx, Sy), and ei is a row vector of length i filled with ones. The goal is to find the A

which satisfies the constraint and maximizes the objective.

The intuition behind Equation (3.14) can be described as follows: A ·A⊺ is a |D| × |D|

matrix such that the value at position [x, y] is 1 if Sx and Sy belong to the same group, and

0 otherwise. The element-wise product between A · A⊺ and D masks out those pair-wise

distances between sets belonging to different groups, and e|D| · [A ·A⊺ ⊙D] · e⊺|D| sums the

remaining distances, which is the same objective as GPO. The constraint en · A⊺ = e|D|

guarantees that each set belongs to one and only one group. Therefore, minimizing GPO is

equivalent to solving Equation (3.14), which completes the proof.

3.4.3 Algorithmic Approaches

In this section we propose several algorithmic approaches based on existing applicable clus-

tering methods, which are expected to yield groups with low GPO values. More specifically,

we design a graph cut-based approach (PAR-G), a centroid-based approach (PAR-C), and a

hierarchical approach (PAR-H).
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3.4.3.1 Graph cut-based method (PAR-G)

When k or δ is fixed, it is possible to build an index structure specifically optimized for the

workload. Dong et al. [36] propose a graph cut-based solution for (approximate) nearest

neighbor search in Rd space by linking each point to its neighbors and partitioning the re-

sulting graph into balanced subgraphs with the number of edges crossing different subgraphs

minimized. Such a partitioning is shown to yield high pruning efficiency. Inspired by their

approach, we design PAR-G, which takes k or δ as one of its inputs, as follows:

1. Similarity graph construction. For a given k in kNN query, construct the similarity

graph, GD, of D, such that ∀Sx ∈ D, there exists a corresponding vertex Vx in GD,

and ∀Sy ∈ D, if Sy is one of the k nearest neighbors of Sx, there is an edge between

Vx and Vy in GD. For a given δ in range query, there is an edge between Vx and Vy if

Sim(Sx, Sy) ≥ δ.

2. Graph cut. Partition GD into n balanced subgraphs while minimizing the number of

edges crossing different subgraphs. This can be done with existing graph partitioners

[79, 53].

3.4.3.2 Centroid-based method (PAR-C)

Centroid-based methods [61] are iterative algorithms which at each iteration relocate an

elements into a different cluster if such relocation improves the overall objective function.

For our case, let ϕ(G) =
∑

Sx,Sy∈G(1− Sim(Sx, Sy)) be the sum of all pair-wise distances2 in

group G, S ∈ Gi an arbitrary set, and ∆(S,Gi,Gj) = ϕ(Gi \ S) + ϕ(Gj ∪ S) − ϕ(Gi) − ϕ(Gj)

the decrease of GPO after moving S from Gi to Gj (i, j ∈ [1, n]). To be more specific, our

method works as follows:

1. Initialization. Randomly partition D into n groups;

2. Relocation. For each S ∈ D, suppose S ∈ Gi. Find group G∗j such that ∆(S,Gi,G∗j ) =

maxS,Gi,Gj
∆(S,Gi,Gj) (denoted as “the best group”). If ∆(S,Gi,G∗j ) > 0, relocate S

2Note that repetitively calculating ϕ(G) during the partitioning process is computational prohibitive, and
thus we approximate ϕ(G) with randomly selected sets in G in the experiment (Section 3.7.4).
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from Gi to G∗j . Repeat this step until no sets are relocated in an iteration.

3. Simplification. Considering the data size we deal with (see Section 5.5), finding

“the best group” at each iteration would be too expensive. Therefore, we adopt the

“first-improvement” variant [159] of the algorithm, i.e., pick the first group Gj with

∆(S,Gi,Gj) > 0 rather than the best group.

3.4.3.3 Divisive clustering method (PAR-D)

Divisive clustering methods [80] start from the single cluster containing all elements and

repeatedly split clusters until a desired number of clusters is reached. We reuse ϕ(G) intro-

duced in Section 3.4.3.2 and use idv d(S) to denote the sum of distances between S and all

other sets in the same group as S. PAR-D works as follows:

1. Initialization. Take D as the initial group.

2. Splitting. Find group G∗ = argmaxGi∈{G1,G2,··· } ϕ(Gi), where {G1,G2, · · · } denotes all

current groups. Find set

S∗ = argmaxS∈G∗ idv d(S). Create a new group Gnew = {S∗}. For all other sets

S ′ ∈ G∗, move S ′ to Gnew if such movement reduces the overall GPO. Repeat this step

until there are n groups.

3. Simplification. Considering the data size we deal with, instead of finding S∗, we

choose a random set in G∗ to initialize Gnew, which is commonly adopted for group

splitting [56].

3.4.3.4 Agglomerative clustering method (PAR-A)

Agglomerative clustering [136] works in a bottom-up fashion by initially treating each element

as a cluster and repeatedly merging clusters until a desired number of clusters is reached.

We reuse ϕ(G) introduced in Section 3.4.3.2 to denote the sum of all pair-wise distances in

group G. PAR-A works as follows:

1. Initialization. Create group Gi = {Si} for each Si ∈ D.
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2. Merging. Find groups G∗1 ,G∗2 = argminGi,Gj∈{G1,G2,··· }

ϕ(Gi ∪ Gj), where {G1,G2, · · · } denotes all current groups and i ̸= j. Create a new

group Gnew = G∗1 ∪ G∗2 and remove groups G∗1 and G∗2 . Repeat this step until there are

n groups.

3. Simplification. Considering the data size we deal with, we adopt the heuristic that

merging smaller groups (groups with smaller number of sets) usually results in smaller

values of ϕ(Gi∪Gj) and restrict that G∗1 is the smallest group (breaking ties randomly),

and thus only G∗2 needs to be identified in each iteration.

As we will demonstrate in our experimental study in Section 7, these heuristic approaches

do not provide satisfactory performance. The structure of the GPO problem objective does

not resemble those targeted by well-studied clustering algorithms. In the next section, we

explore the use of ML to perform such a partitioning.

3.5 L2P: Learn to Partition Sets into Groups

As pointed out by Bengio et al. [12], a machine learning approach to combinatorial opti-

mization problems with well-defined objective functions, such as the Travelling Salesman

Problem, has proven to be more promising than classical optimization methods with hand-

wired rules in many scenarios, for the reason that it adapts solutions to the data and thus can

uncover patterns in the specific problem instance as opposed to solving a general problem for

every instance. It is widely agreed [166, 9] that ML-based methods are especially valuable

in cases where expert knowledge of the problem domain may not be sufficient and some

algorithmic decisions may not give satisfactory results. Our goal in this section, therefore,

is to develop a machine learning method to optimize GPO.

3.5.1 Siamese Networks

Considering that the goal of optimizing GPO is to maximize the overall intra-group simi-

larity, we adopt Siamese networks [15, 41] to solve the partitioning task. Siamese networks

have been successfully utilized in deep metric learning tasks [122, 125] in computer vision,
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capturing both intra-class similarity and inter-class discrimination in many challenging tasks

including face recognition.

We design a Siamese network as shown in Figure 3.3 to learn the optimal partitioning.

It consists of a pair of twin networks sharing the same set of parameters working in tandem

on two inputs and generate two comparable outputs.

Figure 3.3: Siamese network

We use Rep(Sx) and Rep(Sy) to denote the vector representations of two sets Sx and Sy,

a pair of inputs to the twin networks, and use G(Sx) and G(Sy) to represent their respective

group assignment indicted by the outputs of the twin networks respectively. Following

Equation (3.13) we define the loss function of the Siamese network as follows:

loss(Sx, Sy) =

(1− Sim(Sx, Sy)), if G(Sx) = G(Sy)

0, otherwise

(3.15)

Equation (3.15) minimizes the intra-group dissimilarities by summing (1− sim(Sx, Sy))

as the losses, and penalizes imbalanced groups by counting pairwise dissimilarities only

between sets in the same group. We use an example to illustrate how Equation (3.15)

penalizes imbalanced partitioning. Suppose there are N sets and dissimilarity between any

pair of sets is the same at d. The task is to partition these sets into 2 groups, containing N1

and N2 sets respectively (N1 + N2 = N). Then the overall loss is N1(N1−1)d
2

+ N2(N2−1)d
2

=

d
2
[N1(N1 − 1) + N2(N2 − 1)] = d

2
(N2

1 + N2
2 − N) ≥ d

2
( (N1+N2)2

2
− N) = d

2
(N

2

2
− N), and the

bound is tight when N1 = N2. Therefore, Equation (3.15) favors balanced partitioning.

By training the Siamese network with sufficient samples drawn from D, theoretically we
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can minimize the overall distances between all pairs of sets which belong to the same group,

and thus the Siamese network is expected to give the partitioning result in which GPO is

minimized. Practically, however, we expect to achieve near-optimal partitioning only as the

network is essentially performing local search.

3.5.2 Framework

Although using Siamese networks to solve the optimization problem is a promising approach,

training such networks turns out to be difficult for the following reasons:

1. When dealing with real world data, we may need to partition sets into thousands of

groups. Therefore, for an input set Sx, the network needs to make prediction on which

group Sx belongs to, among a collection of thousands of groups. It is well known

[55] that training networks to tackle prediction problems involving thousands or more

labels is challenging.

2. What makes this task even more difficult is that unlike a classification problem, the

label for each input (i.e., the optimal group) in this optimization problem is unknown,

i.e., there is no ground truth regarding the labels/groups available. The only informa-

tion we have is the loss if the two input sets are assigned into the same group. This

makes the problem even more challenging than typical classification problems.

The inherent difficulty of utilizing Siamese networks for this problem is the dimensional-

ity (i.e., degrees of freedom) of the output space. In response to this challenge, we propose a

learning framework consisting of a cascade of Siamese models, which partitions the database

in a hierarchical fashion. Each Siamese network in the framework is responsible for parti-

tioning a group of sets into two sub-groups. The framework is illustrated in Figure 3.4.

At Level 0 of the framework, we train a Siamese network which takes each set in the entire

database D and assigns it into one of two groups, G1 and G2, based on the loss function given

in Equation (3.15). Then at Level 1, we train two Siamese networks working on G1 and G2
respectively in the same fashion. Thus, they partition the entire database into four groups.

We continue adding more levels to the cascade framework until all groups are small enough
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Figure 3.4: Cascade framework

or a pre-defined threshold on the number of levels is reached. Since each model in the cascade

is specialized to partition a group of sets into only two sub-groups the resulting classification

problem can be solved effectively.

The architecture of the cascade models motivates the use of a hierarchical indexing struc-

ture, which we call Hierarchical TGM (or HTGM). More specifically, assuming the level of

the cascade framework is l, and 0 ≤ i < j < l, we construct TGMi and TGMj based on

the partitioning results at level i and level j respectively. Suppose a group at level i, say

Gg, is partitioned into several sub-groups at level j, say SG1, · · · ,SGm. If for a query Q,

group Gg can be pruned by checking TGMi, then all verification operations involving groups

SG1, · · · ,SGm can be eliminated. The construction can be easily generalized to HTGM with

h (h > 1) levels.

3.5.3 PTR: a Set Representation Method

A Siamese network accepts vectors as input and thus the sets in D cannot be directly fed into

the network. As a result we have to build a vector representation for each set. Considering

the time and space complexity of existing embedding methods such as Principal Component

Analysis (PCA) or Multidimensional Scaling (MDS), they can hardly be applied to the target

setting introduced in Section 5.5 where millions or billions of sets are involved (see comparison

regarding embedding cost in Section 3.7.3). Besides, different from the objectives of these
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general-purpose embedding methods such as maximizing variance or preserving distance, our

concern is to make sets containing different tokens more separable to benefit the training of

the Siamese network. Intuitively, the representations that ease the training of the models

are expected to bear the following property:

Definition 5. Set Separation-Friendly Property. ∀t ∈ T , let Gt be the collection of

sets containing t, and G¬t be the collection sets not containing t, then Gt and G¬t should to

be easily separable in the representation space.

Next we discuss how to construct such representations. As the first step, we organize

all tokens with a balanced binary tree such that tokens appear in leaf nodes and each leaf

contains only one token. The height of the tree is thus h = ⌈log2 |T |⌉. We mark the edge

from a node to its left child with 1 and the edge to its right child with 0. An example of

such a tree is depicted in Figure 3.5.

Figure 3.5: Tokens organized with a balanced tree

We use patht to denote the path from the root to an arbitrary token t. Since each leaf

contains only one token, no two tokens share the same path. We build a path table (PT) of

all tokens defined as follows:

PT[t, i] =

patht[i], if i ∈ [1, h]

1− patht[i− h], if i ∈ [h+ 1, 2h]

(3.16)

An example of PT is provided in Table 3.1.

We propose a method called PTR (Path Table Representation) to build a representation

for a given set S as follows:

Rep(S)[i] =
∑
t∈S

PT [t, i], i ∈ [1, 2h] (3.17)

In the above example, the representation of {A,B,C} is [2, 2, 1, 1] and the representation

of {B,D} is [1, 0, 1, 2]. The second half of the path table (Positions 3 and 4) helps to reduce

44



Table 3.1: An example of path table (PT)

Position 1 2 3 4
A 1 1 0 0
B 1 0 0 1
C 0 1 1 0
D 0 0 1 1

the chance that different sets have common representations. For example, if only the first

half is used, then the representations of {A}, {B,C}, {A,D}, {B,C,D} would all be [1, 1].

We compare the set representations constructed on the full vs. half path tables in Section

3.7.3.

PTR also naturally differentiates multisets containing the same collection of tokens but

with different number of occurrences. For example, Rep({A}) = [1, 1, 0, 0] whileRep({A,A}) =

[2, 2, 0, 0].

The basic idea of the representation is to map the sets into a new space, in a way that

determining collections of sets containing specific tokens can be easily performed. More

specifically, set S is placed in the representation space based on the presence or absence

of all tokens in S, and consequently, given a collection of tokens Tc, we can quickly locate

all sets containing Tc. This evidently yields the set separation-friendly property. To better

illustrate this, we reuse the path table in Table 3.1 and show that sets containing B can

be separated from other sets. For better visualization, we project the representation space

onto the first two dimensions (Positions 1 and 2), and keep tokens B, C, and D only in

Figure 3.6. Clearly all sets containing token B fall into the striped area, defined by the

axis aligned hyper-plane in the representation space passing from point (1, 0) (corresponding

to {B}). Similarly all sets containing both B and C are located at the intersection of the

axis aligned hyper-planes passing from (1, 0) and (0, 1) (corresponding to {C}). That way

separating sets in the representation space based on token membership is conducted by

determining hyper-plane intersections. We will demonstrate that such a representation is

easier to learn and yields effective partitions in Section 5.5.
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Figure 3.6: Separating sets

3.6 Dealing with Updates

Our discussions so far have assumed that the database D and the token universe are fixed.

In some cases, however, new sets may be added to the database after the index is built, and

previously unseen tokens may appear. We therefore study how updates can be handled, with

a focus on TGM, as HTGM can be updated level by level in the same way.

We first discuss the case where new sets are added but the token universe remains the

same. Given a new set S, we add S into the group Gg if the similarity upper bound between

Gg and S is the highest among all groups. When there exist multiple groups with the

same highest UB, we insert S into the group with the minimal number of sets, in line

with the optimization target discussed in Section 3.4. After insertion, we update the TGM

accordingly, i.e., for all tokens t ∈ S, we set M [g, t] = 1.

We now demonstrate how our approach naturally handles previously unseen tokens. This

is an important feature of our solution as it is the first to deal with dynamic tokens. All

previous attempts to a solution of this problem assumed a fixed token universe [193, 194].

Let S be a set containing one or more new tokens. We insert S into the database in the

following two steps:

1. Let PS = S ∩ T be all tokens in S that have been seen previously. We find the group

with the highest similarity upper bound to PS, denoted by Gg. If PS = ∅, then Gg is

simply the group with the minimal number of sets. S is inserted to Gg.
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2. For any token tnew ∈ S \ PS, add a row in M corresponding to tnew. For all tokens

t ∈ S, set M [g, t] = 1.

Although the partitioning in Section 3.4 is optimized based on existing sets and tokens,

inserting new sets and tokens will not severely impact the performance of the approach, as

we demonstrate in Section 3.7.8.

3.7 Experiments

In this section, we present a thorough experimental evaluation of our approach varying

parameters of interest, comparing LES3 and its important components, L2P and PTR, with

competing methods.

3.7.1 Settings

Environment. We run the experiments on a machine with an Intel(R) Core i7-6700 CPU,

16GB memory and a 500GB, 5400 RPM HDD (roughly 80MB/s data read rate). We use

HDD for fair comparison as other disk-based methods require no random access of the data

(see Section 3.7.6). However one could expect better performance of LES3 when running on

SDD as it incurs random access of the data by skipping some groups, especially when the

number of groups is large.

Implementation.3 L2P is implemented with PyTorch, embedding methods in Section

3.7.3 and partitioning methods in Section 3.7.4 are implemented with Python, and TGM

and the set similarity search baselines are implemented in C++ and compiled using GCC 9.3

with -O3 flag. TGM is compressed by Roaring [98], a well-performed bitmap compression

technique.

Datasets. KOSARAK [89], LIVEJ [121], DBLP [26], and AOL [130] are three popular

datasets used for set similarity search problems and we adapt them for this reason. We also

include a social network dataset from Friendster[185] (denoted by FS), where each user is

treated as a set with his/her friends being the tokens; and a dataset from PubMed Central

3code available at: https://github.com/AwesomeYifan/learning-based-set-sim-search
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journal literature [76] (denoted by PMC), where each sentence is treated as a set with the

words being the tokens4. Table 5.1 presents a summary of the statistics on these datasets.

Considering the size of FS and PMC, we utilize them for disk-based evaluation in Section

3.7.6 to examine the scalability of LES3.

Table 3.2: Dataset statistics

Dataset |D| Set size |T |
Max Min Avg

KOSARAK 990,002 2,498 1 8.1 41,270
LIVEJ 3,201,202 300 1 35.1 7,489,073
DBLP 5,875,251 462 2 8.7 3,720,067
AOL 10,154,742 245 1 3.0 3,849,555
FS 65,608,366 3,615 1 27.5 65,608,366

PMC 787,220,474 2,597 1 8.8 22,923,401

Evaluation. Following previous studies [28, 111, 194], we adopt Jaccard similarity as

the metric in our experimental evaluation. We stress however that any similarity measures

satisfying the TGM applicability property introduced in Section 3.3.2 can be adopted in our

framework with highly similar results as those reported below. For each experiment, we

randomly select 10K sets in the corresponding dataset as the queries and report the average

search time. Unless otherwise specified, the indexing structure (TGM) and the data are

memory-resident. We conduct disk-based evaluation in Section 3.7.6. We compare TGM

with HTGM in Section 3.7.7. We select n (number of groups) for each dataset which results

in the shortest query latency. The influence of n is studied in Section 3.7.5.

