821 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications

    Impact of realistic communications for fast-acting demand side management

    Get PDF
    The rising penetration of intermittent energy resources is increasing the need for more diverse electrical energy resources that are able to support ancillary services. Demand side management (DSM) has a significant potential to fulfil this role but several challenges are still impeding the wide-scale integration of DSM. One of the major challenges is ensuring the performance of the networks that enable communications between control centres and the end DSM resources. This paper presents an analysis of all communications networks that typically participate in the activation of DSM, and provides an estimate for the overall latency that these networks incur. The most significant sources of delay from each of the components of the communications network are identified which allows the most critical aspects to be determined. This analysis therefore offers a detailed evaluation of the performance of DSM resources in the scope of providing real-time ancillary services. It is shown that, using available communications technologies, DSM can be used to provide primary frequency support services. In some cases, Neighbourhood Area Networks (NANs) may add significant delay, requiring careful choice of the technologies deployed

    Looking towards the future: the changing nature of intrusive surveillance and technical attacks against high-profile targets

    Get PDF
    In this thesis a novel Bayesian model is developed that is capable of predicting the probability of a range of eavesdropping techniques deployed, given an attacker's capability, opportunity and intent. Whilst limited attention by academia has focused on the cold war activities of Soviet bloc and Western allies' bugging of embassies, even less attention has been paid to the changing nature of the technology used for these eavesdropping events. This thesis makes four contributions: through the analysis of technical eavesdropping events over the last century, technological innovation is shown to have enriched the eavesdropping opportunities for a range of capabilities. The entry barrier for effective eavesdropping is lowered, while for the well resourced eavesdropper, the requirement for close access has been replaced by remote access opportunities. A new way to consider eavesdropping methods is presented through the expert elicitation of capability and opportunity requirements for a range of present-day eavesdropping techniques. Eavesdropping technology is shown to have life-cycle stages with the technology exploited by different capabilities at different times. Three case studies illustrate that yesterday’s secretive government method becomes today’s commodity. The significance of the egress transmission path is considered too. Finally, by using the expert elicitation information derived for capability, opportunity and life-cycle position, for a range of eavesdropping techniques, it is shown that it is possible to predict the probability of particular eavesdropping techniques being deployed. This novel Bayesian inferencing model enables scenarios with incomplete, uncertain or missing detail to be considered. The model is validated against the previously collated historic eavesdropping events. The development of this concept may be scaled with additional eavesdropping techniques to form the basis of a tool for security professionals or risk managers wishing to define eavesdropping threat advice or create eavesdropping policies based on the rigour of this technological study.Open Acces

    A high bit rate flexible MAC protocol for monitoring applications using 60ghz radio technology

    Get PDF
    In recent years there has been a growing trend in optical wireless convergence. One particular aspect of this is 60 GHz radio-over-fiber technology. It is intended for use in wireless personal area networks. However, we think that the same technology could be used for monitoring applications in the indoor environment. It could be used to detect emergency situations or to detect intruders. We shall examine reasons why this choice might be a suitable one. We shall then propose a MAC layer protocol to accomplish this task. Since in case of emergency we might require to obtain data from only one node for an extended duration, flexibility in implementation is required. We shall develop an adaptive MAC protocol where this would be possible. We accomplish this by including two protocol modes called the Icarus mode, which is to be used in case of an emergency and the Resync mode which is used when normality is restored. A significant problem at high frequencies is that the beam becomes increasingly narrow and behaves more in a ray like condition. This implies that particularly in an indoor environment it is possible that the beam may be accidentally blocked. In this case the node must be able shift the beam in order to enable communication. We demonstrate three such strategies and offer a comparative analysis.M.S.Committee Chair: Chang, Gee-Kung; Committee Member: Barry , John; Committee Member: Gaylord, To