Network and Loss Function. We consider Multi-Layer Perceptron (two hidden layers,

each consisting of eight neurons) and Sigmoid activation function for L2P training in the

experiment and leave the investigation of other networks as future work. Clearly the network

has one neuron at the output layer. Let Ox be the output on input set Sx. If Ox < 0.5, then

Sx belongs to the first group; if Ox ≥ 0.5, then Sx belongs to the second group.

The loss function given in Equation (3.15) clearly describes the learning objective. How-

ever, it is difficult to train a network with the loss function as its gradient is 0. For efficient

4with basic data cleaning operations such as stop-words removal.
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training, we use the following surrogate loss function, which leads to the same global optimum

as Equation (3.15) while introducing non-zero gradients:

loss′(Sx, Sy) =

W (Ox, Oy)(1− Sim(Sx, Sy)), if V (Ox, Oy);

0, otherwise;

(3.18)

where W (Ox, Oy) = (0.5 − |Ox − Oy|), and V (Ox, Oy) = [(Ox ≥ 0.5 ∧ Oy ≥ 0.5) ∨ (Ox <

0.5∧Oy < 0.5)] indicating whether Sx and Sy are assigned to the same group (V (Ox, Oy) = 1)

or not (V (Ox, Oy) = 0).

Initialization. Models at the first few levels of the Cascade framework deal with a large

number of sets and incur long training time. To improve the training efficiency, we first

sort all sets based on the minimal token contained in each set, and then partition all sets

into 128 groups such that each group contains consecutive |D|/128 sets, inspired by the idea

of imposing sequential constraint to clustering tasks [156]. Since we always build TGM on

the partitioning results at level 10 or higher which may contain thousands of groups, such

initialization has minor impact on the performance but greatly reduces the training time.

Note that initialization is not performed for the sampled dataset used in Section 3.7.3 due

to its small size.

Training. For the Siamese network partitioning an arbitrary group, we randomly select

40,000 pairs of sets in the group to generate training samples, relatively small compared to

the data size. It is observed that further increasing the number of training samples do not

significantly improve the pruning efficiency of the partitioning results. We stop partitioning

a group if it contains less than 50 sets, and thus the number of groups at level i may be

less than 2i. The batch size is set to 256, the number of epochs is set to 3 (except for

Section 3.7.2 which reports the learning curves), and Adam is used as the optimizer. The

same sampling-and-training procedure is repeated for each model in the cascade framework,

starting from level 0.

3.7.2 Model Convergence and Training Cost

In this section we report the learning curves and the training costs. We observe that different

models in the cascade framework introduced in Section 3.5.2 yield similar learning curves,
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and thus we present the training loss of a random model at level 0 for each dataset (note that

there are 128 models at level 0, see Section 4.5.1, paragraph Initialization). The training

losses and costs are presented in Figure 3.7.
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Figure 3.7: Training losses and costs

As is clear from Figure 3.7(a), on all datasets used in the experiment, the training loss

decreases rapidly and the model converges after approximately two epochs, attesting to the

efficiency of the model training process. Also, as can be observed from Figure 3.7(b), the

training cost grows linearly with respect to the number of groups, making LES3 scalable for

large datasets. Besides, models at the same level of the cascade framework can be trained

in parallel to further reduce the training cost, which is an interesting direction for future

investigation.

3.7.3 PTR vs. Set Representation Techniques

We compare PTR with other applicable set representation techniques. More specifically,

we choose PCA [74], a widely-used linear embedding method, MDS [27], a representative

non-linear embedding approach, and Binary Encoding [58], an efficient categorical data em-

bedding technique. We also include the variant of PTR constructed on the first half of the

path table (see Section 3.5.3), denoted by PTR-half. Considering the complexity of PCA

and MDS, we conduct experiments on sampled KOSARAK (sample ratio of 5%). We report

the representation construction time of each method and the query answering time using the

resulting partitioning results for kNN query (k = 10) and range query (δ = 0.7) in Figure

3.8; similar trends are observed on other datasets and queries.

As can be observed from Figure 3.8, compared with PCA and MDS, PTR incurs much

lower embedding time (10 to 20,000 times faster) while results in similar search time; com-
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Figure 3.8: Comparison of representation techniques

pared with Binary Encoding and PTR-half, PTR leads to faster query answering with com-

parable embedding cost. Binary Encoding assigns unique representations to different sets

without considering set characteristics (e.g., tokens contained therein), and thus can hardly

achieve any Set Separation-Friendly Property. PTR-half, as discussed in Section 3.5.3, suf-

fers from the risk that different sets may have common representations, and consequently

these (dissimilar) sets are partitioned into the same group as they are not separable in the

representation space, and the resulting search time thus is slightly longer than that of PTR.

The major advantage of PTR is that it integrates the Set Separation-Friendly Property

introduced in Section 3.5.3 into set representations by allowing sets consisting of different

tokens to be easily separable by axis-aligned hyper-planes in the embedding space, and thus

eases the training of the downstream Siamese networks.

3.7.4 L2P vs. Algorithmic Approaches

We compare the learning-based partitioning approach, L2P, to the algorithmic methods

introduced in Section 3.4.3, namely the graph cut-based method (PAR-G), centroid-based

method (PAR-C), divisive clustering method (PAR-D), and agglomerative clustering method

(PAR-A), in terms of partitioning cost, including time cost and space cost, and query an-

swering time.

For PAR-G, we adopt PaToH [16], a graph partitioning tool known to be efficient and

performing well, to cut the graph. We report the cost of different methods in partitioning

KOSARAK into 1024 groups and the query answering time for kNN with k = 10 in Figure

3.9; similar trends are observed on other datasets and queries. Note that the partitioning

51



time of L2P includes model training time and inference time (the time required to assign a

set into a group), and the partitioning time of PAR-G consists of the kNN graph construction

time and the graph cut time. PAR-G is specially optimized for k = 10 and the construction

of its kNN graph is accelerated by LES3.
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Figure 3.9: Comparison of partitioning methods

As depicted in Figure 3.9, L2P provides the fastest search while only incurs a small frac-

tion of partitioning time and space cost compared to competitors (saving 80% partitioning

time and 99% space compared with PAR-G). The reason why L2P incurs less partitioning

time and space overhead is that, as described in Section 3.5.1 and Section 4.5.1, by training

the models on a small portion of data, L2P is better positioned to approach the optimal

partitioning where the GPO is minimized, while other techniques work on the entire dataset

and require (sometimes repetitively) computing the GPO of arbitrary groups (or pairs) of

sets. Besides, only model parameters and the training samples in a mini batch have to be

saved in memory for L2P, with minimal storage overhead, while other techniques require

materializing a large amount of intermediate partitioning results (and the entire kNN graph

for PAR-G) in memory, incurring prohibitive space consumption.

By directly optimizing the GPO which integrates the two desired properties of a parti-

tioning with higher pruning efficiency, L2P is able to outperform PAR-G, the objective of

which is minimizing the number of edges in the similarity graph crossing different sub-graphs

rather than GPO. PAR-C, PAR-D, and PAR-A, although also aim to optimize the GPO,

suffer from severe local optimality problems: a set is moved to a group only if such movement

reduces the overall GPO, while in many cases movements temporarily increasing the GPO

must be allowed to determine a global optimum. For example, let Si ∈ Gi, Sj ∈ Gj be two
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sets. Assume that moving Si to Gj and moving Sj to Gi when individually carried out both

increase the GPO, and consequently Si remains in Gj and Sj in Gi. However, swapping Si

and Sj may reduce the overall GPO and thus leads to better partitioning. Such swapping

cannot be achieved based on the strategy followed by PAR-C and PAR-D. Similarly, the

strategy of PAR-A does not allow the merge of groups temporarily increasing the overall

GPO, which however may be necessary in identifying a global optimum.

3.7.5 Sensitivity to Number of Groups and k

We test the performance of LES3 in terms of query processing time on kNN queries, varying

the number of groups n and the result size k. The results are presented in Figure 3.10.
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Figure 3.10: Sensitivity to the number of groups and result size

Increasing n accelerates query answering, regardless of the result size. This is because

with more groups, as indicated by Equation (3.13), the overall pruning efficiency of LES3 can

be improved, meaning fewer candidates have to be checked. Increasing n benefits search time

up to a point. In particular we observe a diminishing return behavior with respect to search

performance as n increases further. The reason is that, with a sufficiently large number of

groups, sets are already well-separated, and further increasing n brings no significant change

to the pruning efficiency but incurs higher index (TGM) scan cost. Moreover, search time

increases for larger k, which is consistent with our analysis in Section 3.4.1, as in general

a larger k in kNN search is analogous to a smaller δ in range search and thus the pruning

efficiency is lower.

While determining the optimal number of groups for partitioning is a known NP-hard

problem [71], we empirically observe from the experiments that setting the number of groups
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at approximately 0.5%|D| leads to the lowest search time, where |D| is the number of sets

in the corresponding dataset.

3.7.6 LES3 vs. Set Similarity Search Baselines

In this section, we compare LES3 with existing set similarity search approaches to answering

kNN and range queries in memory-based and disk-based settings respectively. Among tree-

based set similarity search approaches to date, DualTrans [194] provides the fastest query

processing. For inverted index-based methods, we adopt the method proposed in [173]

(denoted by InvIdx), which yields the state-of-the-art performance for set similarity join

tasks. Note that we exclude methods requiring index construction during query time [28,

182, 29] as the index construction cost is much higher than the query cost. Since inverted

index-based methods are designed for range queries and do not naturally support kNN

queries, we modify the query answering algorithm of InvIdx for kNN queries as follows. (1)

Given a query set Q and a result size k, start with threshold δ = 1.0 and use InvIdx to find

candidate sets from D whose similarity with Q exceeds δ, denoted by C. (2) Identify the

temporary kNN results from C, denoted by Rk. If the minimal similarity between any set in

Rk and Q exceeds δ, terminate. Otherwise, decrease δ by z, use InvIdx to find candidates

sets with the new δ, update C accordingly, and repeat the step. (3) Upon termination, Rk

is guaranteed to be the kNN to Q, as the similarity between any sets in D \ C and Q does

not exceed the current δ. The value of z is tuned for faster query answering.

In addition, we also include a brute-force approach, i.e., computing the similarity between

the query set and all other sets to derive the results, for completeness of comparison.

In Figure 3.11, we show the index size and index construction time for all methods. It is

clear that the indexing structure of LES3, namely TGM, is much more lightweight, requiring

up to 90% less space than DualTrans and InvIdx. The major time cost of constructing

TGM comes from the model training, which however is a preprocessing step incurring only

a one-time cost and can be further reduced as discussed in Section 3.7.2.

In Figure 3.12 we compare the performance of the four methods in a memory-based

setting. We observe that LES3 outperforms competitors for both kNN queries and range

queries, accelerating the query answering by 2 to 20 times. DualTrans incurs longer search

54



102
104

In
de
x

 si
ze

 (M
B)

KOSARAK LIVEJ DBLP AOL FS PMC

101

103
Co

ns
tru

ct
io
n

 ti
m
e 
(m

in
)

LES3 DualTrans InvIdx

Figure 3.11: Index size and construction time
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Figure 3.12: Comparison to baselines in memory-based settings for range queries (left) and
kNN queries (right)

time as it uses an R-tree to organize all sets, with each set being represented with a d-

dimensional vector (d can be tuned for faster pruning). When the value of d is small, sets

containing different tokens cannot be clearly separated based on their representations, while

when the value of d is large, using R-tree to organize the vectors incurs high overlap between

the bounding boxes of nodes on the R-tree, as previous research indicates [70]. Besides,

scanning the R-tree is expensive, which is not worthwhile considering that set similarity (e.g.,

Jaccard similarity) can usually be computed efficiently. While InvIdx provides comparable

performance with LES3 for range queries with large δ, it incurs greater search latency for

kNN queries, especially when the average set size is large (e.g., on KOSARAK and LIVEJ).

The reason is that, with InvIdx filtering operations need to be repeated for each candidate

set (or multiple candidates with some common characteristics), and larger set size and kNN

queries both enlarge the number of candidates, leading to sub-par query performance.
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Figure 3.13: Comparison to baselines in disk-based settings for range queries (left) and kNN
queries (right)

In contrast, we use TGM to compute the upper bounds between a query set and a group of

sets; obtaining all bounds requires only O(|S|∗|G|) time, which is relatively cheap. Although

the search time of LES3 increases for range query as δ decreases, LES3 provide much faster

query answering under a wide range of δ.

We compare the performance of the four methods in the disk-based setting in Figure

3.13. Note that for DualTrans and InvIdx, only the part of the index that is necessary to

the query answering, such as R-nodes on the search path and inverted indexes related to

the query set, is retrieved into memory to reduce I/O cost. We observe that LES3 generally

provides faster search compared with competitors, accelerating the query answering by 2

to 10 times. The reasons why LES3 incurs lower search time are: (1) Sets sharing no or

very few common tokens with the query set can be easily pruned without being retrieved

into memory; and (2) Since sets in the same group are checked jointly during the searching

process; materializing a group of sets continuously on disk minimizes the data transfer delay.

DualTrans and InvIdx, on the contrary, incur longer search latency and are outperformed

by the Brute-force method for a wide range of k and δ. Besides the drawbacks discussed

above in the memory-based setting, the search strategies of DualTrans and InvIdx incur

repetitive retrieval of data with random disk access, which results in higher I/O cost (more

pages retrieved, higher seek and rotation overhead, etc.), making them less efficient in the

disk-based setting.
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Figure 3.14: TGM vs. HTGM

3.7.7 TGM vs. HTGM

We evaluate the performance of TGM and HTGM to determine whether building a hierar-

chical index pays off. Intuitively, whether it benefits the query processing largely depends

on the similarity distribution. For example, in cases where very few sets share common

tokens, one can prune a large number of candidates using the matrices at the first few levels

of HTGM, avoiding scanning the larger matrices at finer levels. However, in cases where

most sets are similar, the small matrices at the first few levels of HTGM may provide no

pruning efficiency at all. We assume that the similarity between sets in D can be modeled

by a power-law distribution P [sim = v] ∼ v−α, where P [sim = v] denotes the probability

that the similarity between any two sets is v, v ∈ [0, 1], α ∈ [1,∞). We generate multiple

synthetic databases consisting of 20,000 sets and 20,000 tokens each, by varying the value

of α. We train a cascade model with 9 levels (including level 0). We use the partitioning

results at level 8 (256 groups) to build the TGM, and use the partitioning results at level 5

(32 groups) and level 8 to build the HTGM. We compare HTGM and TGM from two aspects.

First, the index access cost, measured by the number of columns in the HTGM or TGM that

are checked when processing the query. Second, the computational cost, measured by the

number of similarity calculations. We measure the ratio of cost between HTGM and TGM,

and the results are shown in Figure 3.14. It is evident that HTGM outperforms TGM when

the value of α is large, i.e., most sets are dissimilar. This is in line with the discussions in

Section 3.7.7.
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3.7.8 Handling Updates

We evaluate the performance of the proposed approach under updates. Two cases are con-

sidered: (1) closed universe, meaning the new sets to be inserted contain only tokens from

the original database, and (2) open universe, where the new sets may contain previously

unseen tokens. Let D be the original database, Dclosed be the collection of new sets to be

inserted under a closed universe, and Dopen be the collection of new sets to be inserted under

an open universes. For the experiment, we set insertion ratio (|Dclosed|/|D| and |Dopen|/|D|)

in range [0, 1], and half of the tokens in Dopen are from D and half are new. We compute

the decrease in pruning efficiency after insertion compared to obtaining a partitioning from

scratch (namely running L2P) on D ∪Dclosed or D ∪Dopen (referred to as re-build). We give

the results for kNN query with k = 10 on KOSARAK in Figure 3.15; the experiments on

the other datasets show similar trends.

Figure 3.15 depicts the percentage of pe reduction compared to re-build. The pruning

efficiency decreases slightly as more new sets are inserted into the database. Insertions under

an open universe have a higher impact on performance. The reason is that the tokens from the

same universe mainly follow a similar distribution and the partition results obtained on the

original data are still sufficient, while there is no prior knowledge regarding the distribution of

new tokens. We observe, however, that the overall pruning efficiency is resistant to insertions

(experiencing a decrease by at most 8%), which attests to the robustness of the proposed

approach.
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3.8 Summary

In this work, we have studied the problem of exact set similarity search, and designed LES3,

a filter-and-verify approach for efficient query processing. Central to our proposal is TGM,

a simple yet effective structure that strikes a balance between index access cost and ef-

fectiveness in pruning candidate sets. We have revealed the desired properties of optimal

partitioning in terms of pruning efficiency under the uniform token distribution assump-

tion. We develop a learning-based approach, L2P, utilizing a cascade of Siamese networks to

identify partitions. A novel set representation method, PTR, is developed to cater to the re-

quirements of network training. The experimental results have demonstrated the superiority

of LES3 over other applicable approaches.
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4 Execution Time Distribution-based Plan Selection

4.1 Introduction

4.1.1 Background

The predictable and controllable performance of Database Management System (DBMS) is

of great importance across various scenarios [8, 162, 164] and especially when the DBMS

serves as the core component of a larger system consisting of multiple applications. In

practice the execution plan of a given query is selected based on an estimated cost which is

expected to reveal the plan’s potential behavior. However, due to data variance, limitation of

the estimator, etc., using a single value to indicate the plan’s behavior is usually inadequate

and may cause sub-optimal performance.

Instead of a single value, previous works [8] have shown that modelling the cost of a plan

as a probability distribution over possible values helps to improve the predictability and

robustness of the DBMS. More specifically, the technique in [8] approximates the selectivity

of a given query Q based on pre-computed samples using a beta distribution, which is then

transformed into a cost value at a desired probability level. This approach establishes the

superiority of utilizing a distribution of costs for plan selection over a single cost value in

terms of providing a more robust query performance. However, it suffers from the following

limitations on its applicability: (1) The given query needs to be evaluated on the saved

samples, which incurs extra overhead and delays the query answering process; the delay

becomes more severe for databases with complex schemas as a larger sample set need to be

maintained; (2) The distribution is constructed for selectivity rather than execution time

(the time required to execute a plan). As a result, the technique is not applicable to cost

estimators without a selectivity estimation module such as modern Machine Learning-based
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estimator which directly maps a plan to its execution time.

4.1.2 Our Proposal

In this work, we propose a novel approach which leverages a black-box cost estimator (e.g.,

the default DBMS cost estimator or an external learned cost estimator [116, 153]) and

directly produces the execution time distribution of plans. Our approach is based on a

robust statistical technique of conformal prediction [87, 97, 137, 157]. At a high level,

conformal prediction constructs a prediction interval around the output of a given regression

predictor on an input X, and the interval is guaranteed to cover the actual output y of the

predictor at a predefined probability level 1− α (also referred to as calibration). Conformal

predictions make no assumption regarding the joint distribution of X and y, and is agnostic

to the internal design of the regression predictor.