    Impacto das comunicações M2M em redes celulares de telecomunicações

    Get PDF
    Mestrado em Engenharia Electrónica e de TelecomunicaçõesAs comunicações Máquina-Máquina (M2M) apresentam um crescimento muito significativo e algumas projeções apontam para que esta tendência se acentue drasticamente ao longo dos próximos anos. O tráfego gerado por este tipo de comunicações tem caraterísticas muito diferentes do tráfego de dados, ou voz, que atualmente circula nas redes celulares de telecomunicações. Assim, é fundamental estudar as caraterísticas dos tipos de tráfego associados com comunicações M2M, por forma a compreender os efeitos que tais caraterísticas podem provocar nas redes celulares de telecomunicações. Esta dissertação procura identificar e estudar algumas das caraterísticas do tráfego M2M, com especial enfoque na sinalização gerada por serviços M2M. Como resultado principal deste trabalho surge o desenvolvimento de modelos que permitem a construção de uma ferramenta analítica de orquestração de serviços e análise de rede. Esta ferramenta permite orquestrar serviços e modelar padrões de tráfego numa rede UMTS, possibilitando uma análise simultânea aos efeitos produzidos no segmento core da mesma rede. Ao longo deste trabalho procura-se que a abordagem aos problemas apresentados permita que os resultados obtidos sejam válidos, ou adaptáveis, num âmbito mais abrangente do que apenas as comunicações M2M.Machine to Machine (M2M) communications present significant growth and some projections indicate that this trend is going to increase dramatically over the coming years. The traffic generated by this type of communication has very different characteristics when compared to data or voice traffic currently going through cellular telecommunications networks. Thus, it is essential to study the characteristics of traffic associated with M2M communications in order to understand the effects that its features can imply to cellular telecommunications networks. This dissertation tries to identify and study some of the characteristics of M2M traffic, with particular focus on signaling generated by M2M services. A number of models, that enable the development of an analytic tool for service orchestration and network analysis, are presented. This tool enables service orchestration and traffic modeling on a UMTS network, with simultaneous visualization of the impacts on the core of such network. The work presented in this document seeks to approach the problems at study in ways ensuring that its outcomes are valid for a wider scope than just M2M communications

    Cognitive Radio for Smart Grid with Security Considerations

    Get PDF
    In this paper, we investigate how Cognitive Radio as a means of communication can be utilized to serve a smart grid deployment end to end, from a home area network to power generation. We show how Cognitive Radio can be mapped to integrate the possible different communication networks within a smart grid large scale deployment. In addition, various applications in smart grid are defined and discussed showing how Cognitive Radio can be used to fulfill their communication requirements. Moreover, information security issues pertained to the use of Cognitive Radio in a smart grid environment at different levels and layers are discussed and mitigation techniques are suggested. Finally, the well-known Role-Based Access Control (RBAC) is integrated with the Cognitive Radio part of a smart grid communication network to protect against unauthorized access to customer’s data and to the network at large

    A novel frequency reconfigurable antenna for smart grid applications in TV white space band

    Get PDF
    This paper presents the design and analysis of a frequency reconfigurable, aperture coupled rectangular patch antenna for use in smart grid applications in TV white space bands. The proposed antenna model has been realized on multi-substrate layers of Polylactic acid (PLA) material (εr=2.65, tanδ=0.003) with a ground plane sandwiched in between them. An aperture has been made in the ground plane for coupling energy to the patch. The overall system dimensions are 270×270 mm. The feature of frequency reconfigurability has been achieved by incorporating a switch and varying the reactance of the feed line on the bottom substrate. A rectangular slot on the long feed line improves impedance matching. The ON and OFF states of the switch provide two operating frequency bands namely 630.13 to 636.7 MHz and 619.16 to 625.3 MHz respectively. The proposed aperture coupled reconfigurable system operates with a maximum gain of 6.4 dB and average efficiency of 78.5% in both bands. The measured results are satisfactory and the proposed antenna will be suitable for operation in the smart grid environment
    • …
    corecore