We consider execution time estimation as a prediction problem of the form µ̂ : X → y

where X correspond to execution plans, y are the execution times, and µ̂ is essentially

an execution time estimator. Therefore, we can adapt conformal prediction techniques to

calibrate the execution time estimator such that for a new plan P and its estimated cost

µ̂(P ), an interval around µ̂(P ) is constructed which covers the actual execution time of P

with probability at least 1 − α. Since conformal prediction produces an interval instead of

a distribution, we design an intuitive and effective method to enhance it in the context of

query optimization to produce the execution time distribution for a given plan. Readers are

directed to Section 4.2.2 and Section 4.2.3 for the technical details of conformal prediction

and the construction of the distribution.

In the past decades various methods have been proposed to predict the cost of query

plans, such as selectivity estimator plus cost model as in standard DBMS, and learned cost

estimator which leverage Machine Learning models to map plans to its execution times.

The property of conformal prediction that treats the estimator as a black-box facilitates

the construction of µ̂ from any of the existing cost estimators with any internal structure,

fully leveraging the wisdom integrated in their designs and reducing extra overhead in in-

ferring plan costs. We particularly study calibrating a conventional DBMS cost estimator

and modern learned estimator for constructing the execution time distribution, proving its
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effectiveness in improving the performance of these two important types of cost estimators.

The execution time distribution provides more comprehensive information regarding a

plan’s potential behavior and allows us to cater to different requirements arising from varying

application scenarios. We specifically conduct case studies on three representative objectives,

such as setting a threshold τ for a query Q denoting that it is desired to get the results of

Q within time τ , and setting a threshold τ and percentage p for a query batch Q denoting

that at least p queries in Q need to be finished within τ . We explore how the execution time

distribution generated by conformal predictions can be utilized to identify suitable plans

that best satisfy the given objectives.

To make the proposed execution time distribution-based plan selection strategies practi-

cal, we design an approach to interact with the DBMS using query hints, a feature generally

supported by most DBMS (e.g., PostgreSQL, My SQL, SQL Server). Similar approaches

have also been utilized in previous studies [116]. Our interaction method requires no change

to the DBMS and only minor change to the query processing using query hints. More

specifically, we implement the proposed execution time construction method and plan selec-

tion strategy as an external module to the DBMS. We leverage the DBMS’ functionality to

produce multiple candidate plans for a given query Q, and invoke this external module to

identify the plan that best satisfies a user-specified objective, say P ∗. As the last step, we

interact with the DBMS by providing it related hints so that the DBMS would choose P ∗

as the execution plan. As will be shown in Section 4.4, the integration of our proposal to

DBMS is very lightweight, imposing only minor overheads to query processing, proving its

effectiveness for practical deployment.

Our main contributions in this paper can be summarized as follows:

• We propose a novel approach to construct plan execution time distribution, which is

assumption-free and can be applied to various types of plan cost estimators, making it

a robust and highly generalizable technique to improve query performance.

• We design multiple intuitive and fundamental plan execution objectives based on the

execution time distribution and the corresponding plan selection strategies, which help

to satisfy the DBMS users’ various requirement regarding the query performance.
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• We design a lightweight approach to integrate our proposal into an existing DBMS

which requires no change the the DBMS and only minor modification of the query

processing procedure.

• We conduct extensive experiments on three benchmarks and with both conventional

cost estimators and learned cost estimators. The results indicate that the execution

time distribution helps to significantly improve the query performance in achieving

each of the designed objective.

4.2 Execution Time Distribution

In this section we first introduce a statistical technique, called conformal prediction [157, 87,

138] which is originally introduced in the context of quantifying the uncertainty of regres-

sion predictors by wrapping the predictor’s output with an interval which covers the actual

response variable with predefined probability. We enhance conformal predictions to output

probability distributions rather than intervals and adapt them to the problem studied herein

to construct execution time distributions for query plan execution.

4.2.1 Conformal Predictions

Conformal predictions are a family of statistical tools that work on top of a regression

predictor and construct prediction intervals based on the predictor’s output. Such intervals

attain coverage (i.e., the interval constructed for a given sample covering the actual value of

the response variable) at a predefined probability level [137]. We introduce how conformal

predictions work and the coverage guarantee they provide in this section.

Let µ̂ : X → y be the regression predictor on which we apply conformal prediction, and

{(Xi, yi)}ni=1 be a collection of data samples, where Xi ∈ Rk denotes a feature vector and yi ∈

R denotes the response variable. The conformal prediction techniques are initialized using

samples {(Xi, yi)}ni=1 such that for a given new feature vector Xn+1 which is exchangeable 5

5Exchangeability is an assumption regarding the joint distribution of X and y which is less strict than
i.i.d, details can be found in [97]

63



with {(Xi, yi)}ni=1, it produces an interval Cµ̂(Xn+1) with the following coverage guarantee:

P (yn+1 ∈ Cµ̂(Xn+1)) ≥ 1− α (4.1)

where yn+1 is the response variable of Xn+1, α is a predefined probability level, and Cµ̂(∗) de-

notes the function to construct intervals for given inputs which is fit on samples {(Xi, yi)}ni=1

during the offline initialization phase. Note that fitting function Cµ̂(∗) only requires the

input Xi, the output µ̂(Xi) of µ̂, and actual response variable yi, and is agnostic to the in-

ternal process in µ̂ to map Xi to µ̂(Xi). The semantics of Equation (4.1) is that, the actual

response variable of the given sample is covered by the constructed interval with a known

probability.

In the initialization phase, various conformal prediction techniques may construct Cµ̂(∗)

differently. For example, the technique in [97] takes each sample (Xi, yi) ∈ {(Xi, yi)}ni=1

and computes residual Ri = |yi − µ̂(Xi)|, producing residuals R1, · · · , Rn. Assume that d

is the ⌈n ∗ (1 − α)⌉-th smallest residual, then for the given new sample Xn+1, [µ̂(Xn+1) −

d,µ̂(Xn+1) + d] is used as the interval and Equation (4.1) is proven to hold [97].

The value of α in Equation (4.1) is predefined by the user and reveals the probability

that the intervals thus constructed covers the corresponding response variable (defined as

coverage rate). For example, the intervals constructed for Xn+1 with α = 0.1 covers yn+1

with probability 90%. Intervals constructed with smaller α are expected to be wider since

they have higher coverage rates.

Note that the coverage rate of conformal prediction is marginal instead of conditional

[97, 137]. The difference is that, with marginal coverage, Equation (4.1) is true on average

over randomly drawn sample (Xn+1, yn+1), while with conditional coverage, Equation (4.1)

holds for each individual sample (Xn+1, yn+1). It is proven that conditional coverage is too

strict to guarantee without impractical assumptions regarding the data distribution [48]. As

will be shown in Section 4.2.3, marginal coverage is sufficient for the problem studied herein.

Compared with other applicable techniques for uncertainty quantification [8], confor-

mal prediction makes no assumption regarding the data distribution, requires no change

or minor change to the regression predictor µ̂, and incurs nearly negligible online overhead
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Table 4.1: Discrete Distribution of yi

Probability level interval

70% [1,5]
30% [2,3]

(a) (b)

Figure 4.1: Execution Time Distribution

once function Cµ̂(∗) is obtained during the offline initialization phase. In addition, as will

be shown in Section 4.2.3, conformal prediction treats µ̂ as a black-box and is agnostic to

the implementation details of µ̂, which facilitates its applicability to various types of cost

estimators.

4.2.2 Distribution Constructor

While with conformal prediction an interval is produced for a given input Xi indicating the

possible values of yi, in practice it is usually desired to obtain a probability distribution over

all possible values of yi, rather than a single interval. In this section, we propose distribution

constructor (DC), a method leveraging and enhancing conformal prediction to produce the

distribution of yi.

As shown in Equation (4.1), each interval is associated with a probability level α, which

is specified in advance. The intervals constructed with smaller α are wider than intervals

associated with larger α as the former yield higher coverage rate. Using multiple αs to

construct intervals would thus produce multiple intervals with various width, forming a

discrete distribution. In Table 4.1 and Figure 4.1, we provide an example of a distribution

constructed using two different values of α.
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Note that the histogram in Figure 4.1(a) is transferred from the intervals in Table 4.1.

The height of each bar is determined as follows: suppose that the probability of yi falling

into interval [l1, u1] is 1 − α1, the probability of falling into interval [l2, u2] is 1 − α2, and

α1 < α2, then the probabilities of falling in intervals [l1, l2] or [u2, u1] are both α2−α1

2
[137].

The distribution constructor consists of multiple interval construction functions Cµ̂ intro-

duced in Section 4.2.1 with different values of α, and using more αs gives more fine-grained

distributions, producing the histogram (distribution) shown in Figure 4.1(b). We study the

influence of the number of αs on query performance in Section 4.5.7. Note that since confor-

mal prediction provides marginal coverage, the execution time distribution thus constructed

gives the same guarantee. More specifically, the probability associated with each bar in the

distribution is marginal on average over random samples.

4.2.3 DC for Execution Time Distribution Construction

In this section we investigate how to build DC in the context of execution time distribution

construction, so that it can be utilized for the planning and processing of incoming queries.

It is clear from the description in Section 4.2.1 that there are two sub-tasks in constructing

DC, namely building the regression predictor µ̂ and preparing samples {(Xi, yi)}ni=1. For

execution time distribution, µ̂ is evidently an execution time estimator, and {(Xi, yi)}ni=1 are

essentially (plan, execution time) pairs, which is referred to as {(Pi, ti)}ni=1 in sequel. Note

that besides execution time, the technique thus developed also applies to other metrics. For

example, The user may be concerned about the CPU cost, in which case µ̂ is a CPU cost

estimator and {(Xi, yi)}ni=1 are (plan, CPU cost) pairs, and the distribution construction

technique and plan selection objectives can naturally be reused.

We first look at the problem of building an execution time estimator. Plenty of methods

have been proposed in the last decades to predict plan costs, such as cardinality estimator

plus cost model (as in typical DBMS) [60, 123, 134, 179, 180] and Machine Learning-based

cost estimator [78, 116, 150, 154, 176, 178]. These cost estimators have proven to be effective

in various scenarios, and reusing them with necessary modification reduces the unnecessary

labor and is thus highly desirable in our work.

Different cost estimators have varying internal designs. For example, conventional DBMS
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cost estimators maintain auxiliary structures such as histograms to compute the cardinality

of operators in a plan and adopt a cost model (consists of multiple equations) to derive the

cost, and learned estimators train a Machine Learning (ML) model which takes the input

of an encoded plan and outputs its anticipated execution time. Luckily, the property of

conformal prediction that treats the regression predictor as a black-box, as stated in Section

4.2.1, makes it independent from the internal design and applicable to any type of estimators.

As a result, our design in this work may be used together with any plan cost estimators,

making it suitable for various scenarios where different estimators are preferred.

To construct an execution time estimator, necessary modifications to the cost estimator

and the query processing process need to be involved. For example, a query plan in tree

format must be encoded into vectors (e.g., using methods in [116, 153]) before feeding into the

learned estimator; and the outputs of the conventional DBMS cost estimators are “costs”,

which are expected to be monotonic to but not equal execution times, and thus need to

transformed into execution time using (non-)linear equations, ML models, etc. The process

of constructing the execution time estimator is illustrated in Figure 4.2, where components

in µ̂ are in the blue dashed box.

Note that in Figure 4.2, the specific functionality of the encoder and cost-execution time

mapper depends on the type of estimator we use. For example, if learned estimators are used,

the encoder performs necessary encoding to the plan, while for conventional cost estimators,

this component needs not to be invoked; and the cost-execution time mapper can be a simple

f(x) = x function if the learned estimator is trained directly to predict execution times. The

design in Figure 4.2, when integrated into a DBMS, incurs no change to the implementation

of the cost estimator and only relies on its inputs and outputs, which reduces the overhead

of applying the method to real systems.

Next we discuss the generation of samples {(Pi, ti)}ni=1. We assume the existence of a

query workload Q, which can be the (subset of) queries provided together with benchmark

datasets, or the history queries in a real DBMS. We then generate one or more candidate

plan for each Q ∈ Q (we defer the discussion of the plan generation process to Section

4.4), and run each of the generated plan P to get its execution time t, forming the set of

samples {(Pi, ti)}ni=1. Assuming all incoming queries following the same distribution as Q
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Figure 4.2: Constructing Execution Time Estimator

as in previous works [62, 177], and using the same process to generate candidate plans for

incoming queries, the exchageability requirement of the conformal prediction is naturally

satisfied.

For a given cost estimator Estor and a collection of samples {(Pi, ti)}ni=1, the process

of building DC can be summarized in Algorithm 1. Note that the interval construction

function in line 6 of Algorithm 1 is introduced in Section 4.2.1. Recall that the distribution

thus constructed provides marginal distribution on average over random plans. For the task

of query optimization, the DBMS users are usually concerned about the overall performance

of a workload (consists of many queries), and thus marginal coverage is sufficient.

4.2.4 Online Execution Time Distribution Construction

In this section we study how to utilize DC to construct execution time distribution with

an imaginary plan Pnew. We defer how Pnew is generated and how DC can be integrated

into a real DBMS to Section 4.4. We present the process of producing the execution time
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Algorithm 1 Offline Preparation

Input: Estor, {(Pi, ti)}ni=1, a set of α values A
Output: Distribution constructor DC
1: Build encoder Enc if necessary;
2: Build cost-execution time mapper CEM if necessary;
3: Assemble Estor, Enc and CEM to build µ̂;
4: DC = ∅;
5: for each α ∈ A do
6: Calibrate µ̂ using {(Pi, ti)}ni=1 to obtain interval construction function Cµ̂,α;
7: DC = DC ∪ {Cµ̂,α};
8: end for
9: return DC;

distribution in Algorithm 2.

Algorithm 2 Online Distribution Construction

Input: DC, plan Pnew, a set of α values A
Output: Execution time distribution D
1: D = ∅;
2: for each α ∈ A do
3: Compute interval Iα = Cµ̂,α(Pnew);
4: D = D ∪ {(α, Iα)};
5: end for
6: return D;

We use the following example to illustrate how Algorithm 2 works and how the corre-

sponding execution time distribution looks like.

Example 4.2.1. Consider the plan in Figure 4.3 to join two tables R and T on attribute a.

Figure 4.3: An Example Plan

Assume that the distribution constructor DC is constructed using α ∈ {0.1, 0.3, 0.5},
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passing the plan to DC gives the execution time distribution in Table 4.2:

Table 4.2: An Example Execution Time Distribution

Value of α Execution time interval

0.1 [1s,9s]
0.3 [3s,7s]
0.5 [4s,5s]

From the execution time distribution we know that the probability that the plan runs for

over 7s is 15% (1−0.3
2

), and the probability of running for over 5s is 25% (1−0.5
2

), etc.

Although the execution time distribution provides more information than a single esti-

mated cost value, existing plan selection strategies only use simple cost comparison and thus

cannot directly leverage such information. In addition, DBMS users in different scenarios

may have various concerns regarding the plans’ execution times and thus would use the

distribution information differently. In the next section we design several fundamental and

intuitive plan selection strategies based on execution time distribution.

4.3 Plan Selection Strategy

In Section 4.2 we have introduced how to build the execution time distribution for plans

to provide more comprehensive description regarding the plan’s potential behavior. In this

section, we discuss how to use the execution time distribution as a guide to construct various

intuitive and fundamental query execution objectives. More specifically, we consider two

main categories of objectives, namely per-query objective and query batch objective, both

related to the time budget in finishing the query/queries. We also design a plan selection

strategy for each objective to maximize the probability that the objective can be satisfied.

While there are many other ways to leverage the execution time distribution to benefit

plan selection such as using different quantiles of the execution time distribution for risk-

averse/risk-seeking plan selection as in [8], we focus on the two types of objectives mentioned

above in this work as they are intuitive and of great interests to the DBMS user, and

the investigation of other execution time distribution-based plan selection objectives and

strategies is an interesting future work.
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4.3.1 Per-query Execution time Threshold

In many cases, the user may have a time limit τ for a given query, indicating that the query

results need to be returned within duration τ . For example, an analyst may need the results

to be back before a meeting starting in 10 minutes. We denote such constraint by per-query

execution time threshold.

Under per-query execution time threshold, instead of selecting the plan with the lowest

estimated cost, the user prefers the plan that has the highest probability to finish within the

threshold. For example, as shown in Figure 4.4, while plan B has higher estimated execution

time than plan A, its execution time distribution is narrow, and the probability that it runs

for duration longer than τ (blue area) is smaller than that of plan A (blue area+orange

area). Therefore, plan B is preferred when τ is the execution time threshold.

Figure 4.4: Execution Time Distributions of Two Plans

Given threshold τ , based on the execution time distribution we compute the probability

each plan can finish on time and select the one with the highest probability to satisfy such

constraint. Note that there is no guarantee that the selected plan may finish within the time

threshold, the only guarantee is that the selected plan has higher probability than other

plans to satisfy the time constraint.

In order for the per-query execution time threshold to be practical and solvable, the user

cannot specify an arbitrary value as the threshold because it might be impossible to produce

the query results within the specified threshold. For example, the user cannot specify 1

millisecond as the threshold for a query involving tens of relations and producing millions

of tuples. To help the user to select the reasonable time threshold, we provide the minimal
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range which covers all values in the distribution table (e.g., Table 4.1) to the user, and let

the user select a value in this range which best describes his requirements.

4.3.2 Workload Execution Time Threshold

In this section, we consider a different but also very fundamental target regarding a workload

Q, i.e., a batch of queries: finish as many queries as possible within τ . We denote such an

objective by workload execution time threshold. Note that since the distributions describes

the execution times in a probabilistic way, it is impossible to exactly know the number of

queries that can be finished within a certain duration. However, with carefully designed plan

selection strategy, we are able to increase the expected number of queries to finish within τ .

In the following, we formalize the workload execution time threshold objective by modelling

it as an integer programming problem, and propose a simple yet intuitive plan selection

heuristic to solve the optimization problem.

We consider a particular query Qi. Assume there are ni different plans for Qi, and let

vji ∼ Dj
i be the variable denoting the execution time of the j-th plan (j ∈ [1, ni]), where

Dj
i is the corresponding execution time distribution. We use vector Vi = [v1i , v

2
i , · · · , v

ni
i ]

to organize all the execution time variables of Qi’s plans. Let Ci be a binary vector, with

Ci[j] being 1 if the j-th plan is selected as the execution plan for Qi and all other bits being

0. Increasing the number of queries in the workload that can be finished within the given

threshold τ is essentially solving the following optimization problem:

maximize

∫
· · ·

∫
t1,··· ,tm∈(0,τ ]

|Sτ (t1, · · · , tm)|×∏
i∈Sτ (t1,··· ,tm)

P (Ci · V ⊺
i ≤ ti)dt1 · · · dtm

subject to ∀i ∈ [1,m], C⊺
i Ci = 1

(4.2)

where Sτ (t1, · · · , tm) ⊆ {1, · · · ,m} and
∑

i∈Sτ (t1,··· ,tm) ti ≤ τ , and ∀S s.t. S ⊆ {1, · · · ,m} ∧∑
i∈S ti ≤ τ , |Sτ (1, · · · ,m)| ≥ |S|. In other words, Sτ (t1, · · · , tm) is the maximal set of

subscripts in range [1,m] such that the sum of values in {t1, · · · , tm} indexed by these

subscripts does not exceed τ .
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The constraint of Equation (4.3) guarantees that one and only one plan is selected for each

query. Each selected plan Pi is assigned a “local” time threshold ti denoting the time it should

finish, and in order to finish more plans within τ , we first execute these plans associated

with smaller ti. For a particular configuration of local time thresholds, t1, · · · , tm, we only

consider the plans indexed by Sτ (t1, · · · , tm) as these queries are expected to be the fastest

and adding any of the remaining plans may break the overall time threshold constraint. The

probability that plans indexed by Sτ (t1, · · · , tm) can finish within their corresponding local

time threshold can be computed as
∏

i∈Sτ (t1,··· ,tm) P (Ci · V ⊺
i ≤ ti), and the expected number

of plans that can be finished within τ is thus |Sτ (t1, · · · , tm)|×
∏

i∈Sτ (t1,··· ,tm) P (Ci ·V ⊺
i ≤ ti).

The target is to select the best plan for each query (choosing Ci) such that the expected

number of plans that can be finished within τ across all possible configurations of local time

thresholds can be maximized.

Optimizing Equation (4.3) is an integer programming problem (choosing a plan id for

each query) which is known to be NP-complete. Since it is too expensive to exhaustively

enumerate all plan combinations, next we propose an efficient and effective heuristic for plan

selection.

In order to maximize the expected number of plans finished within τ , there are two

questions we need to answer: (1) in what order do we process the queries, and (2) which

plan to choose for each query. We propose Algorithm 4 that answers the two questions

simultaneously.

The intuition behind Algorithm 4 can be described as follows. Suppose that we have

constructed estimators under probability levels q1, q2, · · · , qk (sorted in descending order).

We first use the model corresponding to probability q1 to estimate the execution time of

each candidate plan for each query in the workload and choose the plan with the minimal

estimated execution time. We sorted the selected plans in ascending order their estimated

execution times (so that plans with low estimated execution time can be executed first). We

count the number of plans that can finish within τ , which is assumed to be k, and since with

the current probability level, only q (in percentage) plans could finish within their estimated

execution times, we know the expected number of plans that can finish within τ can be

approximated as k ∗ q. We traverse over all probability levels and find the collection of plans
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Algorithm 3 Plan Selection: Workload Execution Time Threshold

Input: Probabilities in descending order q1, · · · , qk, models corresponding to each proba-
bility level, workload Q, τ

Output: A sequence of plans
1: Initialization: FSP=∅, T = 0
2: for q = q1, · · · , qk do
3: Let L be the model corresponding to probability level q;
4: Let S = ∅;
5: for Q ∈ Q do
6: Use L to estimate the execution time of each candidate plan for Q;
7: Let P be the plan with the minimal estimated execution time;
8: Add P to S;
9: end for
10: Let SP be plans in S in ascending order of execution times;
11: Find k such that

∑
v∈SP[:k]

v ≤ τ and
∑

v∈SP[:k+1]
v > τ

12: if k ∗ q > T then
13: T = k ∗ q;
14: FSP=SP
15: end if
16: end for
17: return FSP;

which lead to the maximal expected number of plans that could finish within τ .

4.3.3 Workload Percentile Objective

In this section, we consider another practical and interesting objective regarding a workload.

Again assume that there are m queries in the workload, labeled Q1, · · · , Qm. The objective

is that for the given workload, at least M (M ∈ [1,m]) queries should finish within duration

τ , which is denoted by Workload Percentile Objective. Similar to the problem introduced

in Section 4.3.2, it is impossible to know whether a provided percentile objective can be

satisfied, and thus the target here is to increase the probability that the percentile objective

can be satisfied. In the following, we reuse the notations defined in Section 4.3.2 (including

Ci and Vi) and similarly model the workload percentile objective as an integer programming

problem. More specifically, increasing the probability that the at least M queries can be
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finished within the given threshold τ is essentially solving the following optimization problem:

maximize

∫
· · ·

∫
t1,··· ,tm≥0
t1+···+tm=τ

m∏
i=1

P (Ci · V ⊺
i ≤ ti)dt1 · · · dtm

subject to ∀i ∈ [1,m], C⊺
i Ci ∈ {0, 1}, and

m∑
i=1

C⊺
i Ci = M

(4.3)

The constraint of Equation (4.3) guarantees that at most one plan is selected for each

query (C⊺
i Ci ∈ {0, 1}), and the total number of selected plans is M (

∑m
i=1 C

⊺
i Ci = M).

For the other m − M queries, we can adopt any metric for plan selection, and they are

always executed after the M plans selected by Equation (4.3) and thus has no influence on

the probability that the percentile goal can be satisfied. The objective of Equation (4.3)

can be described as follows: if a plan is selected for query Qi (C
⊺
i Ci = 1), we assign it a

“local” threshold ti and compute the probability that the selected plan finishes within ti

(P (Ci ·V ⊺
i ≤ ti)). We conduct the computation for all queries and ensure all local thresholds

sum up to τ . Note that if C⊺
i Ci = 0, then P (Ci · V ⊺

i ≤ ti) is always 1. The integral over all

possible combinations of local thresholds is the probability to satisfy the percentile objective

of the workload.

Since solving Equation (4.3) is equivalent to answer an integer programming problem

(choosing a plan id for each query), we design a heuristic for plan selection. More specifically,

we propose algorithm 4 that decides in which order to process the queries and which execution

plan to use for each query.

The intuition behind Algorithm 4 can be described as follows. Assume that we have

estimators under probability levels q1, q2, · · · , qk (sorted in descending order). We first use

the model corresponding to probability q1 to estimate the execution time of each candidate

plan of queries in the workload and choose the plan with the minimal estimated execution

time for each query. We sorted the selected plans in ascending order their execution times

(so that plans with low execution times can be executed first, to maximize the probability

to satisfy the objective). If the sum execution time of the first M plans in the sorted

sequence is smaller than τ , we execute these plans in the same order. However, if the sum

execution time is larger than τ , meaning that the percentile objective cannot be satisfied at
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Algorithm 4 Plan Selection: Percentile Objective

Input: Probabilities in descending order q1, · · · , qk, models corresponding to each proba-
bility level, workload Q, M , τ

Output: A sequence of plans
1: for q = q1, · · · , qk do
2: Let L be the model corresponding to probability level q;
3: Let S = ∅;
4: for Q ∈ Q do
5: Use L to estimate the execution time of each candidate plan for Q;
6: Let P be the plan with the minimal estimated execution time;
7: Add P to S;
8: end for
9: Sort plans in S in ascending order of execution times;
10: Let C be sum execution time of the first M plans;
11: if C ≤ τ then
12: return plans in the same order;
13: end if
14: end for

the current probability level, we repeat the above process with the model corresponding to

the next probability level.

4.3.4 Minimizing the Overall Execution Time of Query Batch

Minimizing the overall execution time of a query batch is of great interest in most scenarios.

With the execution time distribution of all plans, we have a different and more accurate

approach to select the fastest plan for each query: computing the expected execution time

of each plan based on their execution time distributions to identify the one with the shortest

latency. Using the expected execution time reduces the bias introduced by a single cost

estimator, and helps to identify plans with stable performance, which leads to lower query

answering latency, as will be shown in Section 4.5.6.

4.4 Integration to DBMS

In this section we introduce the integration of the proposed plan selection strategy into

DBMS. More specifically, we present the process of building the distribution constructor

(DC) offline, and utilizing DC and the strategies designed in Section 4.3 for plan selection,
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as well as the steps to force the DBMS executes the selected plan. We also perform a concrete

case study using PostgreSQL to ease the understanding of the integration procedure. As

will be shown later in this section, integrating our method into DBMS is very lightweight,

requiring no modification of the DBMS and incurring only minor overhead to the query

processing procedure.

4.4.1 Building Distribution Constructor

In Algorithm 1 we summarized the process of constructing the distribution constructor DC,

which serves as the basis of online plan selection. In this section, we present more details

regarding the inputs of Algorithm 1, especially the generation of samples {(Pi, ti)}ni=1, and

how to build DC from these samples.

Let Q be a query workload, which can be the queries provided together with the bench-

mark dataset, or the queries in the DBMS log. In order to provide a rich set of {(Pi, ti)}ni=1

samples, for each queryQ ∈ Q, we feed the DBMSmultiple sets of query hintsH1,H2, · · · ,Hn,

producing n candidate plans to execute Q, P1, P2, · · · , Pn. Query hint is a feature generally

supported by existing DBMSs such as PostgreSQL, MySQL and SQL Server, and manipu-

lates the plan generation process by enabling/disabling certain operators such as Index Scan

and Hash Join. Each hint set consists of one or more such hint, and providing a hint set

to the DBMS so that the DBMS generates the execution plan only using enabled opera-

tors. Therefore, different combinations of hints result in different execution plans of Q. We

adopt the same sets of hints designed in [116]. The plan executed by the DBMS can be

retrieved using command “EXPLAIN Q”, which prints the execution plan of Q in a desired

format (e.g., JSON, XML), and the execution time is obtained by actually running the plan,

forming a (Pi, ti) pair. Applying the hint sets to (all or partial) queries in Q thus results

in a collection of samples {(Pi, ti)}ni=1, which serve as the input of Algorithm 1 to build the

distribution constructor.

As is clear from Section 4.2.3, DC is built on top of the execution time estimator µ̂,

which consists of a cost estimator and optionally a plan encoder and a cost-execution time

mapper. We show the choice of each component below. For a particular DBMS, the cost

estimator is fixed. For example, it can be either the default cost estimator of the DBMS, or
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an external learned cost estimator specified by the DBMS user. We can adopt techniques

in the literature designed for plan encoder [153, 112] and cost-execution time mapper [180]

to reduce extra labor, and assembling the three components produces µ̂, as shown in Figure

4.2.

The process of calibrating µ using {(Pi, ti)}ni=1 to construct DC (line 6 of Algorithm

1) depends on the conformal technique, and some techniques simply calculate and leverage

the absolute differences between µ̂(Pi) and ti while others involve ML models and training

steps. As will be presented in Section 4.5.1, we conduct experiments with multiple conformal

techniques to identify the one that best suits the task studied herein.

4.4.2 Query Processing

Given the distribution constructor, we can illustrate the query processing in Figure 4.5. The

work flow of Figure 4.5 can be described as follows:

1. Candidate plan generation. Let Q be a new query to be executed, we feed the

DBMS the same sets of query hints as in the offline preparation step (Section 4.4.1)

together with Q, producing n candidate plans to execute Q, P1, P2, · · · , Pn. Note

that generating n plans using hints invoke the DBMS planning procedure n times,

the overhead of which, however, is minor compared with the improvement in query

performance resulted from our design, as will be shown in Section 4.5. We then extract

the plans using the “EXPLAIN” command again.

2. Distribution construction. Candidate plans of Q are sequentially fed into the distri-

bution constructor, and the execution time distribution of these plans, D1, D2, · · · , Dn

are produced, as described in Algorithm 2.

3. Plan selection. The plan selector consists of the objectives designed in Section 4.3

and the DBMS user can determine which objective to use based on his own requirement

for the task. The plan selector takes D1, D2, · · · , Dn as input, and identifies the plan

that best satisfies the selected objective, say P ∗. Since P ∗ is generated by the DBMS

when hint set H∗ is used, we feed H∗ to the DBMS together with query Q, and the
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Figure 4.5: Integration to DBMS

DBMS would generate P ∗ again as the execution plan for Q, in line with the user’s

preference (green dashed line).

As is clear from above description, applying our design into an existing DBMS incurs no

change to the DBMS and only minor change to the query answering process by adding a

lightweight query pre-processing stage.

4.4.3 Case Study with PostgreSQL

We conduct a case study regarding the integration of our proposal into DBMS using Post-

greSQL as the example. PostgreSQL supports setting the following switches to on and

off, which controls the operators allowed in generating query plans: {enable seqscan, en-

able indexscan, enable indexonlyscan, enable bitmapscan, enable nestloop, enable hashjoin,

enable mergejoin}. Note that all switches are on by default.

We consider query Q: “select * from R, T where R.a=T.a and R.b¡10 and T.c=7”,and

two hint sets: H1 ={set enable hashjoin=off, set enable indexscan=off }, H2 ={set en-

able nestloop=off, set enable seqscan=off }. After each hint set is applied to PostgreSQL,

we can use the “EXPLAIN” command to print the plan thus generated without executing

it. Assume applying H1 and H2 lead to the plans shown in Figure 4.6(a) and Figure 4.6(b),

denoted by P1 and P2 respectively.

We then adopt Algorithm 2 to construct the execution time distribution for each plan,

which is given in Table 4.3.

Assume that the user’s objective is to get the result of Q within 8s, then from Table 4.3

we know that P2 is preferred as P2 has 90% probability to finish within 8s, while P1 has
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(a) Plan P1 (b) Plan P2

Figure 4.6: Two Plans

Table 4.3: Execution Time Distribution of P1 and P2

α Probability level Interval of P1 Interval of P2

0.1 90% [1s,9s] [1s,8s]
0.2 80% [1s,8s] [2s,7s]
0.3 70% [2s,5s] [2s,6s]
0.4 60% [3s,4s] [3s,5s]

80%. Therefore, hint set H2 is passed to PostgreSQL together with Q, and the DBMS will

process Q using plan P2. In another case, assume that the user’s time limit is 5s, then P1 is

preferred, as P1 has 70% probability to finish within 5s while P2 has 60%, and hint set H1

should be passed into the DBMS.

4.5 Experiments

In this section, we study the effectiveness of the distribution-based plan selection strategies

defined in Section 4.3 in satisfying the corresponding objectives. We conduct extensive

experiments on four benchmarks, with open source DBMS and commercial DBMS, and

using both conventional cost estimator and learned cost estimator.

4.5.1 Settings

Datasets. We adopt four open-source benchmarks used for the task of query optimization

with various size and complexity, namely JOB-light [85], CEB [126], and Stack [116]. JOB-

light and CEB are based on the IMDb dataset, Stack consists of questions and answers from

Stack Exchange websites. The statistics of the datasets are summarized in Table 4.4.
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Table 4.4: Dataset Characteristics

JOB-light CEB Stack

Size 10GB 10GB 100GB

Num. Queries 10,000 10,000 6,000

Query Type Numeric Numeric+String Numeric+String

Max num. relations
in a query

3 16 8

Avg num. relations
in a query

2.2 9.6 5.6

Cost estimator. We implement the design with PostgreSQL and a commercial database

(denoted by DBX) and build the execution time distribution based on their cost estimation

components. Default parameter settings are used for both databases. In order to testify the

effectiveness of the proposed methods when integrating into other types of cost estimators,

we also have conducted experiments using learned cost estimators. In this work we report

the results using the estimator in [116], a lightweight yet well-performed learned model, and

observations with other models [153] are similar. Details regarding calibrating learned cost

estimator can be found in Section 4.5.8.

Conformal technique. We have conducted experiments with multiple conformal tech-

niques [RomanoPC19TagasovskaL19, 87] and in the experiment we report results ob-

tained using the technique in [87] as it yields the best performance for the task studied in

this work. The conformal technique in [87] consists of a learned module, and we use the

network in [116] to build this module for its simplicity. The investigation of other confor-

mal techniques and models to fit the relation from a plan to the estimation error would be

interesting future works.

Implementation and environment. The estimation calibrator are implemented in

Python (version 3.8.10), and we use PostgreSQL (version 12.9) or DBX as the engine to

execute the queries, depending on which DBMS the calibrator is associated with. For ex-

periments on the learned estimator, we use PostgreSQL as the back-end DBMS (note that

the choice of DBMS does not influence the conclusions thus derived). Experiments are con-
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ducted on a Ubuntu 20.04 instance with Core i5 CPU, 24GB RAM, 256GB SSD, and 2TB

HDD. Experiments with TPC-H are conducted on HDD as the dataset is too large to fit in

SSD, and other experiments are conducted on SSD.

Evaluation. We compare the performance of the cost estimator before and after cali-

bration in achieving each of the objectives designed in Section 4.3. For each workload, we

randomly select 3000 queries as the evaluation set, and the remaining queries are used to

initialize the estimator calibrator (as will be introduced in Section 4.5.2). We repeat each

experiment 5 times to compute the average execution time. Please note that the calibrated

estimator incurs extra DBMS planning time and model inference time, which are included

in the overall query answering time of the method.

4.5.2 Correctness of the Execution Time Distribution

The foundation of the framework is the correctness of the execution time distribution, more

specifically, the predefined probability level 1− α in the conformal technique being close to

the actual coverage rate (ACR) at the same probability level, which is computed as follows:

ACR =

∑
Pi∈P [ti ∈ [lαi , u

α
i ]]

|P|
(4.4)

where P denotes the set of plans executed in the evaluation phase, Pi is a query in P and

ti is the execution time of Pi, and [∗] is the indication function which equals to 1 if the

statement ∗ is true and 0 otherwise.

Only with accurate execution time distribution (ACR≈ 1 − α) will the plan selection

based on the execution time distribution be valid. As introduced in Section 4.2.1, the ap-

plication of the estimator calibrator involves an initialization stage when execution plans

together with their costs and execution times (referred to as samples) are passed to the tech-

nique. Theoretically, using more initialization samples would provide more comprehensive

information regarding the data and the ACR becomes closer to 1 − α. In this section, we

study the correctness of the execution time distributions in terms of the number of samples

used for initialization, and report results of α = 0.1 in Figure 4.7. The observations with

other values of α are similar and are thus omitted for brevity.
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The horizontal axis of Figure 4.7 denotes the number of initialization samples, while the

vertical axis denotes the absolute difference between the predefined probability level and the

ACR. As can be observed from Figure 4.7, as the number of initialization samples increases,

the absolute difference between ACR and 1−α decreases quickly at first and becomes stable

at 1,000 to 2,000 samples for all benchmarks and databases. Note that it is theoretically

impossible to have an absolute difference equaling to zero due to the data variance and

limitation of the cost estimator and the conformal technique. However, as will be shown in

the following sections, the plans thus selected yield good performance, despite of the minor

difference between the actual coverage rate and expected coverage rate.
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Figure 4.7: Coverage Rate

4.5.3 Per-query Time Threshold

In this section, we examine the performance of the plan selection strategy designed in Section

4.3.1 in finishing more queries within their assigned thresholds. Particularly, for each query

in the evaluation set, we set a time threshold, and report the number of queries that can

finish within the threshold. As described in Section 4.3.1, we construct a reasonable range

(denoted by R) to select the threshold τ based on the execution time distribution. We vary

the values of τ to validate the effectiveness of the method in dealing with various thresholds.

The results for τ being the {0.7, 0.8, 0.9} quantile of R are reported in Figure 4.8. The

observations with other values of τ are similar and are thus omitted for brevity.

As can be observed from Figure 4.8, with the execution time distribution and the cor-

responding plan selection strategy, more plans that can be finished within the specified

threshold, compared with the default optimizer of PostgreSQL and DBX and across differ-
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ent benchmarks. More specifically, we have the following observations: (1) The proposed

method outperforms PostgreSQL and DBX, and lead to up to 25% more plans in the eval-

uation workload that can be finished within the corresponding time threshold. The reason

is that, with the execution time distribution we are able to compute the probability each

plan finishes within a certain time, and by selecting the plan with the highest probability to

finish within the assigned limit rather than the plan with the lowest estimated cost (which

might be inaccurate), we have higher chance to satisfy the threshold constraint; (2) The

superiority of our method is more significant on CEB and Stack than on JOB-light. The

reason is that, compared with JOB-light, the queries of CEB and Stack are more complex

(involving both string and numerical data types and consisting of more join operations), as

shown in Table 4.4. As a result, the estimations of the default optimizer regarding queries

and plans on CEB and Stack are less accurate, and calibrating the estimator to produce

execution time distribution results in higher improvement in query performance, which also

proves the effectiveness of the proposed method in dealing with complex workloads.
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Figure 4.8: Per-query Time Threshold

4.5.4 Workload Time Threshold

In this section we compare the default estimator and calibrated estimator in achieving the

workload time threshold objective under various thresholds. More specifically, given the

evaluation set of each dataset, we use different values of τ as the threshold, and count
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Figure 4.9: Workload Time Threshold

the number of queries in the set that can be finished in total within the threshold. Let

T be the minimal duration to finish all queries in the workload, we select τ in range

[0.1T, 0.3T, 0.5T, 0.7T, 0.9T ]. We report observations on CEB in Figure 4.9. The results

on other datasets are similar and omitted for brevity.

It is clear from Figure 4.9 that using the execution time distribution and the algorithm

designed in Section 4.3.2 for plan selection outperforms the default optimizer across different

settings and finishes up to 5 times more queries within the specified time threshold. The

reason is that, by selecting execution plans for each query and choosing the execution order

based on their execution time distributions as described in Algorithm 3, our method strives

to maximize the expected number of queries finished within the given time threshold. With

the default optimizer, although plans with low estimated costs are executed first, such esti-

mations may be inaccurate and plans with low estimated cost but high actual execution time

would slow down the entire execution process, leading to lower number of queries finished in

the threshold. Note that for the case when the value of τ is very small (e.g., 0.1) or very large

(0.9), corresponding to the case when the threshold is too small to finish even a intermediate

number of queries and the case when the threshold is close to the overall execution time of

the entire workload, the advantage of our method becomes less significant. However, for a

wide range of thresholds, calibrating the estimator results in much better query performance

in terms of finishing more queries within the specified threshold.
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4.5.5 Workload Percentile Objective

In this section we testify the performance of the methods in dealing with percentile objectives.

As described in Section 4.3.3, percentile objective is that for a given workload Q, at least

M queries must finish within duration τ . To examine the effectiveness of the method across

various settings, for the same evaluation set, we vary the values of M and τ and count the

number of times the objectives can be satisfied. For practical consideration, we vary M in

range [0,1] denoting the percentage of queries to finish, and for a particular M , let T be the

minimal duration to finishM queries, and we randomly sample the value of τ in three ranges:

[1T, 1.2T ], [1.2T, 1.4T ], [1.4T, 1.6T ], corresponding to the case of hard objective, intermediate

objective, and easy objective. Note that further reducing or increasing the value of τ are not

necessary to compare the methods, as will be discussed below. We repeat the experiments

with 50 different workloads (randomly sampled with ratio 0.5 from the evaluation workload

of JOB-light) and report the total number of workloads which satisfy the corresponding

percentile objective.
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Figure 4.10: Percentile Time Threshold

In Figure 4.10 we report the results obtained with M = 0.5, and observations with other

values of M are similar. As can be observed from the figure, increasing the value of τ leads

to higher number of workloads satisfying the objective, and our method outperforms default

estimator across various settings. The reason is that, by using the heuristic introduced in

Algorithm 4 to maximize the probability that at least M queries finish within duration

τ , our method increases the chance the percentile objective to be satisfied, while with the
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default estimator, plans with low estimated cost (and are thus selected to be among the

first M queries to execute) but high actual execution time may slow down the execution

process, reducing the probability to satisfy the percentile objective. Since sampling τ in

range [1T, 1.2T ] gives hard objective (almost no workloads satisfying the objective with the

default estimator) and sampling τ in range [1.4T, 1.6T ] gives easy objective (all workloads

satisfying the objective with the default estimator), further reducing or increasing the value

of τ is not necessary to compare the methods.

4.5.6 Minimizing Overall Execution Time

Minimizing the overall execution time of a query batch is of great interest in most scenarios.

Although the framework proposed herein is not directly optimized for the overall execution

time, constructing the execution time distribution provides a new perspective of minimizing

the overall execution time: compute the expected execution time of each plan based on the

execution time distribution, and select the one with the minimal expected execution time

as the execution plan. The comparison of the expected execution time-based strategy and

the default estimator is given in Figure 4.11. Note that the extra query planning time and

model inference time incurred by the proposed method are included in the results.
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Figure 4.11: Workload Execution Times

As shown in Figure 4.11, using the execution time distribution for plan selection to

minimize the overall execution time reduces the query answering time by up to 60%. The

reason is that, using the execution time distribution to compute the expected cost of a plan
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greatly reduces the bias of a single estimated value, and thus the overall execution time

can be significantly reduced compared with the default estimator, especially for complex

workloads such as CEB and Stack when estimation bias is more likely to occur due to data

variance.

4.5.7 Influence of the Distribution Granularity

As introduced in Section 4.2.2, we construct the execution time distribution by varying the

value of α in the conformal technique, and the number of αs used during the process, i.e.,

the granularity of the constructed distribution, has an impact on the query performance.

Intuitively, using more αs would produce more fine-grained and accurate distributions, at

the cost of longer query pre-processing time to construct the distribution. In this section, we

study the influence of the distribution granularity on the query performance. When using k

αs, we choose the values with equal width in range [0,1]. For example, when k = 3 we use

α ∈ {0.25, 0.5, 0.75}. We report the results using per-query time threshold on JOB-light in

Figure 4.12, and similar conclusion can be obtained with other objectives and settings.
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Figure 4.12: Influence of Distribution Granularity

As can be observed from Figure 4.12, using 10 αs results in the maximal number of queries

finished within the corresponding threshold for per-query threshold objectives. An overly

coarse-grained distribution cannot accurately describe the execution time performance, and

the plan thus selected would be sub-optimal. While increasing the number of αs leads to more

accurate distributions, constructing the distribution at query time results in higher overhead,
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slowing down the query answering. Therefore, in practice we recommend a distribution

granularity with 10 αs.

4.5.8 Studying the Learned Estimator
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Figure 4.13: Calibrating Learned Estimator

In this section we study the effectiveness of the proposed method in calibrating learned

estimators, which have attracted much research interests and shown superior performance

across various benchmarks. Since the estimation calibrator and plan selection strategy de-

signed in our work treat the cost estimator as a black-box and only depend on the estimation

results, the proposed methods can be applied to learned estimator without any modifica-

tion. More specifically, we assume that the learned estimator is already trained on the target

workload, and each time the cost of a plan is needed by the calibrator, instead of using the

output of the default estimator, we use the output of this learned estimator. Other parts

in query answering remain the same as depicted in Section 4.4. We use PostgreSQL as the

back-end query processing engine, and the choice does not influence the observations made

in this section. We report results obtained using the learned estimator designed in [116] and

with CEB, and experiments with other model structures [153] and workloads yield similar

observations. The results are presented in Figure 4.13.

From Figure 4.13 we have the following key observations:

1. For per-query threshold objective and workload threshold objective, calibrating the

learned estimator and utilizing the corresponding plan selection strategy increases the

number of queries that can finish within their assigned threshold in all settings;

2. For percentile objective, the execution time distribution-based plan selection strategy

increases the number of workloads that satisfy the objective by up to 5 times, for

threshold τ in certain ranges;
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3. Using expected execution time to identify the fastest plan reduce the overall execution

time of the workload by up to 15% compared with merely using the estimation of the

learned cost estimator.

Comparing Figure 4.13 to results obtained with the default DBMS estimator in previous

sections, we can observe that calibrating the default estimators results in higher improvement

in query performance. The reason is that, as shown in previous studies [172], ML models are

adaptive to the data and better captures the mapping relation from plans to execution times,

and thus are usually more accurate for cost estimation than conventional statistics-based cost

estimators. As a result, for the same query, learned estimator has higher chance to identify

a better plan than conventional estimator, and thus conventional estimator would benefit

more from calibration. However, as can be observed from Figure 4.13, the improvement

of calibrating the learned estimator in different objectives are all significant, proving the

effectiveness of the proposed method in applying to various types of cost estimators.

4.6 Summary

In this work we have studied the problem of constructing the execution time distribution for

query plans and leveraging the distribution for plan selection to fulfill the DBMS user’s var-

ious objectives regarding query performance. We enhanced conformal prediction technique

to produce execution time distributions for arbitrary plans, which may be integrated into

any types of plan performance predictors incurring very minor overhead. We have conducted

extensive experiments on multiple benchmarks, and the results validated the effectiveness of

the proposed method in achieving various objectives regarding query performance.

Note that although in this work we mainly expanded our discussion around relational

DBMS, the techniques thus developed can be naturally generalized to non-relational DBMS

and other systems, and the cost measure is not limited to execution time. For example, we

can construct the distributions of travelling time of candidate paths in a traffic scheduling

system. The deployment of the technique in practical systems with various cost measures

would be an interesting and important direction for future investigation.
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In this work we adopt conformal prediction to construct distributions as it provides theo-

retical guarantees regarding the coverage, and researchers have developed various techniques

for distribution construction. For example, the technique in [100] partitions the domain of

the target variable into bins and estimates the conditional density function using multi-class

classification methods; the method in [68] applies a logistic transformation on the output

layer of the model to be calibrated, which produces an expression of the conditional density

distribution, and the authors has studied the effectiveness of the method when used for both

polynomial regression and deep learning models. The investigation of applying various meth-

ods for the task of execution time distribution construction would be an important direction

for future investigation.
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5 Data Acquisition for Improving Machine Learning

Models

5.1 Introduction

5.1.1 Background and Motivation

Data traditionally has been an asset in deriving projections or making decisions. The preva-

lence of Machine Learning (ML) models across business functions necessitates access to ample

and diverse data sources for training. As an answer to the vast demand for training data,

numerous businesses offer data annotation services [4, 66, 5] providing annotated data in a

myriad of business categories with varying degrees of specialization. It is evident that the

need for specialized data to train ML models has created a corresponding market fulfilling

the purpose.

At the same time, in recent years we have experienced the increasing prevalence of online

data markets such as Dawex [25], WorldQuant [175], and Xignite [183], to name a few,

which aim to make access to data a commodity, for modelling or learning purposes. In these

markets the main idea is to facilitate interaction between data providers (e.g., individuals or

organizations that possess data in diverse domains and wish to offer them to other interested

parties) and data consumers who are interested to obtain data to accomplish certain tasks,

such as training new ML models or increasing the accuracy of existing ones, or conducting

statistical estimation. Since such platforms aim to adopt the characteristics of a market,

data exchange carries an underlying cost (e.g., monetary value). The emergence of such

markets can be viewed as an initial step to the enablement of efficient trading of data.

The design of the operating principles, market mechanisms and tradings strategies (to
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name a few topics) of such markets constitute open research directions and involve multiple

research communities. Recently, in the database community, Fernandez et al. [43] presented

their vision for a research agenda on market design in data market platforms and discussed

various important research directions of broader data management interest in making the

data market vision a reality.

A problem related to the task studied herein is the online knapsack problem [59, 107],

where a collection of items ei with values v(ei) and sizes s(ei) are given sequentially, and

each time an item is given, the user needs to decide whether to keep it or not, with the

objective of maximizing the total value of the selected items without violating the knapsack

capacity constraint. The major difference between the online knapsack problem and the

data acquisition problem is that, in online knapsack problem, the value of an item and the

budget it consumes (i.e., the size of the item) are given so that users can make decisions

accordingly, while in our setting, the value of the item is hidden and can only be revealed

after the corresponding budget is consumed, which results in extra difficulty in designing the

data acquisition strategy.

5.1.2 Problem Description

In this work, we consider a domain Γ = {X ,Y}, where X denotes the feature space and Y

denotes the label space (e.g., possible class labels for classification tasks, possible values of

the dependent variable for regression tasks). The purpose is to train a model for a target

distribution p over Γ such that the model attains high accuracy on data drawn from the same

distribution. We focus on supervised learning and assume that the data consumer (consumer

for short) already has an ML model (e.g., CNN, SVM, a regression model) built utilizing

some training data from Γ, and wishes to obtain data from a data provider (provider) offering

Dpool drawn from the target distribution p. The aim of the consumer is to maximize the

improvement in the accuracy of the model6.

6We use the term “accuracy” in a broad sense here, which depending on the ML model can be measured
in different ways (precision for classifiers, root mean squared error for regression models, etc.), and our
discussion is independent of its exact choice.

93



To facilitate the interaction, the provider exposes meta-data of Dpool, such as the range

of values in each attribute, and the set of possible labels on the records. We assume a

typical query interface supported by both parties, akin to the prevalent application pro-

gramming interfaces (API) in existence for any online service [165]. The interface supports

a predicate P specifying the properties of the records requested, and an integer I denot-

ing the number of records to obtain (e.g., 10 images with label = ’dog’, or 100 records

with 2018≤year≤2020). Such predicates impose multi-attribute conjunctive conditions in

the more general case. After receiving the query request from the consumer, the provider

randomly selects without replacement I records satisfying P from Dpool and returns these

records to the consumer.

We assume that the consumer carries a budget B on the total number of records that can

be requested7. The number of records requested by the consumer each time a query is issued

to the provider may vary, and is decided by the consumer, as long as the total number of

records requested across all queries is within the budget B. For example, if the consumer

can obtain 10 images from the provider, these can be obtained by inquiring for 10 images

once or for 5 images twice.

Suppose that the accuracy of the underlying model is evaluated on a testing data set

Dtest ⊂ Γ. The task of the consumer is to identify a series of queries ⟨(P1, I1), (P2, I2), · · · , (Pz, Iz)⟩

to obtain B records, where
∑z

i=1 Ii = B with Pi and Ii being respectively the predicate and

the number of requested records in the i-th query. Let Dotd be the records obtained from

the provider using the identified queries (|Dotd| = B), Dinit be the data the model of the

consumer is trained on initially, andM′ be the model re-trained on all the data the consumer

has after data acquisition (i.e., Dotd ∪ Dinit ). The objective of the data acquisition process

is to improve as much as possible the accuracy ofM′ on Dtest.

7Such a budget can be determined based on monetary costs per record offered by the provider or by
the monetary cost of each query, etc. Any mechanism to assign a value to data (e.g., price or otherwise) is
completely orthogonal to our approach.
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5.1.3 Solution Overview

We develop data acquisition strategies to address this problem. In particular, we consider

the trade-off between exploration and exploitation in data acquisition. During exploration,

requested data records from the available budget are obtained to gain more knowledge re-

garding the distribution the provider’s data, so that better predicates can be designed for

subsequent queries. During exploitation, data records are obtained based on the current

information the consumer possesses. With a limited budget of records to be requested,

one must strike a balance between exploration and exploitation by allocating the requested

records within the budget wisely such that the accuracy of the resulting model is maximized.

We propose two methods to determine how to allocate the existing budget of records

across queries (the budget allocation problem) adopting different strategies. The first solu-

tion, which we refer to as estimation-and-allocation (EA), consists of two stages: during the

Estimation Stage, the consumer issues a number of queries obtaining a number of random

records for each of them to explore from Dpool; we subsequently estimate (without re-training

the model) the expected improvement in model accuracy utilizing the records for each query,

which we refer to as predicate utility. During the Allocation Stage, the consumer allocates

the remaining record budget according to the estimated utilities. We investigate methods to

quantify the estimation error and propose an adaptive method to balance between reducing

the estimation error and controlling how much of the record budget is devoted to obtaining

the estimation; as a result, budget is reserved to be allocated more effectively for predicates

with high utilities. For the Allocation Stage, we propose different allocation strategies and

showcase their performance under various settings in Section 5.5.

The second solution, which we refer to as sequential predicate selection (SPS), is based on

the observation that for a predicate P , the associated predicate utility decreases as we obtain

more records for the predicate, due to information redundancy [54]. The core idea of SPS

is to iteratively pose queries requesting a small number of records while balancing between

(1) obtaining more records with predicates yielding higher expected utility, and (2) closely

monitoring the utility decrease of each predicate as we obtain more records. We implement

this design utilizing Thompson Sampling (TS) [139, 160], an action selection method, for its
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simplicity and proven performance, but the design can be implemented with other action

selection methods (such as the ϵ-greedy algorithm [155]) as well.

As both EA and SPS rely on the expected predicate utility, we investigate how to best

estimate it without re-training the underlying ML model. The utility of a predicate P is

essentially measured by the improvement in model accuracy resulting from the set of records

selected by P , RP . We propose novelty, which describes how different the distribution of

RP is from the distribution of the records the consumer currently possesses satisfying P ,

as the indicator of the potential accuracy gain RP brings to the model. Note that our

subsequent discussion applies to other utility measures as well; we experimentally compare

various measures in Section 5.5.11.

We evaluate the performance of EA and SPS on both traditional ML tasks and Deep

Learning tasks, including spatial regression, radar data classification, and image classifica-

tion, using classical ML models as well as state-of-the-art deep models. As will be shown

in Section 5.5, the proposed methods demonstrate solid performance across a variety of set-

tings, outperforming alternative approaches that require frequent model re-training. We also

thoroughly study the effects of various parameters on EA and SPS and provide suggestions

on their settings in real-world scenarios.

Contributions. Our main contributions can be summarized as follows.

• We formally define and study the problem of data acquisition for improving the per-

formance of ML models given a budget. We consider this problem in the context of a

data consumer and a data provider in a data market, and it can serve as a building

block for a variety of data markets.

• We propose an estimation-and-allocation solution, EA, which first estimates the utility

of each predicate with a portion of the budget, and then allocates the budget accord-

ingly to improve the accuracy of the model.

• We devise a sequential predicate selection solution, SPS, which adaptively conducts

exploration and exploitation, by iteratively requesting a small number of records in each

query, aiming to improve the predicate utility estimates and utilize such estimates at

the same time.
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• We design methods to estimate the expected utility of a given predicate, allowing EA

and SPS to proceed without necessitating the re-training of the underlying model.

• We experimentally study the proposed solutions across a variety of settings, including

but not limited to, different tasks, ML models, datasets, distributions, budget limita-

tions, utility measures. We showcase that each solution has certain benefits and can

be suitably adopted when applied to real-world settings.

5.2 Preliminaries

In this section, we formally define the terminology utilized and the problems we focus on in

this work.

Data Domain and Learning Task. We consider a supervised learning task defined on

a data domain Γ = {X ,Y}, where X denotes the feature space and Y denotes the label space

(e.g., all possible class labels for classification tasks, all possible values of the dependent

variable for regression tasks). Suppose there is a conditional distribution p(y|x) defined over

Γ, where x ∈ X , y ∈ Y . The learning task is to train a modelM on a dataset that represents

a distribution g that is as close as possible to the target distribution p. The accuracy ofM

is evaluated on a testing dataset Dtest ⊂ Γ. In accordance to any well-formed learning task,

we assume that both the training data and testing data come from the same distribution p.

The modelM is evaluated using a function F based on Dtest, denoted as F (M;Dtest).

Provider, Consumer, and Budget. The provider maintains a collection of data

records Dpool ⊂ Γ drawn from the target distribution p, which are provided in the data

market and are initially entirely invisible to the consumer. The consumer has an ML model

M trained on data Dinit ⊂ Γ drawn from p. Note that although both Dpool and Dinit follow

the same distribution p, they are not necessarily representative samples of p. For example,

Dpool may contain a high percentage of records from one part of the data domain Γ, while

Dinit from another. In the degenerate case,M is simply a model randomly initialized without

using any training data, i.e., Dinit = ∅. The consumer has a budget B, which is the maximum

number of records that the consumer can obtain from the provider.
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Query and Predicate. A query Q = (P, I) consists of a predicate P that specifies the

properties of the records the consumer would like to acquire, and an integer I that specifies

the number of records requested from the provider. Let RP ⊂ Dpool denote the set of records

that satisfy P and RQ denote the set of records returned by the provider. All possible

predicates admissible to the provider constitute set P , which can be formed in various ways

depending on the task at hand. In the work we adopt a simple yet intuitive predicate con-

struction strategy: for a classification problem, P contains all predicates with a selection on

the class label (e.g., label = ‘dog’); for a regression problem, we discretize each attribute

into equal-width sub-ranges, and all combinations of sub-ranges, denoted by “cells”, consti-

tute P (e.g., 1000≤ salary ≤ 2000 ∧ 20≤ age≤ 30). There are many other strategies

to construct and refine P . For example, the consumer may perform cross validation on Dinit

and use the m labels in whichM has the lowest accuracy to construct P for more targeted

acquisition. One may also inject domain knowledge to the predicate construction process

and only use these classes or cells related to the task as predicates. For example, a consumer

training a cat/dog classifier may not consider predicate label = ‘horse’. Refer to Section

5.5.1 and Section 5.5.7 for more details on the methodology to construct P adopted in this

work and the associated evaluation. We note that the investigation of predicate construction

strategies and their properties is an interesting direction for future work. Our emphasis is

to develop methods for data acquisition that are independent of the predicate construction

process.

Interaction. Each round of interaction between the consumer and the provider consists

of two steps: (1) the consumer issues a query Q = (P, I) to the provider, and (2) the provider

returns a set of records RQ, where |RQ| = I and each r ∈ RQ is randomly sampled from

RP
8. Without loss of generality, we assume that all records provided to the consumer are

unique within the same and across different rounds of interactions. A predicate P can be

reused across different rounds of interactions as long as RP has not been exhausted, i.e.,

there are records in RP that have not been acquired by the consumer yet.

8Note that if I is larger than the number of the provider’s remaining records (say IP ), all of the provider’s
records will be returned and only IP will be deducted from the consumer’s budget.
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Predicate utility. After each round of interaction, the consumer estimates the utility

of the predicate used in the query, which is useful for planning the next round of interaction.

The utility of a predicate P expresses the anticipated accuracy improvement that RP brings

toM. We define a measure that we call novelty to quantify predicate utility. The basic idea

of this measure is to quantify the difference between the data acquired in the interaction to

those that the consumer currently possesses. The higher the difference, the more information

this interaction brings to the consumer. Let RM:P be the records the consumer currently

possesses satisfying P . The novelty of predicate P , denoted as UP , is defined on RM:P and

RP . More specifically, we consider a binary classification problem that treats RM:P and RP

as samples from class 0 and class 1 respectively, and train a classifier CLF to distinguish

between the two sets of records. The utility of P is computed as follows:

UP =

∑
(x,y)∈RP

I[CLF((x, y)) = 1]

|RP |
(5.1)

where I[∗] is the indicator function that takes value 1 if statement ∗ is true and 0 otherwise,

and CLF((x, y)) denotes the prediction for record (x, y) made by CLF. In principle, any clas-

sifier may be used as the CLF. However, in practice it is preferred to use light-weight models

for faster training and inference as the computation of novelty is carried out frequently. We

study the influence of different classifiers in Section 5.5.9.

The intuition for the design of novelty is that, if RP is drawn from a distribution that is

very different than the one RM:P is drawn from, then the two sets of records can be easily

differentiated and UP is high, and vice versa. Note that we only evaluate the accuracy of the

classifier on RP , because novelty measures how different RP is, given RM:P , rather than the

other way around. Such methods for quantifying the difference between two distributions are

well adopted in the ML literature [106]. In practice, it may not be feasible for the consumer

to obtain all the records in RP due to budget limitations. As such, in the proposed solutions,

we utilize queries based on the same predicate P returning |RQ| ≪ |RP | records, to estimate

UP .

Acquisition plan. The acquisition plan of the consumer consists of a sequence of

interactions, ⟨(P1, I1), (P2, I2), · · · , (Pz, Iz)⟩, where ∀i ∈ [1, z], Pi ∈ P and
∑z

i=1 Ii = B. The
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consumer receives B records in total after executing the acquisition plan, denoted as Dotd.

The problem of data acquisition for model improvement is defined as follows.

Definition 6. Data Acquisition for Model Improvement. Given (1) a set of records,

Dpool from a provider, (2) an initial set of records, Dinit, possessed by a consumer, (3) the

set of possible predicates, P, (4) the initial model, M, of the consumer, (5) a measure to

evaluate model accuracy, F , and (6) the budget, B, the objective of data acquisition for model

improvement is to construct an acquisition plan to maximize F (M ′;Dtest), where M ′ denotes

the consumer modelM after being re-trained on Dinit ∪ Dotd.

5.3 An Estimation-and-Allocation Solution

In this section, we introduce estimation-and-allocation (EA), a two-stage solution, to generate

the acquisition plan. Essentially, stage one of EA is designed to explore, i.e., to gather more

information on how useful each predicate is; while stage two is to exploit, i.e., to utilize

the knowledge gained in stage one to optimize subsequent actions. Specifically, the first

stage, called the Estimation Stage, aims to obtain accurate estimates on the utilities of

predicates in P ; this is achieved via querying the provider requesting a number of records

that constitute a small portion of the budget. Then in the second stage, called the Allocation

Stage, the consumer allocates the remaining budget and issues queries to the provider based

on the estimated predicate utilities. We first discuss in Section 5.3.1 how to ensure the

quality of the utility estimates in the Estimation Stage, and present a method that could

balance between quality and budget consumption (the amount of record budget spent) in

Section 5.3.2. We then elaborate on the Allocation Stage in Section 5.3.3.

5.3.1 Estimating Predicate Utility

We now discuss how to estimate the predicate utilities. Recall that the utility UP of a

predicate P is defined as the accuracy of the classifier (denoted by CLF) in differentiating

RP from RM:P . Since it is not possible to obtain the entire RP , we rely on queries using

predicate P to effectively sample from it. We can estimate UP based on the records already

acquired with P , say R̂P , and we use ÛP to denote the estimated value of UP .
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The effectiveness of EA depends largely on the accuracy of the predicate utility estimates;

thus we investigate how to statistically bound the estimation error, i.e., the difference between

UP and ÛP . To this end, we aim to find the ϵ-δ approximations of all predicate utilities,

defined as follows.

Definition 7. ϵ-δ Approximation. ÛP is said to be an ϵ-δ approximation of UP if Pr(|UP−

ÛP | ≥ ϵ) ≤ δ, where ϵ denotes the error bound and δ denotes the significance level.

In order to determine whether ÛP is an ϵ-δ approximation of UP , we conduct a statistical

test with the following null hypothesis:

H
(P )
0 : |UP − ÛP | ≥ ϵ (5.2)

where P ∈ P is an arbitrary predicate. We reject H
(P )
0 at significance level δ when the

following condition is met:

reject H
(P )
0 if Pr(|UP − ÛP | ≥ ϵ) ≤ δ (5.3)

The rejection condition bounds the probability of type I error (false rejection) of the statis-

tical test by δ, and if H
(P )
0 can be rejected, clearly ÛP is an ϵ-δ approximation of UP .

We next discuss how to compute Pr(|UP − ÛP | ≥ ϵ). Note that there are two sources of

error in estimating UP : (1) approximating UP with a subset R̂P ⊂ RP , and (2) the error

incurred by the CLF. In our work, we focus on the error caused by insufficient records (i.e.,

source (1)), and we bound the model error (i.e., source (2)) following [39]. Nonetheless, both

types of error can be reduced by increasing the size of R̂P [39]. To bound the error attributed

to insufficient records, we present the following result on the distribution of UP − ÛP .

Theorem 5. UP − ÛP ∼ N (0, UP (1−UP )

|R̂P | ), where N (0, UP (1−UP )

|R̂P | ) denotes the normal distri-

bution with mean 0 and variance UP (1−UP )

|R̂P | .

Proof. Since UP is the accuracy of the binary classifier CLF in discriminatingRP fromRM:P ,

for each record (xi, yi) ∈ RP , either CLF((xi, yi))= 0 or CLF((xi, yi))= 1, corresponding to

the case when (xi, yi) is regarded by CLF to be from RP or RM:P , respectively. Also, if we

let ri = I[CLF((xi, yi)) = 0], ri can be viewed as an independent Bernoulli(p) variable, with

p being the probability of ri = 1. Evidently, in this case, p = UP .
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As ÛP = 1

|R̂P |

∑
(xi,yi)∈R̂P

ri and ri ∼ Bernoulli(UP ), we know ÛP∗|R̂P | ∼ Binomial(|R̂P |, UP ).

According to the Central Limit Theorem, we have UP − ÛP ∼ N (0, UP (1−UP )

|R̂P | ).

Since UP (1 − UP ) is not known, we cannot directly estimate the difference between UP

and ÛP based on Theorem 5. Following the standard practice [7] in estimating population

mean (UP in our case), we introduce statistic tP as follows:

tP =
UP − ÛP

SP /

√
|R̂P |

(5.4)

where SP =

√
ÛP (1− ÛP ) denotes the sample standard deviation. Clearly tP follows t-

distribution with degree of freedom (|R̂P | − 1).

Now we can re-write UP − ÛP as follows:

UP − ÛP = tP ∗ SP /

√
|R̂P | (5.5)

The probability of |UP − ÛP | ≥ ϵ can now be computed as follows:

Pr(|UP − ÛP | ≥ ϵ) = Pr

(
|tP ∗ SP /

√
|R̂P || ≥ ϵ

)
= Pr

(
|tP | ≥ ϵ

√
|R̂P |/SP

)

≤
∫ − ϵ

√
|R̂P |
SP

−∞
fnP

(tP )dtP +

∫ ∞

ϵ
√

|R̂P |
SP

fnP
(tP )dtP

= ZP

(5.6)

where nP = |R̂P | − 1, and fnP
is the probability density function of the t-distribution with

degree of freedom nP .

Therefore, Pr(|UP − ÛP | ≥ ϵ) = ZP , and H
(P )
0 can be rejected if ZP ≤ δ. Evidently

ZP is negatively correlated to |R̂P |, and thus if H
(P )
0 cannot be rejected, one can obtain

more records utilizing predicate P and issuing additional queries to reduce the value of ZP

until ZP ≤ δ. The intuition behind this process is that, the more records the consumer

obtains utilizing P , the more accurate the estimate ÛP is, and the smaller |UP − ÛP | would

be. When the null hypotheses for all predicates in P can be rejected, the current predicate

utility estimates are ϵ-δ approximations.
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5.3.2 Budget-Aware Utility Estimation

The Estimation Stage has to consider two conflicting goals: providing more accurate esti-

mation of predicate utilities and controlling the budget consumption so that there is more

budget left to spend in the Allocation Stage. We thus introduce a budget-aware estima-

tion method, which first acquires a small number of records using each predicate in P and

computes utility estimates accordingly, and then iteratively determines for each predicate

whether obtaining more records to improve the estimation accuracy is worthwhile based on

a measure called heuristic reward. Such a measure is designed to strike a balance between

estimation accuracy and budget consumption.

Since for a given significance level δ, the estimation accuracy is contingent on ϵ, we

adaptively choose and adjust its value in order to yield estimates with different levels of

accuracy. Intuitively, to achieve higher estimation accuracy, i.e., smaller ϵ, the consumer

needs to acquire more records for estimation. Assume that the consumer has acquired

records R̂0
P for each predicate P ∈ P . We use B′ = B−

∑
P∈P |R̂0

P | to denote the remaining

budget of the consumer. Let ϵ0 be the minimal ϵ that causes the null hypotheses for all

predicates in P to be rejected (note that such ϵ0 always exists, with the extreme case being

ϵ0 = 1). The heuristic reward is defined as B′ · (1 − ϵ0), which is larger if (1) B′ is large,

meaning the consumer has more available budget, and (2) ϵ0 is small, meaning that the

estimations are accurate.

Example 5.3.1. Consider a consumer with budget=500 and there are 5 predicates to choose

from. Assume that the consumer has acquired 5 records for each predicate, and the resulting

sample standard deviations are [0.1, 0.11, 0.12, 0.13, 0.14] respectively. Let the significance

level δ be 0.01. Using Equation (5.6), we know the minimal values of ϵ causing all H
(P )
0

(P ∈ P) to be rejected are [0.21, 0.23, 0.25, 0.27, 0.29], and thus the ϵ that causes all null

hypotheses to be rejected, or ϵ0, is 0.29. Since the remaining budget is 475, the heuristic

reward is thus 475 · (1− 0.29) = 337.25.

Now assume the consumer aims to determine whether reducing ϵ0 to ϵb, by acquiring

more records, would improve the heuristic reward. In order to compute the heuristic reward

corresponding to ϵb, we need to estimate how many additional records need to be acquired,
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∆Bb, to reach ϵb. We next show how to estimate the value of ∆Bb.

Recall from Equation (5.6) that the reject condition of H
(P )
0 is ZP ≤ δ. Since |R̂P | is

negatively correlated to ZP , in order to get the minimal number of records to acquire to

reach a given ϵ, we use the maximal ZP , i.e., ZP = δ, and rewrite Equation (5.6) as follows:

ZP = δ ⇔
∫ − ϵ

√
|R̂P |
SP

−∞
fnP

(tP )dtP +

∫ ∞

ϵ
√

|R̂P |
SP

fnP
(tP )dtP = δ

⇔
∫ − ϵ

√
|R̂P |
SP

−∞
fnP

(tP )dtP =
δ

2

Let AP =
ϵ
√

|R̂P |
SP

, we can further rewrite the equation above as follows:

∫ −AP

−∞
fnP

(tP )dtP =
δ

2
⇔ AP = −PCTnP

(
δ

2
) (5.7)

where PCTnP
denotes the percentile function of t-distribution with degree of freedom nP .

Now having a way to determine the value of AP using Equation (5.7), we rewrite AP =

ϵ
√

|R̂P |
SP

as follows:

|R̂P | =
(
AP · SP

ϵ

)2

(5.8)

Equation (5.8) establishes the relation between the number of records currently obtained

and the error bound ϵ that can be obtained using those records.

Let R̂b
P be the records with which we can reach error bound ϵb, we have:

|R̂b
P | =

(
Ab

P · Sb
P

ϵb

)2

(5.9)

where Sb
P denotes the sample standard deviation of R̂b

P , and Ab
P = −PCTnb

P
( δ
2
), nb

P =

|R̂b
P | − 1. Notice that SP asymptotically converges to the population standard deviation,

and Ab
P , which is determined by PCTnP

, asymptotically converges to the opposite value

of the δ
2
-percentile of standard normal distribution [46]. Thus, although Sb

P and Ab
P are

unknown, we choose to approximate their values by S0
P and A0

P , i.e., the values computed

based on R̂0
P , as long as |R̂0

P | is reasonably large. We demonstrate the validity of this

approximation empirically as well in Section 5.5.2. Therefore, we use
(

A0
P ·S0

P

ϵb

)2

as the least
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number of records required to achieve estimation error ϵb for predicate P .

Example 5.3.2. Following Example 5.3.1, we assume that the consumer plans to reduce

the error bound to 0.15 from 0.29. The values of A0
P for each P (Equation (5.7)) are:

[4.68, 4.66, 4.64, 4.63, 4.62]. Thus the number of records required for each predicate to reach

error bound 0.15 are: [10, 12, 14, 17, 19].

Since we already posses |R̂0
P | records satisfying P , we need to acquire

(
A0

P ·S0
P

ϵb

)2

− |R̂0
P |

more records utilizing predicate P . The total additional records from our budget needed to

reach ϵb from ϵ0 is thus

∆Bb =
∑
P∈P

[(
A0

P · S0
P

ϵb

)2

− |R̂0
P |

]
. (5.10)

The new heuristic reward after obtaining these ∆Bb records can thus be estimated as

(B′ −∆Bb) · (1 − ϵb). Let ϵ∗ = argmaxϵb(B
′ −∆Bb) · (1 − ϵb), be the value ϵb yielding the

maximal heuristic reward. The consumer then compares B′ ·(1−ϵ0) with (B′−∆Bϵ∗)·(1−ϵ∗).

If the latter value is higher, meaning that the new combination of the estimation error ϵ∗ and

remaining budget (B′ − ∆B∗) is better, we initiate a new interaction to obtain ∆B∗ more

records according to Equation (5.10). This process continues until the above calculation

indicates no more improvement in heuristic reward is possible via further interaction; we

then terminate the Estimation Stage and enter the Allocation Stage.

5.3.3 Budget Allocation

The Allocation Stage of EA is concerned with distributing the remaining budget across

all predicates in P utilizing their estimated utilities. We consider two budget allocation

strategies, where MP denotes the budget (number of records) allocated to a predicate P :

• Linear Allocation: MP = B∗ÛP∑
P ′∈P Û ′

P

− BP , where BP denotes the number of records

obtained with P during the Estimation Stage.

• Square-root Allocation: MP =
B∗
√

ÛP∑
P ′∈P

√
Û ′
P

−BP .

We sort all predicates in descending order of their utilities and sequentially obtain records

based on MP starting from the predicate with the highest estimated utility. This stage

continues iteratively until the budget is exhausted. We demonstrate in Section 5.5.4 that
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each allocation strategy has its own winning cases and therefore the allocation strategy can

be selected based on the specific task.

5.3.4 The EA Algorithm

The EA solution is summarized in Algorithm 5. We first use l% (l is configurable) of the

budget to acquire records using each predicate to start the estimation (Line 1). We calculate

the current estimation quality ϵ0 (Line 4) and the estimation quality that is expected to yield

the highest heuristic reward ϵ∗ (Line 5). The current heuristic reward is compared with

the expected highest heuristic reward (Line 7), and if the former is higher, we terminate

the Estimation Stage (Lines 7-8) and enter the Allocation Stage (Lines 12-13); otherwise

we obtain more records based on ϵ∗ (Lines 10-11) and repeat the process. Note that the

Estimation Stage also terminates when the budget is exhausted. However although Line

3 provides an exit to the estimation stage, corresponding to the case when all budget is

consumed during estimation, such case will never happen as exhausting all budget provides

a heuristic reward of 0 and thus is prohibited by Line 7.

Since during the estimation stage more records can be acquired, it is suggested to initialize

Algorithm 5 with a small value of l, as initialization with a large value of l may consume too

much budget. However, if l is too small (say only 1 record for each predicate), the sample

standard deviation SP computed may accidentally be zero and as a result, ZP is zero too

(Equation (5.6)). Consequently, H
(P )
o can be rejected with any ϵ (even zero) because ZP ≤ δ

is always true, and the estimation stage terminates immediately and abnormally as ϵ cannot

be further reduced. With these trade-offs in mind, we experimentally study the influence of

the choice of l in Section 5.5.2.

5.4 A Sequential Predicate Selection Solution

In this section, we adopt a Bayesian probabilistic approach and introduce an alternative

solution called Sequential Predicate Selection (SPS). While EA employs two separate stages

for exploration and exploitation, SPS utilizes many rounds of interactions, acquiring a small

number of records in each interaction with varying predicates, achieving both exploration
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Algorithm 5 Estimation-and-Allocation

Input: budget B, all predicates P
1: Initialization: for each P ∈ P , acquire l% random records in RP ; assume remaining

budget is B′.
2: //Estimation Stage
3: while B′ > 0 do
4: ϵ0 ← minimal ϵ to cause the hypotheses to be rejected;
5: ϵ∗ ← argmaxϵb,ϵb<ϵ0(B

′ −∆Bϵb) · (1− ϵb);
6: //∆Bϵb is computed with Equation (5.10)
7: if B′ · (1− ϵ0) ≥ (B′ −∆Bϵ∗) · (1− ϵ∗) then
8: break;
9: else
10: acquire ∆B′

ϵb
more records according to Equation (5.10);

11: B′ = B′ −∆Bϵb ;
12: end if
13: end while
14: //Allocation Stage
15: Allocate the remaining budget using strategies in Section 5.3.3;

and exploitation in the same round. In particular, in each round, SPS balances between two

objectives: (1) acquiring more records using predicates that are expected to provide higher

accuracy improvement to the model, based on previous observations; and (2) exploring

to identify other predicates that may bring even higher accuracy improvement to model

accuracy. We implement the design utilizing Thompson Sampling (TS), an action selection

method with proven performance [139, 69].

5.4.1 Framework of Thompson Sampling

Thompson Sampling [139] proceeds as follows. Given an action space A, an agent conducts

actions a1, a2, · · · , each selected from A, in rounds. After applying at in round t, the agent

observes a reward rt, which is randomly generated according to a conditional probability

measure qθ(·|at). The agent is initially uncertain about the value of parameters θ and thus

uses a prior distribution p to describe θ, which is iteratively updated based on (at, rt) pairs.

The target is to maximize the cumulative rewards over a given number of rounds. Given A,

p, and q, TS repeats the following steps for action selection:

1. Sample θ̂ ∼ p, i.e., sample the parameters controlling the reward according to p (p is
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called the prior distribution of θ in this round).

2. Let at = argmaxa∈A Eqθ̂
[rt|at = a], i.e., at is the action with the maximum expected

reward under parameter values θ̂. Perform action at and observe rt.

3. Update p = Pp,q(θ ∈ ·|at, rt), i.e., p becomes the posterior distribution of θ given (at, rt).

In the following, we apply TS to the problem of predicate selection, discuss the choices

of p and q for the problem, and develop the update method of p from prior distribution to

posterior distribution. In addition, as will be shown in Section 5.4.3, the rewards of predicates

evolve over time in our problem, and thus we also design methods to handle changes in θ.

5.4.2 Sequential Predicate Selection Using Thompson Sampling

In SPS, we repeatedly issue queries to the provider in multiple rounds of interactions, until

the budget B is exhausted. In each round, a query Q = (P, I) is issued and we calculate a

value called query reward for the records received, deciding on the next query to generate

based on the knowledge acquired so far. The objective of the consumer is to maximize the

cumulative reward for the queries issued in all rounds of interactions. In what follows, we

detail the set of queries that the consumer can issue, how query reward is evaluated, and

how knowledge regarding the problem space (queries and the resulting rewards) is updated.

The number of possible queries the consumer may ask is |P| · B, as each pair of P ∈ P

and I ∈ [1, B] can form a query. We assume that a fixed I, denoted by I∆, is used for each

query. Thus, choosing a query boils down to selecting a predicate in P , and in the sequel

we use the term predicate reward of P and the query reward of Q = (P, I∆) interchangeably.

We empirically study the influence of I∆ in Section 5.5.5.

Let RI∆
P be the records returned by query Q = (P, I∆). The computation of query reward

follows the spirit of predicate utility, i.e., novelty introduced in Section 5.2, except for that

instead of using the CLF to differentiate RP from RM:P , the query reward differentiates

RI∆
P from RM:P , directly measuring the anticipated accuracy improvement RI∆

P brings to

model M. More specifically, the reward of Q is the number of records in RI∆
P that can be

correctly labelled by CLF, following the developments in Section 5.2. Since records in RI∆
P
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are randomly selected from RP , the reward r of P can be viewed as a random variable, which

is assumed to follow a distribution Pr(r|θP , P ), where θP refers to the set of parameters of this

distribution. In each interaction, the consumer randomly draws a value rP from Pr(r|θP , P )

for each P ∈ P , selects the predicate P ∗ = argmaxP∈P rP and issues query (P ∗, I∆).

After obtaining the records for query (P, I∆), we update the distribution Pr(r|θP , P ),

by updating the values of θP based on the records received. The distribution Pr(r|θP , P )

before and after the update are the prior distribution and posterior distribution respectively.

We choose to use the Beta distribution [73] to model the prior distribution, which has been

shown to be effective in a variety of settings [139]. The Beta distribution is characterized by

two parameters α and β, and it is a particularly good fit for our problem as α and β represent

the pseudo counts of the number of correct and incorrect classifications we believe the CLF

can make, providing our initial perspective of the reward function of P . Moreover, as shown

in Section 5.3.1, the reward of (P, I∆), i.e., the number of correctly classified records in RI∆
P ,

follows a Binomial distribution. It is known that the conjugate of Binomial distribution is

the Beta distribution [33], and the posterior distribution will still be a Beta distribution,

making parameter update highly tractable. We next show how to compute a Beta posterior

from a Beta prior and RI∆
P .

Let Beta(α, β) be the Beta distribution with two parameters α and β. In our case, we

initialize both α and β to 1 for all predicates, essentially making the Beta distribution a

uniform distribution, in line with the fact that the consumer has no knowledge regarding

the rewards of predicates at the beginning. Suppose that the reward distribution for P is

Beta(αP , βP ) before a round of interaction, and RI∆
P is received in this round. Let N I∆

P be

the number of records correctly labelled by CLF, i.e.,

N I∆
P =

∑
(xi,yi)∈RI∆

P

I[CLF((xi, yi)) = 0] (5.11)

We can show that αP and βP can be updated as follows to obtain the posterior distribution

conditional on N I∆
P and I∆:

(αP , βP )← (αP , βP ) + (N I∆
P , I∆ −N I∆

P ) (5.12)
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It follows immediately from Equation (5.12) that (1) the expectation of distribution Beta(αP , βP ),

computed as αP

αP+βP
, is proportional to the reward of P (notice that αP

αP+βP
is essentially the

percentage of records satisfying P that can be correctly labelled by CLF), so that the prob-

abilities of selecting predicates with high observed rewards in future interactions are higher;

and (2) after the update, (αP + βP + 2) is equal to the number of records obtained using

P so far (as both αP and βP are initialized to 1). With more records acquired using P ,

(αP + βP ) becomes larger and the distribution of Beta(αP , βP ) becomes more concentrated,

meaning that we are more confident regarding the expectation of P ’s reward. Note that this

is also the reason why we use the number of correctly labelled records as the reward rather

than percentage thereof: even both queries (P, I∆ = 100) and (P, I∆ = 10) return records

of which 80% can be correctly labelled, the former should give us more confidence regarding

the distribution of P ’s reward and thus (αP , βP ) should be greater in this case.

5.4.3 Non-stationary Reward Distributions

For our discussion in Section 5.4.2, we have assumed that the reward distribution is sta-

tionary regardless of the number of records acquired in previous rounds. However, one can

observe that as R̂P (the records the consumer has that satisfy predicate P ) grows, the new

information brought by each additional record from Dpool satisfying P decreases, and con-

sequently the reward of P decreases. As such, not all past rewards observed should be

treated equally. We should focus on the rewards observed from recent rounds, which better

reflect the current reward distributions. Therefore, we modify the posterior computation in

Equation (5.12) in a way that remembers only the rewards observed from the most recent

τ rounds of interactions, as inspired by previous research on dealing with non-stationary

reward distributions (e.g., [69, 139]).

More specifically, assume that the consumer has interacted with the provider using P

for t rounds (including the current round), with rewards N I∆
P [1], N I∆

P [2], · · · , N I∆
P [t], then αP

and βP are updated as follows in two steps:
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(αP , βP )← (αP , βP ) + (N I∆
P [t], I∆ −N I∆

P [t]);

(αP , βP )← (αP , βP )− (N I∆
P [t− τ ], I∆ −N I∆

P [t− τ ]), only if t > τ
(5.13)

By remembering only the most recent rewards, the expectation of Beta(αP , βP ) is closer

to the current reward of predicate P . Besides, ”forgetting” the previous rewards prevents

Beta(αP , βP ) from becoming too concentrated (recall that (α + β) influences how concen-

trated the distribution is), and thus always allows a chance for more exploration, suitable

for the setting with changing rewards.

5.4.4 The SPS Algorithm

The operation of SPS is summarized in Algorithm 6. We initialize all reward distributions

to Beta(1, 1) (Line 1). At each interaction, we randomly sample a value rP from distribution

Beta(αP , βP ) for each P (Lines 3-4), and select the predicate P ∗ with the highest rP and

issue query (P ∗, I∆) (Lines 5-6). After receiving a set of records, RI∆
P ∗ , we update the values

of αP and βP accordingly (Lines 7-8), merge RI∆
P ∗ into acquired records and deduct I∆ from

the remaining budget (Line 9). The process terminates when the budget is exhausted.

Algorithm 6 Sequential Predicate Selection

Input: budget B, all predicates P
Output: A set of records R
1: Initialization: ∀P ∈ P , αP = 1, βP = 1; R = ∅
2: while B > 0 do
3: for P in P do
4: sample rP from distribution Beta(αP , βP );
5: end for
6: P ∗ = argmaxP∈P rP ;
7: ask query (P ∗, I∆) and receive records RI∆

P ∗ ;
8: compute N I∆

P ∗ =
∑

(xi,yi)∈R
I∆
P∗

I[CLF((xi, yi) = 0)];

9: update (αP ∗ , βP ∗) with Equation (5.13);
10: R = R∪RI∆

P ∗ ; B = B − I∆;
11: end while
12: return R;
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5.5 Experiments

The techniques we propose are equally applicable to traditional Machine Learning [19] and

Deep Learning [184] models across a variety of domains. We choose models and datasets in

the experiments to reflect the wide range of applications we envision. More specifically, we

choose state-of-the-art deep models as well as classical ML models to experiment with. The

datasets used in the experiments include image data, spatial data, and optical-radar data,

and the tasks range from classification to regression.

5.5.1 Settings

Datasets. We conduct experiments on four datasets. CIFAR10 and CIFAR100 [94] are

image classification datasets widely used in the area of ML. The Crop mapping dataset

[82] (Crop for short) contains temporal, spectral, textural, and polarimetric attributes for

cropland classification. It has 175 real-valued features and one target (seven crop types).

3D Road Network [81] (RoadNet for short) is a geographical dataset consisting of tuples of

longitude, latitude, and altitude. Following the instruction in [81], we use longitude and

latitude as the features and altitude as the predicted value. The latter two datasets can

also be found in the UCI data repository [37]. The characteristics of the four datasets are

summarized in Table 5.1.

CIFAR10, CIFAR100, and Crop are used for classification tasks, while RoadNet is used

for a regression task. To generate Dtest, we directly use the test sets provided by CIFAR10

and CIFAR100, and randomly select 20% records from Crop and RoadNet.

Table 5.1: Dataset Characteristics

dataset # records # classes # dimensions

CIFAR10 60,000 10 1,024
CIFAR100 60,000 100 1,024

Crop 325,834 7 175
RoadNet 434,874 N/A 2

Models. For classification on CIFAR10 and CIFAR100, we adopt VGG8B with predsim
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loss function [127], one of the most recent and state-of-the-art deep learning structures.

For classification on Crop, we use Decision Tree. For RoadNet, we use kNN Regressor [3].

We also utilized other applicable models for our evaluation (e.g., AlexNet [95], EfficientNet

[158]) and observed similar trends. We use the code of VGG8B provided by the authors,

and the Decision Tree and kNN Regressor implementation in scikit-learn. Default settings

are adopted for all models.

Construction of P. For CIFAR10, CIFAR100, and Crop, we build predicates based

on class labels, resulting in 10 predicates for CIFAR10, 100 predicates for CIFAR100, and 7

predicates for Crop. For RoadNet, by default we discretize the data space by partitioning the

range of each feature into four equal-width sub-ranges, resulting in 42 = 16 cells; a predicate

selects records falling into a specific cell. We study the influence of |P| in Section 5.5.7.

Construction of Dinit. We construct Dinit using 20% records in the corresponding

dataset D for CIFAR10 and CIFAR100, and 1% records for Crop and RoadNet. We select

records from RP for each P ∈ P to construct Dinit following a power-law distribution. More

specifically, with a random order of predicates in P , let Pi be the i-th predicate (i ∈ [1, |P|]),

the number of records selected from RPi
is proportional to i.

Selection of CLF. We use the kNN classifier with k = 1 as the CLF in our experiments.

We study the impact of varying k values as well as utilizing diverse classifiers in Section 5.5.9.

For Crop and RoadNet, we directly use the raw attributes as the input of CLF. In accordance

to previous work on image-based kNN search [168], for CIFAR10 and CIFAR100, we first

use HOG [24] (Histogram of Oriented Gradients), a widely-adopted image feature extractor,

to transform an image into a feature vector, and use the transformed feature vectors as the

input of CLF.

Evaluation.9 Let Dotd be the records acquired during the acquisition process. We train

the model on Dinit ∪ Dotd and evaluate on Dtest. For the classification tasks on CIFAR10,

CIFAR100, and Crop, accuracy is computed as follows:

accuracy =

∑
(x,y)∈Dtest

I[M(x) = y]

|Dtest|
(5.14)

whereM(x) denotes the model output on x.

9code available at: https://github.com/AwesomeYifan/Data-acquisition-for-ML
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For the regression task on RoadNet, we use R2 score to evaluate the performance, com-

puted as follows:

R2 = 1−
∑

(x,y)∈Dtest
(y −M(x))2∑

(x,y)∈Dtest
(y − ȳ)2

(5.15)

where ȳ =
∑

(x,y)∈Dtest
y

|Dtest| .

The acquisition process and model training are repeated ten times and the average

accuracy/R2 score is reported.

5.5.2 The Effect of l on EA

As described in Section 5.3, EA requires acquiring l% random records for each predicate

from the provider for initialization. Here, we experimentally evaluate the effect of l on the

performance of EA. To have a common basis for the evaluation of the trends we fix the

significance level (δ) at 0.001 throughout the experiment. The results are provided in Figure

5.1.
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Figure 5.1: Effect of l on EA

As demonstrated in Figure 5.1, the performance of EA with a small budget is more

sensitive to the choice of l, while l has a less significant impact on EA’s performance when

a large budget is used, except for cases where l is very small. The trade-off involved in

selecting l can be summarized as follows. Using an overly-large l would result in too much

budget consumption for the initialization, and consequently reduce the budget available for

the Allocation Stage of EA, especially when the total budget B is small. On the other hand,

using too small an l may cause the Estimation Stage to perform badly, leading to low-quality

predicate utility estimates, as discussed in Section 5.3.4. In the following experiments, we
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set l = 5 for CIFAR10 and CIFAR100, and l = 0.5 for RoadNet and Crop. Since the budgets

we use are fairly large for the respective dataset, the performance of EA is less dependent

on the choice of l.

Takeaways. (1) An overly small or large l may harm the performance of EA. The value

l = 5 for image data, and l = 0.5 for spatial data worked best during our experiments; (2)

The performance of EA becomes less dependent on the choice of l as budget increases.

5.5.3 Estimation Accuracy of EA

In the Estimation Stage of EA, we assess the utility of predicate P , UP , based on the records

acquired with P , R̂P . Let ÛP be the estimated value of UP . In this section, we examine

the estimation accuracy. More specifically, we vary the number of records used for utility

estimation, normalized by |RP |, i.e., |R̂P |/|RP |, to study its effect on the absolute error of

the estimation, i.e., |UP − ÛP |. The results are presented in Figure 5.2.
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Figure 5.2: Estimation Accuracy

As can be observed from Figure 5.2, the absolute error of the estimation is consistently

low (below 0.1), and increasing the number of records used for estimation further reduces the

absolute error. The reason is that, according to Theorem 5, UP − ÛP follows a normal distri-

bution, and increasing |R̂P | reduces the standard deviation of the distribution; consequently,

the value of ÛP converges to the true utility, UP .

5.5.4 Comparison of Allocation Strategies in EA

Two strategies have been proposed in Section 5.3.3, namely, Linear Allocation and Square-

root Allocation, which allocate the budget proportional to the estimated utility of each
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B HA p-value

5,000 µL > µS 4e-3
20,000 µS > µL 1e-7

Table 5.2: Significance Test

predicate or its square-root respectively. In this section we evaluate the impact of the

allocation strategy on the performance of EA, and present the results in Figure 5.3. We

also conduct one-tailed t-tests to determine whether the average accuracy improvement of

one allocation strategy is statistically higher than the other. The cases for B = 5, 000

and B = 20, 000 are provided in Table 5.2, where µL (µS) denotes the average accuracy

improvement of Linear (Square-root) Allocation.
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Figure 5.3: Allocation Strategies

As is clear from Figure 5.3 and Table 5.2, different allocation strategies achieve similar

performance overall, and with significance level α < 0.01 we say Linear Allocation yields

higher accuracy when the budget is relatively small (e.g., B = 5, 000) and Square-root

Allocation takes the lead when the budget is large (e.g., B = 20, 000). This observation is

the result of two competing underlying factors: on one hand, we should exploit the knowledge

on the predicate utility gained from the Estimation Stage and therefore we should bias the

allocation towards predicates with higher estimated utilities as much as possible (hence the

superiority of Linear Allocation over Square-root Allocation for small budgets); on the other

hand, as discussed in Section 5.4, the utility of a predicate P decreases as more records

are acquired with P , i.e., the marginal benefit of obtaining records using predicates with

higher estimated utilities becomes lower as the budget grows (hence Square-root Allocation

outperforms Linear Allocation for large budgets). In other experiments we adopt Linear
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Allocation.

Takeaways. (1) Linear Allocation is better suited for data acquisition with budget B ≤

0.2|D| in our experiments; (2) Square-root Allocation is better suited for data acquisition

with budget B > 0.2|D| during our evaluation.

5.5.5 The Effect of Batch Size on SPS

With SPS, records are acquired in small batches of size I∆. We evaluate the effect of I∆ on

the performance of SPS presenting our results in Figure 5.4.
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Figure 5.4: Effect of Batch Size on SPS

As can be observed from Figure 5.4, data acquisition with a small budget is more sensitive

to the value of I∆. The trade-off in selecting I∆ is as follows. Let (P, I∆) be the query. With

a small I∆, the records returned by the provider may not be representative of RP , and

the query reward thus computed is inaccurate. Consequently SPS cannot identify those

predicates with high rewards. On the other hand, if I∆ is too large, then each interaction

consumes too much budget, limiting the exploitation of predicates with higher rewards.

However, as the budget increases, SPS becomes progressively less sensitive to the batch

size, because (1) the variations in the records obtained in each interaction have minimal

impact on the overall estimation accuracy given a large number of interactions; (2) although

exploration with large I∆ consumes more budget, it also provides more information regarding

the reward distribution (see Equation (5.12)), benefiting future predicate selection. In the

following experiments, we select I∆ = 300 for CIFAR10, and I∆ = 30 for CIFAR100, Crop

and RoadNet. Since the budgets we use are fairly large for the respective datasets, we expect

less dependency on the choices of I∆.
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Takeaways. (1) The accuracy of SPS is relatively stable over a wide range of batch

size values, only slightly decreasing for an overly small or large batch size, depending on the

ML/DL model and data; (2) The accuracy of SPS becomes less dependent on the batch size

as budget increases.

5.5.6 The Effect of τ on SPS

As discussed in Section 5.4.3, to deal with the non-stationary reward, we only use the records

acquired by the most recent τ queries with P to update the posterior distribution of P ’s

reward. We evaluate the effect of τ on the performance of SPS, and report the results on

CIFAR10 in Figure 5.5; similar trends can be observed on other datasets.
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Figure 5.5: Effect of τ on SPS

As can be observed from Figure 5.5, the performance of SPS is relatively stable across

different values of τ , with small τ yielding slightly higher accuracy. The reason is that,

as indicated by Equation (5.13), with larger τ , αP and βP contain more dated reward ob-

servations and thus diverge from the current reward distribution; this in turn may cause

the acquisition of less useful records (in terms of accuracy improvement). Having less useful

records clearly has a stronger influence on model accuracy when the total number of training

records is smaller (corresponding to a smaller budget). However, with the SPS strategy, as

long as the predicate with the actual maximal expected reward has a higher probability

to be selected than the other predicates, the cumulative reward is likely to be maximized.

Therefore, SPS is tolerant to inaccurate reward distribution estimations and robust to the

value of τ . We set τ to 1 in the following experiments.

Takeaways. (1) Setting τ = 1 always leads to higher accuracy during our evaluation;

(2) SPS is relatively robust with respect to τ .
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5.5.7 The Effect of |P|

In this section we study the influence of the number of predicates, i.e., |P|, on the accuracy

of the methods. More specifically, we change |P| by changing either: (1) the number of

labels to construct P for a classification dataset, or (2) the discretization granularity for a

regression dataset. For case (1), we select CIFAR100 and use the m labels with which the

model has the lowest accuracy (cross validated on Dinit) to construct P . For case (2), we use

RoadNet and partition the range of each of the two features into n equal-width sub-ranges,

resulting in n2 cells, which are used as P . The results are presented in Figure 5.6.
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Figure 5.6: Effect of Space Discretization

As is clear from the results on CIFAR100, for case (1), the trend of accuracy with respect

to |P| depends on the budget. The |P| yielding the maximal accuracy is 50 for B=5K,

70 for B=10K, and 100 for B=20K. The trend confirms our intuition that with a small

budget, limiting the data acquisition to the predicates where the model is more error-prone

reduces extra exploration cost and consequently increases the accuracy; however, this may

result in over-exploitation of these predicates when the budget is large due to decreasing

utility (as discussed in Section 5.4.3), leading to a slower increase in accuracy compared to

larger P . As can be observed from the results on RoadNet, for case (2), the R2 score is

relatively stable with respect to |P|, with a slight increase when |P| is between 9 and 36.

The reason is that, an overly coarse partitioning granularity (small |P|) prevents the effective

identification of the area in the data space where the model has a low R2 score, while an

overly fine partitioning granularity (large |P|) increases the exploration cost as there are

more predicates whose utilities need to be estimated.
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B HA p-value

3,000 µE > µP 1e-4
20,000 µP > µE 1e-9

Table 5.3: Significance Test

Takeaways. During our experiments, (1) Descritizing the data space such that each

cell occupies 3% − 10% of the size of the entire data space gives higher R2 score; (2) For

classification tasks with budget B ≤ 0.2|D|, using no more than 70% of all labels to construct

P gives higher accuracy; with B > 0.2|D|, using at least 70% of all labels to construct P

leads to higher accuracy; (3) The performance of the proposed methods is generally stable

in terms of the number of predicates.

5.5.8 EA vs. SPS

We now experimentally compare the two methods proposed in the work, EA and SPS, and

showcase the relative trends. We report the results in Figure 5.7. We also conduct one-sided

t-tests to determine whether the average accuracy improvement of one method is statistically

higher than the other. The cases for B = 3, 000 and B = 20, 000 are provided in Table 5.3,

where µP (µE) denotes the average accuracy improvement of SPS (EA).
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Figure 5.7: EA vs. SPS

As can be observed from Figure 5.7 and Table 5.3, EA and SPS provide similar perfor-

mance, and with significance level α < 0.001 we say EA provides a higher accuracy gain with

a small budget (e.g., B = 3, 000) and SPS provides a higher accuracy improvement with a

large budget (e.g., B = 20, 000). The reason is that EA is a budget-aware method: with

a small budget it tends to allocate less budget for utility estimation, aided by the heuristic
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reward, so that more budget can be allocated to predicates with high estimated utilities.

The mechanism of SPS, on the other hand, is budget-agnostic, and the exploration of all

predicate rewards at the start consumes budget and limits the chances to exploit predi-

cates with high utilities, especially when the budget is small. As the budget increases, SPS

starts to outperform EA since it acquires records in small batches and can flexibly adjust

the acquisition strategy in face of utility changes; EA conducts one-time allocation without

considering future utility changes and the records thus obtained may not be impactful to

improve model accuracy.

Takeaways. In our evaluation, (1) EA is better suited for data acquisition with budget

B ≤ 0.2|D|; (2) SPS is better suited for data acquisition with budget B > 0.2|D|.

5.5.9 The Effect of CLF

As discussed in Section 5.2, the utility of a predicate is essentially the accuracy of a classifier

(CLF) in differentiating RP and RM:P . Here we experimentally study the influence of CLF

on the accuracy improvement. More specifically, since the utility computation is carried

out frequently, we consider lightweight models including the kNN classifier (k ∈ {1, 3, 5}),

the decision tree classifier, and the perceptron classifier. We report results on CIFAR10 in

Figure 5.8; similar trends can be observed on other datasets.
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Figure 5.8: Effect of CLF

As can be observed from Figure 5.8, the performance of the methods is not sensitive to

the particular model used as the CLF and its hyper-parameters. In other experiments, we
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use the kNN classifier with k = 1.

5.5.10 Comparison with Baseline Methods for Data Acquisition

The closest piece of work that can be adapted to our setting for comparison purposes is the

work on active class selection (ACS) [105]. Although the problem solved therein is different,

we can adapt the methods used for our setting. Therefore, we use ACS (adapted to our

setting) as the baseline and present experimental results comparing it with our proposals.

We note, however, that this is not a fair comparison, because ACS requires re-training the

model after each interaction which can be computationally prohibitive for complex models

involving large datasets, whereas ours does not.

Specifically, ACS acquires b new data records in each round (the same batch size as used

in Section 5.5.5), which is allocated to each class uniformly (ACS-Uniform), or in proportion

with the accuracy improvement for each class (ACS-AI), or the number of records in each

class whose label has changed (ACS-RD) during the last round. Note that ACS-AI and ACS-

RD require model re-training after new records are obtained and thus are too expensive to

be applied to CIFAR10 and CIFAR100. As such, we apply ACS-Uniform to CIFAR10, and

ACS-AI and ACS-RD to Crop, with results provided in Figure 5.9. The observations on

other datasets are similar.
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Figure 5.9: Comparison with Baselines

The results in Figure 5.9 (a) indicate that EA and SPS consistently outperform ACS-

Uniform (except for the case of B = 4, 000 when all samples are acquired) and achieve

similar accuracy to baselines that require the model to be re-trained after each interaction,

by effectively acquiring records with higher novelty that are more likely to boost accuracy.
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5.5.11 Comparison with Utility Measures Based on Re-training/refinement

One of the main advantages of the utility measure we propose, novelty, is that it does not

require the computationally expensive step of model re-training. In this section, we compare

novelty with re-training-based utility measures in terms of model accuracy improvement and

data acquisition cost. More specifically, we compare with a re-training-based measure where

M is re-trained on newly-acquired records, say RI
P , and the improvement in accuracy after

re-training is used as the utility of P . While all lightweight models are re-trained from

scratch, we adopt the state-of-the-art incremental learning method, UCB [40], to refine deep

models instead of conducting complete re-training to keep training overhead manageable.

We report the results of using SPS together with both utility measures on CIFAR10 and

Crop in Figure 5.10; observations are similar on other datasets and consistent in the case of

using EA.
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Figure 5.10: Comparison with Re-training-based Measure

The results in Figure 5.10 indicate that novelty achieves similar accuracy to the re-

training-based utility measure by effectively acquiring records with higher novelty that are

more likely to boost accuracy, while requiring orders of magnitude less time. Although

the model can be refined incrementally with UCB, repetitive model refinement, especially

when the budget is large, still results in high execution overhead. Although lightweight

models such as decision trees can be constructed rapidly, repetitive construction imposes

large computational overheads during the acquisition process. Novelty, on the contrary,
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conducts data acquisition by only looking at the data, and thus is highly efficient for practical

deployments.

5.6 Summary and Future Work

In this work, we have considered the problem of acquiring data in order to improve the

accuracy of ML models, and laid out the framework of interaction between a provider and a

consumer in the context of data markets. We have proposed two algorithmic solutions that

the consumer with a limited budget could use to obtain data from the provider, striking a

balance between exploration (gaining more knowledge on the data the provider possesses)

and exploitation (utilizing that knowledge for allocating the limited budget for data acqui-

sition). The first solution, EA, has two distinctive stages, Estimation Stage and Allocation

Stage, focusing on exploration (obtaining accurate estimates on the predicate utilities) and

exploitation (allocating the budget according to the estimates) respectively. The second so-

lution, SPS, blends exploration and exploitation in each round of interaction, and adaptively

allocates budget for the next round, investing resources into more promising areas of the data

space to improve model accuracy. Results from our experimental studies have confirmed the

effectiveness of our proposals, and illustrated the trade-offs and relative strengths of each

proposed solution.

In our work, we focus on a setting where the consumer has no knowledge regarding

the provider’s data, which we believe is practical for real-world data markets. To reflect

this assumption, the strategies of both EA and SPS initially start from uniformly acquiring

data using different predicates. The exploration of different initialization strategies (such

as biasing to certain predicates) would be an important direction when we design data

acquisition strategies for markets where the consumer has prior knowledge regarding the

provider’s data distribution.

As an alternate of SPS, we can also adopt methods such as Markov Decision Process

(MDP) [11] together with Thompson Sampling to model the change in predicate utilities

and assist the predicate selection process, and defining the states of MDP and designing the

corresponding data acquisition policy would be interesting future work. In addition, with
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SPS we construct reward distributions based on observations from the recent rounds to cater

to the nonstationary nature of predicate utilities, and other methods such as discounting

the relevance of previous observations are also applicable. The designs of the discounting

function when adopting such an variant of SPS in different scenarios as well as the comparison

of different nonstationary update methods would be natural extensions of the current work.

125



6 Conclusion and Future Work

6.1 Summary of the Thesis

In this thesis we have summarized three of our representative works in the intersection

area of data management and Machine Learning. First, a learned indexing and searching

framework for exact set similarity search, LES3, which follows a filter-and-verify methodology

for efficient query processing. LES3consists of two main structures: TGM partitions data into

disjoint sets, balancing between index access cost and effectiveness in pruning candidate sets,

and L2P utilizes a cascade of Siamese networks to identify the (near) optimal partitioning

of data which leads to the maximal pruning power. Second, leveraging the execution time

distributions of query plans to improve the performance of DBMS fulfills the user’s various

objectives regarding query performance. We enhanced conformal prediction technique to

produce execution time distributions for arbitrary plans, which may be integrated into both

conventional cost estimators and learned cost estimators, incurring very minor overhead. We

have conducted extensive experiments on multiple benchmarks, and the results validated

the effectiveness of the proposed method in achieving various objectives regarding query

performance. Third, defining and solving the problem of data acquisition with improving the

accuracy of a ML model as the objective. We have proposed intuitive and robust measures

to quantify how useful a collection of new data is to the ML model, and developed two

algorithmic approaches for the ML owner (or data consumer) to acquire the most useful

data with a limited budget.
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6.2 Future Work

The works presented in this thesis represent our first step in contributing to the research in

the intersection area of data management and Machine Learning, and many interesting and

practical problems remain open. Below we list several representative topics worth further

investigation:

Extension of LES3. In Section 3 we consider an ideal setting with separable data and

minor distribution drifts to develop the learning-based index structure LES3. In order to

make the technique more practical, we may consider the following extensions. First, consider

overlaps among groups when minimizing GPO. While overlap among groups generally makes

partitioning-based similarity search more difficult, LES3 can be optimized to more effectively

handle such cases. For example, when sets in a particular group are very close to each other,

further partitioning the group does not help to improve the pruning efficiency, and thus we

can terminate the training corresponding to the group in the cascade training framework,

and develop more suitable index methods for this group. Second, deployment of LES3 in

an online environment. In an online environment where new sets with possibly different

distribution arrive continually, assigning new sets to groups using the pre-trained partitioner

may cause significant overlap among groups and decrease the pruning efficiency. Therefore,

detecting drifts in data distribution and refining the learned partitioner frugally are of great

importance when adopting the technique for practical tasks.

Extension of dbET. Further optimization opportunities exist for the technique devel-

oped in Section 4. For example, we may consider multi-query optimization when utilizing the

plan selection framework introduced in Figure 4.5, i.e., leveraging the overlap or correlation

among a batch of queries to select a plan for each query so as to share computation and

reduce the overall execution time. In addition, when generating candidate plans for a partic-

ular query, we can reduce the execution time distribution construction cost by quantifying

the similarity between plans (by means such as computing the distance between embed-

ded plans) and only consider plans with high level of difference to generate a diverse set of

candidate plans.

Extension of data acquisition strategies. In Section 5 we consider an ideal data
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acquisition platform consisting of a single data provider to construct the foundation of the

task, in practice, however, the scenario may be more complex, and a natural extension of

the problem is to consider multiple data providers with various data coverage, data quality,

and prices. In such a setting, the data consumer has more flexibility to choose which type of

data to acquire, and which provider(s) to acquire data from, based on the budget limitation.

For example, the consumer may need to decide whether to acquire high-quality data with

a higher price, or data with fair quality but a lower price is sufficient for the ML model at

hand. While finding the optimal acquisition strategy in such a setting is more challenging,

the interaction pattern of the setting better describes the practical data market and thus is

of great importance in building a healthy and long-running data market.

Siamese network for plan selection. While existing query optimizers generally follow

the methodology that first estimates the cost of each candidate plan and then selects the

one with the minimal cost, various ML techniques, especially Siamese network, provide a

new angle to solve the plan selection problem. Siamese network consists of two duplicate

models sharing the same set of parameters and an output module on top of the two siamese

models, and it is generally used for tasks such as estimating the similarity between a pair

of pictures. With necessary modification, Siamese network can also be utilized for plan

selection tasks. More specifically, we can provide the network with two encoded plans as the

input, and the output indicates whether the first plan is more efficient than the second plan.

The advantage of utilizing Siamese network for plan selection is that, compared with cost

estimation, the objective of which is to accurately predict the execution time of each plan,

the task of directly finding the faster one between two plans seem to be much easier, so that

training such a model should be more efficient and the objective can be better satisfied.

Maintainability of learned query optimizers. One severe challenge in integrating

learned optimizers into real DBMSs is that training the optimizer is usually much more

expensive than building conventional cost estimators such as histograms, making it hard

to maintain in practice, especially when data updates frequently occur as in OLTP (online

transactional processing) scenarios. In order to make the learned query optimizer practical

for deployment, we need to answer the following two questions: (1) when to update the model,

and (2) how to update the model. Determining when to update the model is important in
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reducing the extra training overhead, as it is unnecessary to update the model on each

insertion of new records. We can detect the change in data distribution, and only update

the model when the change reaches a certain threshold, meaning that the model can no longer

make satisfying plan selection choices. Besides, when updating the model, we do not need

to construct it again from scratch, as the model has already captured some characteristics

of the data. Therefore, we need to design frugal model update approaches for the problem

to improve maintainability, including the selection of training samples (e.g., only use plans

whose execution times have significantly changed as the training data), and model refinement

strategy (e.g., freeze certain layers of the model).

Integrating learned index into real systems. A large number of learned indexes

have been proposed in the past few years dealing with different tasks and focusing on various

scenarios, and they outperform conventional indexes on a variety of benchmarks in terms of

both search efficiency and storage overhead. While we have good reason to expect satisfying

performance of learned index when integrated into real systems, deploying the technique may

arise new challenges. For example, the selection of model for different workload patterns

and requirements to balance between training/inference overhead and prediction accuracy,

interpreting and debugging the model when unexpected performance occur, etc.

Acquiring data from multiple providers with various coverage, quality, and

price. In Section 5 we consider an ideal data acquisition platform consisting of a single data

provider to construct the foundation of the task, in practice, however, the scenario may be

more complex, and a natural extension of the problem is to consider multiple data providers

with various data coverage, data quality, and prices. In such a setting, the data consumer

has more flexibility to choose which type of data to acquire, and which provider(s) to acquire

data from, based on the budget limitation. For example, the consumer may need to decide

whether to acquire high-quality data with a higher price, or data with fair quality but a

lower price is sufficient for the ML model at hand. While finding the optimal acquisition

strategy in such a setting is more challenging, the interaction pattern of the setting better

describes the practical data market and thus is of great importance in building a healthy

and long-running data market.

Besides the topics detailed above, there are also other interesting and important prob-
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lems for future studies, such as learned indexes for fuzzy match with bounded errors, data

markets with data brokers. We believe the direction of bridging data management and Ma-

chine Learning is fruitful and of great importance for both academic research and industrial

applications, and may eventually lead to a smarter world. We will continue working on

related topics and we hope the studies conducted in this thesis would encourage researchers

with interests to join us and together contribute to this new and very promising area.
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